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Abstract. We propose a method for the speci�cation and the auto-
mated veri�cation of temporal properties of parameterized protocols.
Our method is based on logic programming and program transformation.
We specify the properties of parameterized protocols by using an exten-
sion of strati�ed logic programs. This extension allows premises of clauses
to contain �rst order formulas over arrays of parameterized length. A
property of a given protocol is proved by applying suitable unfold/fold
transformations to the speci�cation of that protocol. We demonstrate our
method by proving that the parameterized Peterson's protocol among N
processes, for any N≥2, ensures the mutual exclusion property.

1 Introduction

Protocols are rules that govern the interactions among concurrent processes.
In order to guarantee that these interactions enjoy some desirable properties,
many sophisticated protocols have been designed and proposed in the literature.
These protocols are, in general, di�cult to verify because of their complexity
and ingenuity. This di�culty has motivated the development of methods for the
formal speci�cation and the automated veri�cation of properties of protocols.
One of the most successful methods is model checking [5]. It can be applied to
any protocol that can be formalized as a �nite state system, that is, a �nite set
of transitions over a �nite set of states.

Usually, the number of interacting concurrent processes is not known in ad-
vance. Thus, people have designed protocols that can work properly for any num-
ber of interacting processes. These protocols are said to be parameterized with
respect to the number of processes. Several extensions of the model checking tech-
nique based upon abstraction and induction have been proposed in the literature
for the veri�cation of parameterized protocols (see, for instance, [3,18,27,29]).
However, since the general problem of verifying temporal properties of parame-
terized protocols is undecidable [2], these extensions cannot be fully mechanical.

In this paper we propose an alternative veri�cation method based on program

transformation [4]. Our main objective is to establish a correspondence between
protocol veri�cation and program transformation, so that the large number of
semi-automatic techniques developed in the �eld of program transformation can
be applied to the veri�cation of properties of parameterized protocols.



Since arrays are often used in the design of parameterized protocols, we will
consider a speci�cation language that allows us to write array formulas, that
is, �rst order formulas over arrays. We will specify a parameterized protocol
and a property of interest by means of a logic program whose clause bodies may
contain array formulas. Our veri�cation method works by transforming this logic
program, in which we assume that the head of the clause specifying the property
has predicate prop, into a new logic program where the clause prop ← occurs.
Our veri�cation method is an extension of many other techniques based on logic
programming which have been proposed in the literature [7,9,11,15,19,22,23].

We will demonstrate our method by considering the parameterized Peterson's
protocol [20]. This protocol ensures mutually exclusive use of a given resource
which is shared among N processes. The number N is the parameter of the pa-
rameterized protocol. In order to formally show that Peterson's protocol ensures
mutual exclusion, we cannot use the model checking technique directly. Indeed,
since the parameter N is unbounded, the parameterized Peterson's protocol, as
it stands, cannot be viewed as a �nite state system. Now, one can reduce it to a
�nite state system, thereby enabling the application of model checking, by using
the above mentioned techniques based on abstraction [3]. However, it is not easy
to �nd a powerful abstraction function which works for the many protocols and
concurrent systems one encounters in practice.

In contrast, our veri�cation method based on program transformation does
not rely on an abstraction function which is applied once at the beginning of the
veri�cation process, but it relies, instead, on a generalization strategy which is
applied on demand during the construction of the proof, possibly many times,
depending on the structure of the portion of proof constructed so far. This
technique provides a more �exible approach to the problem of proving properties
of protocols with an in�nite state space.

The paper is structured as follows. In Section 2 we recall the parameter-
ized Peterson's protocol for mutual exclusion which will be used throughout the
paper as a working example. In Section 3 we present our speci�cation method
which makes use of an extension of strati�ed logic programs where bodies of
clauses may contain �rst order formulas over arrays of parameterized length.
We consider properties of parameterized protocols that can be expressed by us-
ing formulas of the branching time temporal logic CTL [5] and we show how
these properties can be encoded by strati�ed logic programs with array formu-
las. Then, in Section 4, we show how CTL properties can be proved by applying
unfold/fold transformation rules to a given speci�cation. In Section 5 we discuss
some issues regarding the automation of our transformation method. Finally, in
Section 6 we brie�y discuss the related work in the area of the veri�cation of
parameterized protocols.

2 Peterson's mutual exclusion protocol

In this section we provide a detailed description of the parameterized Peterson's
protocol [20]. The goal of this protocol is to ensure the mutually exclusive access
to a resource that is shared among N (≥ 2) processes. Let assume that for any
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i, with 1≤ i≤N , process i consists of an in�nite loop whose body is made out of
two portions of code: (i) a portion called critical section, denoted cs, in which the
process uses the resource, and (ii) a portion called non-critical section, denoted
ncs, in which the process does not use the resource. We also assume that every
process is initially in its non-critical section.

We want to establish the following Mutual Exclusion property of the compu-
tation of the given system of N processes: for all i and j in {1, . . . , N}, while
process i executes a statement of its critical section, process j, with j 6= i, does
not execute any statement of its critical section.

The parameterized Peterson's protocol consists in adding two portions of code
to every process: (i) a �rst portion to be executed before entering the critical
section, and (ii) a second portion to be executed after exiting the critical section
(see in Figure 1 the code relative to process i).

Peterson's protocol makes use of two arrays Q[1, . . . , N ] and S[1, . . . , N ] of
natural numbers, which are shared among the N processes. The N elements of
the array Q may get values from 0 to N−1 and are initially set to 0. The N
elements of the array S may get values from 1 to N and their initial values are
not signi�cant (in [20] it is assumed that they are all 1's). Notice that in [20]
the array S is assumed to have N−1 elements, not N as we do. Indeed, the last
element S[N ] is never used by Peterson's protocol. Its introduction, however,
allows us to write formulas which are much simpler.

In Peterson's protocol we also have the array J [1, . . . , N ] whose i-th element,
for i = 1, . . . , N , is a local variable of process i and may get values from 1 to N .
Notice that the array J is not shared and indeed, for i = 1, . . . , N , process i reads
and/or writes J [i] only.

In Figure 2 process i is represented by a �nite state diagram. In that diagram
a transition from state a to state b is denoted by an arrow from a to b labelled
by a test t and a statement s. We have omitted from the label of a transition
the test t when it is true. Likewise, we have omitted the statement s when it is
skip. A transition is said to be enabled i� its test t evaluates to true. An enabled
transition takes place by executing its statement s.

