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Abstract. We present a new program transformation strategy based on the introduction of lists. This
strategy is an extension of the tupling strategy which is based on the introduction of tuples of fixed length.
The list introduction strategy overcomes some of the limitations of the tupling strategy and, in particular,
it makes it possible to transform general recursive programs into linear recursive ones also in cases when
this transformation cannot be performed by the tupling strategy. The linear recursive programs we derive
by applying the list introduction strategy have in most cases very good time and space performance because
they avoid repeated evaluations of goals and unnecessary constructions of data structures.
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1. Introduction

There are various methodologies for developing programs from specifications, and for deriving new, efficient
programs from old programs. One such methodology is the transformation methodology, which has been first
advocated by Burstall and Darlington [BuD77]. Using this methodology one can simplify or even avoid the
proofs of program correctness. In particular, in the so called ‘rules + strategies’ approach it is not necessary
to prove the correctness of the derived programs because the rules which are used for transforming programs,
are guaranteed to preserve the semantics of interest.

The transformation methodology was first introduced in the case of functional languages, and it was later
applied also to other language paradigms. Indeed, in the mid 1980s Tamaki and Sato [TaS84] applied the
‘rules + strategies’ approach to the transformation of logic programs, and more recently that approach has
been applied by Seki to logic programs with negation in the bodies of the clauses [Sek91]. Different sets of
transformation rules have been proposed in the literature for the different classes of programs which have
been considered. The interested reader may refer to [PeP98] for a survey.

We will focus our attention on logic program transformation. This choice is motivated by the fact that in
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logic programming one can easily express non-deterministic computations as well as relational computations
of the kind which naturally arise in many application areas, such as knowledge representation, databases
and expert systems.

During program derivation the transformation rules are applied according to suitable strategies which
have the objective of avoiding useless transformations and deriving very efficient programs. Here we want to
consider, among the many strategies which have been proposed in the literature (see, for instance, [PeP96]),
the so-called tupling strategy, whereby a collection of predicate calls are grouped together with the aim of
avoiding common subcomputations and eliminating unnecessary data structures, and we will propose a new
strategy for overcoming its limitations. The tupling strategy has been given particular attention since the
beginning of the development of the program transformation methodology, because it can easily allow for
efficiency improvements by making function (or predicate) calls interact. Through the use of arrays and
fix-sized tables, the tupling strategy speeds up computations by memoing already computed values (see, for
instance, [ChH95, Coh83, LiS99]). In particular, the introduction of arrays may turn recursive computations
into iterative ones, and thus efficiency is improved because the overhead for stack manipulation is avoided.

Tupling has, however, some limitations which we will illustrate below, and in order to overcome them we
will propose the list introduction strategy. It is well known that by introducing lists one can always avoid
recursive computations in favour of iterative computations, but the naive application of this result does
not improve program efficiency. The list introduction strategy, however, does improve efficiency, because it
takes advantage of suitable properties of the lists which are introduced and, in particular, decreases their
dimension and makes their manipulation faster.

The paper is structured as follows. In Section 2 we present our rules for transforming logic programs.
We also present the tupling strategy and an example of its application. We illustrate its limitations using
the Binomial Coefficients example. In Section 3 we formally define the list introduction strategy and we
indicate how it can be combined with the tupling and generalisation strategies. In Section 4 we apply the
list introduction strategy for deriving: (i) an efficient algorithm for the N-Queens problem which requires
very little backtracking, and (ii) an algorithm for the World Series Odds problem which requires quadratic
time, instead of exponential time. Finally, in Section 5 we compare our list introduction strategy with other
techniques proposed in the literature and we also discuss how our strategy can be mechanised.

2. The Transformation Rules and the Tupling Strategy

In this section we describe the rules which we use for transforming logic programs. We also describe the
tupling strategy and illustrate its limitations. We then motivate the use of the list introduction strategy as
a way of overcoming those difficulties. We assume that the reader is familiar with the basic notions of logic
programming as presented, for instance, in [Llo87].

2.1. The Transformation Rules

Logic programs are finite sets of definite clauses [Llo87] and from a logical point of view these sets denote
conjunctions. Given a logic program P , by M(P ) we denote its least Herbrand model. Given a clause C
we denote its head by hd(C) and its body by bd(C). By R[S] we denote an expression where we single
out an occurrence S of one of its subexpressions. By R[ ] we denote the expression obtained from R[S] by
dropping the occurrence S. Given an expression E, by vars(E) we denote the set of (free or bound) variables
occurring in E. Given the expressions E1, . . . , En, we denote by vars(E1, . . . , En) the set vars(E1) ∪ . . . ∪
vars(En). Given a substitution θ of the form {X1/t1, . . . , Xn/tn}, we denote by vars(θ) the set of variables
{X1, . . . , Xn} ∪ vars(t1, . . . , tn).

We say that C is a clause for p iff C is a clause of the form p(. . .) ← Body . We say that a predicate p
depends on a predicate q in program P iff either there exists in P a clause for p whose body contains an
occurrence of q or there exists in P a predicate r such that p depends on r in P and r depends on q in P . We
say that a predicate p depends on a clause C in program P iff C is a clause for predicate q and p depends
on q in P .

Given a logic program P we assume that there exists a particular clause T of P , called top level clause.
If T is a clause for predicate t, then t is said to be the top level predicate and it is understood that we intend
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to use the program P to evaluate goals of the form t(. . .) only. We assume that no predicate in P depends
on the top level predicate t and, in particular, t does not depend on itself.

The reader may refer to [Llo87] for other notions that we will use in the paper and that are not recalled
here, such as unification, most general unifier (mgu), variant, renaming (or standardisation) apart, least
Herbrand model, SLD-refutation and SLD-tree.

The program transformation process consists in constructing a sequence P0, . . . , Pn of programs, called
transformation sequence, starting from an initial program P0. Let us assume that we have constructed the
sequence P0, . . . , Pk of programs. Then we may construct program Pk+1 which is the next program in the
sequence, by applying one of the following rules R1–R5. We denote by Defsk the set of all clauses which
are introduced by the definition introduction rule (see rule R1 below) during the construction of P0, . . . , Pk.
Thus, Defs0 is empty.

R1. Definition Introduction. We introduce the following set of n (≥1) clauses, called definitions:{
newp(X1, . . . , Xh)← Body1

. . .
newp(X1, . . . , Xh)← Bodyn

where: (i) newp is a new predicate symbol, that is, it does not occur in P0 ∪Defsk , and (ii) for 1≤ i≤ h, the
variable Xi occurs in Bodyj for some j such that 1≤ j≤ n.
By this rule we derive the new program Pk+1 and the new set Defsk+1 of definitions by adding the above n
clauses to the program Pk and to the set Defsk , respectively.

Notice that: (i) we allow for the introduction of recursive definitions, and (ii) for 1≤ j ≤ n, a variable
occurring in Bodyj need not be in {X1, . . . , Xh}.

R2. Unfolding. Let C be a renamed apart clause in program Pk of the form: H ← Body [A], where A is an
atom. Let E1, . . . , En, with n ≥ 0, be all the clauses of P0 ∪Defsk such that for i = 1, . . . , n, A is unifiable
with the head of Ei with mgu θi. For i = 1, . . . , n, let Ci be the clause (H ← Body [bd(Ei)])θi. Then by
unfolding C w.r.t. A using E1, . . . , En we derive clauses C1, . . . , Cn. We derive program Pk+1 by replacing
C in Pk by C1, . . . , Cn.

Notice that an application of the unfolding rule to clause C of Pk when n = 0 amounts to the deletion
of C from Pk.

R3. Folding. Let C be a clause in Pk of the form: H ← Body [Qθ], where Q is a goal. Let D be the only
clause in Defsk for predicate newp. Suppose that: (1) D′ is a variant of D of the form: newp(X1, . . . , Xh)← Q,
(2) vars(D′) ∩ vars(H,Body [ ]) = ∅, and (3) vars(θ) ∩ vars(Q) ⊆ {X1, . . . , Xh}.
By folding C w.r.t. Qθ using D we derive the clause E: H ← Body [newp(X1, . . . , Xh) θ]. We derive program
Pk+1 by replacing C in Pk by E.

For instance, by folding clause C: p(X) ← q(t(X), Y ), r(Y ) using the clause D: a(U, V )← q(t(U), V ) via
the substitution θ = {U/X, V/Y }, we derive clause E: p(X) ← a(X,Y ), r(Y ).

