
Proving Properties of Constraint Logic Programs
by Eliminating Existential Variables

Alberto Pettorossi1, Maurizio Proietti2, Valerio Senni1

(1) DISP, University of Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy
pettorossi@disp.uniroma2.it, senni@disp.uniroma2.it
(2) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

proietti@iasi.rm.cnr.it

Abstract. We propose a method for proving �rst order properties of
constraint logic programs which manipulate �nite lists of real numbers.
Constraints are linear equations and inequations over reals. Our method
consists in converting any given �rst order formula into a strati�ed con-
straint logic program and then applying a suitable unfold/fold transfor-
mation strategy that preserves the perfect model. Our strategy is based
on the elimination of existential variables, that is, variables which occur
in the body of a clause and not in its head. Since, in general, the �rst or-
der properties of the class of programs we consider are undecidable, our
strategy is necessarily incomplete. However, experiments show that it is
powerful enough to prove several non-trivial program properties.

1 Introduction

It has been long recognized that program transformation can be used as a means
of proving program properties. In particular, it has been shown that unfold/fold
transformations introduced in [4,20] can be used to prove several kinds of pro-
gram properties, such as equivalences of functions de�ned by recursive equation
programs [5,9], equivalences of predicates de�ned by logic programs [14], �rst
order properties of predicates de�ned by strati�ed logic programs [15], and tem-
poral properties of concurrent systems [7,19]. In this paper we consider strati�ed
logic programs with constraints and we propose a method based on unfold/fold
transformations to prove �rst order properties of these programs.

The main reason that motivates our method is that transformation tech-
niques may serve as a way of eliminating existential variables (that is, variables
which occur in the body of a clause and not in its head) and the consequent
quanti�er elimination can be exploited to prove �rst order formulas. Quanti�er
elimination is a well established technique for theorem proving in �rst order
logic [18] and one of its applications is Tarski's decision procedure for the the-
ory of the �eld of reals. However, no quanti�er elimination method has been
developed so far to prove formulas within theories de�ned by constraint logic
programs, where the constraints are themselves formulas of the theory of reals.

Consider, for instance, the following constraint logic program which de�nes the
membership relation for �nite lists of reals:
Member: member(X, [Y |L]) ← X =Y

member(X, [Y |L]) ← member(X, L)
Suppose we want to show that every �nite list of reals has an upper bound, i.e.,

ϕ : ∀L ∃U ∀X (member(X,L) → X ≤ U)
Tarski's quanti�er elimination method cannot help in this case, because the
membership relation is not de�ned in the language of the theory of reals. The
transformational technique we propose in this paper, proves the formula ϕ in two
steps. In the �rst step we transform ϕ into clause form by applying a variant of
the Lloyd-Topor transformation [11], thereby deriving the following clauses:
Prop1: 1. prop ← ¬p

2. p ← list(L) ∧ ¬q(L)
3. q(L) ← list(L) ∧ ¬r(L,U)
4. r(L,U)←X >U ∧ list(L) ∧member(X, L)

where list(L) holds i� L is a �nite list of reals. The predicate prop is equivalent
to ϕ in the sense that M(Member) |= ϕ i� M(Member ∪ Prop1) |= prop, where
M(P) denotes the perfect model of a strati�ed constraint logic program P . In
the second step, we eliminate the existential variables by extending to constraint
logic programs the techniques presented in [16] in the case of de�nite logic pro-
grams. For instance, the existential variable X occurring in the body of the above
clause 4, is eliminated by applying the unfolding and folding rules and trans-
forming that clause into the following two clauses: r([X|L], U) ← X >U ∧ list(L)
and r([X|L], U) ← r(L,U). By iterating the transformation process, we elimi-
nate all existential variables and we derive the following program which de�nes
the predicate prop:
Prop2: 1. prop ← ¬p

2′. p ← p1

3′. p1 ← p1

Now, Prop2 is a propositional program and has a �nite perfect model, which is
{prop}. Since all transformations we have made can be shown to preserve the
perfect model, we have that M(Member) |= ϕ i� M(Prop2) |= prop and, thus,
we have completed the proof of ϕ.

The main contribution of this paper is the proposal of a proof method for
showing that a closed �rst order formula ϕ holds in the perfect model of a
strati�ed constraint logic program P , that is, M(P) |= ϕ. Our proof method is
based on program transformations which eliminate existential variables.

The paper is organized as follows. In Section 2 we consider a class of con-
straint logic programs, called lr-programs (lr stands for lists of reals), which is
Turing complete and for which our proof method is fully automatic. Those pro-
grams manipulate �nite lists of reals with constraints which are linear equations
and inequations over reals. In Section 3 we present the transformation strat-
egy which de�nes our proof method and we prove its soundness. Due to the
undecidability of the �rst order properties of lr-programs, our proof method is

2

necessarily incomplete. Some experimental results obtained by using a proto-
type implementation are presented in Section 5. Finally, in Section 6 we discuss
related work in the �eld of program transformation and theorem proving.

2 Constraint Logic Programs over Lists of Reals

We assume that the reals are de�ned by the usual structureR = 〈R, 0, 1, +, ·,≤〉.
In order to specify programs and formulas, we use a typed �rst order language [11]
with two types: (i) real, denoting the set of reals, and (ii) list of reals (or list, for
short), denoting the set of �nite lists of reals.

We assume that every element of R is a constant of type real. A term p of
type real is de�ned as follows:

p ::= a | X | p1 + p2 | a·X
where a is a real number and X is a variable of type real. We also write aX,
instead of a·X. A term of type real will also be called a linear polynomial. An
atomic constraint is a formula of the form: p1 =p2, or p1 <p2, or p1≤p2, where
p1 and p2 are linear polynomials. We also write p1 > p2 and p1≥ p2, instead of
p2 < p1 and p2≤ p1, respectively. A constraint is a �nite conjunction of atomic
constraints. A �rst order formula over reals is a �rst order formula constructed
out of atomic constraints by using the usual connectives and quanti�ers (i.e.,
¬,∧,∨,→,∃,∀). By FR we will denote the set of �rst order formulas over reals.
A term l of type list is de�ned as follows:

l ::= L | [] | [p | l]
where L is a variable of type list and p is a linear polynomial. A term of type
list will also be called a list. An atom is a formula of the form r(t1, . . . , tn)
where r is an n-ary predicate symbol (with n ≥ 0 and r 6∈ {=, <,≤}) and, for
i = 1, . . . , n, ti is either a linear polynomial or a list. An atom is linear if each
variable occurs in it at most once. A literal is either an atom (i.e., a positive
literal) or a negated atom (i.e., a negative literal). A clause C is a formula of the
form: A ← c ∧ L1 ∧ . . . ∧ Lm, where: (i) A is an atom, (ii) c is a constraint, and
(iii) L1, . . . , Lm are literals. A is called the head of the clause, denoted hd(C),
and c ∧ L1 ∧ . . . ∧ Lm is called the body of the clause, denoted bd(C).