For i = 1, . . . , N , process i is deterministic in the sense that in any of its states
at most one transition is enabled. However, in the given system of N processes,
it may be the case that more than one transition is enabled (obviously, no two
enabled transitions belong to the same process). In that case we assume that
exactly one of the enabled transitions takes place. Note that we do not make
any fairness assumption so that, for instance, if the same con�guration of enabled
transitions occurs again in the future, nothing can be said about the transition
which will actually take place in that repeated con�guration.

The N processes execute their code in a concurrent way according to the
following four atomicity assumptions. Here and in what follows, we denote by ϕ
the formula ∀k (k 6= i → Q[k]<J [i]) ∨ (S[J [i]] 6= i).
(1) The assignments `Q[i] := 0' and `J [i] := 1' are atomic,
(2) the tests `¬J [i]<N ' and `¬ϕ' are atomic,
(3) the sequence of the test `J [i]<N ' followed by the two assignments

`Q[i] := J [i]; S[J [i]] := i' is atomic, and
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while true do
ncs : non-critical section of process i ;

J [i] := 1;
w : while J [i]<N do

Q[i] := J [i]; S[J [i]] := i;
λ: if ∀k (k 6= i → Q[k] < J [i]) ∨ (S[J [i]] 6= i) then J [i] := J [i]+1 else goto λ

od;
cs : critical section of process i ;

Q[i] := 0
od

Fig. 1. Process i of a system of N processes using Peterson's protocol.
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Fig. 2. Finite state diagram corresponding to process i of a system ofN processes
using Peterson's protocol. ncs is the initial state. The formula ϕ stands for
∀k (k 6= i→ Q[k] < J [i]) ∨ (S[J [i]] 6= i).

(4) the sequence of the test `ϕ' followed by the assignment `J [i] := J [i]+1' is
atomic.

We have made these atomicity assumptions (which correspond to the labels of the
transitions of the diagram of Figure 2) for keeping the presentation of our proof of
the mutual exclusion property as simple as possible. However, this property has
also been proved by using our method which we will present in Section 4, under
weaker assumptions, in which one only assumes that every single assignment and
test is atomic [26]. (In particular, in [26] it is assumed that each test k 6= i and
`Q[k] < J [i]' in the formula ϕ, and not the entire formula ϕ, is atomic. Likewise,
it is assumed that in the transition from state w to state λ, each assignment
`Q[i] := J [i]' and `S[J [i]] := i', and not the sequence `Q[i] := J [i];S[J [i]] := i' of
assignments, is atomic.)

We assume that the number N of processes does not change over time, in the
sense that while the computation progresses, neither a new process is constructed
nor an existing process is destroyed.
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In the original paper [20], the proof of the mutual exclusion property of the
parameterized Peterson's protocol is left to the reader. The author of [20] simply
says that it can be derived from the proof provided for the case of two processes
(and, actually, that proof is an informal one) by observing that, for each value of
J [i] = 1, . . . , N−1, at least one process is discarded from the set of those which
may enter their critical section. Thus, at the end of the for-loop, at most one
process may enter its critical section.

In Peterson's protocol, the value of the variable J [i] of process i indicates, as
we will now explain, the `level' that process i has reached since it �rst requested
to enter its critical section (and this request was done by starting the execution
of the while-loop with label w, see Figure 1). When process i completes its non-
critical section and requests to enter its critical section, it goes to state w where
its level J [i] is 1. When process i completes one execution of the body of the
while-loop with label w (that is, it goes from state w to state λ and back to state
w), it increases its level by one unit. For each level J [i]=1, . . . , N−1, process i
tests whether or not property ϕ holds, and for J [i]= 1, . . . , N−2, if ϕ holds at
level J [i], then process i goes to the next level up, that is, J [i] is increased by one
unit. If ϕ holds at the �nal level N−1, then process i enters its critical section.

3 Speci�cation of Parameterized Protocols Using Array

Formulas

In this section we present our method for the speci�cation of parameterized
protocols and their temporal properties. The main novelty of our method with
respect to other methods based on logic programming is that in the speci�cation
of protocols we use the �rst order theory of arrays introduced below.

Similarly to the model checking approach, we represent a protocol as a set
of transitions between states. Notice, however, that in the case of parameterized
protocols the number of states may be in�nite. For the formal speci�cation of the
transition relation we consider a typed �rst order language [16] with the following
two types: (i) N, denoting natural numbers, and (ii) A, denoting arrays of natural
numbers. A state is represented by a term of the form s(X1, . . . , Xn), where
X1, . . . , Xn are variables of type N or A. The transition relation is speci�ed by
a set of statements of the form:

t(a, a′)← τ
where t is a �xed binary predicate symbol, a and a′ are terms representing states,
and τ is an array formula de�ned as we now describe.

An array formula is a typed �rst order formula constructed by using a lan-
guage consisting of: (i) variables of type N, (ii) variables of type A (called array

variables), (iii) the constant 0 of type N and the successor function succ of type
N → N, and (iv) the following predicates, whose informal meaning is given be-
tween parentheses (the names rd and wr stand for read and write, respectively):
ln of type A×N (ln(A, l) means `the array A has length l')
rd of type A×N×N (rd(A, i, n) means `in the array A the i-th element is n')
wr of type A×N×N×A (wr(A, i, n,B) means `the array B is equal to the

array A except that the i-th element of B is n')
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=N, <, ≤, all of type N×N (equality and inequalities between natural numbers)
=A of type A×A (equality between arrays)

Given a term n of type N, the term succ(n) will also be written as n + 1. For
reasons of simplicity, we will write =, instead of =N and =A, when the type of
the equality is clear from the context.

Array formulas are constructed as usual in typed �rst order logic by using
the connectives ∧, ∨, ¬, →, and ↔, and the quanti�ers ∀ and ∃. However, for
every statement of the form t(a, a′)← τ which speci�es a transition relation, we
assume that every array variable occurring in τ is not quanti�ed within τ itself.

