
Program Derivation = Rules + Strategies⋆Alberto Pettorossi† and Maurizio Proietti‡
†DISP, Università di Roma Tor Vergata, Roma, Italy. adp�iasi.rm.nr.it

‡IASI-CNR, Roma, Italy. proietti�iasi.rm.nr.itAbstrat. In a seminal paper [38℄ Prof. Robert Kowalski advoated theparadigm Algorithm = Logi + Control whih was intended to hara-terize program exeutions. Here we want to illustrate the orrespondingparadigm Program Derivation = Rules + Strategies whih is intendedto haraterize program derivations, rather than exeutions. During pro-gram exeution, the Logi omponent guarantees that the omputed re-sults are orret, that is, they are true fats in the intended model of thegiven program, while the Control omponent ensures that those fatsare derived in an e�ient way. Likewise, during program derivation, theRules omponent guarantees that the derived programs are orret andthe Strategies omponent ensures that the derived programs are e�ient.In this hapter we will onsider the ase of logi programs with loallystrati�ed negation and we will fous on the following three importantmethodologies for program derivation: program transformation, programsynthesis, and program veri�ation. Based upon the Rules + Strategiesapproah, we will propose a uni�ed method for applying these threeprogramming methodologies. In partiular, we will present: (i) a set ofrules for program transformation whih preserve the perfet model se-mantis and (ii) a general strategy for applying the transformation rules.We will also show that we an synthesize orret and e�ient programsfrom �rst order spei�ations by: (i) onverting an arbitrary �rst orderformula into a logi program with loally strati�ed negation by using avariant of the Lloyd-Topor transformation, and then (ii) applying ourtransformation rules aording to our general strategy. Finally, we willdemonstrate that the rules and the strategy for program transformationand program synthesis an also be used for program veri�ation, that is,for proving �rst order properties of systems desribed by logi programswith loally strati�ed negation.1 IntrodutionVarious models of omputation were proposed sine the early history of om-puting. Among others, we may reall the von Neumann mahine for imperativelanguages, term rewriting for funtional languages, and resolution for logial
⋆ Published in: A. Kakas and F. Sadri (Eds). Computational Logi: Logi Programmingand Beyond (Essays in Honour of Robert A. Kowalski - Part I), Leture Notes inArti�ial Intelligene 2407, Springer, 2002, pp. 273-309. Revised April 2009.

2 A. Pettorossi, M. Proiettilanguages. In these three di�erent language paradigms, people explored and an-alyzed di�erent programming methodologies. In partiular, in the area of logiallanguages, it was realized that both omputing and programming an be viewedas a dedutive ativity.The idea of omputation as dedution may be traed bak to the beginningsof the omputation theory and reursive funtion theory, but it emerged learlywithin the Theorem Proving ommunity through the pioneering work of Robin-son [62℄ and later, the paper by Kowalski [37℄, where the author proposed apartiular dedution rule, namely, SLD-resolution, to ompute in a logial the-ory onsisting of Horn lauses. The dedutive approah to omputation was stillonsidered to be not very pratial at that time, but the situation hanged whenWarren [75℄ proposed a Prolog ompiler based on SLD-resolution with perfor-mane omparable to that of the funtional language Lisp. E�ieny is obtainedby sari�ing orretness in some ases, but fortunately, that inorretness turnsout not to be a problem in pratie.The idea of programming and program development as a dedution fromlogial spei�ations to exeutable expressions in a formal setting, has its rootsin the works by Burstall-Darlington and Manna-Waldinger [10,49℄ for funtionallanguages and in the works by Clark et al., Hogger, and Kowalski [11,12,32,39℄for the ase of logial languages. Similar ideas were proposed also in the ase ofimperative languages and one should mention, among others, the ontributionsof Dijkstra and Hoare (see, for instane, [21,31℄).In the paper [38℄ Kowalski proposes the motto: Algorithm = Logi + Con-trol, to promote a separation of onern when writing programs: a onern fororretness in the Logi omponent, and a onern for e�ieny in the Controlomponent. This separation idea for program development goes bak to the sem-inal paper by Burstall and Darlington [10℄. The aim is to derive programs whihare orret and e�ient by applying transformation rules in a disiplined manneraording to suitable strategies. In this ase the Logi omponent onsists of thetransformation rules, suh as unfolding and folding, whih are orret beausethey preserve the semantis of interest, and the Control omponent onsists ofthe strategies whih diret the use of the rules so to derive e�ient programs.Our motto, whih an be viewed as an appliation of Kowalski's motto to thease of program development, is: Program Derivation = Rules + Strategies.As we will illustrate in this hapter, our motto also indiates a way of under-standing the relationship among various tehniques for program developmentsuh as program synthesis, program reuse, and program veri�ation. Some ofthese tehniques based on rules and strategies, are desribed in [19,20,33,52℄.The main objetive of this hapter is to provide a uni�ed view of: (i) programtransformation, (ii) program synthesis, and (iii) program veri�ation as dedu-tive ativities based on the unfolding/folding transformation rules and strategies.We onsider the lass of logi programs with loally strati�ed negation. The se-mantis of a program P in this lass is given by its unique perfet model, denoted
M(P), whih oinides with its unique stable model and its (total) well-foundedmodel [2℄.