R4. Goal Replacement. Let C be a clause in Pk of the form H ← Body [Qθ], where Q is a goal. Let L be
a closed formula, called a replacement law, of the form: ∀X1 . . . Xu. (∃Y1 . . . Yv. Q ↔ ∃Z1 . . . Zw. R), where
X1, . . . , Xu, Y1, . . . , Yv, Z1, . . . , Zw are distinct variables. Suppose that the following conditions hold:

(i) vars(Q,R) ∩ vars(H,Body [ ]) = ∅;
(ii) vars(θ) ∩ {Y1, . . . , Yv, Z1, . . . , Zw} = ∅; and
(iii) M(P0 ∪Defsk ) |= L.

By applying the replacement law L, from clause C we derive the clause E: H ← Body [Rθ]. From program
Pk we derive the new program Pk+1 by replacing C by E.

R5. Equality Introduction and Elimination. Let C be a clause of the form: (H ← Body){X/t}, such
that the variable X does not occur in t and let D be the clause: H ←X= t, Body .
By equality introduction we derive clause D from clause C, and from program Pk if C occurs in Pk, we derive
the new program Pk+1 by replacing C by D.
Analogously, by equality elimination we derive clause C from clause D, and from program Pk if D occurs in
Pk, we derive program Pk+1 by replacing D by C.

One can show that the above transformation rules R1–R5 are correct in the sense that they preserve the
least Herbrand model as stated in the following Theorem 2.1.
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We say that program P existentially terminates for a goal G, and we write P ↓G, iff for P and G either
there exists an SLD-refutation or there exists a finite SLD-tree without SLD-refutations. A transformation
sequence P0, . . . , Pn is said to be termination-preserving iff for all ground atoms A, if (P0 ∪Defsn)↓A then
Pn ↓A.

Theorem 2.1 (Correctness of the transformation rules). Let P0, . . . , Pn be a termination-preserving
transformation sequence constructed by using the rules R1–R5. Then M(P0 ∪Defsn) = M(Pn).

The following example shows that the termination preserving condition cannot be dropped.

Example 1. Let us consider the program P0: {p← q, q ←}. Since M(P0) |= p↔ q, by goal replacement
we get P1: {p ← p, q ←}. We have that M(P0) = {p, q} 6= M(P1) = {q}, and indeed, for the atom p
program P1 does not existentially terminate.

2.2. The Tupling Strategy

In this section we recall some basic facts about the tupling strategy for logic programs and we illustrate some
limitations of this strategy through an example. The rest of the paper will be devoted to show that, by the
list introduction strategy, we may overcome these limitations.

We start by presenting an example of application of the tupling strategy.

Example 2 (A Linear Recurrence Relation). Let us consider the following program defining a linear
recurrence relation:

1. t1(X,Y )← p(X,Y )
2. p(0, 1)←
3. p(1, 1)←
4. p(2, 1)←
5. p(X+3, Y 3)← p(X+2, Y 2), p(X,Y ), plus(Y 2, Y, Y 3)

where X + k stands for the term s(s(. . . (X) . . .)) with k occurrences of the successor function s and
plus(X,Y, Z) holds iff X+Y =Z. We assume that the top level clause is t1.

Since in the body of clause 5 there are two p calls, the program given above takes O(2k) resolution steps
to evaluate goals of the form t1(k, Y ). We now apply the tupling strategy with the objective of avoiding an
exponential number of redundant p calls and derive a linear time program. This strategy works by introducing
new predicate definitions, often called eureka definitions following Burstall and Darlington [BuD77]. These
definitions are clauses whose bodies consist of conjunctions of p calls. In our example we will introduce the
following eureka definitions:

6. t2(X,Y 2, Y )← p(X+2, Y 2), p(X,Y )
7. t3(X,Y 2, Y 1, Y )← p(X+2, Y 2), p(X+1, Y 1), p(X,Y )

These two definitions are derived by applying the unfolding and goal replacement rules as we now describe.
From the top level clause 1, by unfolding we get:

8. t1(0, 1)←
9. t1(1, 1)←

10. t1(2, 1)←
11. t1(X+3, Y 3)← p(X+2, Y 2), p(X,Y ), plus(Y 2, Y, Y 3)

From the conjunction of the p atoms in the body of clause 11 we derive the eureka definition given by clause
6. We then unfold clause 6 and we get the following clauses (for reasons of readability we also rearrange the
order of the atoms):

12. t2(0, 1, 1)←
13. t2(X+1, Y 3, Y 1)← p(X+2, Y 2), p(X+1, Y 1), p(X,Y ), plus(Y 2, Y, Y 3)

Similarly to what we have done above starting from clause 11, from the conjunction of the p atoms in the
body of clause 13 we derive the eureka definition given by clause 7. We then unfold clause 7 and we replace
a goal of the form p(X,Y ), p(X,Y 1) by p(X,Y ), Y =Y 1 (that is, we use the functionality of p). We derive
the following clauses:

14. t3(0, 1, 1, 1)←
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15. t3(X+1, Y 2, Y 1, Y )← p(X+2, Y 1), p(X+1, Y ), p(X,Y 4), plus(Y 1, Y 4, Y 2)

The 3-tuple of p atoms in the body of clause 15 is a variant of the body of clause 7. Thus, no new eureka
definition is introduced, and we derive the following final program by folding clause 11 using clause 6, and
by folding clauses 13 and 15 using clause 7:

8. t1(0, 1)←
9. t1(1, 1)←

10. t1(2, 1)←
11f. t1(X+3, Y 3)← t2(X,Y 2, Y ), plus(Y 2, Y, Y 3)
12. t2(0, 1, 1)←

13f. t2(X+1, Y 3, Y 1)← t3(X,Y 2, Y 1, Y ), plus(Y 2, Y, Y 3)
14. t3(0, 1, 1, 1)←

15f. t3(X+1, Y 2, Y 1, Y )← t3(X,Y 1, Y, Y 4), plus(Y 1, Y 4, Y 2)

This final program is linear recursive and it has linear time complexity assuming that the calls of plus can
be evaluated in constant time. 2

Now we briefly describe how the tupling strategy works as indicated in [PrP95]. The eureka definitions
needed for deriving the final program are generated by constructing a tree DefsTree of definitions, starting
from the top level clause of the given program.

In order to indicate how the tree DefsTree is constructed, we need the following concepts. (1) Given an
expression R[S], a linking variable of the subexpression S in R is a variable which occurs both in S and
in R[ ]. A local variable of S in R is a variable which occurs in S and not in R[ ]. (2) Given a goal G, we
can partition it into the subgoals G1, . . . , Gk, also called blocks, such that: (2.1) any two distinct blocks
do not have any variable in common, and (2.2) in each block every two atoms A and B are linked by a
list A,L1, . . . , Ln, B of atoms of the block such that n ≥ 0 and any two adjacent atoms on the list have a
variable in common. (3) Given a goal G, its relevant part w.r.t. a given set T of predicates is the maximal
subgoal R of G such that: (3.1) R includes the set GT of atoms of G whose predicates are in T , and (3.2) R
does not include any atom A of G−GT such that ∃X1 . . . Xn.A, where {X1, . . . , Xn} = vars(A)− vars(GT ).
(Condition 3.2 tells us that any satisfiable atom, such as A, can be discarded from the body of new definitions
because, as indicated in the tupling strategy below, new definitions are constructed from the relevant parts
of the goals.) (4) Given a clause C, the r-blocks of C are the blocks in which we partition the relevant part
of the body of C.

Strategy 1 (Tupling). Given (i) a program P with top level clause C, (ii) a set T of predicates to be
tupled, and (iii) a set Ls of replacement laws, we construct a tree DefsTree of definitions, called definition
tree, and a new program TransfP as follows.

The root of DefsTree is clause C; NewDefs := {C}; TransfP := P − {C};
while NewDefs 6= ∅ do

we take a clause D in NewDefs; NewDefs := NewDefs − {D};
1. by unfolding, from clause D we derive clauses E1, . . . , Em;

2. by applying the replacement laws in Ls, from E1, . . . , Em we derive F1, . . . , Fm;
TransfP := TransfP ∪ {F1, . . . , Fm};

3. for each clause F in {F1, . . . , Fm} whose body has at least one occurrence of predicates in T ,

3a. we construct the r-blocks G1, . . . , Gk of F ,

3b. for i = 1, . . . , k, if F cannot be folded w.r.t. Gi using a clause in DefsTree, then we consider the new
definition ti(X1, . . . , Xh) ← Gi, where ti is a new predicate symbol and X1, . . . , Xh are the linking
variables of Gi in F , and

3c. for each new definition, say N , considered at Point 3b, we expand DefsTree by making N a child of
D and we add N to NewDefs.

endwhile

We update the program TransfP as follows: (i) we fold the clauses in TransfP w.r.t. the r-blocks which are
instances of bodies of clauses in DefsTree, and (ii) we remove all clauses on which the top level predicate
does not depend.