The semantics of a statement of the form t(a, a′)← τ is de�ned in a transfor-
mational way by transforming this statement into a strati�ed set of clauses. This
set of clauses is obtained by applying the variant of the Lloyd-Topor transforma-
tion for typed �rst order formulas described in [10], called the typed Lloyd-Topor

transformation. This transformation works like the Lloyd-Topor transformation
for untyped �rst order formulas [16], except that it adds type atoms to the bodies
of the transformed clauses so that each variable ranges over the domain speci�ed
by the corresponding type atom. In our case, the transformation adds the type
atoms nat(N) and array(A) for each occurrence of a variable N of type N and a
variable A of type A, respectively. The de�nition of the predicates nat and array

is provided by the following de�nite clauses:

nat(0)← array([ ])←
nat(N+1)← nat(N) array([A|As])← nat(A) ∧ array(As)

Note that in these clauses arrays are represented as lists. These four clauses
are included in a set, called Arrays, of de�nite clauses that also provide the
de�nitions of the predicates ln, rd, wr, =N, <, ≤, and =A of our �rst order
language of arrays. In particular, Arrays contains the clauses:

ln([ ], 0)←
ln([A|As], L)← L=N+1 ∧ ln(As,N)
rd([A|As], 1, D)← A=D
rd([A|As], L,D)← L=K+1 ∧ rd(As,K,D)
wr([A|As], 1, D, [B|Bs])← B=D ∧ As=Bs
wr([A|As], L,D, [B|Bs])← A=B ∧ L=K+1 ∧ wr(As,K,D,Bs)

We omit to list here the usual clauses de�ning the predicates =N, <, ≤, and =A.
As an example of application of the typed Lloyd-Topor transformation, let us
consider the following statement:

t(s(A), s(B))← ∃n ∀i wr(A, i, n,B)
where: (i) A and B are array variables, and (ii) s(A) and s(B) are terms repre-
senting states. By applying the typed Lloyd-Topor transformation to this state-
ment, we get the following two clauses:

t(s(A), s(B))← array(A) ∧ array(B) ∧ nat(N) ∧ ¬newp(A,N,B)
newp(A,N,B)← array(A) ∧ nat(I) ∧ nat(N) ∧ array(B) ∧ ¬wr(A, I,N,B)

Given a statement of the form H←τ , where H is an atom and τ is an array for-
mula, we denote by LTt(H←τ) the set of clauses which are derived by applying
the typed Lloyd-Topor transformation to H← τ . For reasons of conciseness, in
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what follows we will feel free to write statements with array formulas, instead
of the corresponding set of clauses, and by abuse of language, statements with
array formulas will also be called `clauses'.

Let us now specify the parameterized Peterson's protocol for N processes by
using statements with array formulas. In this speci�cation a state is represented
by a term of the form s(P, J,Q, S), where:
� P is an array of the form [p1, . . . , pN ] such that, for i = 1, . . . , N , pi is
a constant in the set {ncs, cs, w, λ} representing the state of process i (see
Figure 2). In order to comply with the syntax of array formulas, the constants
ncs, cs, w, and λ should be replaced by distinct natural numbers, but, for
reasons of readability, in the formulas below we will use the more expressive
identi�ers ncs, cs, w, and λ.

� J is an array of the form [j1, . . . , jN ], where, for i = 1, . . . , N , ji belongs to
the set {1, . . . , N} and is a local value in the sense that it can be read and
written by process i only.

� Q and S are arrays of the form [q1, . . . , qN ] and [s1, . . . , sN ], respectively,
where, for i = 1, . . . , N , qi belongs to the set {0, . . . , N−1} and si belongs to
the set {1, . . . , N}. These two arrays Q and S are shared in the sense that
they can be read and written by any of the N processes.

The transition relation of the parameterized Peterson's protocol is de�ned by the
seven statements T1, . . . , T7 which we now introduce. For r = 1, . . . , 7, statement
Tr is of the form:

t(s(P, J,Q, S), s(P ′, J ′, Q′, S′))← τr(s(P, J,Q, S), s(P ′, J ′, Q′, S′))
where τr(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) is an array formula de�ned as follows (see
also Figure 2).

1. For the transition from ncs to w :
τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i (rd(P, i, ncs) ∧ wr(P, i, w, P ′) ∧ wr(J, i, 1, J ′)) ∧
Q′ =Q ∧ S′ =S

2. For the transition from w to λ :
τ2(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i, k, l (rd(P, i, w) ∧ wr(P, i, λ, P ′) ∧ rd(J, i, k) ∧
wr(Q, i, k,Q′) ∧ wr(S, k, i, S′) ∧ ln(P, l) ∧ k<l ) ∧

J ′ =J
3. For the transition from λ to λ :

τ3(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i, k,m, n (rd(P, i, λ) ∧ rd(J, i,m) ∧ ¬ (k= i) ∧ rd(Q, k, n) ∧
n≥m ∧ rd(S,m, i)) ∧

P ′ =P ∧ J ′ =J ∧ Q′ =Q ∧ S′ =S
4. For the transition from λ to w when ∀k (k 6= i→ Q[k] < J [i]) holds :

τ4(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i, l,m (rd(P, i, λ) ∧ wr(P, i, w, P ′) ∧ rd(J, i,m) ∧ ln(P, l)∧
∀k, n((1≤k≤ l ∧ rd(Q, k, n) ∧ ¬ (k= i)) → n<m) ∧
wr(J, i,m+1, J ′)) ∧

Q′ =Q ∧ S′ =S
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5. For the transition from λ to w when S[J [i]] 6= i holds :
τ5(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i,m (rd(P, i, λ) ∧ wr(P, i, w, P ′) ∧
rd(J, i,m) ∧ ¬ rd(S,m, i) ∧ wr(J, i,m+1, J ′)) ∧

Q′ =Q ∧ S′ =S

6. For the transition from w to cs :
τ6(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i,m (rd(P, i, w) ∧ wr(P, i, cs, P ′) ∧
rd(J, i,m) ∧ ln(P, l) ∧ m≥ l)∧

J ′ =J ∧ Q′ =Q ∧ S′ =S

7. For the transition from cs to ncs :
τ7(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i (rd(P, i, cs) ∧ wr(P, i,ncs, P ′) ∧ wr(Q, i, 0, Q′)) ∧
J ′ =J ∧ S′ =S

We will express the properties of parameterized protocols by using the branching
time temporal logic CTL [5]. In particular, the mutual exclusion property of
Peterson's protocol will be expressed by the following temporal formula:

initial → ¬EF unsafe
where initial and unsafe are atomic properties of states which we will specify
below. This temporal formula holds at a state a whenever the following is true:
if a is an initial state then there exists no unsafe state in the future of a.

