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t. In a seminal paper [38℄ Prof. Robert Kowalski advo
ated theparadigm Algorithm = Logi
 + Control whi
h was intended to 
hara
-terize program exe
utions. Here we want to illustrate the 
orrespondingparadigm Program Derivation = Rules + Strategies whi
h is intendedto 
hara
terize program derivations, rather than exe
utions. During pro-gram exe
ution, the Logi
 
omponent guarantees that the 
omputed re-sults are 
orre
t, that is, they are true fa
ts in the intended model of thegiven program, while the Control 
omponent ensures that those fa
tsare derived in an e�
ient way. Likewise, during program derivation, theRules 
omponent guarantees that the derived programs are 
orre
t andthe Strategies 
omponent ensures that the derived programs are e�
ient.In this 
hapter we will 
onsider the 
ase of logi
 programs with lo
allystrati�ed negation and we will fo
us on the following three importantmethodologies for program derivation: program transformation, programsynthesis, and program veri�
ation. Based upon the Rules + Strategiesapproa
h, we will propose a uni�ed method for applying these threeprogramming methodologies. In parti
ular, we will present: (i) a set ofrules for program transformation whi
h preserve the perfe
t model se-manti
s and (ii) a general strategy for applying the transformation rules.We will also show that we 
an synthesize 
orre
t and e�
ient programsfrom �rst order spe
i�
ations by: (i) 
onverting an arbitrary �rst orderformula into a logi
 program with lo
ally strati�ed negation by using avariant of the Lloyd-Topor transformation, and then (ii) applying ourtransformation rules a

ording to our general strategy. Finally, we willdemonstrate that the rules and the strategy for program transformationand program synthesis 
an also be used for program veri�
ation, that is,for proving �rst order properties of systems des
ribed by logi
 programswith lo
ally strati�ed negation.1 Introdu
tionVarious models of 
omputation were proposed sin
e the early history of 
om-puting. Among others, we may re
all the von Neumann ma
hine for imperativelanguages, term rewriting for fun
tional languages, and resolution for logi
al
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2 A. Pettorossi, M. Proiettilanguages. In these three di�erent language paradigms, people explored and an-alyzed di�erent programming methodologies. In parti
ular, in the area of logi
allanguages, it was realized that both 
omputing and programming 
an be viewedas a dedu
tive a
tivity.The idea of 
omputation as dedu
tion may be tra
ed ba
k to the beginningsof the 
omputation theory and re
ursive fun
tion theory, but it emerged 
learlywithin the Theorem Proving 
ommunity through the pioneering work of Robin-son [62℄ and later, the paper by Kowalski [37℄, where the author proposed aparti
ular dedu
tion rule, namely, SLD-resolution, to 
ompute in a logi
al the-ory 
onsisting of Horn 
lauses. The dedu
tive approa
h to 
omputation was still
onsidered to be not very pra
ti
al at that time, but the situation 
hanged whenWarren [75℄ proposed a Prolog 
ompiler based on SLD-resolution with perfor-man
e 
omparable to that of the fun
tional language Lisp. E�
ien
y is obtainedby sa
ri�
ing 
orre
tness in some 
ases, but fortunately, that in
orre
tness turnsout not to be a problem in pra
ti
e.The idea of programming and program development as a dedu
tion fromlogi
al spe
i�
ations to exe
utable expressions in a formal setting, has its rootsin the works by Burstall-Darlington and Manna-Waldinger [10,49℄ for fun
tionallanguages and in the works by Clark et al., Hogger, and Kowalski [11,12,32,39℄for the 
ase of logi
al languages. Similar ideas were proposed also in the 
ase ofimperative languages and one should mention, among others, the 
ontributionsof Dijkstra and Hoare (see, for instan
e, [21,31℄).In the paper [38℄ Kowalski proposes the motto: Algorithm = Logi
 + Con-trol, to promote a separation of 
on
ern when writing programs: a 
on
ern for
orre
tness in the Logi
 
omponent, and a 
on
ern for e�
ien
y in the Control
omponent. This separation idea for program development goes ba
k to the sem-inal paper by Burstall and Darlington [10℄. The aim is to derive programs whi
hare 
orre
t and e�
ient by applying transformation rules in a dis
iplined mannera

ording to suitable strategies. In this 
ase the Logi
 
omponent 
onsists of thetransformation rules, su
h as unfolding and folding, whi
h are 
orre
t be
ausethey preserve the semanti
s of interest, and the Control 
omponent 
onsists ofthe strategies whi
h dire
t the use of the rules so to derive e�
ient programs.Our motto, whi
h 
an be viewed as an appli
ation of Kowalski's motto to the
ase of program development, is: Program Derivation = Rules + Strategies.As we will illustrate in this 
hapter, our motto also indi
ates a way of under-standing the relationship among various te
hniques for program developmentsu
h as program synthesis, program reuse, and program veri�
ation. Some ofthese te
hniques based on rules and strategies, are des
ribed in [19,20,33,52℄.The main obje
tive of this 
hapter is to provide a uni�ed view of: (i) programtransformation, (ii) program synthesis, and (iii) program veri�
ation as dedu
-tive a
tivities based on the unfolding/folding transformation rules and strategies.We 
onsider the 
lass of logi
 programs with lo
ally strati�ed negation. The se-manti
s of a program P in this 
lass is given by its unique perfe
t model, denoted
M(P ), whi
h 
oin
ides with its unique stable model and its (total) well-foundedmodel [2℄.



Program Derivation = Rules + Strategies 3In our setting program transformation, synthesis, and veri�
ation 
an beformulated as follows.Program Transformation. Given a program P and a goal G with free variables
X1, . . . , Xn, we want to �nd a 
omputationally e�
ient program T for a new
n-ary predi
ate g su
h that, for all ground terms t1, . . . , tn,
M(P ) |= G{X1/t1, . . . , Xn/tn} i� M(T ) |= g(t1, . . . , tn) (Transf )Noti
e that our formulation of program transformation in
ludes program spe
ial-ization [27,33,44,47℄ whi
h 
an be regarded as the parti
ular 
ase where G is anatom with instantiated arguments.Program Synthesis. Given a program P and a spe
i�
ation of the form g(X1, . . . ,

Xn) ↔ ϕ, where: (i) ϕ is a �rst order formula with free variables X1, . . . , Xn,and (ii) g is a new n-ary predi
ate, we want to derive a 
omputationally e�
ientprogram T for the predi
ate g su
h that, for all ground terms t1, . . . , tn,
M(P ) |= ϕ{X1/t1, . . . , Xn/tn} i� M(T ) |= g(t1, . . . , tn) (Synth)Program Veri�
ation. Given a program P and a 
losed �rst order formula ϕ, wewant to 
he
k whether or not

M(P ) |= ϕ (Verif )In order to get a uni�ed view of program transformation, program synthesis,and program veri�
ation, let us �rst noti
e that ea
h of these three tasks startsfrom a given program P and a �rst order formula. This formula, say γ, is: (i)the goal G in the 
ase of program transformation, (ii) the formula ϕ of thespe
i�
ation g(X1, . . . , Xn) ↔ ϕ in the 
ase of program synthesis, and (iii) the
losed �rst order formula ϕ in the 
ase of program veri�
ation. Thus, we 
anprovide a uni�ed treatment of program transformation, program synthesis, andprogram veri�
ation, by viewing them as instan
es of the following general, twostep method for program derivation, whi
h takes as input a given program Pand a �rst order formula γ.The Unfold/Fold Method for Program Derivation.We are given a lo
ally strati�ed program P and a �rst order formula γ.Step 1. We 
onstru
t a 
onjun
tion of 
lauses, denoted by Cls(g, γ) su
h that
P ∧Cls(g, γ) is a lo
ally strati�ed program and, for all ground terms t1, . . . , tn,

M(P ) |= γ{X1/t1, . . . , Xn/tn} i� M(P ∧ Cls(g, γ)) |= g(t1, . . . , tn)where X1, . . . , Xn are the free variables of γ.Step 2. We apply unfold/fold transformation rules whi
h preserve the perfe
tmodel semanti
s and we derive a new program T su
h that, for all ground terms
t1, . . . , tn,

M(P ∧ Cls(g, γ)) |= g(t1, . . . , tn) i� M(T ) |= g(t1, . . . , tn)The derivation of program T is made a

ording to a transformation strategywhi
h guides the appli
ation of the rules.



4 A. Pettorossi, M. ProiettiLet us now brie�y explain how this general unfold/fold method for programderivation will be instantiated to three spe
i�
 methods for program transfor-mation, program synthesis, and program veri�
ation. More details and exampleswill be given in Se
tions 2, 3, and 4.Among the tasks of program transformation, program synthesis, and programveri�
ation, the one whi
h has the most general formulation is program synthesis,be
ause the formula ϕ of a spe
i�
ation is any �rst order formula, whereas theinputs for program transformation and program veri�
ation 
onsist of a goal(that is, a 
onjun
tion of literals) and a 
losed �rst order formula, respe
tively.A method for program synthesis 
an be obtained from the general unfold/foldmethod for program derivation in a straightforward way by taking γ as the for-mula ϕ of the spe
i�
ation g(X1, . . . , Xn) ↔ ϕ. In Se
tion 3 we will see how the
onjun
tion of 
lauses Cls(g, ϕ) 
an be 
onstru
ted by using a suitable variant ofthe Lloyd-Topor transformation [46℄. Moreover, we will propose (see Se
tion 2) ageneral transformation strategy for deriving a suitable program T from program
P ∧Cls(g, ϕ) as required by Step 2 of the unfold/fold method. From the fa
t thatour variant of the Lloyd-Topor transformation and the unfold/fold transforma-tion rules preserve the perfe
t model semanti
s, it follows that the equivalen
e(Synth) indeed holds for this program T .Similarly, if we 
onsider our general unfold/fold method for program deriva-tion in the 
ase where γ is the goal G, then we derive a program T whi
h satis-�es the relation (Transf ), and thus, in this 
ase the general method be
omes amethod for program transformation.Finally, program veri�
ation 
an be viewed as an instan
e of our generalunfold/fold method in the 
ase where γ is the 
losed �rst order formula ϕ. Inparti
ular, the 
onjun
tion of 
lauses Cls(g, ϕ) 
an be 
onstru
ted as in the 
aseof program synthesis by starting from the spe
i�
ation g ↔ ϕ. Then, one 
anprove that M(P ) |= ϕ holds by applying Step 2 of our method for programderivation and obtaining a program T whi
h in
ludes the 
lause g ← .The 
ontributions of this 
hapter are the following ones. (i) We des
ribe insome detail our general, two step method based on rules and strategies, for theuni�ed treatment of program transformation, synthesis, and veri�
ation, andthrough some examples, we show that our method is e�e
tive for ea
h of thesetasks. (ii) We establish the 
orre
tness of the transformation rules by giving suf-�
ient 
onditions for the preservation of perfe
t model semanti
s. These 
orre
t-ness results extend results already published in the literature [70℄. In parti
ular,we take into 
onsideration also the unfolding and folding rules w.r.t. negativeliterals, and these rules are 
ru
ial in the examples we will present. (iii) We out-line a general strategy for the appli
ation of the transformation rules and wedemonstrate that various te
hniques for rather di�erent tasks, su
h as programtransformation, program synthesis, and program veri�
ation, 
an all be realizedby that single strategy.The plan of the 
hapter is as follows. In Se
tion 2 we present a set of trans-formation rules for lo
ally strati�ed programs and we give su�
ient 
onditionswhi
h ensure their 
orre
tness w.r.t. the perfe
t model semanti
s. We also present