A constraint logic program over lists of reals, or simply a program, is a set of
clauses. A program is strati�ed if no predicate depends negatively on itself [2].
Given a term or a formula f , vars(f) denotes the set of variables occurring
in f . Given a clause C, a variable V is said to be an existential variable of C if
V ∈ vars(bd(C))−vars(hd(C)).

The de�nition of a predicate p in a program P , denoted by Def (p, P), is the
set of the clauses of P whose head predicate is p. The extended de�nition of p in
P , denoted by Def ∗(p, P), is the union of the de�nition of p and the de�nitions
of all predicates in P on which p depends (positively or negatively). A program
is propositional if every predicate occurring in the program is 0-ary. Obviously, if
P is a propositional program then, for every predicate p, M(P) |= p is decidable.

3

De�nition 1 (lr-program). Let X denote a variable of type real, L a variable
of type list, p a linear polynomial, r1 and r2 two predicate symbols, and c a
constraint. An lr-clause is a clause de�ned as follows:
head term: h ::= X | [] | [X|L]
body term: b ::= p | L
lr-clause: C ::= r1(h1, . . . , hk) ← c

| r1(h1, . . . , hk) ← c ∧ r2(b1, . . . , bm)
| r1(h1, . . . , hk) ← c ∧ ¬r2(b1, . . . , bm)

where: (i) vars(p) 6= ∅, (ii) r1(h1, . . . , hk) is a linear atom, and (iii) clause C has
no existential variables. An lr-program is a �nite set of lr-clauses. ¤

We assume that the following lr-clauses belong to every lr-program (but we
will omit them when writing lr-programs):

list([]) ←
list([X|L]) ← list(L)

The speci�c syntactic form of lr-programs is required for the automation of the
transformation strategy we will introduce in Section 3. Here is an lr-program:
P1: sumlist([], Y) ← Y =0

sumlist([X|L], Y) ← sumlist(L, Y −X)
haspositive([X|L]) ← X >0
haspositive([X|L]) ← haspositive(L)

The following de�nition introduces the class of programs and formulas which
can be given in input to our proof method.

De�nition 2 (Admissible Pair). Let P be an lr-program and ϕ a closed �rst
order formula with no other connectives and quanti�ers besides ¬,∧, and ∃. We
say that 〈P, ϕ〉 is an admissible pair if: (i) every predicate symbol occurring in ϕ
and di�erent from ≤, <, =, also occurs in P , (ii) every predicate of arity n (>0)
occurring in P and di�erent from ≤, <, =, has at least one argument of type list,
and (iii) for every proper subformula σ of ϕ, if σ is of the form ¬ψ, then either
σ is a formula in FR or σ has a free occurrence of a variable of type list. ¤

Conditions (ii) and (iii) of De�nition 2 are needed to guarantee the soundness
of our proof method (see Theorem 3).

Example 1. Let us consider the above program P1 de�ning the predicates sumlist
and haspositive, and the formula

π : ∀L ∀Y ((sumlist(L, Y) ∧ Y >0) → haspositive(L))
which expresses the fact that if the sum of the elements of a list is positive then
the list has at least one positive member. This formula can be rewritten as:

π1 : ¬∃L ∃Y (sumlist(L, Y) ∧ Y >0 ∧ ¬haspositive(L))

The pair 〈P1, π1〉 is admissible. Indeed, the only proper subformula of π1 of the
form ¬ψ is ¬haspositive(L) and the free variable L is of type list. ¤

4

In order to de�ne the semantics of our logic programs we consider LR-inter-
pretations where: (i) the type real is mapped to the set of reals, (ii) the type list
is mapped to the set of lists of reals, and (iii) the symbols +, ·, =, <, ≤, [], and
[_|_] are mapped to the usual corresponding operations and relations on reals
and lists of reals. The semantics of a strati�ed logic program P is assumed to
be its perfect LR-model M(P), which is de�ned similarly to the perfect model
of a strati�ed logic program [2,12,17] by considering LR-interpretations, instead
of Herbrand interpretations. Note that for every formula ϕ ∈ FR, we have that
R |= ϕ i� for any LR-interpretation I, I |= ϕ.

Now we present a transformation, called Clause Form Transformation, that
allows us to derive strati�ed logic programs starting from formulas, called state-
ments, of the form: A ← β, where A is an atom and β is a typed �rst order for-
mula. Our transformation is a variant of the transformation proposed by Lloyd
and Topor in [11]. When applying the Clause Form Transformation, we will use
the following well known property which guarantees that existential quanti�ca-
tion and negation can always be eliminated from �rst order formulas on reals.

Lemma 1 (Variable Elimination). For any formula ϕ ∈ FR there exist n
(≥ 0) constraints c1, . . . , cn such that: (i) R |= ∀(ϕ ↔ (c1 ∨ . . . ∨ cn)), and
(ii) every variable in vars(c1 ∨ . . . ∨ cn) occurs free in ϕ.

In what follows we write C[γ] to denote a formula where the subformula γ
occurs as an outermost conjunct, that is, C[γ] = γ1 ∧ γ ∧ γ2 for some (possibly
empty) conjunctions γ1 and γ2.