The truth of a CTL formula is de�ned by the following locally strati�ed logic
program, called Holds, where the predicate holds(X,F ) means that a temporal
formula F holds at a state X:

holds(X,F )← atomic(X,F )
holds(X,¬F )← ¬ holds(X,F )
holds(X,F ∧G)← holds(X,F ) ∧ holds(X,G)
holds(X, ef (F ))← holds(X,F )
holds(X, ef (F ))← t(X,X ′) ∧ holds(X ′, ef (F ))

Other connectives, such as ∨, → and ↔, de�ned as usual in terms of ∧ and ¬,
can be used in CTL formulas. The unary constructor ef encodes the temporal
operator EF . Other temporal operators, such as the operator AF which is needed
for expressing liveness properties, can be de�ned by using locally strati�ed logic
programs [9,15]. Here, for reasons of simplicity, we have restricted ourselves to
the operator EF which is the only operator needed for specifying the mutual
exclusion property (which is a safety property).

The atomic properties of the states are speci�ed by a set of statements of the
form:

atomic(a, p)← α

where a is a term representing a state, p is a constant representing an atomic
property, and α is an array formula stating that p holds at state a. We assume
that the array variables occurring in α are not quanti�ed within α itself. In
particular, the initial and unsafe atomic properties are de�ned by the following
two statements A1 and A2.
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A1: atomic(s(P, J,Q, S), initial)←
∃l (∀k (1≤k≤ l→ (rd(P, k,ncs) ∧ rd(Q, k, 0)))∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))
A2: atomic(s(P, J,Q, S), unsafe)← ∃i, j (rd(P, i, cs) ∧ rd(P, j, cs) ∧ ¬ (j= i))
The premise of A1, which will also be denoted by init_state(s(P, J,Q, S)), ex-
presses the fact that in an initial state every process is in its non-critical sec-
tion, Q is an array whose elements are all 0's, and the arrays P , J , Q, and
S have the same length. The premise of A2, which will also be denoted by
unsafe_state(s(P, J,Q, S)), expresses the fact that in an unsafe state at least
two distinct processes are in their critical section.

Now we formally de�ne when a CTL formula holds for a speci�cation of a
parameterized protocol. Let us consider a protocol speci�cation Spec consisting
of the following set of statements:

Spec : {T1, . . . , Tm, A1, . . . , An}
where: (i) T1, . . . , Tm are statements that specify a transition relation, and
(ii) A1, . . . , An are statements that specify atomic properties. We denote by
PSpec the following set of clauses:

PSpec : LTt(T1) ∪ . . . ∪ LTt(Tm) ∪ LTt(A1) ∪ . . . ∪ LTt(An) ∪Arrays ∪Holds
Given a speci�cation Spec of a parameterized protocol and a CTL formula ϕ,
we say that

ϕ holds for Spec i� M(PSpec) |= ∀X holds(X,ϕ)
where M(PSpec) denotes the perfect model of PSpec . Note that the existence of
M(PSpec) is guaranteed by the fact that PSpec is locally strati�ed [1]. In the
next section we will prove the mutual exclusion property for the parameterized
Peterson's protocol by proving that

M(PPeterson) |= ∀X holds(X, initial → ¬ ef (unsafe)) (ME)

where Peterson is the speci�cation of the parameterized Peterson's protocol
consisting of the set {T1, . . . , T7, A1, A2} of statements we have listed above.

Note that the above formula (ME) guarantees the mutual exclusion property
of the parameterized Peterson's protocol for any number N (≥ 2) of processes.
Indeed, in (ME) the variable X ranges over terms of the form s(P, J,Q, S) and
the parameter N of Peterson's protocol is the length of the arrays P, J,Q, and S.

4 Transformational Veri�cation of Parameterized

Protocols

In this section we describe our method for the veri�cation of CTL properties of
parameterized protocols. This method follows the approach based on program
transformation which has been proposed in [21]. As an example of application
of our method, we prove that the mutual exclusion property holds for the pa-
rameterized Peterson's protocol.

Suppose that, given a speci�cation Spec of a parameterized protocol and a
CTL property ϕ, we want to prove that ϕ holds for Spec, that is, M(PSpec) |=
∀X holds(X,ϕ). We start o� by introducing the statement:
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prop ← ∀X holds(X,ϕ)
where prop is a new predicate symbol. By applying the Lloyd-Topor transfor-
mation (for untyped formulas) to this statement and by using the equivalence:

M(PSpec) |= ∀X,F (¬ holds(X,F )↔ holds(X,¬F ))
we get the following two clauses:

1. prop ← ¬new1
2. new1← holds(X,¬ϕ)
Our veri�cation method consists in showing M(PSpec) |= ∀X holds(X,ϕ) by
applying unfold/fold transformation rules that preserve the perfect model [9,25]
and deriving from the program PSpec ∪ {1, 2} a new program T which contains
the clause prop ←.

The soundness of our method is a straightforward consequence of the fact
that both the Lloyd-Topor transformation and the unfold/fold transformation
rules preserve the perfect model, that is, the following holds:

M(PSpec) |= ∀X holds(X,ϕ) i� M(PSpec ∪ {1, 2}) |= prop i� M(T ) |= prop
Notice that in the case where T contains no clause for prop, we conclude that
M(PSpec ∪ {1, 2}) 6|= prop and, thus, M(PSpec) |= ∃X holds(X,¬ϕ). Unfortu-
nately, our method is necessarily incomplete due to the undecidability of CTL
for parameterized protocols. Indeed, the unfold/fold transformation may not ter-
minate or it may terminate by deriving a program T that contains one or more
clauses of the form prop ← Body , where Body is not the empty conjunction.

The application of the unfold/fold transformation rules is guided by a trans-
formation strategy which extends the ones presented in [9,21] to the case of
logic programs with array formulas. Now we outline this strategy and then we
will see it in action in the veri�cation of the mutual exclusion property of the
parameterized Peterson's protocol.

Our transformation strategy is divided into two phases, called Phase A and
Phase B, respectively.

In Phase A we compute a specialized de�nition of holds(X,¬ϕ) as we now
describe. Starting from clause 2 above, we perform the following transformation
steps: (i) we unfold clause 2, thereby deriving a new set, say Cls, of clauses, (ii) we
manipulate the array formulas occurring in the clauses of Cls, by replacing these
formulas by equivalent ones and by removing each clause whose body contains an
unsatis�able formula, (iii) we introduce de�nitions of new predicates and we fold
every instance of holds(X,F ). Starting from each de�nition of a new predicate,
we repeatedly perform the above three transformation steps (i), (ii), and (iii).
We stop when we are able to fold all instances of holds(X,F ) by using predicate
de�nitions already introduced at previous transformation steps.