Program Derivation = Rules + Strategies 3In our setting program transformation, synthesis, and veri�ation an beformulated as follows.Program Transformation. Given a program P and a goal G with free variables
X1, . . . , Xn, we want to �nd a omputationally e�ient program T for a new
n-ary prediate g suh that, for all ground terms t1, . . . , tn,
M(P) |= G{X1/t1, . . . , Xn/tn} i� M(T) |= g(t1, . . . , tn) (Transf)Notie that our formulation of program transformation inludes program speial-ization [27,33,44,47℄ whih an be regarded as the partiular ase where G is anatom with instantiated arguments.Program Synthesis. Given a program P and a spei�ation of the form g(X1, . . . ,

Xn) ↔ ϕ, where: (i) ϕ is a �rst order formula with free variables X1, . . . , Xn,and (ii) g is a new n-ary prediate, we want to derive a omputationally e�ientprogram T for the prediate g suh that, for all ground terms t1, . . . , tn,
M(P) |= ϕ{X1/t1, . . . , Xn/tn} i� M(T) |= g(t1, . . . , tn) (Synth)Program Veri�ation. Given a program P and a losed �rst order formula ϕ, wewant to hek whether or not

M(P) |= ϕ (Verif)In order to get a uni�ed view of program transformation, program synthesis,and program veri�ation, let us �rst notie that eah of these three tasks startsfrom a given program P and a �rst order formula. This formula, say γ, is: (i)the goal G in the ase of program transformation, (ii) the formula ϕ of thespei�ation g(X1, . . . , Xn) ↔ ϕ in the ase of program synthesis, and (iii) thelosed �rst order formula ϕ in the ase of program veri�ation. Thus, we anprovide a uni�ed treatment of program transformation, program synthesis, andprogram veri�ation, by viewing them as instanes of the following general, twostep method for program derivation, whih takes as input a given program Pand a �rst order formula γ.The Unfold/Fold Method for Program Derivation.We are given a loally strati�ed program P and a �rst order formula γ.Step 1. We onstrut a onjuntion of lauses, denoted by Cls(g, γ) suh that
P ∧Cls(g, γ) is a loally strati�ed program and, for all ground terms t1, . . . , tn,

M(P) |= γ{X1/t1, . . . , Xn/tn} i� M(P ∧ Cls(g, γ)) |= g(t1, . . . , tn)where X1, . . . , Xn are the free variables of γ.Step 2. We apply unfold/fold transformation rules whih preserve the perfetmodel semantis and we derive a new program T suh that, for all ground terms
t1, . . . , tn,

M(P ∧ Cls(g, γ)) |= g(t1, . . . , tn) i� M(T) |= g(t1, . . . , tn)The derivation of program T is made aording to a transformation strategywhih guides the appliation of the rules.