6 A. Pettorossi and M. Proietti

During the application of the tupling strategy we may also use the equality introduction and elimination
rules, in particular when applications of these rules allow subsequent goal replacement or folding steps.

We leave it to the reader to verify that the Recurrence Relation program of Example 2 has been derived
by performing the transformation steps indicated in our tupling strategy.

We may provide classes of programs (see, for instance, [PrP95]), where the construction of the definition
tree terminates, and thus the tupling strategy is successful. In general, however, for any given initial program
it is not the case that by tupling together a fixed number of predicate calls, we are able to derive a linear
recursive program as in the Recurrence Relation example above. There are cases in which the tupling strategy
is not successful because it is not able to construct a finite definition tree. In these cases the tupling strategy
cannot be used for improving program efficiency.

2.3. A Limitation of the Tupling Strategy

Now we give an example where the tupling strategy is not successful. This is due to the fact that the
construction of the definition tree does not terminate because every new definition to be introduced in the
tree has an increasing number of atoms in the body. Thus, in order to get a linear recursive program we
should tuple together a variable number of predicate calls. We will see in the following sections that this
example can be worked out by using the list introduction strategy.

Example 3 (Binomial Coefficients). Let us consider the following program for computing the binomial
coefficients:

1. t1(I, J,K)← b(I, J,K)
2. b(I, 0, 1)← I≥0
3. b(I, J, 1)← I ≥ 0, I=J
4. b(I+1, J+1,K)← I >J, b(I, J,K1), b(I, J+1,K2), plus(K1,K2,K)

whose top level clause is clause 1. This initial program has exponential time complexity because of the two
calls of the predicate b in the body of clause 4. In order to derive a linear recursive program we may apply
the tupling strategy as described in Section 2.2, where: (i) {b} is the set of predicates to be tupled, and
(ii) the replacement laws are: (1) the functionality of b, that is, ∀I, J,K1,K2. (b(I, J,K1), b(I, J,K2)) ↔
(b(I, J,K1), K1 =K2), and (2) the usual laws of> between integers, such as ∀I, J. (I >J, I > J+1)↔ I >J+1.
The definition tree one should construct by applying the tupling strategy has an infinite branch of the form:
D1, D2, D3, . . . , Dn, . . . , where:

D1. t1(I, J,K)← b(I, J,K)
D2. t2(I, J,K1,K2) ← I >J, b(I, J,K1), b(I, J+1,K2)
D3. t3(I, J,K1,K2,K3) ← I >J+1, b(I, J,K1), b(I, J+1,K2), b(I, J+2,K3)

...
Dn. tn(I, J,K1, . . . ,Kn) ← I >J+(n−2), b(I, J,K1), b(I, J+1,K2), . . . , b(I, J+(n−1),Kn)

...

Clause D2 is derived from clause D1 as follows. By unfolding clause D1, among other clauses, we get the
following clause:

5. t1(I+1, J+1,K)← I >J, b(I, J,K1), b(I, J+1,K2), plus(K1,K2,K)

Clause 5 has one r-block only. It is: I > J, b(I, J,K1), b(I, J+1,K2). Thus, according to Point 3b of the
tupling strategy, we introduce clause D2.

Clause D3 is obtained from clause D2 as follows. By unfolding and goal replacement, from clause D2

among other clauses, we derive:

6. t2(I+1, J+1,K1,K2) ← I >J+1, b(I, J,K3), b(I, J+1,K4), b(I, J+2,K5),
plus(K3,K4,K1), plus(K4,K5,K2)

The relevant part of clause 6 is the body of clause D3.
Unfortunately, we are not able to construct a finite definition tree because, for any n, the body of the
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clause Dn has n different atoms with predicate b. Thus, the tupling strategy does not terminate and we
cannot derive a linear recursive program by applying that strategy.

We will show in Section 3 that by suitable generalisations performed according to our list introduction
strategy one can obtain a linear recursive program in cases where the tupling strategy is not successful.
In particular, for the Binomial Coefficients program our list introduction strategy works as follows. First
notice that by using the goal replacement and the equality introduction rules, for any n, clause Dn can be
transformed into:
D′n. tn(I, J,K1, . . . ,Kn) ← b(I, J,K1), I >J, J1 =J+1,

b(I, J1,K2), I >J1, J2 =J1+1,
. . . ,
b(I, Jn−1,Kn)

In particular, clauses D2 and D3 can be transformed into:

D′2. t2(I, J,K1,K2) ← b(I, J,K1), I >J, J1 =J+1,
b(I, J1,K2)

D′3. t3(I, J,K1,K2,K3) ← b(I, J,K1), I >J, J1 =J+1,
b(I, J1,K2), I >J1, J2 =J1+1,
b(I, J2,K3)

We then introduce a new predicate b list defined as follows:

L1. b list(I, J, [ ], J)←
L2. b list(I, J, [K1|Ks], Jn)← b(I, J,K1), I >J, J1 =J+1, b list(I, J1,Ks, Jn)

By using the predicate b list we may replace a goal of the form:

b(I, J,K1), I >J, J1 =J+1, . . . , b(I, Jm−1,Km), I >Jm−1, Jm =Jm−1+1

for any m > 0, by the single atom:

b list(I, J, [K1, . . . ,Km], Jm),

and clauses D′2 and D′3 may be rewritten as follows:

E2. t2(I, J,K1,K2) ← b list(I, J, [K1], J1), b(I, J1,K2)
E3. t3(I, J,K1,K2,K3) ← b list(I, J, [K1,K2], J2), b(I, J2,K3)

By matching the bodies of E2 and E3 we introduce the following new definition:

G1. genb(I, J,Ks,M,N)← b list(I, J,Ks,M), b(I,M,N)

This clause is obtained by generalising the list [K1] in clause E2 and the list [K1,K2] in clause E3 to the
list variable Ks. Generalisation is a well-known strategy for program derivation (see, for instance, [MaW80,
Weg76]), and in our framework it allows us to construct the finite definition trees needed for the derivation of
new programs. Indeed, we expand a definition tree when a folding step cannot be performed (see Point 3b of
the tupling strategy) and by generalisation we introduce definitions which allow foldings more often because
terms are replaced by variables.

Now we may continue the construction of the definition tree. We do not present the details of this con-
struction here. We only mention that the full development of the Binomial Coefficients example is performed
according to the list introduction strategy given in Section 3. During the application of the list introduction
strategy, the following extra definition is introduced:

G2. genb2(I, J,Ks, N,Ls, P,Q) ← b list(I, J,Ks,M), b(I,M,N),
b list(I+1,M+1,Ls, P ), b(I+1, P,Q)

and by using the definitions G1 and G2 the following program is derived:

t1(I, 0, 1)← I=0
t1(I, J, 1)← I ≥ 0, I=J
t1(I+1, J+1,K)← I >J, genb(I, J, [K1],M,N), plus(K1, N,K).
genb(I, 0, [ ], 0, 1)← I≥0
genb(I, J, [ ], I, 1)← I≥0, I=J
genb(I+1, J+1, [ ], J+1, N)← I >J, genb(I, J, [K],M1, N1), plus(K,N1, N)
genb(I, 0, [1|Ks],M,N)← I >1, genb(I, 1,Ks,M,N)
genb(I+1, J+1, [K|Ks],M,N)← genb2(I, J, [L], H,Ks, N,M), plus(L,H,K)
genb2(I, J,Ks, N, [ ], 1, I+1)← I >J, genb(I, J,Ks, I,N)
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genb2(I, J,Ks, N, [ ], P,Q)← I >J, append(Ks, [N ],KsN ), genb(I, J,KsN , Q,M), plus(N,M,P )
genb2(I, J,Ks, N, [L|Ls], P,Q) ← I >J, append(Ks, [N ],KsN ), genb2(I, J,KsN ,M,Ls, P,Q),

plus(N,M,L)

together with the clauses for the predicate append which denotes list concatenation:

append([ ], L, L)←
append([X|Xs],Ys, [X|Zs])← append(Xs,Ys,Zs)

The final program existentially terminates for all goals and thus its correctness is a consequence of Theo-
rem 2.1. It runs in time proportional to n×k for goals of the form t(n, k,X).