In Phase B we derive a new program T where as many predicates as possible
are de�ned either by a single fact or by an empty set of clauses, in the hope that
prop is among such predicates. In order to derive program T we use the unfolding
rule and the clause removal rule. In particular, we remove all clauses that de�ne
useless predicates [9]. Recall that: (i) the set U of all useless predicates of a
program P is de�ned as the largest set such that for every predicate p in U and
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for every clause C that de�nes p in P , there exists a predicate q in U which
occurs positively in the body of C, and (ii) the removal of the clauses that de�ne
useless predicates preserves the perfect model of the program at hand [9].

This two-phase transformation technique has been fruitfully used for proving
properties of in�nite state systems in [9].

Let us now show how the mutual exclusion property of the parameterized Pe-
terson's protocol can be veri�ed by using our method based on program trans-
formation. The property ϕ to be veri�ed is initial → ¬ ef (unsafe). Thus, we
start from the statement:

mutex ← ∀X holds(X, initial → ¬ ef (unsafe))
and by applying the Lloyd-Topor transformation, we get the following two
clauses:

1. mutex ← ¬new1
2. new1← holds(X, initial ∧ ef (unsafe))
Now we apply our transformation strategy starting from PPeterson∪{1, 2}, where
PPeterson is the program which encodes the speci�cation of the parameterized
Peterson's protocol as described in Section 3. Let us now show some of the
transformation steps performed during Phase A of this strategy. By unfolding
clause 2 we get:
3. new1← init_state(s(P, J,Q, S)) ∧ unsafe_state(s(P, J,Q, S))
4. new1← init_state(s(P, J,Q, S)) ∧ t(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧

holds(s(P ′, J ′, Q′, S′), ef (unsafe))
Clause 3 is removed because the array formula

init_state(s(P, J,Q, S)) ∧ unsafe_state(s(P, J,Q, S))
occurring in its body is unsatis�able (indeed, every process is initially in its non-
critical section and, thus, the initial state is not unsafe). In the next section we
will discuss the issue of how to mechanize satis�ability tests.

We unfold clause 4 with respect to the atom with predicate t and we get seven
new clauses, one for each statement T1, . . . , T7 de�ning the transition relation
(see Section 3). The clauses derived from T2, . . . , T7 are removed because their
bodies contain unsatis�able array formulas. Thus, after these unfolding steps
and removal steps, from clause 2 we get the following clause only:
5. new1← init_state(s(P, J,Q, S)) ∧ τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧

holds(s(P ′, J ′, Q′, S′), ef (unsafe))
where τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) is the array formula de�ned in Section 3.
Now let us consider the formula c1(s(P ′, J ′, Q′, S′)) de�ned as follows:

c1(s(P ′, J ′, Q′, S′)) ≡def

∃P, J,Q, S (init_state(s(P, J,Q, S)) ∧ τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)))
By eliminating from it the existentially quanti�ed variables P , J , Q and S, we
obtain the following equivalence:

c1(s(P ′, J ′, Q′, S′))↔ (C)
∃l, i (∀k((1≤k≤ l ∧ ¬ (k= i))→ (rd(P ′, k, ncs) ∧ rd(Q′, k, 0))) ∧

rd(P ′, i, w) ∧ rd(J ′, i, 1) ∧ rd(Q′, i, 0)
ln(P ′, l) ∧ ln(J ′, l) ∧ ln(Q′, l) ∧ ln(S′, l))
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Now, in order to fold clause 5 w.r.t. the atom holds(s(P ′, J ′, Q′, S′), ef (unsafe)),
a suitable condition has to be ful�lled (see the folding rule for constraint logic
programs described in [9]). Let us present this condition in the case of programs
with array formulas that we consider in this paper.

Suppose that we are given a clause of the form H ← α ∧ holds(X,ψ) ∧ G
and we want to fold it by using a (suitably renamed) clause of the form
newp(X)← β ∧ holds(X,ψ). This folding step is allowed only if we have
that M(Arrays) |= ∀(α → β) holds, that is, α ∧ ¬β is unsatis�able in
M(Arrays). If this condition is ful�lled, then by folding we obtain the new clause
H ← α ∧ newp(X) ∧ G.

Now, in order to fold clause 5, we introduce a new predicate de�nition of the
form:
6. new2(s(P, J,Q, S))← genc1(s(P, J,Q, S)) ∧ holds(s(P, J,Q, S), ef (unsafe))

The formula genc1(s(P, J,Q, S)) is a generalization of c1(s(P, J,Q, S)), in the
sense that the following holds:

M(Arrays) |= ∀P, J,Q, S (c1(s(P, J,Q, S))→ genc1(s(P, J,Q, S)))
This ensures that the condition for folding is ful�lled.

As usual in program transformation techniques, this generalization step from
c1 to genc1 requires ingenuity. We will not address here the problem of how to
mechanize this generalization step and the other generalization steps required
in the remaining part of our program derivation. However, some aspects of this
crucial generalization issue will be discussed in Section 5.

In our veri�cation of the parameterized Peterson's protocol we introduce the
following array formula genc1(s(P, J,Q, S)) which holds i� zero or more processes
are in state w and the remaining processes are in state ncs:

genc1(s(P, J,Q, S)) ≡def (G)
∃l (∀k (1≤k≤ l → ((rd(P, k,ncs) ∧ rd(Q, k, 0))∨

(rd(P, k, w) ∧ rd(J, k, 1) ∧ rd(Q, k, 0))))∧
ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

This formula de�ning genc1(s(P, J,Q, S)) is indeed a generalization of the for-
mula c1(s(P, J,Q, S)), as the reader may check by looking at the above equiva-
lence (C). By folding clause 5 using the newly introduced clause 6 we get:
5.f new1← init_state(s(P, J,Q, S)) ∧ τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧

new2(s(P ′, J ′, Q′, S′))
Now, starting from clause 6, we repeat the transformation steps (i), (ii), and (iii)
described above, until we are able to fold every instance of holds(X,F ) by using
a predicate de�nition introduced at a previous transformation step. By doing so
we terminate Phase A and we derive the following program R where:

� genc1 is de�ned as indicated in (G),
� genc2, . . . , genc8 are de�ned as indicated in the Appendix,
� τ1, . . . , τ7 are the array formulas that de�ne the transition relation as indi-
cated in Section 3, and

� the arguments a and a′ stand for the states s(P, J,Q, S) and s(P ′, J ′, Q′, S′),
respectively.
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1. mutex ← ¬new1 Program R

5.f new1← initial(a) ∧ τ1(a, a′) ∧ new2(a′)