4 A. Pettorossi, M. ProiettiLet us now brie�y explain how this general unfold/fold method for programderivation will be instantiated to three spei� methods for program transfor-mation, program synthesis, and program veri�ation. More details and exampleswill be given in Setions 2, 3, and 4.Among the tasks of program transformation, program synthesis, and programveri�ation, the one whih has the most general formulation is program synthesis,beause the formula ϕ of a spei�ation is any �rst order formula, whereas theinputs for program transformation and program veri�ation onsist of a goal(that is, a onjuntion of literals) and a losed �rst order formula, respetively.A method for program synthesis an be obtained from the general unfold/foldmethod for program derivation in a straightforward way by taking γ as the for-mula ϕ of the spei�ation g(X1, . . . , Xn) ↔ ϕ. In Setion 3 we will see how theonjuntion of lauses Cls(g, ϕ) an be onstruted by using a suitable variant ofthe Lloyd-Topor transformation [46℄. Moreover, we will propose (see Setion 2) ageneral transformation strategy for deriving a suitable program T from program
P ∧Cls(g, ϕ) as required by Step 2 of the unfold/fold method. From the fat thatour variant of the Lloyd-Topor transformation and the unfold/fold transforma-tion rules preserve the perfet model semantis, it follows that the equivalene(Synth) indeed holds for this program T .Similarly, if we onsider our general unfold/fold method for program deriva-tion in the ase where γ is the goal G, then we derive a program T whih satis-�es the relation (Transf), and thus, in this ase the general method beomes amethod for program transformation.Finally, program veri�ation an be viewed as an instane of our generalunfold/fold method in the ase where γ is the losed �rst order formula ϕ. Inpartiular, the onjuntion of lauses Cls(g, ϕ) an be onstruted as in the aseof program synthesis by starting from the spei�ation g ↔ ϕ. Then, one anprove that M(P) |= ϕ holds by applying Step 2 of our method for programderivation and obtaining a program T whih inludes the lause g ← .The ontributions of this hapter are the following ones. (i) We desribe insome detail our general, two step method based on rules and strategies, for theuni�ed treatment of program transformation, synthesis, and veri�ation, andthrough some examples, we show that our method is e�etive for eah of thesetasks. (ii) We establish the orretness of the transformation rules by giving suf-�ient onditions for the preservation of perfet model semantis. These orret-ness results extend results already published in the literature [70℄. In partiular,we take into onsideration also the unfolding and folding rules w.r.t. negativeliterals, and these rules are ruial in the examples we will present. (iii) We out-line a general strategy for the appliation of the transformation rules and wedemonstrate that various tehniques for rather di�erent tasks, suh as programtransformation, program synthesis, and program veri�ation, an all be realizedby that single strategy.The plan of the hapter is as follows. In Setion 2 we present a set of trans-formation rules for loally strati�ed programs and we give su�ient onditionswhih ensure their orretness w.r.t. the perfet model semantis. We also present

Program Derivation = Rules + Strategies 5our general strategy for the appliation of the transformation rules. In Setion 3we present the instane of our two step unfold/fold method for the synthesis oflogi programs from spei�ations provided by �rst order formulas. In Setion4 we show that also program veri�ation an be performed using our two stepmethod.2 Transformation Rules and Strategies for LoallyStrati�ed Logi ProgramsIn this setion we reall the basi onepts of loally strati�ed programs andperfet model semantis. We then present the transformation rules whih we usefor program transformation, and we provide a su�ient ondition whih ensuresthat these rules preserve the perfet model semantis. We also outline a generalstrategy for applying the transformation rules.2.1 Preliminaries: Syntax and Semantis of Strati�ed LogiProgramsWe reall some basi de�nitions and we introdue some terminology and notationonerning general logi programs and their semantis. In partiular, we willreall the de�nitions of loally strati�ed logi programs and their perfet models.For notions not de�ned here the reader may refer to [2,46,59℄.Given a �rst order language L, its formulas are onstruted out of variables,funtion symbols, prediate symbols, terms, atomi formulas (also alled atoms),the formula true, the onnetives ¬ and ∧, and the quanti�er ∃ (see, for instane,[2,46℄). We feel free to write formulas using also the symbols false, ∨, →, ↔,and ∀, but we regard them as abbreviations of the equivalent formulas writtenusing the symbols true, ¬, ∧, and ∃ only. Following the usual logi programmingonvention, we use upper ase letters for variables and lower ase letters forfuntion and prediate symbols.A literal is an atom (i.e., a positive literal) or a negated atom (i.e., a negativeliteral). A goal G is a onjuntion of n (≥ 0) literals.General logi programs, simply alled logi programs, or programs, are �rstorder formulas de�ned as follows. A program is a onjuntion of lauses, eah ofwhih is of the form: G→ H , where G is a goal and H is an atom di�erent fromtrue and false. Normally a lause will be written asH ← G. The atomH is alledthe head of the lause, denoted by hd(C), and the goal G is alled the body ofthe lause, denoted by bd(C). A lause H←G where G is the empty onjuntiontrue, is said to be a unit lause and it is written as H←. When writing goals,lauses, and programs, we also denote onjuntions by using omma `,' instead of
∧. Thus, usually, a goal will be written as L1, . . . , Ln, where the Li's are literals,a lause will be written as H ← L1, . . . , Ln, and a program will be written as
C1, . . . , Cn, where the Ci's are lauses. When writing programs we will also feelfree to omit ommas between lauses, if no onfusion arises.