Clause Form Transformation.
Input : A statement S whose body has no other connectives and quanti�ers
besides ¬,∧, and ∃. Output : A set of clauses denoted CFT (S).
(Step A) Starting from S, repeatedly apply the following rules A.1�A.5 until a
set of clauses is generated.
(A.1) If γ ∈ FR and γ is not a constraint, then replace A ← C[γ] by the n state-
ments A ← C[c1], . . . , A ← C[cn], where c1∨ . . .∨ cn, with n≥0, is a disjunction
of constraints which is equivalent to γ. (The existence of such a disjunction is
guaranteed by Lemma 1 above.)
(A.2) If γ 6∈ FR then replace A ← C[¬¬γ] by A ← C[γ].
(A.3) If γ∧ δ 6∈ FR then replace the statement A ← C[¬(γ∧ δ)] by the two
statements A ← C[¬newp(V1, . . . ,Vk)] and newp(V1, . . . ,Vk) ← γ∧δ, where newp
is a new predicate and V1, . . . ,Vk are the variables which occur free in γ ∧ δ.
(A.4) If γ 6∈ FR then replace the statement A ← C[¬∃V γ] by the two statements
A ← C[¬newp(V1, . . . , Vk)] and newp(V1, . . . , Vk) ← γ, where newp is a new
predicate and V1, . . . , Vk are the variables which occur free in ∃V γ.
(A.5) If γ 6∈ FR then replace A ← C[∃V γ] by A ← C[γ{V/V1}], where V1 is a
new variable.

5

(Step B) For every clause A ← c ∧ G such that L1, . . . , Lk are the variables of
type list occurring in G, replace A ← c∧G by A ← c∧ list(L1)∧. . .∧ list(Lk)∧G.

Example 2. The set CFT (prop1 ← π1), where π1 is the formula given in Exam-
ple 1, consists of the following two clauses:

D2 : prop1 ← ¬new1

D1 : new1 ← Y >0 ∧ list(L) ∧ sumlist(L, Y) ∧ ¬haspositive(L)
(The subscripts of the names of these clauses follow the bottom-up order in
which they will be processed by the UFlr strategy we will introduce below.) ¤

By construction, we have that if 〈P, ϕ〉 is an admissible pair and prop is a
new predicate symbol, then P ∪ CFT (prop ← ϕ) is a strati�ed program. The
Clause Form Transformation is correct with respect to the perfect LR-model
semantics, as stated by the following theorem.

Theorem 1 (Correctness of CFT). Let 〈P, ϕ〉 be an admissible pair. Then,
M(P) |= ϕ i� M(P ∪ CFT (prop ← ϕ)) |= prop.

In general, a clause in CFT (prop ← ϕ) is not an lr-clause because, indeed,
existential variables may occur in its body. The clauses of CFT (prop ← ϕ) are
called typed-de�nitions. They are de�ned as follows.

De�nition 3 (Typed-De�nition, Hierarchy). A typed-de�nition is a clause
of the form: r(V1, . . . , Vn) ← c∧list(L1)∧. . .∧list(Lk)∧G where: (i) V1, . . . , Vn

are distinct variables of type real or list, and (ii) L1, . . . , Lk are the variables of
type list that occur in G. A sequence 〈D1, . . . , Dn〉 of typed-de�nitions is said
to be a hierarchy if for i = 1, . . . , n, the predicate of hd(Di) does not occur in
{bd(D1), . . . , bd(Di)}. ¤

One can show that given a closed formula ϕ, the set CFT (prop ← ϕ) of
clauses can be ordered as a hierarchy 〈D1, . . . , Dn〉 of typed-de�nitions such
that Def (prop, {D1, . . . , Dn})={Dk, Dk+1, . . . , Dn}, for some k with 1≤k≤n.

3 The Unfold/Fold Proof Method

In this section we present the transformation strategy, called UFlr (Unfold/Fold
strategy for lr-programs), which de�nes our proof method for proving properties
of lr-programs. Our strategy applies in an automatic way the transformation
rules for strati�ed constraint logic programs presented in [8]. In particular, the
UFlr strategy makes use of the de�nition introduction, (positive and negative)
unfolding, (positive) folding, and constraint replacement rules. (These rules ex-
tend the ones proposed in [6,12] where the unfolding of a clause with respect to
a negative literal is not permitted.)

Given an admissible pair 〈P, ϕ〉, let us consider the strati�ed program P ∪
CFT (prop ← ϕ). The goal of our UFlr strategy is to derive a program TransfP

6

such that Def ∗(prop,TransfP) is propositional and, thus, M(TransfP) |= prop
is decidable. We observe that, in order to achieve this goal, it is enough that the
derived program TransfP is an lr-program, as stated by the following lemma,
which follows directly from De�nition 1.

Lemma 2. Let P be an lr-program and p be a predicate occurring in P . If p is
0-ary then Def ∗(p, P) is a propositional program.

As already said, the clauses in CFT (prop ← ϕ) form a hierarchy 〈D1, . . . , Dn〉 of
typed-de�nitions. The UFlr strategy consists in transforming, for i = 1, . . . , n,
clause Di into a set of lr-clauses. The transformation of Di is performed by
applying the following three substrategies, in this order: (i) unfold , which un-
folds Di with respect to the positive and negative literals occurring in its body,
thereby deriving a set Cs of clauses, (ii) replace-constraints, which replaces the
constraints appearing in the clauses of Cs by equivalent ones, thereby deriving a
new set Es of clauses, and (iii) define-fold , which introduces a set NewDefs of new
typed-de�nitions (which are not necessarily lr-clauses) and folds all clauses in
Es, thereby deriving a set Fs of lr-clauses. Then each new de�nition in NewDefs
is transformed by applying the above three substrategies, and the whole UFlr

strategy terminates when no new de�nitions are introduced. The substrategies
unfold , replace-constraints, and define-fold will be described in detail below.

The UFlr Transformation Strategy.
Input: An lr-program P and a hierarchy 〈D1, . . . , Dn〉 of typed-de�nitions.
Output: A set Defs of typed-de�nitions including D1, . . . , Dn, and an lr-program
TransfP such that M(P ∪Defs) = M(TransfP).

TransfP := P ; Defs := {D1, . . . , Dn};
for i = 1, . . . , n do InDefs := {Di};

while InDefs 6=∅ do
unfold(InDefs,TransfP ,Cs);
replace-constraints(Cs,Es);
define-fold(Es,Defs,NewDefs,Fs);
TransfP := TransfP ∪ Fs; Defs := Defs ∪NewDefs; InDefs := NewDefs;
end-while;
eval-props: for each predicate p such thatDef ∗(p,TransfP) is propositional,
if M(TransfP) |= p then TransfP := (TransfP−Def (p,TransfP)) ∪ {p ←}

else TransfP := (TransfP−Def (p,TransfP))
end-for

Our assumption that 〈D1,. . . ,Dn〉 is a hierarchy ensures that, when transforming
clause Di, for i=1,. . . ,n, we only need the clauses obtained after the transfor-
mation of D1, . . . , Di−1. These clauses are those of the current value of TransfP .