Program Derivation = Rules + Strategies 5our general strategy for the appli
ation of the transformation rules. In Se
tion 3we present the instan
e of our two step unfold/fold method for the synthesis oflogi
 programs from spe
i�
ations provided by �rst order formulas. In Se
tion4 we show that also program veri�
ation 
an be performed using our two stepmethod.2 Transformation Rules and Strategies for Lo
allyStrati�ed Logi
 ProgramsIn this se
tion we re
all the basi
 
on
epts of lo
ally strati�ed programs andperfe
t model semanti
s. We then present the transformation rules whi
h we usefor program transformation, and we provide a su�
ient 
ondition whi
h ensuresthat these rules preserve the perfe
t model semanti
s. We also outline a generalstrategy for applying the transformation rules.2.1 Preliminaries: Syntax and Semanti
s of Strati�ed Logi
ProgramsWe re
all some basi
 de�nitions and we introdu
e some terminology and notation
on
erning general logi
 programs and their semanti
s. In parti
ular, we willre
all the de�nitions of lo
ally strati�ed logi
 programs and their perfe
t models.For notions not de�ned here the reader may refer to [2,46,59℄.Given a �rst order language L, its formulas are 
onstru
ted out of variables,fun
tion symbols, predi
ate symbols, terms, atomi
 formulas (also 
alled atoms),the formula true, the 
onne
tives ¬ and ∧, and the quanti�er ∃ (see, for instan
e,[2,46℄). We feel free to write formulas using also the symbols false, ∨, →, ↔,and ∀, but we regard them as abbreviations of the equivalent formulas writtenusing the symbols true, ¬, ∧, and ∃ only. Following the usual logi
 programming
onvention, we use upper 
ase letters for variables and lower 
ase letters forfun
tion and predi
ate symbols.A literal is an atom (i.e., a positive literal) or a negated atom (i.e., a negativeliteral). A goal G is a 
onjun
tion of n (≥ 0) literals.General logi
 programs, simply 
alled logi
 programs, or programs, are �rstorder formulas de�ned as follows. A program is a 
onjun
tion of 
lauses, ea
h ofwhi
h is of the form: G→ H , where G is a goal and H is an atom di�erent fromtrue and false. Normally a 
lause will be written asH ← G. The atomH is 
alledthe head of the 
lause, denoted by hd(C), and the goal G is 
alled the body ofthe 
lause, denoted by bd(C). A 
lause H←G where G is the empty 
onjun
tiontrue, is said to be a unit 
lause and it is written as H←. When writing goals,
lauses, and programs, we also denote 
onjun
tions by using 
omma `,' instead of
∧. Thus, usually, a goal will be written as L1, . . . , Ln, where the Li's are literals,a 
lause will be written as H ← L1, . . . , Ln, and a program will be written as
C1, . . . , Cn, where the Ci's are 
lauses. When writing programs we will also feelfree to omit 
ommas between 
lauses, if no 
onfusion arises.



6 A. Pettorossi, M. ProiettiA 
lause is said to be de�nite i� no negated atom o

urs in its body. Ade�nite program is a 
onjun
tion of de�nite 
lauses.Given a term t we denote by vars(t) the set of all variables o

urring in t. Sim-ilar notation will be used for the variables o

urring in formulas. Given a 
lause
C, a variable in bd(C) is said to be existential i� it belongs to vars(bd(C)) −
vars(hd(C)). Given a formula ϕ we denote by freevars(ϕ) the set of all variablesof ϕ whi
h have a free o

urren
e in ϕ. A 
lause C is said to be ground i� novariable o

urs in it. We may freely rename the variables o

urring in 
lauses,and the pro
ess of renaming the variables of a 
lause by using new variables, is
alled renaming apart [46℄.The de�nition of a predi
ate p in a program P , denoted by Def (p, P ), isthe 
onjun
tion of the 
lauses of P whose head predi
ate is p. We say that p isde�ned in P i� Def (p, P ) is not empty. We say that a predi
ate p depends on apredi
ate q in P i� either there exists in P a 
lause of the form: p(. . .)← B su
hthat q o

urs in the goal B or there exists in P a predi
ate r su
h that p dependson r in P and r depends on q in P . The extended de�nition of a predi
ate pin a program P , denoted by Def ∗(p, P ), is the 
onjun
tion of the de�nition of
p and the de�nition of every predi
ate on whi
h p depends in P . We say thata predi
ate p depends on existential variables in a program P i� in Def ∗(p, P )there exists a 
lause C whose body has an existential variable.The set of useless predi
ates of a program P is the maximal set U of thepredi
ates of P su
h that a predi
ate p is in U i� the body of ea
h 
lause of
Def (p, P ) has a positive literal whose predi
ate is in U . For instan
e, p and qare useless and r is not useless in the following program:

p← q, r

q ← p

r←By ground(P ) we denote the 
onjun
tion of all 
lauses in L whi
h are groundinstan
es of 
lauses of P , and by BL we denote the Herbrand Base of L, that is,the set of all ground atoms in L. A strati�
ation σ is a total fun
tion from BLto the set W of 
ountable ordinals. Given a ground literal L whi
h is the atom
A or the negated atom ¬A, we say that L is in stratum α i� σ(A) = α.A ground 
lause H ← L1, . . . , Ln is lo
ally strati�ed w.r.t. a strati�
ation
σ i� for every i = 1, . . . , n, if Li is an atom then σ(H) ≥ σ(Li), and if Li is anegated atom, say ¬Ai, then σ(H) > σ(Ai). We say that the program P is lo
allystrati�ed i� there exists a strati�
ation σ su
h that every 
lause in ground(P ) islo
ally strati�ed w.r.t. σ. Let Pα be the 
onjun
tion of the 
lauses in ground(P )whose head is in the stratum α. We may assume without loss of generality, thatevery ground atom is in a stratum whi
h is greater than 0, so that P0 may beassumed to be the empty 
onjun
tion of 
lauses.An Herbrand interpretation is a subset of BL. We say that a 
losed �rst orderformula ϕ is true in an Herbrand interpretation I, written as I |= ϕ, i� one ofthe following 
ases holds: (i) ϕ is the formula true, (ii) ϕ is a ground atom Awhi
h is in I, (iii) ϕ is ¬ϕ1 and ϕ1 is not true in I, (iv) ϕ is ϕ1 ∧ ϕ2 and both
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ϕ1 and ϕ2 are true in I, (v) ϕ is ∃X ϕ1 and there exists a ground term t su
hthat ϕ1{X/t} is true in I.Given a formula ϕ and an Herbrand interpretation I, if it is not the 
ase that
I |= ϕ, we say that ϕ is false in I and we write I 6|= ϕ.The perfe
t model M(P ) of a program P whi
h is lo
ally strati�ed w.r.t. astrati�
ation σ, is the Herbrand interpretation de�ned as the subset ⋃

α∈W
Mαof BL, where for every ordinal α in W , the set Mα is 
onstru
ted as follows:(1) M0 is the empty set, and(2) if α > 0,Mα is the least Herbrand model [46℄ of the de�nite program derivedfrom Pα as follows: (i) every literal L in stratum τ , with τ < α, in the body ofa 
lause in Pα is deleted i� Mτ |= L, and (ii) every 
lause C in Pα is deleted i�in bd(C) there exists a literal L in stratum τ , with τ < α su
h that Mτ 6|= L.For a lo
ally strati�ed program P , with vars(P ) = {X1, . . . , Xn}, we havethat M(P ) |= ∀X1, . . . , Xn P .Our 
onstru
tion of the perfe
t model di�ers from the 
onstru
tion presentedin [2,59℄, but as the reader may verify, the two 
onstru
tions yield the samemodel.Re
all that perfe
t models are the usual intended semanti
s for logi
 pro-grams with lo
ally strati�ed negation, and for those programs all major ap-proa
hes to the semanti
s of negation 
oin
ide [2℄. Indeed, as already mentioned,a lo
ally strati�ed program has a unique perfe
t model whi
h is equal to itsunique stable model, and also equal to its total well-founded model.2.2 Unfold/Fold Transformation RulesIn this se
tion we present the rules for transforming logi
 programs and weprovide a su�
ient 
ondition whi
h ensures that perfe
t models are preservedduring program transformation.For the appli
ation of the transformation rules we divide the predi
ate sym-bols of the language into two 
lasses: (i) basi
 predi
ates and (ii) non-basi
predi
ates. Atoms, literals, and goals whi
h have o

urren
es of basi
 predi
atesonly, are 
alled basi
 atoms, basi
 literals, and basi
 goals, respe
tively. We as-sume that every basi
 atom is in a stri
tly smaller stratum w.r.t. every non-basi
atom, and thus, in any given program no basi
 predi
ate depends on a non-basi
one. Our partition of the set of predi
ates into basi
 or non-basi
 predi
ates isarbitrary and it may be di�erent for di�erent program derivations.A transformation sequen
e is a sequen
e P0, . . . , Pn of programs, where for

0≤k≤n−1, program Pk+1 is derived from program Pk by the appli
ation of atransformation rule as indi
ated below.We 
onsider a set Preds of predi
ates of interest. We also 
onsider, for 0≤
k ≤ n, the 
onjun
tion Defs

k
of the 
lauses introdu
ed by using the followingrule R1 during the whole transformation sequen
e P0, . . . , Pk.R1. De�nition Introdu
tion Rule.We get the new program Pk+1 by addingto program Pk a 
onjun
tion of m 
lauses of the form:
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





newp(X1, . . . , Xs)← Body1

. . .
newp(X1, . . . , Xs)← Body

msu
h that:(i) the predi
ate newp is a non-basi
 predi
ate whi
h does not o

ur in P0∧Defs
k
,(ii) X1, . . . , Xs are distin
t variables o

urring in Body1, . . . ,Bodym, and(iii) every predi
ate o

urring in Body1, . . . ,Body

m
also o

urs in P0.R2. De�nition Elimination Rule. By de�nition elimination w.r.t. Preds,from program Pk we derive the new program Pk+1 by deleting the de�nitions ofall predi
ates on whi
h no predi
ate belonging to Preds depends in Pk.R3. Positive Unfolding Rule. Let C be a renamed apart 
lause in Pk of theform: H ← G1, A,G2, where A is an atom, and G1 and G2 are (possibly empty)goals. Suppose that:1. D1, . . . , Dm, with m≥0, are all 
lauses of program Pk, su
h that A is uni�-able with hd(D1), . . . , hd(Dm), with most general uni�ers ϑ1, . . . , ϑm, re-spe
tively, and2. Ci is the 
lause (H ← G1, bd(Di), G2)ϑi, for i = 1, . . . ,m.By unfolding 
lause C w.r.t. A we derive the 
lauses C1, . . . , Cm. From program

Pk we derive the new program Pk+1 by repla
ing C with C1, . . . , Cm.In parti
ular, if m = 0, that is, if we unfold a 
lause C in program Pk w.r.t. anatom whi
h is not uni�able with the head of any 
lause in Pk, then we derivethe new program Pk+1 by deleting 
lause C.R4. Negative Unfolding Rule. Let C be a renamed apart 
lause in Pk of theform: H ← G1,¬A,G2. Let D1, . . . , Dm, with m ≥ 0, be all 
lauses of program
Pk, su
h that A is uni�able with hd(D1), . . . , hd(Dm), with most general uni�ers
ϑ1, . . . , ϑm, respe
tively. Assume that:1. A = hd(D1)ϑ1 = · · · = hd(Dm)ϑm, that is, for i = 1, . . . ,m, A is an instan
eof hd(Di),2. for i = 1, . . . ,m, Di has no existential variables, and3. from G1, ¬(bd(D1)ϑ1∨. . .∨bd(Dm)ϑm), G2 we get an equivalent disjun
tion