3. The List Introduction Strategy

In this section we formally present our list introduction strategy which extends the tupling strategy presented
in Section 2.2. In Section 2.3 we have anticipated that our list introduction strategy may be applied to improve
program efficiency when during the construction of the definition tree we generate a list of calls of a predicate,
say p, such that any two adjacent calls are related by another predicate, say c. That is, the list introduction
strategy may be applied whenever we generate a list of calls of the form:

L. p(V0), c(V0, V1), p(V1), c(V1, V2), . . . , p(Vn−1), c(Vn−1, Vn)

In these cases we are able to derive new, efficient programs which exploit the interactions among the p calls,
by defining a new predicate p list which corresponds to a list of p calls, such that any two adjacent calls are
in the relation c and the length of the list is not fixed.

In order to derive even more efficient programs, we consider in the following Definition 1 more specific
lists of p calls. In these lists every p call has three arguments satisfying the following conditions: (1) the first
argument is shared among all p calls, (2) the second argument (except for the first call) is a local variable of
the list of the p calls, and (3) the third argument is any variable.

Definition 1 (Goal List). A goal R occurring in the body of a clause C is said to be a goal list of length
n (with n≥0) based on the goal p(X,Y0, Z0), c(X,Y0, Y1) iff R is of the form:

p(X,Y0, Z0), c(X,Y0, Y1), p(X,Y1, Z1), c(X,Y1, Y2), . . . , p(X,Yn−1, Zn−1), c(X,Yn−1, Yn)

where: (i) X,Y0, . . . , Yn, Z0, . . . , Zn−1 are distinct variables, and (ii) Y1, . . . , Yn−1 are local variables of R in
C.

The notion of a goal list may be extended by allowing: (i) p(X,Y0, Z0) and c(X,Y0, Y1) to be conjunctions of
atoms, instead of single atoms, and (ii) the arguments of p and c to be (possibly empty) tuples of variables,
instead of individual variables. For reasons of simplicity, when presenting the list introduction strategy we
will stick to the basic notion of a goal list as given in Definition 1. However, in our examples we feel free to
use the notion of goal list in the extended sense.

To see an example of a goal list, let us consider clause D′3 of Example 3:

D′3. t3(I, J,K1,K2,K3) ← b(I, J,K1), I >J, J1 =J+1,
b(I, J1,K2), I >J1, J2 =J1+1,
b(I, J2,K3)

We have that the goal:

b(I, J,K1), I >J, J1 =J+1, b(I, J1,K2), I >J1, J2 =J1+1

is a goal list of length 2 based on the goal b(I, J,K1), I >J, J1 =J+1, obtained (modulo variable renaming)
from the goal list R of Definition 1 by replacing p(X,Y0, Z0) by the atom b(X,Y0, Z0) and c(X,Y0, Y1) by
the goal X>Y0, Y1 =Y0+1.

In the following definition we present the notion of list introduction by which, given a goal of the form
p(X,Y0, Z0), c(X,Y0, Y1), we define a new predicate p list whose third argument is a list.

Definition 2 (List Introduction). The following two clauses:

C1. p list(X,Y, [ ], Y )←
C2. p list(X,Y0, [Z0|Zs], Yn) ← p(X,Y0, Z0), c(X,Y0, Y1), p list(X,Y1,Zs, Yn)

are said to define the predicate p list by list introduction from the goal p(X,Y0, Z0), c(X,Y0, Y1).
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An example of list introduction from the goal b(I, J,K1), I >J, J1 =J+1, is given in Section 2.3, where we
have introduced the predicate b list defined by clauses L1 and L2.

Now we present two properties of the predicate p list . We will use them in the program derivations
presented in Section 4.

Property 1. Let P be a program where the predicate p list is defined by clauses C1 and C2 above. For
any goal list R of length n based on p(X,Y0, Z0), c(X,Y0, Y1), of the form:

p(X,Y0, Z0), c(X,Y0, Y1), p(X,Y1, Z1), c(X,Y1, Y2), . . . , p(X,Yn−1, Zn−1), c(X,Yn−1, Yn)

we have that the following replacement law holds in M(P ):

P1 : ∀X,Y0, Z0, . . . , Zn−1, Yn.(∃Y1, . . . , Yn−1. R)↔ p list(X,Y0, [Z0, . . . , Zn−1], Yn)

This Property 1 allows us to perform some goal replacement steps which are crucial for the application of
the list introduction strategy. For instance, by applying the replacement law P1, we may replace in the body
of clause D′3 of Example 3 (see Section 2.3) the goal list b(I, J,K1), I >J, J1 =J+1, b(I, J1,K2), I >J1,
J2 =J1+1 by the single atom b list(I, J, [K1,K2], J2), and by doing so we derive clause E3.

Property 2. Let P be a program where the predicate p list is defined by clauses C1 and C2 above. We
have that the following replacement law holds in M(P ):

P2 : ∀X,Y0, L1, L2, Yn. ( ∃Ym. (p list(X,Y0, L1, Ym), p list(X,Ym, L2, Yn))↔
∃L. (append(L1, L2, L), p list(X,Y0, L, Yn)) )

where append is the familiar predicate which specifies list concatenation.

Notice that by Property 2 the predicate p list defines a homomorphism w.r.t. the list structure of its third
argument in the sense of [BiM87].

Definition 3 (Clause Extension). Let R be a goal list of length r based on goal M , and S be a goal list
of length s based on the same goal M such that r < s. We say that clause K ← Body [S] is an extension of
clause H ← Body [R].

Definition 4 (List Introduction + Generalisation). Let A be the clause H ← Body [R], where R is
a goal list of length r based on the goal p(X,Y0, Z0), c(X,Y0, Y1). Let p list be the predicate defined by
list introduction from p(X,Y0, Z0), c(X,Y0, Y1) (see Definition 2). By applying the replacement law P1 (see
Property 1), clause A can be replaced by the clause: H ← Body [p list(X,Y0, [Z0, . . . , Zr−1], Yr)]. We denote
by γ(A) the following clause:

genlist(V1, . . . , Vh, L)← Body [p list(X,Y0, L, Yr)]

where: (i) genlist is a new predicate symbol, (ii) L is a new variable symbol which generalises the list
[Z0, . . . , Zr−1], and (iii) {V1, . . . , Vh} = vars(Body [p list(X,Y0, L, Yr)]) ∩ vars(H, [Z0, . . . , Zr−1]). We say
that clause γ(A) has been obtained by list introduction + generalisation from clause A.

The condition on the variables of the head of γ(A) ensures that every clause which can be folded using A
can also be folded using γ(A) (after a preliminary application of law P1). Examples of clause extension and
list introduction + generalisation can be found in the derivation of the Binomial Coefficients program of
Section 2.3, and indeed, in that derivation clause D′3 is an extension of clause D′2 and clause G1 is γ(D′2).

Definitions 1–4 introduce all the notions we need for presenting our list introduction strategy. In the
list introduction strategy, similarly to the tupling strategy, we construct a definition tree by applying the
unfolding, goal replacement and definition rules. Notice, however, the following two differences: (1) Before
expanding the definition tree and adding a new leaf, say N , we match N against previously generated
definitions, and if N is an extension of a clause A higher up in the definition tree then we introduce a p list
predicate and we add γ(A), instead of N , as a new leaf clause (see Point 3c1 below). (2) Having introduced
the predicate p list , we may perform goal replacement steps by applying also the replacement laws P1 and
P2 (see Point 2 below).

Strategy 2 (List Introduction). Given (i) a program P with top level clause C, (ii) a set T of predicates
to be tupled, and (iii) a set Ls of replacement laws, we construct a tree DefsTree of definitions, called
definition tree, and a new program TransfP as follows.