The following unfold substrategy transforms a set InDefs of typed-de�nitions
by �rst applying the unfolding rule with respect to each positive literal in the

7

body of a clause and then applying the unfolding rule with respect to each neg-
ative literal in the body of a clause. In the sequel, we will assume that the con-
junction operator ∧ is associative, commutative, idempotent, and with neutral
element true. In particular, the order of the conjuncts will not be signi�cant.

The unfold Substrategy.
Input : An lr-program Prog and a set InDefs of typed-de�nitions.
Output : A set Cs of clauses.

Initially, no literal in the body of a clause of InDefs is marked as `unfolded'.
Positive Unfolding : while there exists a clause C in InDefs of the form
H←c∧GL∧A∧GR, where A is an atom which is not marked as `unfolded' do
Let C1: K1 ← c1 ∧B1, . . . , Cm: Km ← cm ∧Bm be all clauses of program Prog
(where we assume vars(Prog)∩vars(C) = ∅) such that, for i=1, . . . , m, (i) there
exists a most general uni�er ϑi of A and Ki, and (ii) the constraint (c ∧ ci)ϑi is
satis�able. Let U be the following set of clauses:

U = {(H ← c∧ c1∧GL∧B1∧GR)ϑ1, . . . , (H ← c∧ cm∧GL∧Bm∧GR)ϑm}
Let W be the set of clauses derived from U by removing all clauses of the form

H ← c ∧GL ∧A ∧ ¬A ∧GR

Inherit the markings of the literals in the body of the clauses of W from those
of C, and mark as `unfolded' the literals B1ϑ1, . . . , Bmϑm;
InDefs := (InDefs − {C}) ∪W ;
end-while;
Negative Unfolding : while there exists a clause C in InDefs of the form
H←c∧GL∧¬A∧GR, where¬A is a literal which is not marked as `unfolded' do
Let C1: K1 ← c1 ∧ B1, . . . , Cm: Km ← cm ∧ Bm be all clauses of program Prog
(where we assume that vars(Prog)∩vars(C)=∅) such that, for i=1, . . . ,m, there
exists a most general uni�er ϑi of A and Ki. By our assumptions on Prog and
on the initial value of InDefs, and as a result of the previous Positive Unfolding
phase, we have that, for i=1, . . . ,m, Bi is either the empty conjunction true or
a literal and A=Kiϑi. Let U be the following set of statements:

U = {H ← c ∧ d1ϑ1 ∧ . . . ∧ dmϑm ∧GL ∧ L1ϑ1 ∧ . . . ∧ Lmϑm ∧GR |
(i) for i=1, . . . , m, either (di =ci and Li =¬Bi) or (di =¬ci andLi = true),
and (ii) c ∧ d1ϑ1 ∧ . . . ∧ dmϑm is satis�able}

Let W be the set of clauses derived from U by applying as long as possible the
following rules:

• remove H ← c ∧GL ∧ ¬true ∧GR and H ← c ∧GL ∧A ∧ ¬A ∧GR

• replace ¬¬A by A, ¬(p1 ≤ p2) by p2 < p1, and ¬(p1 < p2) by p2 ≤ p1

• replace H ← c1 ∧ ¬(p1 = p2) ∧ c2 ∧G by H ← c1 ∧ p1 < p2 ∧ c2 ∧G
H ← c1 ∧ p2 < p1 ∧ c2 ∧G

Inherit the markings of the literals in the body of the clauses of W from those
of C, and mark as `unfolded' the literals L1ϑ1, . . . , Lmϑm;
InDefs := (InDefs − {C}) ∪W ;

8

end-while;
Cs := InDefs.

Negative Unfolding is best explained through an example. Let us consider a
program consisting of the clauses C: H ← c∧¬A, A ← c1∧B1, and A ← c2∧B2.
The negative unfolding of C w.r.t. ¬A gives us the following four clauses:

H ← c ∧ ¬c1 ∧ ¬c2

H ← c ∧ c1 ∧ ¬c2 ∧ ¬B1

H ← c ∧ ¬c1 ∧ c2 ∧ ¬B2

H ← c ∧ c1 ∧ c2 ∧ ¬B1 ∧ ¬B2

whose conjunction is equivalent to H ← c ∧ ¬((c1 ∧B1) ∨ (c2 ∧B2)).

Example 3. Let us consider the program-property pair 〈P1, π1〉 of Example 1. In
order to prove that M(P1) |= π1, we apply the UFlr strategy starting from the
hierarchy 〈D1, D2〉 of typed-de�nitions of Example 2. During the �rst execution
of the body of the for-loop of that strategy, the unfold substrategy is applied, as
we now indicate, by using as input the program P1 and the set {D1} of clauses.
We have the following positive and negative unfolding steps.
Positive Unfolding. By unfolding clause D1 w.r.t. list(L) and then unfolding the
resulting clauses w.r.t. sumlist(L, Y), we get:

C1: new1 ← Y >0 ∧ list(L) ∧ sumlist(L, Y −X) ∧ ¬haspositive([X|L])
Negative Unfolding. By unfolding clause C1 w.r.t. ¬haspositive([X|L]), we get:

C2: new1 ← Y >0∧X≤0∧ list(L)∧ sumlist(L, Y −X)∧¬haspositive(L) ¤

The correctness of the unfold substrategy follows from the fact that the positive
and negative unfoldings are performed according to the rules presented in [8].
The termination of that substrategy is due to the fact that the number of literals
which are not marked as `unfolded' and which occur in the body of a clause,
decreases when that clause is unfolded. Thus, we have the following result.

Lemma 3. Let Prog be an lr-program and let InDefs be a set of typed-de�nitions
such that the head predicates of the clauses of InDefs do not occur in Prog. Then,
given the inputs Prog and InDefs, the unfold substrategy terminates and returns
a set Cs of clauses such that M(Prog ∪ InDefs) = M(Prog ∪ Cs).