Q1∨ . . .∨Qr of goals, with r ≥ 0, by �rst pushing ¬ inside and then pushing
∨ outside.By unfolding 
lause C w.r.t. ¬A we derive the 
lauses C1, . . . , Cr, where Ci is the
lause H ← Qi, for i = 1, . . . , r. From program Pk we derive the new program

Pk+1 by repla
ing C with C1, . . . , Cr.In parti
ular: (i) if m = 0, that is, if we unfold a 
lause C w.r.t. a negative literal
¬A su
h that A is not uni�able with the head of any 
lause in Pk, then we getthe new program Pk+1 by deleting ¬A from the body of 
lause C, and (ii) iffor some i ∈ {1, . . . ,m}, bd(Di) = true, that is, if we unfold a 
lause C w.r.t. a



Program Derivation = Rules + Strategies 9negative literal ¬A su
h that A is an instan
e of the head of a unit 
lause in Pk,then we derive from program Pk the new program Pk+1 by deleting 
lause C.R5. Positive Folding Rule. Let C1, . . . , Cm be renamed apart 
lauses in Pkand D1, . . . , Dm be the de�nition of a predi
ate in Defsk. For i = 1, . . . ,m, let
Ci be of the form: H ← G1, Bi, G2. Suppose that there exists a substitution ϑsu
h that, for i = 1, . . . ,m the following 
onditions hold:(1) Bi = bd(Di)ϑ, and(2) for every variable X in the set vars(Di) − vars(hd(Di)), we have that Xϑis a variable whi
h o

urs neither in {H,G1, G2} nor in the term Y ϑ, for anyvariable Y o

urring in bd(Di) and di�erent from X .By folding 
lauses C1, . . . , Cm using 
lauses D1, . . . , Dm we derive the 
lause E:
H ← G1, hd(D1)ϑ,G2. From program Pk we derive the new program Pk+1 byrepla
ing C1, . . . , Cm with E.Noti
e that by de�nition of rule R1, we have that hd(D1) = . . . = hd(Dm).R6. Negative Folding Rule. Let C be a renamed apart 
lause in Pk and letnewp be a predi
ate in Defsk whose de�nition 
onsists of a single 
lause D. Let
C be of the form: H ← G1,¬A,G2. Suppose that the following 
onditions hold:(1) A = bd(D)ϑ, for some substitution ϑ, and(2) vars(hd(D)) = vars(bd(D)).By folding 
lause C w.r.t. ¬A using 
lause D we derive the 
lause E: H ←
G1,¬hd(D)ϑ,G2. From program Pk we derive the new program Pk+1 by repla
-ing C with E.R7. Tautology Rule. We derive the new program Pk+1 by repla
ing in Pk a
onjun
tion of 
lauses γ1 with a new 
onjun
tion of 
lauses γ2, a

ording to thefollowing rewritings γ1 ⇒ γ2 , where H and A, denote atoms, G, G1, G2, G3,and G4 denote goals, and C1, C2 denote 
lauses:(1) H ← A,¬A,G ⇒ true(2) H ← H,G ⇒ true(3) H ← G1, G2, G3, G4 ⇒ H ← G1, G3, G2, G4(4) H ← A,A,G ⇒ H ← A,G(5) H ← G1, H ← G1, G2 ⇒ H ← G1(6) H ← A,G1, G2, H ← ¬A,G1 ⇒ H ← G1, G2, H ← ¬A,G1(7) C1, C2 ⇒ C2, C1R8. Clause Deletion Rule. We derive the new program Pk+1 by removingfrom Pk the de�nitions of the useless predi
ates of Pk.R9. Basi
 Goal Repla
ement Rule. Let us 
onsider r (> 0) renamed apart
lauses in Pk of the form: H ← G1, Q1, G2, . . . , H ← G1, Qr, G2. Suppose that,for some goals R1, . . . , Rs, we have:
M(P0) |= ∀X1 . . .Xu (∃Y1 . . . Yv (Q1 ∨ . . . ∨Qr)↔ ∃Z1 . . . Zw (R1 ∨ . . . ∨Rs))where:(i) {Y1, . . . , Yv} = vars(Q1, . . . , Qr)− vars(H,G1, G2),(ii) {Z1, . . . , Zw} = vars(R1, . . . , Rs)− vars(H,G1, G2), and



10 A. Pettorossi, M. Proietti(iii) {X1,. . . ,Xu} = vars(Q1, . . . , Qr, R1, . . . , Rs)− {Y1, . . . , Yv, Z1, . . . , Zw}.Suppose also that R1, . . . , Rs are basi
 goals and H is a non-basi
 atom.Then from program Pk we derive the new program Pk+1 by repla
ing the 
lauses
H ← G1, Q1, G2, . . . , H ← G1, Qr, G2 with the 
lauses H ← G1, R1, G2, . . . ,
H ← G1, Rs, G2.We assume that the equality predi
ate = is a basi
 predi
ate whi
h is de�nedin ea
h program by the single 
lause X=X ← .R10. Equality Introdu
tion and Elimination. Let C be a 
lause of the form
(H ← Body){X/t}, su
h that the variable X does not o

ur in t and let D bethe 
lause: H ←X= t, Body .By equality introdu
tion we derive 
lause D from 
lause C. By equality elimina-tion we derive 
lause C from 
lause D.If C o

urs in Pk then we derive the new program Pk+1 by repla
ing C with D.If D o

urs in Pk then we derive the new program Pk+1 by repla
ing D with C.The transformation rules from rule R1 to rule R10 we have introdu
ed above,will 
olle
tively be 
alled unfold/fold transformation rules.Theorem 1. [Corre
tness of the Unfold/fold Transformation Rules℄ Let
P0, . . . , Pn be a transformation sequen
e and Preds be a set of predi
ates of in-terest. Let us assume that:(1) during the 
onstru
tion of P0, . . . , Pn, ea
h 
lause introdu
ed by the de�nitionintrodu
tion rule and used for folding, is unfolded (before or after its use forfolding) w.r.t. a non-basi
 positive literal in its body, and(2) during the transformation sequen
e P0, . . . , Pn, either the de�nition elimina-tion rule is never applied or it is applied at the end of that sequen
e.Then, for all ground atoms A with predi
ate in Preds, M(P0 ∧ Defs

n
) |= A i�

M(Pn) |= A.Noti
e that the statement obtained from Theorem 1 by repla
ing `positive unfold-ing' by `negative unfolding' is not a theorem as shown by the following example.Example 1. Let P0 be the program:1. p← ¬q(X)2. q(X)← q(X)3. q(X)← rBy negative unfolding w.r.t. ¬q(X), from 
lause 1 we get the following 
lause 4:4. p← ¬q(X),¬rThen by folding 
lause 4 w.r.t. ¬q(X), we get the following 
lause 5:5. p← p,¬rThe �nal program P1 
onsists of 
lauses 2, 3, and 5. We have that M(P0) |= p,while M(P1) |= ¬p. 2Our presentation of the transformation rules essentially follows the style ofTamaki and Sato who �rst introdu
ed the unfold/fold transformation rules in the
ase of de�nite programs [74℄ and proved their 
orre
tness w.r.t. the least Her-brand model semanti
s. Among the rules presented in this se
tion, the following
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ed by Tamaki and Sato in [74℄ (a
tually, their presentationwas a bit di�erent): R1 restri
ted to m = 1, R3, R5 restri
ted to m = 1, R7restri
ted to de�nite 
lauses, R8, R9 restri
ted to r=s=1, and R10. Thus, someof our rules may be 
onsidered an extension of those in [74℄.One of the most relevant features of Tamaki and Sato's rules is that their
orre
tness is ensured by 
onditions on the 
onstru
tion of the transformationsequen
es similar to Condition (1) of Theorem 1.A subset of Tamaki and Sato's rules, namely R3 (positive unfolding) andR5 (positive folding) with m= 1, has been extended to general logi
 programsby Seki and proved 
orre
t w.r.t. various semanti
s, in
luding the perfe
t modelsemanti
s [70,71℄.An extension of Seki's rules has been re
ently proposed by Roy
houdhury etal. in [63℄. In parti
ular, they drop the restri
tions that we 
an fold one 
lauseonly and the 
lauses used for folding are not re
ursive. The 
orre
tness of thisextension of Seki's rules is ensured by a rather sophisti
ated 
ondition whi
h,in the 
ase where re
ursive 
lauses 
annot be used for folding, is implied byCondition (1) of Theorem 1.Thus, the positive folding rule presented here is less powerful than the fold-ing rule of [63℄, be
ause we 
an only fold using 
lauses taken from Defsk, anda

ording to the de�nition introdu
tion rule R1, we 
annot introdu
e re
ursive
lauses in Defsk. However, our set of rules in
ludes the negative unfolding (R4),the negative folding (R6), and the basi
 goal repla
ement rules (R9) whi
h arenot present in [63℄, and these rules are indeed very useful in pra
ti
e and theyare needed for the program derivation examples given in the next se
tions. Webelieve that we 
an easily in
orporate the more powerful folding rule of [63℄into our set of rules, but for reasons of simpli
ity, we sti
k to our version of thepositive folding rule whi
h has mu
h simpler appli
ability 
onditions.2.3 A Transformation MethodNow we outline our two step method for program transformation based on: (i)the unfold/fold transformation rules presented in Se
tion 2.2, and (ii) a sim-ple, yet powerful strategy, 
alled unfold/fold transformation strategy, for guidingthe appli
ation of the transformation rules. This method is an instan
e of thegeneral unfold/fold method des
ribed in Se
tion 1. A
tually, our strategy is notfully spe
i�ed, in the sense that many transformation steps 
an be performed ina nondeterministi
 way, and thus, we 
annot prove that it improves e�
ien
y inall 
ases. However, our strategy 
an be regarded as a generalization and adap-tation to the 
ase of general logi
 programs of a number of e�
ien
y improvingtransformation strategies for de�nite programs presented in the literature, su
has strategies for spe
ializing programs, a
hieving tail re
ursion, avoiding interme-diate data stru
tures, avoiding redundant 
omputations, and redu
ing nondeter-minism (see [53℄ for a survey). Through some examples, we will indeed show thatprogram e�
ien
y 
an be improved by applying our unfold/fold transformationstrategy.