The root of DefsTree is clause C; NewDefs := {C}; TransfP := P − {C};



10 A. Pettorossi and M. Proietti

while NewDefs 6= ∅ do
we take a clause D in NewDefs; NewDefs := NewDefs − {D};

1. by unfolding, from clause D we derive clauses E1, . . . , Em;

2. by applying the replacement laws in Ls and also the replacement laws P1 and P2 for the predicates
introduced at Point 3c1 below, from E1, . . . , Em we derive F1, . . . , Fm;
TransfP := TransfP ∪ {F1, . . . , Fm};

3. for each clause F in {F1, . . . , Fm} whose body has at least one occurrence of predicates in T :

3a. we construct the r-blocks G1, . . . , Gk of F ,

3b. for i = 1, . . . , k, if F cannot be folded w.r.t. Gi using a clause in DefsTree, then we consider the new
definition ti(X1, . . . , Xh) ← Gi, where ti is a new predicate symbol and X1, . . . , Xh are the linking
variables of Gi in F , and

3c. for each new definition, say N , considered at Point 3b,
if N is an extension of the clause A : H ← Body [R], occurring in the path of DefsTree from C to D,
and R is a goal list based on the goal M

3c1. then (List Introduction + Generalisation) (i) we add to P the clauses for the predicate p list
defined by list introduction from M , (see Definition 2), (ii) we add the predicate p list to the set
T , (iii) we expand DefsTree by making the clause γ(A) (constructed as in Definition 4) a child of
D, and (iv) we add γ(A) to NewDefs

3c2. else (Tupling) we expand DefsTree by making N a child of D and we add N to NewDefs.

endwhile

Finally, we update the program TransfP as follows: (i) we fold the clauses in TransfP w.r.t. the r-blocks
which are instances of bodies of clauses in DefsTree (before performing these folding steps we may need to
apply the replacement law P1, thereby replacing goal lists by the corresponding p list atoms) and (ii) we
remove all clauses on which the top level predicate does not depend.

Similarly to the case of the tupling strategy, during the application of the list introduction strategy we
may also use the equality introduction and elimination rule. In particular, when checking that clause N
is an extension of clause A, we may first introduce or eliminate equalities as needed. Moreover, we may
introduce or eliminate equalities for allowing subsequent goal replacement or folding steps (see, for instance,
the Binomial Coefficients and World Series Odds examples).

4. Examples of Program Transformation by List Introduction

Now we present two examples of program transformation relative to the N-Queens problem and the World
Series Odds problem. They are seemingly unrelated problems, but their efficient solution can be derived as
we now show, by straightforward applications of our list introduction strategy.

4.1. N-Queens Problem

Let us consider the familiar N-Queens problem: we are required to place n queens on an n×n board so that
no two queens lie on the same horizontal, vertical, or diagonal line. A board configuration with this property
is said to be safe. Below we will present the initial Queens program, which can be viewed as the formal
specification of the given problem. This initial program, similar to the one in [StS94, page 253], computes
the solutions by generating board configurations and checking their safeness.

An n×n board configuration Qs is represented by a list of pairs of the form:

[〈R1, C1〉, . . . , 〈Rn, Cn〉]
where for i = 1, . . . , n, the element 〈Ri, Ci〉 denotes a queen position in row Ri and column Ci. For i =
1, . . . , n, the values of Ri and Ci belong to the list [1, . . . , n].

Initial Queens program:
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1. queens(Ns,Qs) ← placequeens(Ns,Qs), safeboard(Qs)
2. placequeens([ ], [ ])←
3. placequeens(Ns, [Q|Qs]) ← select(Q,Ns,Ns1), placequeens(Ns1,Qs)
4. safeboard([ ])←
5. safeboard([Q|Qs])← safequeen(Q,Qs), safeboard(Qs)
6. safequeen(Q, [ ])←
7. safequeen(Q1, [Q2|Qs]) ← notattack(Q1, Q2), safequeen(Q1,Qs)

In order to place n queens on an n×n board so that the resulting configuration is safe, we may use this
initial Queens program and solve the goal: queens([1, . . . , n],Qs). By clause 1, this goal reduces to the two
subgoals placequeens([1, . . . , n],Qs), safeboard(Qs). The first subgoal generates an n×n board configuration
Qs and the second subgoal verifies that in the configuration Qs no two queens lie on the same diagonal.

We assume that the predicate notattack(Q1, Q2) holds iff the queen position Q1, that is, the 〈row,
column〉 pair Q1, is not on the same diagonal of the queen position Q2. The test that the queen positions are
not on the same row or column can be avoided by assuming the following definition of the select predicate:
select(Q,Ns,Ns1) holds iff Ns is a list of distinct numbers in [1, . . . , n], Q is the queen position 〈R,C〉 such
that row R is the length of Ns and column C is a member of Ns, and Ns1 is the list obtained from Ns
by deleting the occurrence of C. Indeed, for this choice of the select predicate, we have that any board
configuration Qs generated by the evaluation of placequeens(Ns,Qs) starting from the initial value [1, . . . , n]
of the list Ns, is made of queen positions which do not share the same row or column (note that the length of
the list Ns decreases by one at each recursive call of placequeens). In particular, board configurations with k
queens (with 1 ≤ k ≤ n) are of the form: [〈n, c1〉, 〈n−1, c2〉, . . . , 〈n−k+1, ck〉], where c1, c2, . . . , ck are distinct
numbers in [1, . . . , n].

Our initial Queens program is a typical application of the generate-and-test programming technique and
it is inefficient because many unsafe board configurations are generated. In [StS94, page 255] a more efficient
accumulator program for the N-Queens problem is proposed. In that program an accumulator is used to store
partially generated board configurations, and this accumulator allows us to check whether or not a queen to
be placed on the board is on the same diagonal of an already placed queen. By doing so, backtracking may
occur before an unsafe complete n×n board configuration is generated, and thus efficiency is improved.

By applying our proposed list introduction strategy we will mechanically derive a program which is similar
to the accumulator program version of [StS94]. Indeed, this strategy will allow us to realise the so called
filter promotion described in [Bir84, Dar78], by which the safeness test is ‘promoted’ into the generation
process and the number of generated unsafe board configurations is decreased. A similar effect may also be
achieved by the compiling control technique described in [BDK89], which works by transforming a given
initial program into a new program whose execution simulates the execution of the initial program under a
more sophisticated control strategy.

In this example filter promotion can be realised by: (i) tupling together all calls of the predicates which
occur in the body of a clause and act on a board configuration, that is, calls of the predicates queens,
placequeens, safeboard, and safequeen, and (ii) moving the calls of the notattack predicate to the left of
the calls which are tupled together. In a left-to-right mode of evaluation, as in Prolog, the transformed
program avoids the inefficient generate-and-test behaviour because the tests for safeness are performed also
for incomplete board configurations.

We apply the list introduction strategy as described in Section 3 where: (i) the top level clause is clause
1, (ii) the set T of predicates to be tupled is {queens, placequeens, safeboard , safequeen}, and (iii) the set Ls
of replacement laws is empty. We construct the definition tree DefsTree starting from the root clause 1 and
we derive the final program TransfQueens as we now describe.

Initially, the set NewDefs is {clause 1}. The while-do of the list introduction strategy is executed as
follows.

First Iteration. By unfolding, from clause 1 we get:

8. queens([ ], [ ])←
9. queens(Ns, [Q|Qs]) ← select(Q,Ns,Ns1),

placequeens(Ns1,Qs), safequeen(Q,Qs), safeboard(Qs)

Clause 9 has one r-block only, that is, the goal placequeens(Ns,Qs), safequeen(Q,Qs), safeboard(Qs). Since
clause 9 cannot be folded w.r.t. this r-block, we introduce the following new definition:

10. t1(Ns,Qs, Q)← placequeens(Ns,Qs), safequeen(Q,Qs), safeboard(Qs)
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Clause 10 is made a child of clause 1 in DefsTree and NewDefs is {clause 10}.

Second Iteration. By unfolding, from clause 10 we get:

11. t1([ ], [ ], Q)←
12. t1(Ns, [Q1|Qs], Q) ← select(Q1,Ns,Ns1),notattack(Q,Q1),

placequeens(Ns1,Qs), safequeen(Q,Qs), safequeen(Q1,Qs), safeboard(Qs)

Clause 12 cannot be folded w.r.t. its r-block, and thus, we introduce the following new definition:

13. t2(Ns1,Qs, Q,Q1)← placequeens(Ns1,Qs), safequeen(Q,Qs), safequeen(Q1,Qs), safeboard(Qs)

Clause 13 is an extension of clause 10. Indeed, the bodies of clauses 10 and 13 are equal, except that in the
body of clause 10 there is an occurrence of the goal safequeen(Q,Qs), which can trivially be viewed as a goal
list of length 1 based on the goal safequeen(Q,Qs), whereas in the body of clause 13 there is an occurrence of
the goal safequeen(Q,Qs), safequeen(Q1,Qs) which is a goal list of length 2 also based on safequeen(Q,Qs).
By list introduction + generalisation we introduce: (i) the predicate safequeen list , defined by the clauses:

14. safequeen list([ ],Qs)←
15. safequeen list([P |Ps],Qs) ← safequeen(P,Qs), safequeen list(Ps,Qs)

and (ii) the following clause γ(10):

16. genlist1(Ns,Qs,Ps)← placequeens(Ns,Qs), safequeen list(Ps,Qs), safeboard(Qs)

The definition tree is expanded by making clause 16 a child of clause 10 and NewDefs is {clause 16}.