6 A. Pettorossi, M. ProiettiA lause is said to be de�nite i� no negated atom ours in its body. Ade�nite program is a onjuntion of de�nite lauses.Given a term t we denote by vars(t) the set of all variables ourring in t. Sim-ilar notation will be used for the variables ourring in formulas. Given a lause
C, a variable in bd(C) is said to be existential i� it belongs to vars(bd(C)) −
vars(hd(C)). Given a formula ϕ we denote by freevars(ϕ) the set of all variablesof ϕ whih have a free ourrene in ϕ. A lause C is said to be ground i� novariable ours in it. We may freely rename the variables ourring in lauses,and the proess of renaming the variables of a lause by using new variables, isalled renaming apart [46℄.The de�nition of a prediate p in a program P , denoted by Def (p, P), isthe onjuntion of the lauses of P whose head prediate is p. We say that p isde�ned in P i� Def (p, P) is not empty. We say that a prediate p depends on aprediate q in P i� either there exists in P a lause of the form: p(. . .)← B suhthat q ours in the goal B or there exists in P a prediate r suh that p dependson r in P and r depends on q in P . The extended de�nition of a prediate pin a program P , denoted by Def ∗(p, P), is the onjuntion of the de�nition of
p and the de�nition of every prediate on whih p depends in P . We say thata prediate p depends on existential variables in a program P i� in Def ∗(p, P)there exists a lause C whose body has an existential variable.The set of useless prediates of a program P is the maximal set U of theprediates of P suh that a prediate p is in U i� the body of eah lause of
Def (p, P) has a positive literal whose prediate is in U . For instane, p and qare useless and r is not useless in the following program:

p← q, r

q ← p

r←By ground(P) we denote the onjuntion of all lauses in L whih are groundinstanes of lauses of P , and by BL we denote the Herbrand Base of L, that is,the set of all ground atoms in L. A strati�ation σ is a total funtion from BLto the set W of ountable ordinals. Given a ground literal L whih is the atom
A or the negated atom ¬A, we say that L is in stratum α i� σ(A) = α.A ground lause H ← L1, . . . , Ln is loally strati�ed w.r.t. a strati�ation
σ i� for every i = 1, . . . , n, if Li is an atom then σ(H) ≥ σ(Li), and if Li is anegated atom, say ¬Ai, then σ(H) > σ(Ai). We say that the program P is loallystrati�ed i� there exists a strati�ation σ suh that every lause in ground(P) isloally strati�ed w.r.t. σ. Let Pα be the onjuntion of the lauses in ground(P)whose head is in the stratum α. We may assume without loss of generality, thatevery ground atom is in a stratum whih is greater than 0, so that P0 may beassumed to be the empty onjuntion of lauses.An Herbrand interpretation is a subset of BL. We say that a losed �rst orderformula ϕ is true in an Herbrand interpretation I, written as I |= ϕ, i� one ofthe following ases holds: (i) ϕ is the formula true, (ii) ϕ is a ground atom Awhih is in I, (iii) ϕ is ¬ϕ1 and ϕ1 is not true in I, (iv) ϕ is ϕ1 ∧ ϕ2 and both

Program Derivation = Rules + Strategies 7
ϕ1 and ϕ2 are true in I, (v) ϕ is ∃X ϕ1 and there exists a ground term t suhthat ϕ1{X/t} is true in I.Given a formula ϕ and an Herbrand interpretation I, if it is not the ase that
I |= ϕ, we say that ϕ is false in I and we write I 6|= ϕ.The perfet model M(P) of a program P whih is loally strati�ed w.r.t. astrati�ation σ, is the Herbrand interpretation de�ned as the subset ⋃

α∈W
Mαof BL, where for every ordinal α in W , the set Mα is onstruted as follows:(1) M0 is the empty set, and(2) if α > 0,Mα is the least Herbrand model [46℄ of the de�nite program derivedfrom Pα as follows: (i) every literal L in stratum τ , with τ < α, in the body ofa lause in Pα is deleted i� Mτ |= L, and (ii) every lause C in Pα is deleted i�in bd(C) there exists a literal L in stratum τ , with τ < α suh that Mτ 6|= L.For a loally strati�ed program P , with vars(P) = {X1, . . . , Xn}, we havethat M(P) |= ∀X1, . . . , Xn P .Our onstrution of the perfet model di�ers from the onstrution presentedin [2,59℄, but as the reader may verify, the two onstrutions yield the samemodel.Reall that perfet models are the usual intended semantis for logi pro-grams with loally strati�ed negation, and for those programs all major ap-proahes to the semantis of negation oinide [2℄. Indeed, as already mentioned,a loally strati�ed program has a unique perfet model whih is equal to itsunique stable model, and also equal to its total well-founded model.2.2 Unfold/Fold Transformation RulesIn this setion we present the rules for transforming logi programs and weprovide a su�ient ondition whih ensures that perfet models are preservedduring program transformation.For the appliation of the transformation rules we divide the prediate sym-bols of the language into two lasses: (i) basi prediates and (ii) non-basiprediates. Atoms, literals, and goals whih have ourrenes of basi prediatesonly, are alled basi atoms, basi literals, and basi goals, respetively. We as-sume that every basi atom is in a stritly smaller stratum w.r.t. every non-basiatom, and thus, in any given program no basi prediate depends on a non-basione. Our partition of the set of prediates into basi or non-basi prediates isarbitrary and it may be di�erent for di�erent program derivations.A transformation sequene is a sequene P0, . . . , Pn of programs, where for