12 A. Pettorossi, M. ProiettiThe Unfold/Fold Transformation Method.Given a lo
ally strati�ed program P and a goal G su
h that vars(G) = {X1,
. . . , Xn}, our transformation method 
onsists of two steps as follows.Step 1. We introdu
e a new n-ary predi
ate, say g, not o

urring in {P,G} andwe derive a 
onjun
tion Cls(g,G) of 
lauses su
h that P ∧Cls(g,G) is a lo
allystrati�ed program and, for all ground terms t1, . . . , tn,(1) M(P ) |= G{X1/t1, . . . , Xn/tn} i� M(P ∧Cls(g,G)) |= g(t1, . . . , tn).Step 2. From the program P , the 
onjun
tion Cls(g,G) of 
lauses, and a set ofequivalen
es to be used for rule R9, by applying the unfold/fold transformationstrategy des
ribed below, we derive a program T su
h that, for all ground terms
t1, . . . , tn,(2) M(P ∧ Cls(g,G)) |= g(t1, . . . , tn) i� M(T ) |= g(t1, . . . , tn)and thus, the relation (Transf ) 
onsidered in the Introdu
tion holds.Clearly, a program T whi
h satis�es (2) is P ∧ Cls(g,G) itself. However, mostoften we are not interested in su
h trivial derivation be
ause, as already men-tioned, we look for an e�
ient program T whi
h satis�es (2).Now let us look at the above two steps of our transformation method in moredetail.Step 1 is performed by �rst introdu
ing the 
lause C1: g(X1, . . . , Xn) ← Gand then repla
ing this 
lause by a 
onjun
tion Cls(g,G) of 
lauses as follows:for ea
h non-basi
 negative literal ¬p(u1, . . . , um) in G su
h that p depends onexistential variables in P ,(i) we introdu
e the 
lause D: new(Y1, . . . , Yk)← p(u1, . . . , um), where

vars(p(u1, . . . , um)) = {Y1, . . . , Yk}, and(ii) we fold 
lause g(X1, . . . , Xn)← G w.r.t. ¬p(u1, . . . , um) using D.For instan
e, in Example 2 below, from the initial goal
G: word(W ), ¬derive([s],W )we introdu
e the 
lause: g(W )← word(W ), ¬derive([s],W ), be
ause the de�ni-tion of the predi
ate derive in
ludes 
lause 3 whi
h has the existential variables

B and T . At the end of Step 1, we derive the following two 
lauses:16. g(W )← word(W ), ¬new1(W )17. new1(W )← derive([s],W )Step 1 is motivated by the fa
t that it is often useful, for reasons of e�
ien
y, totransform the de�nitions of the predi
ates o

urring in negative literals, if thesede�nitions in
lude 
lauses with existential variables. Indeed, sin
e the unfoldingw.r.t. a negative literal, say ¬p(u1, . . . , um), is de�ned only if the 
lauses whoseheads unify with p(u1, . . . , um), have no existential variables, it is desirable totransform Def ∗(p, P ) ∧ (new1(Y1, . . . , Yk) ← p(u1, . . . , um)) so to derive a newde�nition for the predi
ate new1 whose 
lauses do not have existential variables.Then, this new de�nition of new1 
an be used for performing unfolding steps



Program Derivation = Rules + Strategies 13w.r.t. literals of the form ¬new1(u1, . . . , um) and it may also allow more e�e
tivetransformations of the 
lauses where new1 o

urs.Step 2 
onsists in applying the unfold/fold transformation strategy whi
h wedes
ribe below. This strategy 
onstru
ts n program transformation sequen
es
S1, . . . , Sn, where for i = 1, . . . , n− 1, the �nal program of the sequen
e Si
oin
ides with the initial program of the sequen
e Si+1. Ea
h transformationsequen
e 
orresponds to a level whi
h is indu
ed by the 
onstru
tion of the
onjun
tion Cls(g,G) of 
lauses. We will de�ne these levels a

ording to thefollowing notion of level mapping [46℄.De�nition 1. A level mapping of a program P is a mapping from the set ofpredi
ate symbols o

urring in P to the set of natural numbers. Given a levelmapping m, the level of the predi
ate p is the number assigned to p by m.Given a program P and a goal G, by 
onstru
tion there exists a level mappingof Cls(g,G) su
h that: (1) the 
onjun
tion Cls(g,G) 
an be partitioned into
K sub
onjun
tions: D1, . . . , DK , su
h that Cls(g,G) = D1 ∧ . . . ∧ DK , and,for i = 1, . . . ,K, the sub
onjun
tion Di of 
lauses 
onsists of all 
lauses in
Cls(g,G) whose head predi
ates are at level i, (2) for i = 1, . . . ,K and for ea
h
lause p(. . .) ← B in Di, the level of ea
h predi
ate symbol in the goal B isstri
tly smaller than the level of p, (3) the predi
ate g is at the highest level K,and (4) all predi
ates of Cls(g,G) whi
h o

ur in P , are at level 0.The reader may noti
e that, a

ording to our de�nition of Step 1 above, Kis at most 2. However, we have 
onsidered the 
ase of an arbitrary value of K,be
ause this will be appropriate when in Se
tions 3 and 4 below we 
onsiderprogram synthesis and program veri�
ation, respe
tively.For the 
onstru
tion of ea
h transformation sequen
e Si, for i = 1, . . . ,
n− 1, our unfold/fold transformation strategy uses the following three sub-sidiary strategies : (i) unfold(P,Q), (ii) tautology-repla
e(Laws , P,Q), and(iii) define-fold(Defs , P,Q ∧ NewDefs).(i) Given a program P , unfold(P,Q) spe
i�es how to derive a new program
Q by performing positive and negative unfolding steps (rules R3 and R4).(ii) Given a program P and a set Laws of equivalen
es needed for the appli-
ation of the goal repla
ement rule, tautology-repla
e(Laws , P,Q) spe
i�eshow to derive a new program Q by applying the tautology, goal repla
ement,and equality introdu
tion and elimination rules (rules R8, R9, and R10).(iii) Given a program P and a 
onjun
tion Defs of predi
ate de�nitions,define-fold(Defs , P,Q∧NewDefs) spe
i�es how to derive a new program Q∧
NewDefs by introdu
ing a new 
onjun
tion NewDefs of predi
ate de�nitions andperforming folding steps using 
lauses o

urring in Defs ∧ NewDefs (rules R1,R5, and R6).The e�e
tiveness of the unfold/fold transformation strategy depends uponthe 
hoi
e of these subsidiary strategies, and mu
h resear
h, mostly in the 
aseof de�nite programs, has been devoted to devise subsidiary strategies whi
h al-low us to derive very e�
ient programs [53℄. For instan
e, the introdu
tion ofnew predi
ate de�nitions, also 
alled eureka de�nitions, in�uen
es the e�
ien
y



14 A. Pettorossi, M. Proiettiof the derived programs. Various te
hniques have been proposed for determiningthe suitable eureka de�nitions to be introdu
ed. Here we only want to men-tion that it is often useful to introdu
e new predi
ates whose de�nition 
lauseshave bodies whi
h are: (i) instan
es of atoms, so to perform program spe
ial-ization, (ii) 
onjun
tions of literals that share variables, so to derive programsthat simultaneously perform the 
omputations relative to several literals, and(iii) disjun
tions of goals, so to derive programs with redu
ed nondeterminism,be
ause they simultaneously perform the 
omputations relative to several alter-native goals.We omit here the detailed des
ription of the unfold, tautology-repla
e,and define-fold subsidiary strategies. We will see them in a
tion in the exam-ples given below. Here is our Unfold/Fold Transformation Strategy.The Unfold/Fold Transformation Strategy.Input : (i) a program P , (ii) a 
onjun
tion Cls(g,G) of 
lauses 
onstru
ted asindi
ated at Step 1, and (iii) a set Laws of equivalen
es for the appli
ation ofrule R9. These equivalen
es are assumed to hold in M(P ∧ Cls(g,G)).Output : A program T su
h that, for all ground terms t1, . . . , tn,
M(P ∧ Cls(g,G)) |= g(t1, . . . , tn) i� M(T ) |= g(t1, . . . , tn).Let us partition Cls(g,G) into K sub
onjun
tions: D1, . . . , DK , as indi
ated inStep 2 above.

T := P ;for i = 1, . . . ,K doWe 
onstru
t a transformation sequen
e Si as follows.
Defs := Di; InDefs := Di;By the de�nition introdu
tion rule we add the 
lauses of InDefs to T , therebyobtaining T ∧ InDefs .while InDefs is not the empty 
onjun
tion do(1) unfold(T ∧ InDefs , T ∧U ): From program T ∧ InDefs we derive T ∧U bya �nite sequen
e of appli
ations of the positive and negative unfolding rules tothe 
lauses in InDefs.(2) tautology-repla
e(Laws, T ∧U , T ∧R): From program T ∧U we derive
T ∧R by a �nite sequen
e of appli
ations of the tautology and goal repla
ementrules to the 
lauses in U , using the equivalen
es in the set Laws.(3) define-fold(Defs , T ∧ R, T ∧ F ∧ NewDefs): From program T ∧ R wederive T ∧F ∧NewDefs by: (3.i) a �nite sequen
e of appli
ations of the de�nitionintrodu
tion rule by whi
h we add to T ∧ R the (possibly empty) 
onjun
tionNewDefs of 
lauses, followed by (3.ii) a �nite sequen
e of appli
ations of thefolding rule to the 
lauses in R, using 
lauses o

urring in Defs ∧ NewDefs .We assume that the de�nition and folding steps are su
h that all non-basi
predi
ates o

urring in the body of a 
lause whi
h has been derived by folding,are de�ned in Defs ∧ NewDefs .
T := T ∧ F ; Defs := Defs ∧NewDefs ; InDefs := NewDefs



Program Derivation = Rules + Strategies 15end while;Delete from T the de�nitions of useless predi
ates.end forDelete from T the de�nitions of the predi
ates upon whi
h the predi
ate g doesnot depend.The unfold/fold transformation strategy is 
orre
t in the sense that for all groundterms t1, . . . , tn, M(P ∧ Cls(g,G)) |= g(t1, . . . , tn) i� M(T ) |= g(t1, . . . , tn), ifea
h 
lause used for folding when exe
uting the define-fold subsidiary strategyis unfolded w.r.t. a positive literal during an exe
ution of the unfold subsidiarystrategy. If this 
ondition is satis�ed, then the 
orre
tness of our transformationstrategy w.r.t. the perfe
t model semanti
s follows from the Corre
tness Theorem1 of Se
tion 2.2.Noti
e that the unfold/fold transformation strategy may not terminate, be-
ause during the exe
ution of the while loop, InDefs may never be
ome theempty 
onjun
tion.Noti
e also that the iterations of our strategy over the various levels from 1 to
K, 
orrespond to the 
onstru
tion of the perfe
t model of program P ∧Cls(g,G)derived at the end of Step 1. This 
onstru
tion is done, so to speak, level by levelmoving upwards and starting from the perfe
t model of the program P whosepredi
ates are assumed to be at level 0.Let us now present an example of program derivation using our unfold/foldtransformation method.Example 2. Complement of a 
ontext-free language. Let us 
onsider the follow-ing program CF for deriving a word of a given 
ontext-free language over thealphabet {a, b}:1. derive([ ], [ ])← Program CF2. derive([A|S], [A|W ])← terminal(A), derive(S,W )3. derive([A|S],W )← nonterminal(A), production(A,B),

append(B,S, T ), derive(T,W )4. terminal (a)←5. terminal (b)←6. nonterminal(s)←7. nonterminal(x)←8. production(s, [a, x, b])←9. production(x, [ ])←10. production(x, [a, x])←11. production(x, [a, b, x])←12. append([ ], A,A)←13. append([A|B], C, [A|D])← append(B,C,D)14. word([ ])←15. word([A|W ])← terminal(A), word(W )The relation derive([s],W ) holds i� the word W 
an be derived from the startsymbol s using the following produ
tions of the grammar de�ning the given
ontext-free language (see 
lauses 8�11):
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s→ a x b x→ ε x→ a x x→ a b xThe terminal symbols are a and b (see 
lauses 4 and 5), the nonterminal symbolsare s and x (see 
lauses 6 and 7), the empty word ε is represented as the emptylist [ ], and words in {a, b}∗ are represented as lists of a's and b's.In general, the relation derive(L,W ) holds i� L is a sequen
e of terminalor nonterminal symbols from whi
h the word W 
an be derived by using theprodu
tions.We would like to derive an e�
ient program for an initial goal G of the form:

word(W ), ¬derive([s],W ), whi
h is true in M(CF ) i� W is a word whi
h is notderived by the given 
ontext-free grammar. We perform our program derivationas follows.Step 1. We derive the two 
lauses:16. g(W )← word(W ), ¬new1(W )17. new1(W )← derive([s],W )as indi
ated in the des
ription of the Step 1 above. The predi
ate g is at level 2and the predi
ate new1 is at level 1. All predi
ates in program CF are at level
0.Step 2. We apply our unfold/fold transformation strategy. During the appli
a-tion of this strategy we never apply rules R7, R8, R9, and R10. Thus, we useneither the tautology-repla
e subsidiary strategy nor the deletion of uselesspredi
ates. We have that K=2, D1 = {
lause 17}, and D2 = {
lause 16}.Level 1. Initially program T is CF. We start o� by adding 
lause 17 to T . BothDefs and InDefs 
onsist of 
lause 17 only. We will perform four iterations ofthe body of the while loop of our strategy before InDefs be
omes the empty
onjun
tion, and then we exit the while loop. Here we show only the �rst andfourth iterations.First Iteration.unfold. By unfolding, from 
lause 17 we get:18. new1([a|A])← derive([x, b], A)define-fold. We introdu
e the following 
lause19. new2(A)← derive([x, b], A)and by folding 
lause 18 using 
lause 19 we get:20. new1([a|A])← new2(A)whi
h is added to program T .At the end of the �rst iteration T is made out of the 
lauses of CF togetherwith 
lause 20, Defs 
onsists of 
lauses 17 and 19, and InDefs 
onsists of 
lause19. Sin
e InDefs is not empty, we 
ontinue by iterating the exe
ution of the bodyof the while loop of our strategy.During the se
ond and third iteration of the while loop, by the de�nitionrule we introdu
e the following 
lauses:21. new3(A)← derive([ ], A)