The replace-constraints substrategy derives from a set Cs of clauses a new
set Es of clauses by applying equivalences between existentially quanti�ed dis-
junctions of constraints. We use the following two rules: project and clause split.

Given a clause H ← c∧G, the project rule eliminates all variables that occur
in c and do not occur elsewhere in the clause. Thus, project returns a new clause
H ← d ∧ G such that R |= ∀((∃X1 . . . ∃Xk c) ↔ d), where: (i) {X1, . . . , Xk} =
vars(c) − vars({H,G}), and (ii) vars(d) ⊆ vars(c) − {X1, . . . , Xk}. In our pro-
totype theorem prover (see Section 5), the project rule is implemented by using
a variant of the Fourier-Motzkin Elimination algorithm [1].

The clause split rule replaces a clause C by two clauses C1 and C2 such
that, for i = 1, 2, the number of occurrences of existential variables in Ci is less

9

than the number of occurrences of existential variables in C. The clause split
rule applies the following property, which expresses the fact that 〈R,≤〉 is a
linear order: R |= ∀X ∀Y (X < Y ∨ Y ≤X). For instance, a clause of the form
H ← Z ≤X ∧ Z ≤ Y ∧ G, where Z is an existential variable occurring in the
conjunction G of literals and X and Y are not existential variables, is replaced
by the two clauses H ← Z ≤X∧X < Y ∧G and H ← Z ≤ Y ∧Y ≤X∧G. The
decrease of the number of occurrences of existential variables guarantees that we
can apply the clause split rule a �nite number of times only.

The replace-constraints Substrategy.
Input: A set Cs of clauses. Output: A set Es of clauses.

• Introduce Equations. (A) From Cs we derive a new set R1 of clauses by applying
as long as possible the following two rules, where p denotes a linear polynomial
which is not a variable, and Z denotes a fresh new variable:
(R.1) H ← c ∧GL ∧ r(. . . , p, . . .) ∧GR is replaced by

H ← c ∧ Z =p ∧GL ∧ r(. . . , Z, . . .) ∧GR

(R.2) H ← c ∧GL ∧ ¬r(. . . , p, . . .) ∧GR is replaced by
H ← c ∧ Z =p ∧GL ∧ ¬r(. . . , Z, . . .) ∧GR

(B) From R1 we derive a new set R2 of clauses by applying to every clause
C in R1 the following rule. Let C be of the form H ← c ∧ G. Suppose that
R |= ∀ (c ↔ (X1=p1 ∧Xn=pn ∧ d)), where: (i)X1, . . . , Xn are existential vari-
ables of C, (ii) vars(X1 =p1 ∧ . . . ∧Xn =pn ∧ d) ⊆ vars(c), (iii) {X1, . . . , Xn} ∩
vars({p1, . . . , pn, d})=∅. Thenwe replaceC by H←X1=p1∧ . . . ∧Xn =pn∧d∧G.
• Project. We derive a new set R3 of clauses by applying to every clause in R2

the project rule.
• Clause Split. From R3 we derive a new set R4 of clauses by applying as long
as possible the following rule. Let C be a clause of the form H ← c1 ∧ c2 ∧ c∧G
(modulo commutativity of ∧). Let E be the set of existential variables of C.
Let X ∈ E and let d1 and d2 be two inequations such that R |= ∀ ((c1 ∧ c2) ↔
(d1 ∧ d2)). Suppose that: (i) d1 ∧ d2 is of one of the following six forms:

X≤p1 ∧X≤p2 X≤p1 ∧X <p2 X <p1 ∧X <p2

p1≤X ∧ p2≤X p1≤X ∧ p2 <X p1 <X ∧ p2 <X

and (ii) (vars(p1) ∪ vars(p2)) ∩ E = ∅.
Then C is replaced by the following two clauses: C1: H ← d1 ∧ p1 <p2 ∧ c ∧ G
and C2: H ← d2 ∧ p2 ≤ p1 ∧ c ∧ G, and then each clause in {C1, C2} with an
unsatis�able constraint in its body is removed.
• Eliminate Equations. From R4 we derive the new set Es of clauses by applying
to every clause C in R4 the following rule. If C is of the form H ← X1 = p1

∧ . . .∧Xn =pn ∧ d∧G where {X1, . . . , Xn} ∩ vars({p1, . . . pn, d}) = ∅, then C is
replaced by (H ← d ∧G){X1/p1, . . . , Xn/pn}.

10

The transformation described at Point (A) of Introduce Equations allows us
to treat all polynomials occurring in the body of a clause in a uniform way as
arguments of constraints. The transformation described at Point (B) of Introduce
Equations identi�es those existential variables which can be eliminated during
the �nal Eliminate Equations transformation. That elimination is performed by
substituting, for i=1, . . . , n, the variable Xi by the polynomial pi.

Example 4. By applying the replace-constraints substrategy, clause C2 of Exam-
ple 3 is transformed as follows. By introducing equations we get:
C3: new1 ← Y >0∧X≤0∧Z =Y−X∧ list(L)∧sumlist(L,Z)∧¬haspositive(L)
Then, by applying the project transformation, we get:
C4: new1 ← Z >0 ∧ list(L) ∧ sumlist(L,Z) ∧ ¬haspositive(L) ¤

The correctness of the replace-constraints substrategy is a straightforward
consequence of the fact that the Introduce Equations, Project, Clause Split, and
Eliminate Equations transformations are performed by using the rule of replace-
ment based on laws presented in [8]. The termination of Introduce Equations
and Eliminate Equations is obvious. The termination of Project is based on the
termination of the speci�c algorithm used for variable elimination (e.g., Fourier-
Motzkin algorithm). As already mentioned, the termination of Clause Split is
due to the fact that at each application of this transformation the number of
occurrences of existential variables decreases. Thus, we get the following lemma.

Lemma 4. For any program Prog and set Cs ⊆ Prog of clauses, the replace-
constraints substrategy with input Cs terminates and returns a set Es of clauses
such that M(Prog) = M((Prog − Cs) ∪ Es).

The define-fold substrategy eliminates all existential variables in the clauses
of the set Es obtained after the unfold and replace-constraints substrategies. This
elimination is done by folding all clauses in Es that contain existential variables.
In order to make these folding steps we use the typed-de�nitions in Defs and, if
necessary, we introduce new typed-de�nitions which we add to the set NewDefs.