Third Iteration. By unfolding, from clause 16 we get:

17. genlist1([ ], [ ],Ps)← safequeen list(Ps, [ ])
18. genlist1(Ns, [Q1|Qs], [ ]) ← select(Q1,Ns,Ns1),

placequeens(Ns1,Qs), safequeen(Q1,Qs), safeboard(Qs)
19. genlist1(Ns, [Q1|Qs], [P1|Ps]) ← select(Q1,Ns,Ns1), notattack(P1, Q1),

placequeens(Ns1,Qs), safequeen(P1,Qs),
safequeen list(Ps, [Q1|Qs]), safeboard([Q1|Qs])

Clause 18 can be folded using clause 10. On the contrary, clauses 17 and 19 cannot be folded w.r.t. their
r-blocks. Thus, we introduce the following new definitions:

20. t3(Ps)← safequeen list(Ps, [ ])
21. t4(Ns1,Qs, P1,Ps, Q1) ← placequeens(Ns1,Qs), safequeen(P1,Qs),

safequeen list(Ps, [Q1|Qs]), safeboard([Q1|Qs])

which are made children of clause 16. NewDefs is {clause 20, clause 21}.

Fourth Iteration. By unfolding clause 20 we get:

22. t3([ ])←
23. t3([P |Ps])← safequeen list(Ps, [ ])

We do not generate any new definition from clause 23 because it can be folded using clause 20, thereby
getting clause 23f (see below).

Fifth Iteration. By unfolding, from clause 21 we get:

24. t4(Ns1,Qs, P1, [ ], Q1) ← placequeens(Ns1,Qs), safequeen(P1,Qs), safequeen(Q1,Qs),
safeboard(Qs)

25. t4(Ns1,Qs, P1, [P2|Ps], Q1) ← notattack(P2, Q1), placequeens(Ns1,Qs),
safequeen(P1,Qs), safequeen(P2,Qs),
safequeen list(Ps, [Q1|Qs]), safeboard([Q1|Qs])

Clause 24 can be folded w.r.t. its r-block using clause 16 (by first applying the replacement law P1), while
clause 25 cannot be folded w.r.t. its r-block. Thus, we consider the following new definition:

26. t5(Ns1,Qs, P1, P2,Ps, Q1) ← placequeens(Ns1,Qs),
safequeen(P1,Qs), safequeen(P2,Qs),
safequeen list(Ps, [Q1|Qs]), safeboard([Q1|Qs])

Since clause 26 is an extension of clause 21, by list introduction + generalisation we introduce the following
new definition γ(21):
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27. genlist2(Ns1,Qs,Ps1,Ps2, Q1) ← placequeens(Ns1,Qs), safequeen list(Ps1,Qs),
safequeen list(Ps2, [Q1|Qs]), safeboard([Q1|Qs])

Clause 27 is made a child of clause 21. NewDefs is {clause 27}.
Sixth Iteration. By unfolding and by applying the replacement laws P1 and P2, from clause 27 we derive:

28. genlist2(Ns1,Qs,Ps1, [ ], Q1) ← placequeens(Ns1,Qs), safequeen list(Ps1,Qs),
safequeen(Q1,Qs), safeboard(Qs)

29. genlist2(Ns1,Qs,Ps1, [P2|Ps2], Q1) ← notattack(P2, Q1), placequeens(Ns1,Qs),
safequeen list(Ps1,Qs), safequeen(P2,Qs),
safequeen list(Ps2, [Q1|Qs]), safeboard([Q1|Qs])

By applying the replacement laws P1 and P2, we get:

30. genlist2(Ns1,Qs,Ps1, [ ], Q1) ← placequeens(Ns1,Qs), safequeen list([Q1|Ps1],Qs), safeboard(Qs)
31. genlist2(Ns1,Qs,Ps1, [P2|Ps2], Q1) ← notattack(P2, Q1),

placequeens(Ns1,Qs), safequeen list([P2|Ps1],Qs),
safequeen list(Ps2, [Q1|Qs]), safeboard([Q1|Qs])

Clauses 30 and 31 can be folded using clauses 16 and 27, respectively, thereby deriving clauses 30f and
31f (see below). Now NewDefs is the empty set and the while-do loop of the list introduction strategy
terminates.

We apply the replacement law P1 to clauses 9, 18 and 19. Then, by folding and removing all clauses on
which the predicate queens does not depend, we derive the following final program TransfQueens:

8. queens([ ], [ ])←
9f. queens(Ns, [Q|Qs]) ← select(Q,Ns,Ns1), genlist1(Ns1,Qs, [Q])

17f. genlist1([ ], [ ],Ps)← t3(Ps)
18f. genlist1(Ns, [Q1|Qs], [ ]) ← select(Q1,Ns,Ns1), genlist1(Ns1,Qs, [Q1])
19f. genlist1(Ns, [Q1|Qs], [P1|Ps]) ← select(Q1,Ns,Ns1), notattack(P1, Q1),

genlist2(Ns1,Qs, [P1],Ps, Q1)
30f. genlist2(Ns1,Qs,Ps1, [ ], Q1) ← genlist1(Ns1,Qs, [Q1|Ps1])
31f. genlist2(Ns1,Qs,Ps1, [P2|Ps2], Q1) ← notattack(P2, Q1), genlist2(Ns1,Qs, [P2|Ps1],Ps2, Q1)
22. t3([ ])←

23f. t3([P |Ps])← t3(Ps)

This program performs much less backtracking than the initial program and its operational behaviour is
similar to the accumulator program given in [StS94, page 255]. By clause 9f, the first queen position Q is
selected and predicate genlist1 is called with its last argument bound to the list [Q]. This last argument of
genlist1 stores the board configuration generated so far. When a new queen is placed at position Q1 and it is
not attacked by the last queen placed at position P1 (see clause 19f), the predicate genlist2 checks whether
or not this queen is attacked by previously placed queens whose positions are in the list Ps (see clauses 30f
and 31f). In case it is not attacked, the configuration is updated (see clause 30f), otherwise, by backtracking
(see the select atom in clause 19f), a different queen position is considered. If no position for the new queen
is safe, then by backtracking (see the select atoms in clauses 9f and 18f), the position of a previously placed
queen, if any, is modified.

Notice that we can simplify the final program TransfQueens by removing the atom t3(Ps) from the body
of clause 17f, because it is true for all lists Ps. After removing t3(Ps), the predicate queens does not depend
on t3, and we can remove also clauses 22 and 23f.

Computer experiments using SICStus Prolog confirm the expected efficiency improvements. For instance,
the initial program finds a solutions for 10 queens in 210 seconds, while the final program takes 3.2 seconds.

4.2. World Series Odds Problem

Let us consider the following World Series Odds problem taken from [AHU83, page 312]. Two teams, say A
and B, are playing a sequence of games: the first to win n games, for some given n, becomes the champion.
We assume that each team has probability 1/2 of winning any particular game of the sequence. We take the
atom p(I, J,K) to denote that team A has probability K of becoming the champion when A needs to win
I games in the future to become the champion, and team B needs to win J games in the future to become
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the champion. The value of K is assumed to be a rational number between 0 and 1. To evaluate the atom
p(I, J,K) at the end of any game in the sequence, we may use the following World Series Odds program:

1. t1(I, J,K)← p(I, J,K)
2. p(0, J+1, 1)←
3. p(I+1, 0, 0)←
4. p(I+1, J+1,K) ← p(I, J+1,K1), p(I+1, J,K2), ave(K1,K2,K)

where ave(K1,K2,K) holds iff K=(K1+K2)/2. Clause 2 says that team A has probability 1 of becoming
the champion if it needs to win 0 games in the future and team B needs to win more than 0 games in the
future. Analogously, clause 3 says that team A has probability 0 of becoming the champion if it needs to
win more than 0 games in the future and team B needs to win 0 games in the future. Clause 4 says that the
probability K of team A becoming the champion when A needs to win I+1 games in the future and team B
needs to win J+1 games in the future can be recursively computed as follows. Let us consider the case where
A wins the next game: in this case p(I, J+1,K1) holds for some probability K1. In the opposite case where
A loses the next game, we have that p(I+1, J,K2) holds for some probability K2. Since the probability that
A wins (or loses) the next game is 1/2, we have that K is (K1+K2)/2.