Program Derivation = Rules + Strategies 1722. new4(A)← derive([x, b], A)23. new4(A)← derive([b, x, b], A)24. new5(A)← derive([ ], A)25. new5(A)← derive([x, b], A)At the beginning of the fourth iteration InDefs is made out of 
lauses 24 and 25only. Here are the details of this fourth iteration whi
h is the last one.Fourth Iteration.unfold. By unfolding, from 
lauses 24 and 25 we get:26. new5([ ])←27. new5([b|A])← derive([ ], A)28. new5([a|A])← derive([x, b], A)29. new5([a|A])← derive([b, x, b], A)define-fold. We fold 
lause 27 using 
lause 21, and 
lauses 28 and 29 using
lauses 24 and 25, and we get:30. new5([b|A])← new3(A)31. new5([a|A])← new4(A)No new de�nition is introdu
ed during this fourth iteration. Thus, InDefs isempty and we exit from the while loop. The transformation strategy terminatesfor level 1, and program T is made out of CF together with the following 
lauses:20. new1([a|A])← new2(A)32. new2([b|A])← new3(A)33. new2([a|A])← new4(A)34. new3([ ])←35. new4([b|A])← new5(A)36. new4([a|A])← new4(A)26. new5([ ])←30. new5([b|A])← new3(A)31. new5([a|A])← new4(A)Level 2. We start o� by adding 
lause 16 to T . Both Defs and InDefs 
onsist of
lause 16 only. Then we exe
ute the body of the while loop.First Iteration.unfold. By positive unfolding from 
lause 16 we derive:37. g([ ])← ¬new1([ ])38. g([a|A])← word(A), ¬new1([a|A])39. g([b|A])← word(A), ¬new1([b|A])By negative unfolding from 
lauses 37, 38, and 39 we derive:40. g([ ])←41. g([a|A])← word(A), ¬new2(A)42. g([b|A])← word(A)define-fold. We introdu
e the following new de�nitions:



18 A. Pettorossi, M. Proietti43. new6(A)← word(A), ¬new2(A)44. new7(A)← word(A)and by folding 
lauses 41 and 42 we derive:45. g([a|A])← new6(A)46. g([b|A])← new7(A)Clauses 43 and 44 are added to InDefs. Sin
e InDefs is not empty, we 
ontinueby a new iteration of the body of the while loop and we stop after the fourthiteration, when InDefs be
omes empty. We do not show the se
ond, third, andfourth iterations. The �nal program, whose 
lauses are listed below, is derived byeliminating all predi
ate de�nitions upon whi
h the predi
ate g does not depend.40. g([ ])←45. g([a|A])← new6(A)46. g([b|A])← new7(A)47. new6([ ])←48. new6([a|A])← new8(A)49. new6([b|A])← new9(A)50. new7([ ])←51. new7([a|A])← new7(A)52. new7([b|A])← new7(A)53. new8([ ])←54. new8([a|A])← new8(A)55. new8([b|A])← new10(A)56. new9([a|A])← new7(A)57. new9([b|A])← new7(A)58. new10([a|A])← new8(A)59. new10([b|A])← new9(A)This �nal program 
orresponds to a deterministi
 �nite automaton in the sensethat: (i) ea
h predi
ate 
orresponds to a state, (ii) g 
orresponds to the initialstate, (iii) ea
h predi
ate p whi
h has a unit 
lause p([ ]) ←, 
orresponds to a�nal state, and (iv) ea
h 
lause of the form p([s|A]) ← q(A) 
orresponds to atransition labeled by the symbol s from the state 
orresponding to p to the state
orresponding to q.The derivation of the �nal program performed a

ording to our transforma-tion strategy, 
an be viewed as the derivation of a deterministi
 �nite automa-ton from a general program for parsing a 
ontext free language. Obviously, thisderivation has been possible, be
ause the 
ontext free grammar en
oded by theprodu
tion predi
ate (see 
lauses 8�11) generates a regular language.The �nal program is mu
h more e�
ient than the initial program whi
h
onstru
ts the 
omplement of a 
ontext-free language by performing a nonde-terministi
 sear
h of the produ
tions to apply (see 
lauses 10 and 11). 2



Program Derivation = Rules + Strategies 193 Program Synthesis via Transformation Rules andStrategiesIn this se
tion we see how one 
an use for program synthesis the rules and thestrategy for program transformation we have presented in Se
tions 2.2 and 2.3.The program synthesis problem 
an be de�ned as follows: Given a spe
i�
ation
S, that is, a formula written in a spe
i�
ation language, we want to derive, byusing some derivation rules, a program T in a suitable programming language,su
h that T satis�es S.There are many synthesis methods des
ribed in the literature for derivingprograms from spe
i�
ations and these methods depend on the 
hoi
e of: (i)the spe
i�
ation language, (ii) the derivation rules, and (iii) the programminglanguage.It has been re
ognized sin
e the beginning of its development (see, for in-stan
e, [11,32,39℄), that logi
 programming is one of the most e�e
tive settingsfor expressing program synthesis methods, be
ause in logi
 programming bothspe
i�
ations and programs are formulas of the same language, i.e., the �rst or-der predi
ate 
al
ulus, and moreover, the derivation rules for deriving programsfrom spe
i�
ations, may be 
hosen to be the inferen
e rules of the �rst orderpredi
ate 
al
ulus itself.Now we propose a program synthesis method in the 
ase of logi
 program-ming. In this 
ase the program synthesis problem 
an be more spe
i�
ally de�nedas indi
ated in the Introdu
tion. Given a lo
ally strati�ed program P and a spe
-i�
ation of the form: g(X1, . . . , Xn)↔ ϕ, where: (i) g is a new predi
ate symbolnot o

urring in {P, ϕ}, and (ii) ϕ is a formula of the �rst order predi
ate 
al
u-lus su
h that freevars(ϕ) = {X1, . . . , Xn}, we want to derive a 
omputationallye�
ient program T su
h that, for all ground terms t1, . . . , tn,
M(P ) |= ϕ{X1/t1, . . . , Xn/tn} i� M(T ) |= g(t1, . . . , tn) (Synth)The derivation rules we 
onsider for program synthesis are: (i) a variant of theLloyd-Topor transformation rules [46℄, and (ii) the unfold/fold program trans-formation rules presented in Se
tion 2.2.Let us begin by presenting the following example of program synthesis. It isour running example for this se
tion and it will be 
ontinued in the Examples 4and 5 below.Example 3. Spe
i�
ation of List Maximum. Let us 
onsider the following List-Membership program:1. list([ ])←2. list([A|As])← list(As)3. member (X, [A|As])← X=A4. member (X, [A|As])← member (X,As)and = and ≤ are basi
 predi
ates denoting, respe
tively, the equality predi
ateand a given total order predi
ate over the given domain. For brevity, we do notshow the 
lauses de�ning these two basi
 predi
ates. The maximum M of a list

L of items may be spe
i�ed by the following formula:
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max (L,M) ↔ (list(L), member(M,L), ∀X (member(X,L)→ X ≤M)) (Φ)By our synthesis method we want to derive an e�
ient program Max whi
hde�nes the predi
ate max su
h that:
M(ListMembership ∧Max ) |= ∀L,M (max (L,M)↔ ϕmax )where ϕmax denotes the right hand side of formula (Φ) above. 2In the rest of this se
tion, we illustrate a synthesis method, 
alled the unfold/foldsynthesis method, whi
h we now introdu
e.The Unfold/Fold Synthesis Method.Given a lo
ally strati�ed program P and a spe
i�
ation formula of the form:

g(X1, . . . , Xn)↔ ϕ, this method 
onsists of two steps as follows.Step 1.We apply a variant of the Lloyd-Topor transformation [46℄, and we derivea 
onjun
tion Cls(g, ϕ) of 
lauses su
h that P ∧ Cls(g, ϕ) is a lo
ally strati�edprogram and, for all ground terms t1, . . . , tn,(1) M(P ) |= ϕ{X1/t1, . . . , Xn/tn} i� M(P ∧ Cls(g, ϕ)) |= g(t1, . . . , tn)Step 2. From the program P , the 
onjun
tion Cls(g, ϕ) of 
lauses, and a set ofequivalen
es to be used for rule R9, by applying the unfold/fold transformationstrategy of Se
tion 2.3, we derive a program T su
h that, for all ground terms
t1, . . . , tn,(2) M(P ∧ Cls(g, ϕ)) |= g(t1, . . . , tn) i� M(T ) |= g(t1, . . . , tn)and thus, the above relation (Synth) holds.As already mentioned, our unfold/fold synthesis method is a generalizationof the two step transformation method presented in the previous Se
tion 2.3,be
ause here we 
onsider a �rst order formula ϕ, instead of a goal G. Noti
ealso that, similarly to the transformation method of Se
tion 2.3, the program
P ∧Cls(g, ϕ) itself is a parti
ular program satisfying (2), but usually we have todis
ard this trivial solution be
ause we look for an e�
ient program T satisfying(2).We now illustrate the variant of the method proposed by Lloyd and Toporin [46℄ whi
h we use for 
onstru
ting the 
onjun
tion of 
lauses Cls(g, ϕ) start-ing from the given spe
i�
ation formula g(X1, . . . , Xn) ↔ ϕ a

ording to therequirements indi
ated in Step 1 above.We need to 
onsider a 
lass of formulas, 
alled statements [46℄, ea
h of whi
his of the form: A ← β, where A is an atom and β, 
alled the body of thestatement, is a �rst order logi
 formula. We write C[γ] to denote a �rst orderformula where the subformula γ o

urs as an outermost 
onjun
t, that is, C[γ] =
ρ1 ∧ . . .∧ρr ∧γ ∧σ1 ∧ . . .∧σs for some �rst order formulas ρ1, . . . , ρr, σ1, . . . , σs,and some r≥0 and s≥0. We will say that the formula C[γ] is transformed intothe formula C[δ] when C[δ] is obtained from C[γ] by repla
ing the 
onjun
t γby the new 
onjun
t δ.The LT transformation.