The define-fold Substrategy.
Input: A set Es of clauses and a set Defs of typed-de�nitions.
Output: A set NewDefs of typed-de�nitions and a set Fs of lr-clauses.

Initially, both NewDefs and Fs are empty.
for each clause C: H ← c ∧G in Es do
if C is an lr-clause then Fs := Fs ∪ {C} else
• De�ne. Let E be the set of existential variables of C. We consider a clause
NewD of the form newp(V1, . . . , Vm) ← d ∧B constructed as follows:
(1) let c be of the form c1 ∧ c2, where vars(c1) ∩ E = ∅ and for every atomic
constraint a occurring in c2, vars(a) ∩ E 6= ∅; let d ∧ B be the most general
(modulo variants) conjunction of constraints and literals such that there exists
a substitution ϑ with the following properties: (i) (d ∧B)ϑ = c2 ∧G, and (ii) for

11

each binding V/p in ϑ, V is a variable not occurring in C, vars(p) 6= ∅, and
vars(p) ∩ E = ∅;
(2) newp is a new predicate symbol;
(3) {V1, . . . , Vm} = vars(d ∧B)−E.
NewD is added to NewDefs, unless in Defs there exists a typed-de�nition D
which is equal to NewD , modulo the name of the head predicate, the names of
variables, equivalence of constraints, and the order and multiplicity of literals in
the body. If such a clause D belongs to Defs and no other clause in Defs has the
same head predicate as D, then we assume that NewD =D.
• Fold. Clause C is folded using clause NewD as follows:
Fs := Fs ∪ {H ← c1 ∧ newp(V1, . . . , Vm)ϑ}.
end-for

Example 5. Let us consider the clause C4 derived at the end of Example 4.
The De�ne phase produces a typed-de�nition which is a variant of the typed-
de�nition D1 introduced at the beginning of the application of the strategy (see
Example 2). Thus, C4 is folded using clause D1, and we get the clause:

C5: new1 ← new1

Let us now describe how the proof of M(P1) |= π1 proceeds. The program
TransfP derived so far consists of clause C5 together with the clauses de�ning
the predicates list, sumlist, and haspositive. Thus, Def ∗(new1,TransfP) consists
of clause C5 only, which is propositional and, by eval-props, we remove C5 from
TransfP because M(TransfP) 6|= new1. The strategy continues by considering the
typed de�nition D2 (see Example 2). By unfolding D2 with respect to ¬new1 we
get the �nal program TransfP, which consists of the clause prop1 ← together
with the clauses for list, sumlist, and haspositive. Thus, M(TransfP) |= prop1

and, therefore, M(P1) |= π1. ¤

The proof of correctness for the de�ne-fold substrategy is more complex than
the proofs for the other substrategies. The correctness results for the unfold/fold
transformations presented in [8] guarantee the correctness of a folding transfor-
mation if each typed-de�nition used for folding is unfolded w.r.t. a positive lit-
eral during the application of the UFlr transformation strategy. The ful�llment
of this condition is ensured by the following two facts: (1) by the de�nition of an
admissible pair and by the de�nition of the Clause Form Transformation, each
typed-de�nition has at least one positive literal in its body (indeed, by Condi-
tion (iii) of De�nition 2 each negative literal in the body of a typed-de�nition has
at least one variable of type list and, therefore, the body of the typed-de�nition
has at least one list atom), and (2) in the Positive Unfolding phase of the unfold
substrategy, each typed-de�nition is unfolded w.r.t. all positive literals.

Note that the set Fs of clauses derived by the de�ne-fold substrategy is a
set of lr-clauses. Indeed, by the unfold and replace-constraints substrategies, we
derive a set Es of clauses of the form r(h1, . . . , hk) ← c ∧ G, where h1, . . . , hk

are head terms (see De�nition 1). By folding we derive clauses of the form
r(h1, . . . , hk) ← c1 ∧ newp(V1, . . . , Vm)ϑ

12

where vars(c1 ∧newp(V1, . . . , Vm)ϑ) ⊆ vars(r(h1, . . . , hk)), and for i = 1, . . . ,m,
vars(Viϑ) 6= ∅ (by the conditions at Points (1)�(3) of the De�ne phase). Hence,
all clauses in Fs are lr-clauses.

The termination of the de�ne-fold substrategy is obvious, as each clause is
folded at most once. Thus, we have the following result.

Lemma 5. During the UFlr strategy, if the de�ne-fold substrategy takes as in-
puts the set Es of clauses and the set Defs of typed-de�nitions, then this substrat-
egy terminates and returns a set NewDefs of typed-de�nitions and a set Fs of
lr-clauses such that M(TransfP ∪Es∪NewDefs) = M(TransfP ∪Fs∪NewDefs).

By using Lemmata 3, 4, and 5 we get the following correctness result for the
UFlr strategy.

Theorem 2. Let P be an lr-program and 〈D1, . . . , Dn〉 a hierarchy of typed-
de�nitions. Suppose that the UFlr strategy with inputs P and 〈D1, . . . , Dn〉 ter-
minates and returns a set Defs of typed-de�nitions and a program TransfP . Then:
(i) TransfP is an lr-program and (ii) M(P ∪Defs) = M(TransfP).

Now, we are able to prove the soundness of the unfold/fold proof method.

Theorem 3 (Soundness of the Unfold/Fold Proof Method). Let 〈P, ϕ〉
be an admissible pair and let 〈D1, . . . , Dn〉 be the hierarchy of typed-de�nitions
obtained from prop ← ϕ by the Clause Form Transformation. If the UFlr strategy
with inputs P and 〈D1, . . . , Dn〉 terminates and returns a program TransfP, then:

M(P) |= ϕ i� (prop ←) ∈ TransfP

Proof. By Theorem 1 and Point (ii) of Theorem 2, we have that M(P) |= ϕ i�
M(TransfP) |= prop. By Point (i) of Theorem 2 and Lemma 2 we have that
Def ∗(prop,TransfP) is propositional. Since the last step of the UFlr strategy is
an application of the eval-props transformation,we have that Def ∗(prop,TransfP)
is either the singleton {prop ←}, if M(TransfP) |= prop, or the empty set, if
M(TransfP) 6|= prop. ¤