0≤k≤n−1, program Pk+1 is derived from program Pk by the appliation of atransformation rule as indiated below.We onsider a set Preds of prediates of interest. We also onsider, for 0≤
k ≤ n, the onjuntion Defs

k
of the lauses introdued by using the followingrule R1 during the whole transformation sequene P0, . . . , Pk.R1. De�nition Introdution Rule.We get the new program Pk+1 by addingto program Pk a onjuntion of m lauses of the form:

8 A. Pettorossi, M. Proietti

newp(X1, . . . , Xs)← Body1

. . .
newp(X1, . . . , Xs)← Body

msuh that:(i) the prediate newp is a non-basi prediate whih does not our in P0∧Defs
k
,(ii) X1, . . . , Xs are distint variables ourring in Body1, . . . ,Bodym, and(iii) every prediate ourring in Body1, . . . ,Body

m
also ours in P0.R2. De�nition Elimination Rule. By de�nition elimination w.r.t. Preds,from program Pk we derive the new program Pk+1 by deleting the de�nitions ofall prediates on whih no prediate belonging to Preds depends in Pk.R3. Positive Unfolding Rule. Let C be a renamed apart lause in Pk of theform: H ← G1, A,G2, where A is an atom, and G1 and G2 are (possibly empty)goals. Suppose that:1. D1, . . . , Dm, with m≥0, are all lauses of program Pk, suh that A is uni�-able with hd(D1), . . . , hd(Dm), with most general uni�ers ϑ1, . . . , ϑm, re-spetively, and2. Ci is the lause (H ← G1, bd(Di), G2)ϑi, for i = 1, . . . ,m.By unfolding lause C w.r.t. A we derive the lauses C1, . . . , Cm. From program

Pk we derive the new program Pk+1 by replaing C with C1, . . . , Cm.In partiular, if m = 0, that is, if we unfold a lause C in program Pk w.r.t. anatom whih is not uni�able with the head of any lause in Pk, then we derivethe new program Pk+1 by deleting lause C.R4. Negative Unfolding Rule. Let C be a renamed apart lause in Pk of theform: H ← G1,¬A,G2. Let D1, . . . , Dm, with m ≥ 0, be all lauses of program
Pk, suh that A is uni�able with hd(D1), . . . , hd(Dm), with most general uni�ers
ϑ1, . . . , ϑm, respetively. Assume that:1. A = hd(D1)ϑ1 = · · · = hd(Dm)ϑm, that is, for i = 1, . . . ,m, A is an instaneof hd(Di),2. for i = 1, . . . ,m, Di has no existential variables, and3. from G1, ¬(bd(D1)ϑ1∨. . .∨bd(Dm)ϑm), G2 we get an equivalent disjuntion

Q1∨ . . .∨Qr of goals, with r ≥ 0, by �rst pushing ¬ inside and then pushing
∨ outside.By unfolding lause C w.r.t. ¬A we derive the lauses C1, . . . , Cr, where Ci is thelause H ← Qi, for i = 1, . . . , r. From program Pk we derive the new program

Pk+1 by replaing C with C1, . . . , Cr.In partiular: (i) if m = 0, that is, if we unfold a lause C w.r.t. a negative literal
¬A suh that A is not uni�able with the head of any lause in Pk, then we getthe new program Pk+1 by deleting ¬A from the body of lause C, and (ii) iffor some i ∈ {1, . . . ,m}, bd(Di) = true, that is, if we unfold a lause C w.r.t. a