Program Derivation = Rules + Strategies 21Given a 
onjun
tion of statements, perform the following transformations.(A) Eliminate from the body of every statement the o

urren
es of logi
al 
on-stants, 
onne
tives, and quanti�ers other than true,¬,∧, ∨, and ∃.(B) Repeatedly apply the following rules until a 
onjun
tion of 
lauses is gener-ated:(1) A← C[¬true] is deleted.(2) A← C[¬¬γ] is transformed into A← C[γ].(3) A← C[¬(γ ∧ δ)] is transformed into
A← C[¬newp(Y1, . . . , Yk)] ∧ newp(Y1, . . . , Yk)← γ ∧ δwhere newp is a new non-basi
 predi
ate and {Y1, . . . , Yk} = freevars(γ ∧ δ).(4) A← C[¬(γ ∨ δ)] is transformed into A← C[¬γ] ∧ A← C[¬δ].(5) A← C[¬∃X γ] is transformed into
A← C[¬newp(Y1, . . . , Yk)] ∧ newp(Y1, . . . , Yk)← γwhere newp is a new non-basi
 predi
ate and {Y1, . . . , Yk} = freevars(∃X γ).(6) A← C[¬p(t1, . . . , tm)] is transformed into
A← C[¬newp(Y1, . . . , Yk)] ∧ newp(Y1, . . . , Yk)← p(t1, . . . , tm)where p is a non-basi
 predi
ate whi
h depends on existential variables in P ,newp is a new non-basi
 predi
ate, and {Y1, . . . , Yk} = vars(p(t1, . . . , tm)).(7) A← C[γ ∨ δ] is transformed into A← C[γ] ∧ A← C[δ].(8) A← C[∃X γ] is transformed into A← C[γ{X/Y }], where Y does not o

urin A← C[∃X γ].Given a lo
ally strati�ed program P and a spe
i�
ation g(X1, . . . , Xn)↔ ϕ, wedenote by Cls(g, ϕ) the 
onjun
tion of the 
lauses derived by applying the LTtransformation to the statement g(X1, . . . , Xn)← ϕ.Example 4. LT transformation of the List Maximum spe
i�
ation. Let us 
on-sider the program ListMembership and the spe
i�
ation formula (Φ) of Ex-ample 3. By applying the LT transformation to the statement max (L,M) ←

list(L), member(M,L), ∀X (member(X,L) → X ≤M) we derive the 
onjun
-tion Cls(max , ϕmax ) 
onsisting of the following two 
lauses:5. max (L,M)← list(L), member(M,L), ¬new1(L,M)6. new1(L,M)← member(X,L), ¬X≤MThe program ListMembership ∧ Cls(max , ϕmax ) is a very ine�
ient, generate-and-test program: it works by nondeterministi
ally generating a member M ofthe list L and then testing whether or not M is the maximum member of L. 2The following result states that the LT transformation is 
orre
t w.r.t. the perfe
tmodel semanti
s [46,55℄.
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tness of LT Transformation w.r.t. Perfe
t Models℄Let P be a lo
ally strati�ed program and g(X1, . . . , Xn) ↔ ϕ be a spe
i�
ation.If Cls(g, ϕ) is obtained from g(X1, . . . , Xn)← ϕ by the LT transformation, then(i) P ∧ Cls(g, ϕ) is a lo
ally strati�ed program and (ii), for all ground terms
t1, . . . , tn, M(P ) |= ϕ{X1/t1, . . . , Xn/tn} i� M(P ∧ Cls(g, ϕ)) |= g(t1, . . . , tn).Step 2 of our unfold/fold synthesis method makes use, as already said, of theunfold/fold transformation strategy presented in Se
tion 2.3, starting from pro-gram P, the 
onjun
tion Cls(g, ϕ) of 
lauses, instead of Cls(g,G), and a set ofequivalen
es to be used for the appli
ation of rule R9.The partition of Cls(g, ϕ) into levels 
an be 
onstru
ted similarly to thepartition of Cls(g,G) in Se
tion 2.3. Indeed, by 
onstru
tion, there exists alevel mapping of Cls(g, ϕ) su
h that: (1) Cls(g, ϕ) 
an be partitioned into Ksub
onjun
tions D1, . . . , DK , su
h that Cls(g, ϕ) = D1 ∧ . . . ∧ DK , and for
i = 1, . . . ,K, the sub
onjun
tion Di 
onsists of all 
lauses in Cls(g, ϕ) whosehead predi
ates are at level i, (2) for i = 1, . . . ,K and for ea
h 
lause p(. . .)← Bin Di the level of every predi
ate symbol in the goal B is stri
tly smaller thanthe level of p, (3) the predi
ate g is at the highest level K, and (4) all predi
atesof Cls(g, ϕ) whi
h o

ur in P , are at level 0.The reader may noti
e that for all K ≥ 0 there exists a formula ψ and apredi
ate g su
h that K is the highest value of the level mapping of Cls(g, ψ).Example 5. Synthesis of the List Maximum program. Let us 
onsider again theprogram ListMembership and the formula Φ of Example 3. Let us also 
onsiderthe 
onjun
tion Cls(max , ϕmax ) 
onsisting of 
lauses 5 and 6 of Example 4 whi
hde�ne the predi
ates max and new1. We may 
hoose the level mapping so thatthe levels of list , member , ≤, = are all 0, the level of new1 is 1, and the level ofmax is 2. Thus, the highest level K is 2, D1 = {
lause 6}, and D2 = {
lause 5}.We apply our unfold/fold transformation strategy as follows.Level 1. Initially program T is ListMembership. We start o� by adding 
lause 6to T . Both Defs and InDefs 
onsist of 
lause 6 only. Then we exe
ute the bodyof the while loop as follows.unfold. We unfold 
lause 6 w.r.t. member(X,L) and we get:7. new1([A|As],M)← X=A, ¬X≤M8. new1([A|As],M)← member(X,As), ¬X≤Mtautology-repla
e. From 
lause 7, by applying the goal repla
ement rule(using the equivalen
e ∀A,M (∃X (X=A,¬X≤M)↔ ¬A≤M)) we derive:9. new1([A|As],M)← ¬A≤Mdefine-fold. By folding 
lause 8 using 
lause 6 we derive the 
lause:10. new1([A|As],M)← new1(As,M)No new de�nition has been introdu
ed. Thus, InDefs is empty and the transfor-mation strategy terminates for level 1. At this point program T is made out of
lauses 1, 2, 3, 4, 9, and 10.



Program Derivation = Rules + Strategies 23Level 2. We start o� the transformation strategy for this level, by adding 
lause5 to T . Both Defs and InDefs 
onsist of 
lause 5 only. Then we iterate twi
e thebody of the while loop as follows.First Iteration.unfold. By some unfolding steps, from 
lause 5 in InDefs we derive:11. max ([A|As],M)← list(As), M=A, A≤M, ¬new1(As,M)12. max ([A|As],M)← list(As), member(M,As), A≤M, ¬new1(As,M)tautology-repla
e. By applying the goal repla
ement rule, from 
lause 11we derive:13. max ([A|As],M)← list(As), M=A, ¬new1(As,M)define-fold. The de�nition of predi
ate max, 
onsisting of 
lauses 12 and 13 isnondeterministi
, be
ause an atom of the form max (l,M), where l is a ground,nonempty list, is uni�able with the head of both 
lauses. We may derive a moree�
ient, deterministi
 de�nition for max by introdu
ing the new predi
ate new2as follows:14. new2(A,As,M)← list(As), M=A, ¬new1(As,M)15. new2(A,As,M)← list(As), member(M,As), A≤M, ¬new1(As,M)and then folding 
lauses 12 and 13 using 
lauses 14 and 15, as follows:16. max ([A|As],M)← new2(A,As,M)Now, (i) T 
onsists of 
lauses 1, 2, 3, 4, 9, 10, and 16, (ii) Defs 
onsists of 
lauses6, 14, and 15, and (iii) InDefs 
onsists of 
lauses 14 and 15 only.Se
ond Iteration.unfold. By positive and negative unfolding, from 
lauses 14 and 15 in InDefswe get:17. new2(A, [ ],M)←M=A18. new2(A, [B|As],M)← list(As), M=A, B≤M, ¬new1(As,M)19. new2(A, [B|As],M)← list(As), M=B, A≤M, B≤M, ¬new1(As,M)20. new2(A, [B|As],M)← list(As), member(M,As), A≤M, B≤M,
¬new1(As,M)tautology-repla
e. By applying the basi
 goal repla
ement rule to 
lauses18, 19, and 20, and in parti
ular, by using the equivalen
eM(ListMembership) |=

true ↔ B≤A ∨A≤B (re
all that ≤ is a total order), we get:18.1. new2(A, [B|As],M)← B≤A, list(As), M=A, ¬new1(As,M)19.1. new2(A, [B|As],M)← A≤B, list(As), M=B, ¬new1(As,M)20.1. new2(A, [B|As],M)← B≤A, list(As), member(M,As), A≤M,
¬new1(As,M)20.2. new2(A, [B|As],M)← A≤B, list(As), member(M,As), B≤M,
¬new1(As,M)define-fold. Now we fold 
lauses 18.1 and 20.1 using 
lauses 14 and 15, andwe also fold 
lauses 19.1 and 20.2 using 
lauses 14 and 15. We obtain:



24 A. Pettorossi, M. Proietti21. new2(A, [B|As],M)← B≤A, new2(A,As,M)22. new2(A, [B|As],M)← A≤B, new2(B,As,M)No new de�nition has been introdu
ed during the se
ond iteration. Thus, InDefsis empty and we terminate our unfold/fold transformation strategy also for thehighest level 2. We �nally eliminate all predi
ate de�nitions on whi
h max doesnot depend, and we derive our �nal program:16. max ([A|As],M)← new2(A,As,M)17. new2(A, [ ],M)←M=A21. new2(A, [B|As],M)← B≤A, new2(A,As,M)22. new2(A, [B|As],M)← A≤B, new2(B,As,M)This �nal program deterministi
ally 
omputes the answers to queries of the form:
max (l,M) where l is a ground list. Indeed, while traversing the given list l, the�rst argument of the predi
ate new2 holds the maximal item en
ountered sofar (see 
lauses 21 and 22) and, at the end of the traversal, the value of thisargument is returned as an answer (see 
lause 17). 24 Program Veri�
ation via Transformation Rules andStrategiesIn this se
tion we show that the transformation rules and the strategy we havepresented in Se
tions 2.2 and 2.3, 
an also be used for program veri�
ation. Inparti
ular, we 
an prove a property ϕ of a given lo
ally strati�ed logi
 program
P by applying the unfold/fold synthesis method of Se
tion 3. For program ver-i�
ation purposes, instead of starting from a spe
i�
ation formula where freevariables may o

ur, the unfold/fold synthesis method is applied starting fromthe 
losed spe
i�
ation formula g ↔ ϕ, where freevars(ϕ) = ∅ and g is a predi-
ate symbol of arity 0.Our method for verifying whether or not ϕ holds in the perfe
t model of theprogram P is spe
i�ed as follows.The Unfold/Fold Veri�
ation Method.Given a lo
ally strati�ed program P and a 
losed formula ϕ, we 
an 
he
kwhether or not M(P ) |= ϕ holds by performing the following two steps.Step 1. We introdu
e a new predi
ate symbol g of arity 0, not o

urring in {P, ϕ}and, by using the LT transformation we transform the statement g ← ϕ, into a
onjun
tion Cls(g, ϕ) of 
lauses, su
h that M(P ) |= ϕ i� M(P ∧Cls(g, ϕ)) |= g.Step 2. From program P , the 
onjun
tion Cls(g, ϕ) of 
lauses, and a set ofequivalen
es to be used for rule R9, by applying the unfold/fold transformationstrategy of Se
tion 2.3, we derive a program T su
h that

M(P ∧Cls(g, ϕ)) |= g i� M(T ) |= gThus, if T is the program 
onsisting of the 
lause g ← only, then M(P ) |= ϕ,and if T is the empty program, then M(P ) 6|= ϕ.