4 A Complete Example
As an example of application of our transformation strategy for proving prop-
erties of constraint logic programs we consider the lr-program Member and the
property ϕ given in the Introduction. The formula ϕ is rewritten as follows:

ϕ1 : ¬∃L¬∃U ¬∃X (X >U ∧member(X, L))
The pair 〈Member , ϕ1〉 is admissible. By applying the Clause Form Transforma-
tion starting from the statement prop ← ϕ1, we get the following clauses:

D4: prop ← ¬p
D3: p ← list(L) ∧ ¬q(L)
D2: q(L) ← list(L) ∧ ¬r(L,U)
D1: r(L,U) ← X >U ∧ list(L) ∧member(X,L)

13

where 〈D1, D2, D3, D4〉 is a hierarchy of typed-de�nitions. Note that the three
nested negations in ϕ1 generate the three atoms p, q(L), and r(L,U) with their
typed-de�nitions D3, D2, and D1, respectively. The arguments of p, q, and r are
the free variables of the corresponding subformulas of ϕ1. For instance, r(L, U)
corresponds to the subformula ∃X (X > U ∧ member(X, L)) which has L and
U as free variables. Now we apply the UFlr strategy starting from the program
Member and the hierarchy 〈D1, D2, D3, D4〉.
• Execution of the for-loop with i = 1. We have: InDefs = {D1}. By unfolding
clause D1 w.r.t. the atoms list(L) and member(X,L) we get:

1.1 r([X|T], U) ← X >U ∧ list(T)
1.2 r([X|T], U) ← Y >U ∧ list(T) ∧member(Y, T)

No replacement of constraints is performed. Then, by folding clause 1.2 using
D1, we get:

1.3 r([X|T], U) ← r(T,U)
After the de�ne-fold substrategy the set Fs of clauses is {1.1, 1.3}, and at this
point the program TransfP is Member ∪ {1.1, 1.3}. No new de�nitions are in-
troduced and, thus, InDefs = ∅ and the while-loop terminates. eval-props is not
performed because the predicate r is not propositional.
• Execution of the for-loop with i = 2. We have: InDefs = {D2}. We unfold
clause D2 w.r.t. list(L) and ¬r(L,U), we get:

2.1 q([]) ←
2.2 q([X|T]) ← X≤U ∧ list(T) ∧ ¬r(T, U)

No replacement of constraints is performed. Then we introduce the new de�ni-
tion:

2.3 q1(X,T) ← X≤U ∧ list(T) ∧ ¬r(T,U)
and we fold clause 2.2 using clause 2.3. We get:

2.4 q([X|T]) ← q1(X, T)
Since NewDefs = InDefs = {2.3} we execute again the body of the while-loop.
By unfolding clause 2.3 w.r.t. list(T) and ¬r(T, U), we get:

2.5 q1(X, []) ←
2.6 q1(X, [Y |T]) ← X≤U ∧ Y ≤U ∧ list(T) ∧ ¬r(T,U)

By applying replace-constraints, clause 2.6 generates the following two clauses:
2.6.1 q1(X, [Y |T]) ← X >Y ∧X≤U ∧ list(T) ∧ ¬r(T, U)
2.6.2 q1(X, [Y |T]) ← X≤Y ∧ Y ≤U ∧ list(T) ∧ ¬r(T, U)

By folding clauses 2.6.1 and 2.6.2 using clause 2.3, we get:
2.7 q1(X, [Y |T]) ← X >Y ∧ q1(X, T)
2.8 q1(X, [Y |T]) ← X≤Y ∧ q1(Y, T)

At this point the program TransfP is Member ∪{1.1, 1.3, 2.1, 2.4, 2.5, 2.7, 2.8}.
No new de�nitions are introduced and, thus, the while-loop terminates. eval-
props is not performed because the predicates q and q1 are not propositional.
• Execution of the for-loop with i = 3. We have: InDefs = {D3}. By unfolding
clause D3 w.r.t. list(L) and ¬q(L), we get:

14

3.1 p ← list(T) ∧ ¬q1(X,T)
No replacement of constraints is performed. The following new de�nition:

3.2 p1 ← list(T) ∧ ¬q1(X,T)
is introduced. Then by folding clause 3.1 using clause 3.2, we get:

3.3 p ← p1

Since NewDefs = InDefs = {3.2} we execute again the body of the while-loop.
By unfolding clause 3.2 w.r.t. list(T) and ¬q1(X, T), we get:

3.4 p1 ← X >Y ∧ list(T) ∧ ¬q1(X, T)
3.5 p1 ← X≤Y ∧ list(T) ∧ ¬q1(Y, T)

Since the variable Y occurring in the constraints X >Y and X≤Y is existential,
we apply the project rule to clauses 3.4 and 3.5 and we get the following clause:

3.6 p1 ← list(T) ∧ ¬q1(X, T)
This clause can be folded using clause 3.2, thereby deriving the following clause:

3.7 p1 ← p1

Clauses 3.3 and 3.7 are added to TransfP . Since the predicates p and p1 are
both propositional, we execute eval-props. We have that: (i) M(TransfP) 6|= p1

and (ii) M(TransfP) 6|= p. Thus, clauses 3.3 and 3.7 are removed from TransfP .
Hence, TransfP = Member ∪ {1.1, 1.3, 2.1, 2.4, 2.5, 2.7, 2.8}.
• Execution of the for-loop with i = 4. We have: InDefs = {D4}. By unfolding
clause D4 w.r.t. ¬p, we get the clause:

4. prop ←
This clause shows that, as expected, property ϕ holds for any �nite list of reals.

5 Experimental Results
We have implemented our proof method by using the MAP transformation sys-
tem [13] running under SICStus Prolog on a 900MHz Power PC. Constraint sat-
isfaction and entailment were performed using the clp(r) module of SICStus. Our
prototype has automatically proved the properties listed in the following table,
where the predicates member , sumlist , and haspositive are de�ned as shown in
Sections 1 and 2, and the other predicates have the following meanings: (i) ord(L)
holds i� L is a list of the form [a1, . . . , an] and for i = 1, . . . , n−1, ai ≤ ai+1,
(ii) sumzip(L, M, N) holds i� L, M , and N are lists of the form [a1, . . . , an],
[b1, . . . , bn], and [a1 +b1, . . . , an +bn], respectively, and (iii) leqlist(L,M) holds
i� L and M are lists of the form [a1, . . . , an] and [b1, . . . , bn], respectively, and
for i = 1, . . . , n, ai≤ bi. We do not write here the lr-programs which de�ne the
predicates ord(L), sumzip(L, M, N), and leqlist(L,M).