Program Derivation = Rules + Strategies 9negative literal ¬A suh that A is an instane of the head of a unit lause in Pk,then we derive from program Pk the new program Pk+1 by deleting lause C.R5. Positive Folding Rule. Let C1, . . . , Cm be renamed apart lauses in Pkand D1, . . . , Dm be the de�nition of a prediate in Defsk. For i = 1, . . . ,m, let
Ci be of the form: H ← G1, Bi, G2. Suppose that there exists a substitution ϑsuh that, for i = 1, . . . ,m the following onditions hold:(1) Bi = bd(Di)ϑ, and(2) for every variable X in the set vars(Di) − vars(hd(Di)), we have that Xϑis a variable whih ours neither in {H,G1, G2} nor in the term Y ϑ, for anyvariable Y ourring in bd(Di) and di�erent from X .By folding lauses C1, . . . , Cm using lauses D1, . . . , Dm we derive the lause E:
H ← G1, hd(D1)ϑ,G2. From program Pk we derive the new program Pk+1 byreplaing C1, . . . , Cm with E.Notie that by de�nition of rule R1, we have that hd(D1) = . . . = hd(Dm).R6. Negative Folding Rule. Let C be a renamed apart lause in Pk and letnewp be a prediate in Defsk whose de�nition onsists of a single lause D. Let
C be of the form: H ← G1,¬A,G2. Suppose that the following onditions hold:(1) A = bd(D)ϑ, for some substitution ϑ, and(2) vars(hd(D)) = vars(bd(D)).By folding lause C w.r.t. ¬A using lause D we derive the lause E: H ←
G1,¬hd(D)ϑ,G2. From program Pk we derive the new program Pk+1 by repla-ing C with E.R7. Tautology Rule. We derive the new program Pk+1 by replaing in Pk aonjuntion of lauses γ1 with a new onjuntion of lauses γ2, aording to thefollowing rewritings γ1 ⇒ γ2 , where H and A, denote atoms, G, G1, G2, G3,and G4 denote goals, and C1, C2 denote lauses:(1) H ← A,¬A,G ⇒ true(2) H ← H,G ⇒ true(3) H ← G1, G2, G3, G4 ⇒ H ← G1, G3, G2, G4(4) H ← A,A,G ⇒ H ← A,G(5) H ← G1, H ← G1, G2 ⇒ H ← G1(6) H ← A,G1, G2, H ← ¬A,G1 ⇒ H ← G1, G2, H ← ¬A,G1(7) C1, C2 ⇒ C2, C1R8. Clause Deletion Rule. We derive the new program Pk+1 by removingfrom Pk the de�nitions of the useless prediates of Pk.R9. Basi Goal Replaement Rule. Let us onsider r (> 0) renamed apartlauses in Pk of the form: H ← G1, Q1, G2, . . . , H ← G1, Qr, G2. Suppose that,for some goals R1, . . . , Rs, we have:
M(P0) |= ∀X1 . . .Xu (∃Y1 . . . Yv (Q1 ∨ . . . ∨Qr)↔ ∃Z1 . . . Zw (R1 ∨ . . . ∨Rs))where:(i) {Y1, . . . , Yv} = vars(Q1, . . . , Qr)− vars(H,G1, G2),(ii) {Z1, . . . , Zw} = vars(R1, . . . , Rs)− vars(H,G1, G2), and

10 A. Pettorossi, M. Proietti(iii) {X1,. . . ,Xu} = vars(Q1, . . . , Qr, R1, . . . , Rs)− {Y1, . . . , Yv, Z1, . . . , Zw}.Suppose also that R1, . . . , Rs are basi goals and H is a non-basi atom.Then from program Pk we derive the new program Pk+1 by replaing the lauses
H ← G1, Q1, G2, . . . , H ← G1, Qr, G2 with the lauses H ← G1, R1, G2, . . . ,
H ← G1, Rs, G2.We assume that the equality prediate = is a basi prediate whih is de�nedin eah program by the single lause X=X ← .R10. Equality Introdution and Elimination. Let C be a lause of the form
(H ← Body){X/t}, suh that the variable X does not our in t and let D bethe lause: H ←X= t, Body .By equality introdution we derive lause D from lause C. By equality elimina-tion we derive lause C from lause D.If C ours in Pk then we derive the new program Pk+1 by replaing C with D.If D ours in Pk then we derive the new program Pk+1 by replaing D with C.The transformation rules from rule R1 to rule R10 we have introdued above,will olletively be alled unfold/fold transformation rules.Theorem 1. [Corretness of the Unfold/fold Transformation Rules℄ Let
P0, . . . , Pn be a transformation sequene and Preds be a set of prediates of in-terest. Let us assume that:(1) during the onstrution of P0, . . . , Pn, eah lause introdued by the de�nitionintrodution rule and used for folding, is unfolded (before or after its use forfolding) w.r.t. a non-basi positive literal in its body, and(2) during the transformation sequene P0, . . . , Pn, either the de�nition elimina-tion rule is never applied or it is applied at the end of that sequene.Then, for all ground atoms A with prediate in Preds, M(P0 ∧ Defs

n
) |= A i�

M(Pn) |= A.Notie that the statement obtained from Theorem 1 by replaing `positive unfold-ing' by `negative unfolding' is not a theorem as shown by the following example.Example 1. Let P0 be the program:1. p← ¬q(X)2. q(X)← q(X)3. q(X)← rBy negative unfolding w.r.t. ¬q(X), from lause 1 we get the following lause 4:4. p← ¬q(X),¬rThen by folding lause 4 w.r.t. ¬q(X), we get the following lause 5:5. p← p,¬rThe �nal program P1 onsists of lauses 2, 3, and 5. We have that M(P0) |= p,while M(P1) |= ¬p. 2Our presentation of the transformation rules essentially follows the style ofTamaki and Sato who �rst introdued the unfold/fold transformation rules in thease of de�nite programs [74℄ and proved their orretness w.r.t. the least Her-brand model semantis. Among the rules presented in this setion, the following