The World Series Odds program requires
(
m+n
n

)
calls of p for evaluating any goal of the form t1(m,n,K),

where m and n are positive integers, and K is a variable. This exponential behaviour is due to the fact that
the two p calls in the body of clause 4 share common subcalls which are evaluated more than once. Our
initial program is a typical example of functional relation which can be computed by applying the dynamic
programming technique. By this technique the results of intermediate p calls are stored in a table which is
consulted when a new p call has to be evaluated. Thus, common subcalls are evaluated only once.

Our program transformation strategy will automatically derive a solution similar to the one produced by
dynamic programming, by introducing a list which holds the results of the p calls evaluated up to a certain
point of the computation. This list is introduced by our list introduction strategy.

We apply this strategy starting from: (i) the given World Series Odds program with top level clause 1,
(ii) the set {p} of predicates to be tupled, and (iii) the replacement law stating the functionality of p, that
is, ∀I, J,K1,K2. (p(I, J,K1), p(I, J,K2))↔ (p(I, J,K1),K1=K2). We construct a definition tree DefsTree
starting from the root clause 1 and we derive a new program TransfWSO as we now describe.

Initially, the set NewDefs is {clause 1}. The while-do of the list introduction strategy is executed as
follows.

First Iteration. By unfolding clause 1 we derive the following clauses:

5. t1(0, J+1, 1)←
6. t1(I+1, 0, 0)←
7. t1(I+1, J+1,K) ← p(I, J+1,K1), p(I+1, J,K2), ave(K1,K2,K)

Clause 7 has one r-block only, that is, the goal p(I, J+1,K1), p(I+1, J,K2). Since clause 7 cannot be folded
w.r.t. this goal, we introduce the following new definition:

8. t2(I, J,K1,K2)← p(I, J+1,K1), p(I+1, J,K2)

which is made a child of clause 1 in DefsTree. NewDefs is {clause 8}.

Second Iteration. By unfolding clause 8 and then applying the functionality law of p, we derive the following
clauses:

9. t2(0, J, 1,K2)← p(1, J,K2)
10. t2(I+1, 0,K1, 0)← p(I, 1,K3), p(I+1, 0,K4), ave(K3,K4,K1)
11. t2(I+1, J+1,K1,K2) ← p(I, J+2,K3), p(I+1, J+1,K4), p(I+2, J,K5),

ave(K3,K4,K1), ave(K4,K5,K2)

Clauses 9 and 10 can be folded using clauses 1 and 8, respectively. On the contrary, clause 11 cannot be
folded w.r.t. its r-block, and we consider the following new definition:

12. t3(I, J,K3,K4,K5)← p(I, J+2,K3), p(I+1, J+1,K4), p(I+2, J,K5)

We notice that, by applying the equality introduction rule, clauses 8 and 12 can be replaced by the following
clauses 8e and 12e, respectively:

8e. t2(I, J,K1,K2) ← p(I, J1,K1), I1=I+1, J1=J+1,
p(I1, J,K2)
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12e. t3(I, J,K3,K4,K5) ← p(I, J2,K3), I1=I+1, J2=J+2,
p(I1, J1,K4), I2=I1+1, J1=J+1,
p(I2, J,K5)

and clause 12e is an extension of clause 8e. Thus, by list introduction + generalisation we introduce the
following new definition (which is γ(8e)):

13. genlist1(I, J,Ks,M,N)← p list(I, J,Ks, L,M), p(L,M,N)

where the predicate p list is defined as follows:

14. p list(I, J, [ ], I, J)←
15. p list(I, J, [K|Ks], L,M)← p(I, J,K), I1=I+1, J=J1+1, p list(I1, J1,Ks, L,M)

Clause 13 is made a child of clause 8 in DefsTree. NewDefs is {clause 13}.

Third Iteration. By unfolding clause 13 we get the following clauses:

16. genlist1(I, J, [ ], J,N)← p(I, J,N)
17. genlist1(0, J+1, [1|Ks],M,N) ← p list(1, J,Ks, L,M), p(L,M,N)
18. genlist1(I+1, J+1, [K|Ks],M,N) ← p(I, J+1,K1), p(I+1, J,K2),

p list(I+2, J,Ks, L,M), p(L,M,N), ave(K1,K2,K)

Clauses 16 and 17 can be folded using clauses 1 and 13, respectively, thereby deriving clauses 16f and 17f
(see below). Clause 18 cannot be folded w.r.t. its r-block and we introduce the new definition:

19. t4(I, J,K1,K2,Ks,M,N) ← p(I, J+1,K1), p(I+1, J,K2),
p list(I+2, J,Ks, L,M), p(L,M,N)

which is made a child of clause 13 in DefsTree. NewDefs is {clause 19}.

Fourth Iteration. By unfolding clause 19 and applying the functionality of p we get the following clauses:

20. t4(I, 0,K1,K2, [ ], 0, 0)← p(I, 1,K1), p(I+1, 0,K2)
21. t4(I, J+1,K1,K2, [ ], J+1, N) ← p(I, J+2,K1), p(I+1, J+1,K2), p(I+2, J,K3),

ave(K2,K3, N)
22. t4(I, J+1,K1,K2, [K|Ks],M,N) ← p(I, J+2,K1), p(I+1, J+1,K2), p(I+2, J,K3),

p list(I+3, J,Ks, L,M), p(L,M,N), ave(K2,K3,K)

Since clause 22 cannot be folded w.r.t. its r-block, we consider the following new definition:

23. t5(I, J,K1,K2,Ks,M,N) ← p(I, J+2,K1), p(I+1, J+1,K2), p(I+2, J,K3),
p list(I+3, J,Ks, L,M), p(L,M,N)

By applying the equality introduction rule clauses 19 and 23 can be replaced by the following clauses 19e
and 23e, respectively:

19e. t4(I, J,K1,K2,Ks,M,N) ← p(I, J1,K1), I1=I+1, J1=J+1, p(I1, J,K2),
p list(I1+1, J,Ks, L,M), p(L,M,N)

23e. t5(I, J,K1,K2,Ks,M,N) ← p(I, J1,K1), I1=I+1, J1=J2+1,
p(I1, J2,K2), I2=I1+1, J2=J+1, p(I2, J,K3),
p list(I2+1, J,Ks, L,M), p(L,M,N)

We have that clause 23e is an extension of clause 19e, and by list introduction + generalisation we introduce
the following new definition (which is γ(19e)):

24. genlist2(I, J1,Hs, J,K2,Ks,M,N) ← p list(I, J1,Hs, I2, J), p(I2, J,K2),
p list(I2+1, J,Ks, L,M), p(L,M,N)

which is made a child of clause 19 in DefsTree. NewDefs is {clause 24}.

Fifth Iteration. By unfolding clause 24, applying the functionality of p, and applying the equality intro-
duction rule, we get the following clauses:

25. genlist2(I, J1,Hs, 0,K2, [ ], 0, 0)← p list(I, J1,Hs, I2, 0), p(I2, 0,K2)
26. genlist2(I, J1,Hs,M+1,K2, [ ],M+1, N) ← p list(I, J1,Hs, I2, J),

p(I2, J,K2), L=I2+1, J=M+1,
p(L,M,K3), ave(K2,K3, N)
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27. genlist2(I, J1,Hs, J2+1,K2, [K|Ks],M,N) ← p list(I, J1,Hs, I2, J),
p(I2, J,K2), I3=I2+1, J=J2+1,
p(I3, J2,K3), p list(I3+1, J2,Ks, L,M),
p(L,M,N), ave(K2,K3,K)

By applying the replacement laws P1 and P2 clauses 26 and 27 are replaced by the following two clauses
26r and 27r, respectively:

26r. genlist2(I, J1,Hs,M+1,K2, [ ],M+1, N) ← append(Hs, [K2],Zs), p list(I, J1,Zs, L,M),
p(L,M,K3), ave(K2,K3, N)

27r. genlist2(I, J1,Hs, J2+1,K2, [K|Ks],M,N) ← append(Hs, [K2],Zs), p list(I, J1,Zs, I3, J2),
p(I3, J2,K3), p list(I3+1, J2,Ks, L,M),
p(L,M,N), ave(K2,K3,K)

Clauses 25, 26r, and 27r can all be folded w.r.t. their r-blocks using clauses in DefsTree, thereby deriving
clauses 25f, 26f and 27f (see below). Thus, NewDefs is the empty set and the while-do loop of the list
introduction strategy terminates.