7. new2(a)← genc1(a) ∧ τ1(a, a′) ∧ new2(a′)
8. new2(a)← genc1(a) ∧ τ2(a, a′) ∧ new3(a′)
9. new2(a)← genc1(a) ∧ τ6(a, a′) ∧ new7(a′)

10. new3(a)← genc2(a) ∧ τ1(a, a′) ∧ new3(a′)
11. new3(a)← genc2(a) ∧ τ2(a, a′) ∧ new3(a′)
12. new3(a)← genc2(a) ∧ τ3(a, a′) ∧ new3(a′)
13. new3(a)← genc2(a) ∧ τ4(a, a′) ∧ new4(a′)
14. new3(a)← genc2(a) ∧ τ5(a, a′) ∧ new5(a′)

15. new4(a)← genc3(a) ∧ τ1(a, a′) ∧ new4(a′)
16. new4(a)← genc3(a) ∧ τ2(a, a′) ∧ new4(a′)
17. new4(a)← genc3(a) ∧ τ2(a, a′) ∧ new6(a′)
18. new4(a)← genc3(a) ∧ τ4(a, a′) ∧ new4(a′)
19. new4(a)← genc3(a) ∧ τ6(a, a′) ∧ new7(a′)

20. new5(a)← genc4(a) ∧ τ1(a, a′) ∧ new5(a′)
21. new5(a)← genc4(a) ∧ τ2(a, a′) ∧ new5(a′)
22. new5(a)← genc4(a) ∧ τ3(a, a′) ∧ new5(a′)
23. new5(a)← genc4(a) ∧ τ4(a, a′) ∧ new5(a′)
24. new5(a)← genc4(a) ∧ τ5(a, a′) ∧ new5(a′)
25. new5(a)← genc4(a) ∧ τ6(a, a′) ∧ new8(a′)

26. new6(a)← genc5(a) ∧ τ1(a, a′) ∧ new6(a′)
27. new6(a)← genc5(a) ∧ τ2(a, a′) ∧ new6(a′)
28. new6(a)← genc5(a) ∧ τ3(a, a′) ∧ new6(a′)
29. new6(a)← genc5(a) ∧ τ4(a, a′) ∧ new6(a′)
30. new6(a)← genc5(a) ∧ τ5(a, a′) ∧ new6(a′)
31. new6(a)← genc5(a) ∧ τ6(a, a′) ∧ new9(a′)

32. new7(a)← genc6(a) ∧ τ1(a, a′) ∧ new7(a′)
33. new7(a)← genc6(a) ∧ τ2(a, a′) ∧ new9(a′)
34. new7(a)← genc6(a) ∧ τ7(a, a′) ∧ new2(a′)

35. new8(a)← genc7(a) ∧ τ3(a, a′) ∧ new8(a′)
36. new8(a)← genc7(a) ∧ τ7(a, a′) ∧ new5(a′)

37. new9(a)← genc8(a) ∧ τ1(a, a′) ∧ new9(a′)
38. new9(a)← genc8(a) ∧ τ2(a, a′) ∧ new9(a′)
39. new9(a)← genc8(a) ∧ τ3(a, a′) ∧ new9(a′)
40. new9(a)← genc8(a) ∧ τ5(a, a′) ∧ new9(a′)
41. new9(a)← genc8(a) ∧ τ7(a, a′) ∧ new6(a′)

Now we proceed to Phase B of our strategy. Since in program R the predicates
new1 through new9 are useless, we remove clause 5.f, and clauses 7 through 41,
and by doing so, we derive a program consisting of clause 1 only. By unfolding
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clause 1 we get the �nal program T , which consists of the clause mutex ← only.
Thus, M(T ) |= mutex and we have proved that:

M(PPeterson) |= ∀X holds(X, initial → ¬ ef (unsafe))
As a consequence, we have that for any initial state and for any numberN(≥ 2) of
processes, the mutual exclusion property holds for the parameterized Peterson's
protocol.

5 Mechanization of the Veri�cation Method

In order to achieve a full mechanization of our veri�cation method, two main
issues have to be addressed: (i) how to test the satis�ability of array formulas,
and (ii) how to perform suitable generalization steps.

Satis�ability tests for array formulas are required at the following two points
of Phase A of the transformation strategy described in Section 4: (1) at Step (ii),
when we remove each clause whose body contains an unsatis�able array formula,
and (2) at Step (iii), when we fold each clause whose body contains a holds literal.

In order to clarify Point (2), we recall that, before applying the folding rule [9],
we need to test that in M(Arrays) the array formula occurring in the body of
the clause to be folded implies the array formula occurring in the body of the
clause that we use for folding. For instance, in Section 4 before folding clause 5
using clause 6, we need to prove that:

M(Arrays) |= ∀P, J,Q, S (c1(s(P, J,Q, S))→ genc1(s(P, J,Q, S)))
which holds i� the following formula:

c1(s(P, J,Q, S)) ∧ ¬ genc1(s(P, J,Q, S)) (CG)
is unsatis�able in M(Arrays).

Now the problem of testing the satis�ability of array formulas is in general
undecidable. (The reader may refer to [28] for a short survey on this subject.)
However, some decidable fragments of the theory of arrays, such as the quanti�er-
free extensional theory of arrays, have been identi�ed [28]. Unfortunately, the
array formulas occurring in our formalization of the parameterized Peterson's
protocol cannot be reduced to formulas in those decidable fragments. Indeed,
due to the assumptions made in Section 3 on the array formulas which are
used in the speci�cations of protocols, we need to test the satis�ability of array
formulas where the variables of type A are not quanti�ed, while the variables of
type N can be quanti�ed in an unrestricted way.

In order to perform the satis�ability tests required by our veri�cation of the
parameterized Peterson's protocol, we have followed the approach based on pro-
gram transformation which has been proposed in [21]. Some of these satis�ability
tests have been done in a fully automatic way by using the MAP transformation
system [17], which implements the unfold/fold proof strategy described in [21].
Examples of array formulas whose unsatis�ability we have proved in an auto-
matic way include: (i) the formula occurring in the body of clause 3 shown in
Section 4, and (ii) the formula (CG) shown above in this section. Some other
satis�ability tests have been done in a semi-automatic way, by interleaving fully
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automatic applications of the unfold/fold proof strategy and some manual ap-
plications of the unfold/fold transformation rules.