Program Derivation = Rules + Strategies 11ones were introdued by Tamaki and Sato in [74℄ (atually, their presentationwas a bit di�erent): R1 restrited to m = 1, R3, R5 restrited to m = 1, R7restrited to de�nite lauses, R8, R9 restrited to r=s=1, and R10. Thus, someof our rules may be onsidered an extension of those in [74℄.One of the most relevant features of Tamaki and Sato's rules is that theirorretness is ensured by onditions on the onstrution of the transformationsequenes similar to Condition (1) of Theorem 1.A subset of Tamaki and Sato's rules, namely R3 (positive unfolding) andR5 (positive folding) with m= 1, has been extended to general logi programsby Seki and proved orret w.r.t. various semantis, inluding the perfet modelsemantis [70,71℄.An extension of Seki's rules has been reently proposed by Royhoudhury etal. in [63℄. In partiular, they drop the restritions that we an fold one lauseonly and the lauses used for folding are not reursive. The orretness of thisextension of Seki's rules is ensured by a rather sophistiated ondition whih,in the ase where reursive lauses annot be used for folding, is implied byCondition (1) of Theorem 1.Thus, the positive folding rule presented here is less powerful than the fold-ing rule of [63℄, beause we an only fold using lauses taken from Defsk, andaording to the de�nition introdution rule R1, we annot introdue reursivelauses in Defsk. However, our set of rules inludes the negative unfolding (R4),the negative folding (R6), and the basi goal replaement rules (R9) whih arenot present in [63℄, and these rules are indeed very useful in pratie and theyare needed for the program derivation examples given in the next setions. Webelieve that we an easily inorporate the more powerful folding rule of [63℄into our set of rules, but for reasons of simpliity, we stik to our version of thepositive folding rule whih has muh simpler appliability onditions.2.3 A Transformation MethodNow we outline our two step method for program transformation based on: (i)the unfold/fold transformation rules presented in Setion 2.2, and (ii) a sim-ple, yet powerful strategy, alled unfold/fold transformation strategy, for guidingthe appliation of the transformation rules. This method is an instane of thegeneral unfold/fold method desribed in Setion 1. Atually, our strategy is notfully spei�ed, in the sense that many transformation steps an be performed ina nondeterministi way, and thus, we annot prove that it improves e�ieny inall ases. However, our strategy an be regarded as a generalization and adap-tation to the ase of general logi programs of a number of e�ieny improvingtransformation strategies for de�nite programs presented in the literature, suhas strategies for speializing programs, ahieving tail reursion, avoiding interme-diate data strutures, avoiding redundant omputations, and reduing nondeter-minism (see [53℄ for a survey). Through some examples, we will indeed show thatprogram e�ieny an be improved by applying our unfold/fold transformationstrategy.

12 A. Pettorossi, M. ProiettiThe Unfold/Fold Transformation Method.Given a loally strati�ed program P and a goal G suh that vars(G) = {X1,
. . . , Xn}, our transformation method onsists of two steps as follows.Step 1. We introdue a new n-ary prediate, say g, not ourring in {P,G} andwe derive a onjuntion Cls(g,G) of lauses suh that P ∧Cls(g,G) is a loallystrati�ed program and, for all ground terms t1, . . . , tn,(1) M(P) |= G{X1/t1, . . . , Xn/tn} i� M(P ∧Cls(g,G)) |= g(t1, . . . , tn).Step 2. From the program P , the onjuntion Cls(g,G) of lauses, and a set ofequivalenes to be used for rule R9, by applying the unfold/fold transformationstrategy desribed below, we derive a program T suh that, for all ground terms
t1, . . . , tn,(2) M(P ∧ Cls(g,G)) |= g(t1, . . . , tn) i� M(T) |= g(t1, . . . , tn)and thus, the relation (Transf) onsidered in the Introdution holds.Clearly, a program T whih satis�es (2) is P ∧ Cls(g,G) itself. However, mostoften we are not interested in suh trivial derivation beause, as already men-tioned, we look for an e�ient program T whih satis�es (2).Now let us look at the above two steps of our transformation method in moredetail.Step 1 is performed by �rst introduing the lause C1: g(X1, . . . , Xn) ← Gand then replaing this lause by a onjuntion Cls(g,G) of lauses as follows:for eah non-basi negative literal ¬p(u1, . . . , um) in G suh that p depends onexistential variables in P ,(i) we introdue the lause D: new(Y1, . . . , Yk)← p(u1, . . . , um), where