Program Derivation = Rules + Strategies 25Let us now see an example of program veri�
ation.Example 6. The Yale Shooting Problem. This problem has been often presentedin the literature on temporal and nonmonotoni
 reasoning. It 
an be formulatedas follows. Let us 
onsider a person and a gun and three possible events : (e1) aload event in whi
h the gun is loaded, (e2) a shoot event in whi
h the gun shoots,and (e3) a wait event in whi
h nothing happens. These events are representedby 
lauses 6, 7, and 8 of the program YSP below. A situation is (the result of)a sequen
e of events. This sequen
e is represented as a list whi
h, so to speak,grows to the left as time progresses. In any situation, at least one of the followingthree fa
ts holds : (f1) the person is alive, (f2) the person is dead, and (f3) thegun is loaded. These fa
ts are represented by 
lauses 9, 10, and 11 below. Wehave the following statements:(s1) In the initial situation, represented by the empty list [ ], the person is alive.(s2) After a load event the gun is loaded.(s3) If the gun is loaded, then after a shoot event the person is dead.(s4) If the gun is loaded, then it is abnormal that after a shoot event the personis alive.(s5) If a fa
t F holds in a situation S and it is not abnormal that F holds afterthe event E following S, then F holds also after the event E. This statement isoften 
alled the inertia axiom.The following lo
ally strati�ed program, 
alled YSP, formalizes the abovestatements, and in parti
ular, 
lauses 1�5 
orrespond to statements (s1)�(s5),respe
tively. Our YSP program is similar to the one of Apt and Bezem [1℄.1. holds(alive , [ ])← Program YSP2. holds(loaded , [load |S])←3. holds(dead , [shoot |S])← holds(loaded , S)4. ab(alive , shoot , S)← holds(loaded , S)5. holds(F, [E|S])← fact(F ), event(E), holds(F, S), ¬ab(F,E, S)6. event(load)←7. event(shoot)←8. event(wait)←9. fact(alive)←10. fact(dead)←11. fact(loaded)←12. append([ ], Y, Y )←13. append([A|X ], Y, [A|Z])← append(X,Y, Z)Apt and Bezem showed that M(YSP) |= holds(dead , [shoot ,wait , load ]) 
an bederived in a straightforward way by applying SLDNF-resolution. Let us now
onsider the following stronger property σ:
∀S (holds(dead , S)

→ ∃S1, S2, S3, S4 (append(S1, [shoot |S2], S4), append(S4, [load |S3], S)))meaning that the person may be dead in the 
urrent situation only if a loadevent o

urred in the past and that event was followed, maybe not immediately,



26 A. Pettorossi, M. Proiettiby a shoot event. We would like to prove that M(YSP) |= σ. Our two stepveri�
ation method works as follows.Step 1. We apply the LT transformation starting from the statement g ← σ andwe derive Cls(g, σ) whi
h 
onsists of the following three 
lauses:14. g ← ¬new115. new1← holds(dead , S), ¬new2(S)16. new2(S)← append(S1, [shoot |S2], S4), append(S4, [load |S3], S)The level of new2 is 1, the level of new1 is 2, and the level of g is 3. The levelof all other predi
ates is 0.Step 2. We now apply the unfold/fold transformation strategy of Se
tion 2.3,starting from the program YSP, the 
onjun
tion of 
lauses Cls(g, σ), and anempty set of equivalen
es (rule R9 will not be applied). We have that K = 3,
D1 = {
lause 16}, D2 = {
lause 15}, and D3 = {
lause 14}.Level 1. Initially program T is YSP. We start o� by applying the de�nitionintrodu
tion rule and adding 
lause 16 to T . Both Defs and InDefs 
onsist of
lause 16 only. Then we iterate the exe
ution of the body of the while loop ofthe unfold/fold transformation strategy as follows.First Iteration.unfold. By unfolding, from 
lause 16 we derive:17. new2([shoot |S])← append(S4, [load |S3], S)18. new2([E|S])← append(S1, [shoot |S2], S4), append(S4, [load |S3], S)define-fold. We introdu
e the following new predi
ate de�nition:19. new3(A)← append(B, [load |C], A)and we fold 
lauses 17 and 18 using 
lauses 19 and 16, respe
tively:20. new2([shoot |S])← new3(S)21. new2([E|S])← new2(S)At this point (i) program T 
onsists of 
lauses 20 and 21 together with 
lauses1�13, (ii) Defs 
onsists of 
lauses 16 and 19, and (iii) InDefs 
onsists of 
lause19.Se
ond Iteration.unfold. By unfolding 
lause 19 we derive:22. new3([load |S])←23. new3([E|S])← append(S4, [load |S3], S)define-fold. By folding 
lause 23 using 
lause 19 we derive:22. new3([load |S])←24. new3([E|S])← new3(S)We need not introdu
e any new 
lause for folding. Thus, InDefs is empty andthe while loop terminates for level 1. At this point program T 
onsists of thefollowing 
lauses:20. new2([shoot |S])← new3(S)



Program Derivation = Rules + Strategies 2721. new2([E|S])← new2(S)22. new3([load |S])←24. new3([E|S])← new3(S)together with 
lauses 1�13.Level 2. We apply the de�nition introdu
tion rule and we add 
lause 15 to T .Both Defs and InDefs 
onsist of 
lause 15 only. Then we iterate the exe
utionof the body of the while loop as follows.First Iteration.unfold. By unfolding, from 
lause 15 we derive:25. new1← holds(loaded , S), ¬new3(S), ¬new2(S)26. new1← holds(dead , S), ¬new2(S)27. new1← holds(dead , S), ¬new3(S), ¬new2(S)28. new1← holds(dead , S), ¬new2(S)tautology-repla
e. Clauses 27 and 28 are subsumed by 
lause 26 and they
an be deleted.define-fold. We introdu
e the following new predi
ate:29. new4← holds(loaded , S), ¬new3(S), ¬new2(S)and we fold 
lauses 25 and 28 using 
lauses 29 and 15, respe
tively. We get:30. new1← new431. new1← new1Now (i) T is made out of 
lauses 1�13, 20�24, and 30�31, (ii) Defs 
onsists of
lauses 15 and 29, and (iii) InDefs 
onsists of 
lause 29. Sin
e InDefs is not theempty 
onjun
tion, we pro
eed by a se
ond exe
ution of the body of the whileloop of the unfold/fold transformation strategy.Se
ond Iteration.unfold. By unfolding, from 
lause 29 we derive:32. new4← holds(loaded , S), ¬new3(S), ¬new3(S), ¬new2(S)33. new4← holds(loaded , S), ¬new3(S), ¬new2(S)tautology-repla
e. Clause 32 is deleted be
ause it is subsumed by 
lause 33.define-fold. We fold 
lause 32 using 
lause 29, and we derive:34. new4← new4No new 
lause is added by the de�nition introdu
tion rule. Thus, InDefs is theempty 
onjun
tion and the while loop terminates for level 2. Now, predi
atesnew1 and new4 are useless and their de�nitions, that is, 
lauses 30, 31, and 34,are deleted.Thus, at the end of the transformation strategy for level 2, the derived pro-gram T 
onsists of 
lauses 1�13 and 20�24.Level 3. We add 
lause 14 to program T . By unfolding 
lause 14 we derive:35. g ←



28 A. Pettorossi, M. ProiettiOur transformation strategy terminates by applying the de�nition eliminationrule and deleting all de�nitions of predi
ates upon whi
h g does not depend.Thus our �nal program 
onsists of 
lause 35 only, and we have proved that
M(YSP ∧Cls(g, σ)) |= g and thus, M(YSP) |= σ.The reader may 
he
k that g 
annot be derived from YSP ∧ Cls(g, σ) usingSLDNF-resolution, be
ause an SLDNF-refutation of g would require the 
on-stru
tion of a �nitely failed SLDNF-tree for new1 and no su
h a �nite tree exists.Indeed, g may be derived by using SLS-resolution, that is, resolution augmentedwith the negation as (�nite or in�nite) failure rule. However, the appli
ability
onditions of the negation as in�nite failure rule are, in general, not de
idableand even not semi-de
idable. On the 
ontrary, in our approa
h we use a setof transformation rules whi
h have de
idable appli
ability 
onditions, assumingthat the equivalen
e of basi
 goals is de
idable (see the goal repla
ement ruleR9). 25 Related WorkThe idea of program development as a dedu
tive a
tivity in a formal theoryhas been very fertile in the �eld of programming methodologies. Early resultson this topi
 are reported, for instan
e, in [10,11,12,21,32,39,49℄. Here we wouldlike to mention some of the 
ontributions to this �eld, fo
using on logi
 programtransformation. In the pioneering work by Hogger [32℄ program transformationwas intended as a parti
ular form of dedu
tion in �rst order logi
. Later, the ap-proa
h based on the unfold/fold transformations proposed by Burstall and Dar-lington [10℄ for fun
tional languages, was adapted to logi
 languages by Tamakiand Sato [74℄. These authors proposed a set of rules for transforming de�nitelogi
 programs and proved their 
orre
tness w.r.t. the least Herbrand model se-manti
s. Sin
e then, several resear
hers have investigated various aspe
ts of theunfold/fold transformation approa
h. They also 
onsidered its extension to dealwith negation [6,29,48,63,70,71℄, disjun
tive programs [30℄, 
onstraints [4,22℄,and 
on
urren
y [23℄.In this 
hapter we have essentially followed the approa
h of Tamaki and Satowhere the 
orre
tness of the transformations is ensured by 
onditions on thesequen
e of the transformation rules whi
h are applied during program derivation[74℄. The main novelty w.r.t. other papers whi
h follow a similar approa
h anddeal with general logi
 programs (see, for instan
e, [63,70,71℄) is that our setof rules in
ludes the negative unfolding (R4), the negative folding (R6), andthe basi
 goal repla
ement rules (R9) whi
h are very useful for the programderivation examples we have presented.Together with the formalization and the study of the properties of the trans-formation rules, various strategies for the appli
ation of these rules have been
onsidered in the literature. Among others, for 
ase of logi
 programs we re
all:(i) the strategies for deriving tail re
ursive programs [3,17℄, (ii) the promotionstrategy for redu
ing nondeterminism within generate-and-test programs [72℄,
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essary variables and thus, avoiding mul-tiple traversals and intermediate data stru
tures [58℄, and (iv) the strategy forredu
ing nondeterminism during program spe
ialization [56℄.The general unfold/fold transformation strategy we have presented in Se
-tion 2.3, extends the above mentioned strategies to the 
ase of programs withlo
ally strati�ed negation. The interesting fa
t to noti
e is that the same generalstrategy 
an be re�ned in di�erent ways so to realize not only program trans-formation, but also program synthesis and program veri�
ation. However, inorder to be e�e
tive in pra
ti
e, our general strategy requires some information
on
erning spe
i�
 