Generalization steps are needed when, during Step (iii) of Phase A of our
transformation strategy, a new predicate de�nition is introduced to fold the in-
stances of the atom holds(X,F ). The introduction of suitable new de�nitions by
generalization is a crucial issue of the program transformation methodology [4].
The invention of these de�nitions corresponds to the discovery of suitable in-
variants of the protocol to be veri�ed. Due to the undecidability of CTL for
parameterized protocols, it is impossible to provide a general, fully automatic
technique which performs the suitable generalization steps in all cases. However,
we have followed an approach that, in the case of the parameterized Peterson's
protocol, works in a systematic way. This approach extends to the case of logic
programs with array formulas some generalization techniques which are used
for the specialization of (constraint) logic programs [8,14] and it can be brie�y
described as follows.

The new predicate de�nitions introduced during Step (iii) of Phase A of the
transformation strategy are arranged as a tree DefsTree of clauses. The root
of DefsTree is clause 2. Given a clause N , the children of N are the predicate
de�nitions which are introduced to fold the instances of holds(X,F ) in the bodies
of the clauses obtained by unfolding N at Step (i) and not removed at Step (ii).

If the new predicate de�nitions are introduced without any guidance, then
we may construct a tree DefsTree with in�nite paths, and the transformation
strategy may not terminate. In order to avoid the construction of in�nite paths
and achieve the termination of the transformation strategy, before adding a
new predicate de�nition D to DefsTree as a child of a clause N , we match D
against every clause A occurring in the path from the root of DefsTree to N .
Suppose that A is of the form newp(X)← α ∧ holds(X,ψ) and D is of the form
newq(X) ← δ ∧ holds(X,ψ). If the array formula α is embedded (with respect
to a suitable ordering) into the array formula δ, then instead of introducing
D, we introduce a clause of the form gen(X) ← γ ∧ holds(X,ψ), where γ is
a generalization of both α and δ, that is, both M(Arrays) |= ∀ (α → γ) and
M(Arrays) |= ∀ (δ → γ) holds.

Thus, in order to fully mechanize our generalization technique we need to
address the following two problems: (i) the introduction of a formal de�nition
of the embedding relation between array formulas, and (ii) the computation of
the array formula γ from α and δ. Providing solutions to these two problems is
beyond the scope of the present paper. However, a possible approach to follow
for solving these problems consists in extending to logic programs with array
formulas the notions that have been introduced in the area of specialization of
(constraint) logic programs (see, for instance, [8,14]).

6 Related Work and Conclusions

The method for protocol veri�cation presented in this paper is based on the
program transformation approach which has been proposed in [21] for the veri�-
cation of properties of locally strati�ed logic programs. We consider concurrent
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systems of �nite state processes. We assume that systems are parameterized, in
the sense that they consist of an arbitrary number of processes. We also assume
that parameterized systems may use arrays of parameterized length. The proper-
ties of the systems we want to verify, are the temporal logic properties which can
be expressed in CTL (Computational Tree Logic) [5]. Our method consists in:
(i) encoding a parameterized system and the property to be veri�ed as a locally
strati�ed logic program extended with array formulas, and then (ii) applying
suitable unfold/fold transformations to this program so to derive a new program
where it is immediate to check whether or not the property holds.

In general, the problem of verifying CTL properties of parameterized systems
is undecidable [2] and thus, in order to �nd decision procedures, one has to
consider subclasses of systems where the problem is decidable. Some of these
decidable subclasses in the presence of arrays have been studied in [13], but
unfortunately, our formalization of the parameterized Peterson's protocol does
not belong to any of those classes, because it requires more than two arrays of
natural numbers, and also requires assignments and reset operations.

As yet, our method is not fully mechanical and human intervention is needed
for: (i) the test of satis�ability for array formulas, and (ii) the introduction of new
de�nitions by generalization. We have discussed these two issues in Section 5.

Other veri�cation methods for concurrent systems based on the transforma-
tional approach are those presented in [9,10,15,23,24].

In [9] it is presented a method for verifying CTL properties of systems con-
sisting of a �xed number of in�nite state processes. That method makes use
of locally strati�ed constraint logic programs, where the constraints are linear
equations and disequations on real numbers. In this paper we have followed an
approach similar to constraint logic programming, but in our setting we have
array formulas, instead of constraints. The method presented here can easily be
extended to deal with parameterized in�nite state systems by considering, for
instance, arrays of in�nite state processes.

The paper [10] describes the veri�cation of the mutual exclusion property
for the parameterized Bakery protocol which was introduced in [12]. In [10] the
authors use locally strati�ed logic programs extended with formulas of the Weak
Monadic Second Order Theory of k-Successors (WSkS) which expresses monadic
properties of strings. The array formulas considered in this paper are more ex-
pressive than WSkS formulas, because array formulas can express polyadic prop-
erties. However, there is price to pay, because in general the theory of array
formulas is undecidable, while the theory WSkS is decidable.

The method described in [15] uses partial deduction and abstract interpre-
tation of logic programs for verifying safety properties of in�nite state systems.
Partial deduction is strictly less powerful than unfold/fold program transforma-
tion, which, on the other hand, is more di�cult to mechanize when unrestricted
transformations are considered. One of the main objectives of our future research
is the design of suitably restricted unfold/fold transformations which are easily
mechanizable and yet powerful enough for the veri�cation of program properties.
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The work presented in [23,24] is the most similar to ours. The authors of
these two papers use unfold/fold rules for transforming programs and proving
properties of parameterized concurrent systems. Our paper di�ers from [23,24]
in that, instead of using de�nite logic programs, we use logic programs with
locally strati�ed negation and array formulas for the speci�cation of concurrent
systems and their properties. As a consequence, also the transformation rules we
consider are di�erent and more general than those used in [23,24].

Besides the above mentioned transformational methods, some more veri�ca-
tion methods based on (constraint) logic programming have been proposed in
the literature [7,11,19,22].

The methods proposed in [19,22] deal with �nite state systems only. In partic-
ular, the method presented in [19] uses constraint logic programming with �nite
domains, extended with constructive negation and tabled resolution, for �nite
state local model checking, and the method described in [22] uses tabled logic
programming to e�ciently verify µ-calculus properties of �nite state systems
expressed in the CCS calculus.

The methods presented in [7,11] deal with in�nite state systems. In particular,
[7] describes a method which is based on constraint logic programming and can
be applied for verifying CTL properties of in�nite state systems by computing
approximations of least and greatest �xpoints via abstract interpretation. An
extension of this method has also been used for the veri�cation of parameterized
cache coherence protocols [6]. The method described in [11] uses logic programs
with linear arithmetic constraints and Presburger arithmetic for the veri�cation
of safety properties of Petri nets. Unfortunately, however, parameterized systems
that use arrays, like Peterson's protocol, cannot be directly speci�ed and veri�ed
using the methods considered in [7,11] because, in general, array formulas cannot
be encoded as constraints over real numbers or Presburger formulas.