We now apply the equality introduction rule and the replacement law P1 to clauses 7 and 18. Then, by folding
and removing the clauses on which predicate t1 does not depend we derive the following final TransfWSO
program:

5. t1(0, J+1, 1)←
6. t1(I+1, 0, 0)←

7f. t1(I+1, J+1,K) ← genlist1(I, J+1, [K1], J,K2), ave(K1,K2,K)
16f. genlist1(I, J, [ ], J,N)← t1(I, J,N)
17f. genlist1(0, J+1, [1|Ks],M,N) ← genlist1(1, J,Ks,M,N)
18f. genlist1(I+1, J+1, [K|Ks],M,N) ← genlist2(I, J+1, [K1], J,K2,Ks,M,N), ave(K1,K2,K)
25f. genlist2(I, J1,Hs, 0,K2, [ ], 0, 0)← genlist1(I, J1,Hs, 0,K2)
26f. genlist2(I, J1,Hs,M+1,K2, [ ],M+1, N) ← append(Hs, [K2],Zs), genlist1(I, J1,Zs,M,K3),

ave(K2,K3, N)
27f. genlist2(I, J1,Hs, J2+1,K2, [K|Ks],M,N) ← append(Hs, [K2],Zs),

genlist2(I, J1,Zs, J2,K3,Ks,M,N),
ave(K2,K3,K)

This program is linear recursive and it requires O(m×n) calls of ave for evaluating any goal of the form
t1(m,n,K). Further improvements can be made to this final program and indeed, the append predicate can
be removed in favour of cheaper cons operations by applying standard transformation techniques [ZhG88].

5. Related Work and Final Discussion

The tupling strategy is a well-established technique for program derivation which uses the ‘rules + strategies’
approach advocated by Burstall and Darlington in [BuD77]. In the case of logic programming this strategy
works by combining together several predicate calls so that their interaction can be exploited and their
collective evaluation can be performed more efficiently than the evaluation of the single calls in isolation.

In this paper we have first shown that the tupling strategy has a crucial limitation in that the number
of predicate calls which is combined together is fixed, independently of the input. Basically, the tupling
strategy corresponds to the introduction of arrays of fixed length. Then we have proposed an extension of
this strategy which allows us to combine a number of predicate calls which is not fixed and depends on the
input. This extension, called list introduction strategy, is done by introducing lists which represent variable-
sized conjunctions of predicate calls. We have presented some examples that illustrate the power of our new,
extended strategy. In these examples, by introducing lists we were able to derive efficient programs where
non-determinism is reduced (see the N-Queens example) and redundant predicate calls are avoided (see the
Binomial Coefficients and World Series Odds examples). The reduction of non-determinism is achieved by
realising a form of coroutining among the predicate calls stored in the lists we have introduced, so that
backtracking may occur as soon as one of the calls fails, and the avoidance of redundant predicate calls is
achieved by eliminating multiple occurrences of equivalent goals.

Now we will mention a few transformation techniques which are related to our list introduction strategy
and we will compare those techniques to our strategy.
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The idea of enabling coroutining among several predicate calls by encoding conjunctions of goals into
lists is also used by the compiling control technique proposed in [BDK89]. Compiling control works by first
generating the symbolic computation of a given set of predicate calls and then synthesising a new program
from that symbolic computation. Thus, compiling control does not follow the ‘rules + strategies’ approach,
and it requires ad hoc correctness proofs which we do not need here, because we rely on the correctness
of the transformation rules. Moreover, our list introduction strategy allows us to avoid useless intermediate
data structures which are present in the conjunction of goals stored in the lists. In this sense, it is also an
extension of the strategy for avoiding unnecessary variables presented in [PrP95].

Memoisation [Mic68] is a technique which can be used for avoiding redundant computations by recording
intermediate results. In the case of logic programming [War92], redundant predicate calls are avoided by
storing in a table already computed answers to goals. This table is then looked up at each new predicate call,
before invoking a new evaluation. Our transformational approach can be viewed as a sort of memoisation
because we record in lists some of the predicate calls which are needed to evaluate the initial goal. However,
contrary to memoisation, during program transformation we manipulate the recorded goals by using the goal
replacement rule so that redundant, equivalent goals may be discarded. For instance, in our World Series Odds
example we have used the functionality of the predicate p, by which a goal of the form p(I, J,K1), p(I, J,K2)
is replaced by the simpler goal p(I, J,K1),K1 =K2. Program improvements of this kind cannot easily be
realised using the memoisation technique, where the storage and retrieval of answers to solved goals are
performed at runtime.

The transformation method by Chin and Hagiya [ChH95] combines tupling, lambda abstraction [PeS89],
and memoisation. Lambda abstractions are represented as dynamic-sized arrays and memoisation is used
to avoid the recomputation of these arrays. This method requires the use of suitable analysis techniques to
compute at compile time safe bounds of the sizes of the arrays. The transformation methods based on finite
differencing [PaK82] and static incrementalization [LiS99] make use of invariants to efficiently compute,
from a collection of function calls relative to the input x, a new collection of function calls relative to a
new input of the form: x ⊕ δ, where ⊕ is a suitable increment function. Our list introduction strategy uses
neither program analysis nor invariant discovery, as it applies purely transformational techniques. However,
we need to derive suitable eureka definitions whose form is determined by an analysis of the definition tree
generated during the transformation process. The discovery of useful invariants corresponds, in our case, to
the derivation of the definitions which allow us to perform folding steps.

Our transformational approach is also related to other approaches considered in the case of functional
languages where lists and dynamically extensible structures are introduced. Among them we would like to
recall: (i) the techniques of Cohen [Coh83], by which arrays whose dimensions depend on the size of the
input are introduced, (ii) the continuation-based transformations of Wand [Wan80], whereby one exploits the
power of higher-order arguments which store sequences of function calls, (iii) the accumulation technique of
Bird [Bir84], which works by introducing variables to collect a number of previously computed values. All
these techniques follow a schemata approach, by which program transformations are expressed as a catalogue
of conditional equivalences between program schemata. In order to apply a transformation to a program P ,
one should match P against a given schema and verify that P satisfies suitable conditions. The schemata
approach determines much more concise program derivations than the rules + strategies approach, but the
schemata approach has its drawbacks: (i) the matching task is not always easy and in some cases matching
may even be undecidable [HuL78], and (ii) the choice of the right schema transformation one should apply
often requires a deep insight on the program behaviour and may be difficult to mechanise.

We have not described our list introduction strategy in full detail. Nevertheless, the reader may realise
that each individual operation of our strategy is based on a straightforward syntactic analysis of the program
transformation process and thus it can easily be mechanised. Indeed, many of these operations have been
incorporated into the MAP semi-automatic transformation system [RPP98]. In particular, all transformation
rules R1–R5 have already been implemented. It should be noticed, however, that in our transformations we
often need to make use of program properties which should be proved in advance before supplying them to
the transformation system as replacement laws.
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Some reflections of Alberto Pettorossi

I studied in Edinburgh in the late 1970s under Rod’s supervision and from him I learned the main ideas
and techniques of program transformation, a field of computer science which Rod started a few years earlier,
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together with John Darlington [BuD77]. Before leaving Rome to go to Scotland, I knew Rod as the inventor
of ‘structural induction’, as mentioned in Manna’s book [Man74]. Soon after my arrival at the Department
of Artificial Intelligence, I realised that he was going to teach me many important things in the area of
programming. They are now an essential part of my professional life.

I am very grateful to Rod for teaching me the golden rules of simplicity and clarity. I still remember
some sentences, such as: ‘You do not need more than one level of subscripts’, ‘You should care about the
reader: do not make him tired or confused’, ‘Write a statement that is correct, even if you do not have a
formal proof for it’. Sometimes I repeat these sentences to my students and to my friend Maurizio Proietti,
co-author of this paper as well as many others.

I received a lot from Rod also from a personal point of view. On many occasions he showed me through
concrete examples the importance of being humble, kind, generous and open to people of different culture
or background. I regard these examples as special gifts which I treasure as much as the scientific insights he
shared with me with great enthusiasm and joy.

This paper comes from Rod’s suggestions on how to use generalisation techniques for answering a challenge
of Dijkstra [Dij82, pages 215–216]. It comes also from a question Rod asked me after a conversation on the
tupling strategy: ‘Well, Alberto, now that you have re-invented arrays, why don’t you re-invent lists?’

‘I will reckon him who taught me this art equally dear to me as my parents’ (from the Oath of Hippocrates).