Property Time
∀L ∃M ∀Y (member(Y,L) → Y ≤M) 140 ms
∀L ∀Y ((sumlist(L, Y) ∧ Y >0) → haspositive(L)) 170 ms
∀L ∀Y ((sumlist(L, Y) ∧ Y >0) → ∃X(member(X,L) ∧ X >0)) 160 ms
∀L ∀M ∀N ((ord(L) ∧ ord(M) ∧ sumzip(L,M,N)) → ord(N)) 160 ms
∀L ∀M ((leqlist(L,M) ∧ sumlist(L, X) ∧ sumlist(M, Y)) → X≤Y) 50 ms

15

6 Related Work and Conclusions

We have presented a method for proving �rst order properties of constraint
logic programs based on unfold/fold program transformations, and we have
shown that the ability of unfold/fold transformations to eliminate existential
variables [16] can be turned into a useful theorem proving method. We have pro-
vided a fully automatic strategy for the class of lr-programs, which are programs
acting on reals and �nite lists of reals, with constraints as linear equations and
inequations over reals. The choice of lists is actually a simplifying assumption we
have made and we believe that the extension of our method to any �nitely gen-
erated data structure is quite straightforward. However, the use of constraints
over the reals is an essential feature of our method, because quanti�er elimination
from constraints is a crucial subprocedure of our transformation strategy.

The �rst order properties of lr-programs are undecidable (and not even
semi-decidable), because one can encode every partial recursive function as an
lr-program without list arguments. As a consequence our proof method is nec-
essarily incomplete. We have implemented the proof method based of program
transformation and we have proved some simple, yet non-trivial, properties. As
the experiments show, the performance of our method is encouraging.

Our method is an extension of the method presented in [15] which considers
logic programs without constraints. The addition of constraints is a very relevant
feature, because it provides more expressive power and, as already mentioned,
we may use special purpose theorem provers for checking constraint satisfaction
and for quanti�er elimination. Our method can also be viewed as an extension of
other techniques based on unfold/fold transformations for proving equivalences
of predicates [14,19], and indeed, our method can deal with a class of �rst order
formulas which properly includes equivalences.

Some papers have proposed transformational techniques to prove proposi-
tional temporal properties of �nite and/or in�nite state systems (see, for in-
stance, [7,10,19]). Since propositional temporal logic can be encoded in �rst order
logic, in principle these techniques can be viewed as instances of the unfold/fold
proof method presented here.

However, it should be noted that the techniques described in [7,10,19] have
their own peculiarities because they are tailored to the speci�c problem of veri-
fying concurrent systems.

Finally, we think that a direct comparison of the power of our proof method
with that of traditional theorem provers is somewhat inappropriate. The tech-
niques used in those provers are very e�ective and are the result of a well es-
tablished line of research (see, for instance, [3] for a survey on the automation
of mathematical induction). However, our approach has its novelty and is based
on principles which have not been explored in the �eld of theorem proving. In
particular, the idea of making inductive proofs by unfold/fold transformations
for eliminating quanti�ers, has not yet been investigated within the theorem
proving community.

16

7 Acknowledgments
We would like to thank the anonymous referees for their helpful comments and
suggestions.

References
1. K. R. Apt. Principles of Constraint Programming. Cambridge Univ. Press, 2003.
2. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of

Logic Programming, 19, 20:9�71, 1994.
3. A. Bundy. The automation of proof by mathematical induction. In Handbook of

Automated Reasoning, volume I, pages 845�911. North Holland, 2001.
4. R. M. Burstall and J. Darlington. A transformation system for developing recursive

programs. Journal of the ACM, 24(1):44�67, January 1977.
5. B. Courcelle. Equivalences and transformations of regular systems � applications

to recursive program schemes and grammars. Theor. Comp. Sci., 42:1�122, 1986.
6. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-

puter Science, 166:101�146, 1996.
7. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTLproperties of in�nite

state systems by specializing constraint logic programs. In Proceedings VCL'01,
Florence, Italy, pages 85�96. University of Southampton, UK, 2001.

8. F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally strat-
i�ed constraint logic programs. In Program Development in Computational Logic,
LNCS 3049, pages 292�340. Springer, 2004.

9. L. Kott. The McCarthy's induction principle: `oldy' but `goody'. Calcolo, 19(1):59�
69, 1982.

10. M. Leuschel and T. Massart. In�nite state model checking by abstract interpreta-
tion and program specialization. In A. Bossi, editor, Proceedings of LOPSTR '99,
Venice, Italy, LNCS 1817, pages 63�82. Springer, 1999.

11. J. W. Lloyd. Foundations of Logic Programming. Springer, 1987. 2nd Edition.
12. M. J. Maher. A transformation system for deductive database modules with perfect

model semantics. Theoretical Computer Science, 110:377�403, 1993.
13. The MAP System. http://www.iasi.cnr.it/�proietti/system.html.
14. A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs

using unfold/fold proofs. Journal of Logic Programming, 41(2&3):197�230, 1999.
15. A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold transforma-

tions. In Proc. CL 2000, London, UK, LNAI 1861, pp. 613�628. Springer, 2000.
16. M. Proietti and A. Pettorossi. Unfolding-de�nition-folding, in this order, for avoid-

ing unnecessary variables in logic programs.Theor. Comp. Sci., 142(1):89�124, 1995.
17. T. C. Przymusinski. On the declarative semantics of strati�ed deductive databases

and logic programs. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193�216. Morgan Kaufmann, 1987.

18. M. O. Rabin. Decidable theories. In Jon Barwise, editor, Handbook of Mathematical
Logic, pages 595�629. North-Holland, 1977.

19. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan,
and S. A. Smolka. Veri�cation of parameterized systems using logic program trans-
formations. In Proc. TACAS 2000, LNCS 1785, pp. 172�187. Springer, 2000.

20. H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-Å.
Tärnlund, ed., Proceedings of ICLP '84, pages 127�138, Uppsala, Sweden, 1984.

17