Several other veri�cation techniques for parameterized systems have been
proposed in the literature outside the area of logic programming (see [29] for a
survey of some of these techniques). These techniques extend �nite state model
checking with various forms of abstraction (for reducing the veri�cation of a
parameterized system to the veri�cation of a �nite state system) or induction

(for proving properties for every value of the parameter).

We do not have space here to discuss the relationships of our work with
the many techniques for proving properties based on abstraction. We only want
to mention the technique proposed in [3], which has also been applied for the
veri�cation of the parameterized Peterson's protocol. That technique can be
applied for verifying in an automatic way safety properties of all systems that
satisfy a so-called strati�cation condition. Indeed, when this condition holds
for a given parameterized system, then the veri�cation task can be reduced to
the veri�cation of a �nite number of �nite state systems that are instances of
the given parameterized system for suitable values of the parameter. However,
Peterson's protocol does not satisfy the strati�cation condition and its treatment
with the technique proposed in [3] requires a signi�cant amount of ingenuity.
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Our veri�cation method is also related to the veri�cation techniques based
on induction (see, for instance, [18]). These techniques use interactive theorem
proving tools where many tasks are mechanized, but the construction of a whole
proof requires substantial human guidance. Our method has advantages and
disadvantages with respect to these techniques based on induction. On one hand,
in our approach we need neither explicit induction on the parameter of the system
nor the introduction of suitable induction hypotheses. On the other hand, as
already mentioned, our method needs suitable generalization steps which cannot
be fully mechanized.

Appendix

Below we give the de�nitions of the array formulas genc2 through genc8 occurring
in the program R of Section 4.

genc2(s(P, J,Q, S)) ≡def

∃i, l(rd(P, i, λ) ∧ l>1 ∧ rd(J, i, 1) ∧ rd(Q, i, 1) ∧ rd(S, 1, i) ∧
∀k(1≤k≤ l → ((rd(P, k,ncs) ∧ rd(Q, k, 0)) ∨

(rd(P, k, w) ∧ rd(J, k, 1) ∧ rd(Q, k, 0)) ∨
(rd(P, k, λ) ∧ rd(J, k, 1) ∧ rd(Q, k, 1)))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc3(s(P, J,Q, S)) ≡def

∃i, k, l(2≤k<l ∧ ((rd(P, i, w) ∧ rd(J, i, k+1) ∧ rd(Q, i, k) ∧ rd(S, k, i))∨
(rd(P, i, λ)∧ rd(J, i, k)∧ rd(Q, i, k)∧ rd(S, k, i)))∧

∀j((1≤j≤ l ∧ ¬ (j= i)) → ((rd(P, j,ncs) ∧ rd(Q, j, 0)) ∨
(rd(P, j, w) ∧ rd(J, j, 1) ∧ rd(Q, j, 0)))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc4(s(P, J,Q, S)) ≡def

∃m, l(1≤m≤ l ∧ ∀k(1≤k<m →
∃i(rd(P, i, λ) ∧ rd(J, i, k) ∧ rd(Q, i, k) ∧ rd(S, k, i))) ∧

∀j(1≤j≤ l→ ((rd(P, j,ncs) ∧ rd(Q, j, 0)) ∨
∃k(1≤k<m ∧ ((rd(P, j, w) ∧ rd(J, j, k+1) ∧ rd(Q, j, k)) ∨

(rd(P, j, λ) ∧ rd(J, j, k) ∧ rd(Q, j, k)))))) ∧
ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc5(s(P, J,Q, S)) ≡def

∃i, k, l(2≤k<l ∧ ((rd(P, i, w) ∧ rd(J, i, k+1) ∧ rd(Q, i, k) ∧ rd(S, k, i)) ∨
(rd(P, i, λ) ∧ rd(J, i, k) ∧ rd(Q, i, k) ∧ rd(S, k, i))) ∧

∃m(1≤m ≤ k ∧
∀u(1≤u≤m →
∃j(rd(P, j, λ) ∧ rd(J, j, u) ∧ rd(Q, j, u) ∧ rd(S, u, j))) ∧

∀n((1≤n≤ l ∧ ¬ (n= i))→
((rd(P, n,ncs) ∧ rd(Q,n, 0)) ∨
∃r(1≤r≤m ∧

((rd(P, n,w) ∧ rd(J, n, r+1) ∧ rd(Q,n, r)) ∨
(rd(P, n, λ) ∧ rd(J, n, r) ∧ rd(Q,n, r))))))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))
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genc6(s(P, J,Q, S)) ≡def

∃i, l, u(rd(P, i, cs) ∧ rd(J, i, u+1) ∧ rd(Q, i, u) ∧ rd(S, u, i) ∧ u+1= l ∧
∀j((1≤j≤ l ∧ ¬ (j= i))→ ((rd(P, k,ncs) ∧ rd(Q, k, 0)) ∨

(rd(P, k, w) ∧ rd(J, k, 1) ∧ rd(Q, k, 0)))) ∧
ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc7(s(P, J,Q, S)) ≡def

∃i, l, u(rd(P, i, cs) ∧ rd(J, i, u+1) ∧ rd(Q, i, u) ∧ u+1= l ∧
∀k(1≤k<l → ∃i(rd(P, i, λ) ∧ rd(J, i, k) ∧ rd(Q, i, k) ∧ rd(S, k, i))) ∧
ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc8(s(P, J,Q, S)) ≡def

∃i, l, u(rd(P, i, cs) ∧ rd(J, i, u+1) ∧ rd(Q, i, u) ∧ u+1= l ∧
∃m(1≤m≤ l ∧ ∀n(1≤n<m →

∃j(rd(P, j, λ) ∧ rd(J, j, n) ∧ rd(Q, j, n) ∧ rd(S, n, j))) ∧
∀j((1≤j≤ l ∧ ¬ (j= i))→

((rd(P, j,ncs) ∧ rd(Q, j, 0)) ∨
∃k(1≤k<m ∧

((rd(P, j, w) ∧ rd(J, j, k+1) ∧ rd(Q, j, k)) ∨
(rd(P, j, λ) ∧ rd(J, j, k) ∧ rd(Q, j, k))))))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))
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