omputation domains and 
lasses of programs. For instan
e,information on the 
omputation domains is needed for the appli
ation of thegoal repla
ement rule. The merit of a general purpose transformation strategyrests upon the fa
t that it provides a uniform guideline for performing programderivation in di�erent 
omputation domains.The work on unfold/fold program transformation is tightly related to othertransformation te
hniques. In parti
ular, partial evaluation (also 
alled partialdedu
tion) and other program spe
ialization te
hniques à la Lloyd-Shepherdson[16,27,44,47℄ 
an be rephrased in terms of a subset of the unfold/fold rules [56,67℄.Compiling 
ontrol [7℄ is another transformation te
hnique whi
h is related to therules and strategies approa
h. Compiling 
ontrol is based on the idea expressedby Kowalski's motto: Algorithm = Logi
 + Control, and it works as follows.Let us 
onsider a logi
 program P1 and let us assume that it is evaluated byusing a given 
ontrol strategy C1. For instan
e, C1 may be the Prolog left-to-right, depth-�rst 
ontrol strategy. However, for e�
ien
y reasons we may wantto use a di�erent 
ontrol strategy, say C2. Compiling 
ontrol works by derivingfrom program P1 a new program P2 su
h that P2 with 
ontrol strategy C1 isoperationally equivalent to P1 with 
ontrol strategy C2. Although the 
ompiling
ontrol te
hnique was not originally presented following the rules and strategiesapproa
h, the transformation of program P1 into program P2, may often beperformed by applying a suitable unfold/fold strategy (see, for instan
e, [53℄).Moreover, during the last two de
ades there has been a fruitful intera
tion be-tween unfold/fold program transformation and program synthesis. To illustratethis point, let us re
all here the program synthesis methods based on derivationrules, su
h as the one proposed by Hogger [32℄ and, along similar lines, thosereported in [34,35,42,68,69℄ whi
h make use of derivation rules similar to theunfold/fold rules. In this regard, the spe
i�
 
ontribution of our 
hapter 
on-sists in providing a method for program synthesis whi
h ensures the 
orre
tnessw.r.t. the perfe
t model semanti
s.Also related to our rules and strategies approa
h, is the proofs-as-programsapproa
h (see, for instan
e, [8,25℄ for its presentation in the 
ase of logi
 pro-gramming) whi
h works by extra
ting a program from a 
onstru
tive proof of aspe
i�
ation formula. Thus, in the proofs-as-programs approa
h, programs syn-thesis is regarded as a theorem proving a
tivity, whereas by using our unfold/foldmethod we view theorem proving as a parti
ular 
ase of program synthesis.



30 A. Pettorossi, M. ProiettiOur unfold/fold veri�
ation method is related to other methods for verifyingprogram properties. The existen
e of a relation between program transformationand program veri�
ation was pointed out by Burstall and Darlington [10℄ andthen formalized by Kott [36℄ and Cour
elle [14℄ in the 
ase of appli
ative programs
hemata. The essential idea is that, sin
e the transformation rules preserve agiven semanti
s, the transformation of a program P1 into a program P2 is also aproof of the equivalen
e of P1 and P2 w.r.t. that semanti
s. In [54℄ this idea hasalso been developed in the 
ase of de�nite logi
 programs. The method presentedin that paper, 
alled unfold/fold proof method, allows us to prove the equivalen
eof 
onjun
tions of atoms w.r.t. the least Herbrand model of a program. In [64℄ theunfold/fold proof method has been extended by using a more powerful foldingrule and in [65,66℄ the extended unfold/fold proof method has been applied forthe proof of properties of parametrized �nite state 
on
urrent systems.A further extension of the unfold/fold proof method has been presented in[55℄. By using the proof method des
ribed in [55℄ one 
an prove properties of theform M(P ) |= ϕ where P is a logi
 programs with lo
ally strati�ed negation,
M(P ) is its perfe
t model, and ϕ is any �rst order formula. In the present 
hapterwe basi
ally followed the presentation of [55℄.In re
ent developments (see, for instan
e, [24℄), it has been shown that theunfold/fold proof method 
an be used to perform model 
he
king [13℄ of �niteor in�nite state 
on
urrent systems. To see how this 
an be done, let us re
allthat in the model 
he
king approa
h one formalizes the problem of verifyingtemporal properties of �nite or in�nite state systems as the problem of verifyingthe satisfa
tion relation T, s |=CTL F , where (i) T is a state transition system(regarded as a Kripke stru
ture), (ii) s is the initial state of the system, and (iii)
F is a formula of the CTL bran
hing time temporal logi
. In [24℄ the problem ofverifying T, s |=CTL F is redu
ed to that of verifying M(PT ) |= sat(s, F ), where
M(PT ) is the perfe
t model of a lo
ally strati�ed program PT de�ning a predi
ate
sat whi
h en
odes the satisfa
tion relation |=CTL. Thus, the unfold/fold proofmethod des
ribed in Se
tion 4 
an be used for performing �nite or in�nite statemodel 
he
king starting from the program PT and the atomi
 formula sat(s, F ).An essential point indi
ated in [24℄ is that, in order to deal with in�nite sets ofstates, it is useful to 
onsider logi
 programs extended with 
onstraints.Finally, we would like to mention that the unfold/fold proof method falls intothe wide 
ategory of methods that use (
onstraint) logi
 programming for soft-ware veri�
ation. In the spe
i�
 area of the veri�
ation of 
on
urrent systems,we may brie�y re
all the following ones. (i) The method des
ribed in [45℄ usespartial dedu
tion and abstra
t interpretation [15℄ of logi
 programs for verifyingsafety properties of in�nite state systems. (ii) The method presented in [26℄ useslogi
 programs with linear arithmeti
 
onstraints to en
ode Petri nets. The least�xpoint of one su
h program 
orresponds to the rea
hability set of the Petri net.This method works by �rst applying some program transformations (di�erentfrom the unfold/fold ones) to 
ompute a Presburger formula whi
h is a symboli
representation of the least �xpoint of the program, and then proving that agiven safety property holds by proving that it is implied by that Presburger for-



Program Derivation = Rules + Strategies 31mula. (iii) Similarly to [24,26℄, also the method presented in [18℄ uses 
onstraintlogi
 programs to represent in�nite state systems. This method 
an be used toverify CTL properties of these systems by 
omputing approximations of leastand greatest �xpoints via abstra
t interpretation. (iv) The methods in [50℄ and[61℄ make use of logi
 programs (with and without 
onstraints, respe
tively) torepresent �nite state systems. These two methods employ tabulation te
hniques[76℄ to 
ompute �xpoints and they may be used for verifying CTL propertiesand modal µ-
al
ulus [40,57℄ properties, respe
tively.It is di�
ult to make a pre
ise 
onne
tion between the unfold/fold proofmethod and the veri�
ation methods listed above, be
ause of the di�erent for-malizations and te
hniques whi
h are used. However, we would like to noti
e thatall veri�
ation methods we mentioned above, work by �nding, in a more or lessexpli
it way, properties whi
h are invariants of the behaviour of a system, andwithin the unfold/fold proof method, the dis
overy of invariants is performedby the introdu
tion of suitable predi
ate de�nitions whi
h allow folding. Thisintrodu
tion of new de�nitions is the most 
reative and least me
hanizable stepduring program transformation.6 Con
lusionsThe main obje
tive of this 
hapter has been to illustrate the power of the rulesand strategies approa
h to the development of programs. This approa
h is par-ti
ularly appealing in the 
ase of logi
 programming and it allows us to separatethe 
orre
tness requirement from the e�
ien
y requirement during program de-velopment. This separation is expressed by our motto: Program Derivation =Rules + Strategies. It 
an be viewed as a variant of Kowalski's motto for programexe
ution: Algorithm = Logi
 + Control.More spe
i�
ally, we have 
onsidered the unfold/fold transformation rulesfor lo
ally strati�ed logi
 programs and we have outlined a strategy for the ap-pli
ation of these transformation rules. As a novel 
ontribution of this 
hapterwe have proposed a general, two step method for performing program trans-formation, program synthesis, and program veri�
ation, and we have presenteda powerful unfold/fold transformation strategy whi
h allows one to perform:(1) elimination of multiple visits of data stru
tures, program spe
ialization, andother e�
ien
y improving program transformations, (2) program synthesis from�rst order spe
i�
ations, and (3) program veri�
ation.The main advantage of developing several te
hniques for program deriva-tion in a uni�ed framework, is that we may reuse similar te
hniques in di�erent
ontexts. For instan
e, the program transformation strategy for eliminating un-ne
essary variables [58℄ may be reused as a quanti�er elimination te
hnique fortheorem proving [55℄. Moreover, our uni�ed view of program derivation allowsus to design a general tool whi
h may be used for ma
hine assisted programtransformation, synthesis, and veri�
ation.It should be pointed out that, besides the many appealing features illustratedin this 
hapter, the transformational approa
h to program derivation has also



32 A. Pettorossi, M. Proiettisome limitations. Indeed, the problems ta
kled by program transformation haveinherent theoreti
al limitations due to well-known unde
idability results. Thus,in general, program derivation 
annot be fully me
hani
al.Now we mention some approa
hes by whi
h we 
an fa
e this limitation andprovide te
hniques whi
h are e�e
tive in pra
ti
e.(1) We may design intera
tive program transformation systems, so that manyingenious steps 
an be performed under the user's guidan
e, while the most te-dious and routine tasks are automati
ally performed by the system. For instan
e,KIDS [73℄ is a su

essful representative of su
h intera
tive systems for programderivation. An important line of further development of intera
tive transfor-mation systems, is the design of appropriate user interfa
es and programmableprogram transformers, whi
h allow the user to intera
t with the system at a veryhigh level. In parti
ular, in su
h systems the user should be able to program hisown rules and strategies. There are some a
hievements in this dire
tion in therelated �elds of term rewriting, program synthesis, and theorem proving. Forinstan
e, we re
all (i) the ELAN system [5℄ where the user may spe
ify his ownstrategy for applying rewriting rules, (ii) the Oyster/Clam system [9℄ where one
an make a plan to 
onstru
t a proof or synthesize a program, and (iii) theIsabelle generi
 theorem prover [51℄, where it is possible to spe
ify 
ustomizeddedu
tive systems.(2) We may 
onsider restri
ted sets of transformation rules or restri
ted
lasses of programs, where 
ertain transformation strategies 
an be performedin a fully me
hani
al, algorithmi
 fashion. For logi
 programs, a number of al-gorithmi
 transformation strategies have been developed, su
h as the alreadymentioned te
hniques for partial dedu
tion, eliminating unne
essary variables,and redu
ing nondeterminism.(3) We may enhan
e the program transformation methodology by using te
h-niques for global programs analysis, su
h as abstra
t interpretation. This ap-proa
h may remedy to the fa
t that the transformation rules are designed tomake small, lo
al 
hanges of program 
ode, but for their e�e
tive appli
ationsometimes we need information on the operational or denotational semanti
s ofthe whole program. Various te
hniques whi
h 
ombine program transformationand abstra
t interpretation have been developed, espe
ially for the task of pro-gram spe
ialization (see, for instan
e, [28,43,60℄ in the 
ase of logi
 programs),but also for the veri�
ation of 
on
urrent systems (see [45℄). We believe that thisline of resear
h is very promising.Finally, we would like to noti
e that the program derivation te
hniques wehave des
ribed in this 
hapter are essentially oriented to the development ofprograms in-the-small, that is, within a single software module. We believe thatone of the main 
hallenges for logi
 program development is the extension ofthese te
hniques for program transformation, synthesis, and veri�
ation, to dealwith programs in-the-large, that is, with many software modules. Some resultsin this dire
tion are presented in the 
hapter by Lau and Ornaghi [41℄ wheresoftware engineering methodologies for developing logi
 programs in-the-largeare proposed.
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