vars(p(u1, . . . , um)) = {Y1, . . . , Yk}, and(ii) we fold lause g(X1, . . . , Xn)← G w.r.t. ¬p(u1, . . . , um) using D.For instane, in Example 2 below, from the initial goal
G: word(W), ¬derive([s],W)we introdue the lause: g(W)← word(W), ¬derive([s],W), beause the de�ni-tion of the prediate derive inludes lause 3 whih has the existential variables

B and T . At the end of Step 1, we derive the following two lauses:16. g(W)← word(W), ¬new1(W)17. new1(W)← derive([s],W)Step 1 is motivated by the fat that it is often useful, for reasons of e�ieny, totransform the de�nitions of the prediates ourring in negative literals, if thesede�nitions inlude lauses with existential variables. Indeed, sine the unfoldingw.r.t. a negative literal, say ¬p(u1, . . . , um), is de�ned only if the lauses whoseheads unify with p(u1, . . . , um), have no existential variables, it is desirable totransform Def ∗(p, P) ∧ (new1(Y1, . . . , Yk) ← p(u1, . . . , um)) so to derive a newde�nition for the prediate new1 whose lauses do not have existential variables.Then, this new de�nition of new1 an be used for performing unfolding steps

Program Derivation = Rules + Strategies 13w.r.t. literals of the form ¬new1(u1, . . . , um) and it may also allow more e�etivetransformations of the lauses where new1 ours.Step 2 onsists in applying the unfold/fold transformation strategy whih wedesribe below. This strategy onstruts n program transformation sequenes
S1, . . . , Sn, where for i = 1, . . . , n− 1, the �nal program of the sequene Sioinides with the initial program of the sequene Si+1. Eah transformationsequene orresponds to a level whih is indued by the onstrution of theonjuntion Cls(g,G) of lauses. We will de�ne these levels aording to thefollowing notion of level mapping [46℄.De�nition 1. A level mapping of a program P is a mapping from the set ofprediate symbols ourring in P to the set of natural numbers. Given a levelmapping m, the level of the prediate p is the number assigned to p by m.Given a program P and a goal G, by onstrution there exists a level mappingof Cls(g,G) suh that: (1) the onjuntion Cls(g,G) an be partitioned into
K subonjuntions: D1, . . . , DK , suh that Cls(g,G) = D1 ∧ . . . ∧ DK , and,for i = 1, . . . ,K, the subonjuntion Di of lauses onsists of all lauses in
Cls(g,G) whose head prediates are at level i, (2) for i = 1, . . . ,K and for eahlause p(. . .) ← B in Di, the level of eah prediate symbol in the goal B isstritly smaller than the level of p, (3) the prediate g is at the highest level K,and (4) all prediates of Cls(g,G) whih our in P , are at level 0.The reader may notie that, aording to our de�nition of Step 1 above, Kis at most 2. However, we have onsidered the ase of an arbitrary value of K,beause this will be appropriate when in Setions 3 and 4 below we onsiderprogram synthesis and program veri�ation, respetively.For the onstrution of eah transformation sequene Si, for i = 1, . . . ,
n− 1, our unfold/fold transformation strategy uses the following three sub-sidiary strategies : (i) unfold(P,Q), (ii) tautology-replae(Laws , P,Q), and(iii) define-fold(Defs , P,Q ∧ NewDefs).(i) Given a program P , unfold(P,Q) spei�es how to derive a new program
Q by performing positive and negative unfolding steps (rules R3 and R4).(ii) Given a program P and a set Laws of equivalenes needed for the appli-ation of the goal replaement rule, tautology-replae(Laws , P,Q) spei�eshow to derive a new program Q by applying the tautology, goal replaement,and equality introdution and elimination rules (rules R8, R9, and R10).(iii) Given a program P and a onjuntion Defs of prediate de�nitions,define-fold(Defs , P,Q∧NewDefs) spei�es how to derive a new program Q∧
NewDefs by introduing a new onjuntion NewDefs of prediate de�nitions andperforming folding steps using lauses ourring in Defs ∧ NewDefs (rules R1,R5, and R6).The e�etiveness of the unfold/fold transformation strategy depends uponthe hoie of these subsidiary strategies, and muh researh, mostly in the aseof de�nite programs, has been devoted to devise subsidiary strategies whih al-low us to derive very e�ient programs [53℄. For instane, the introdution ofnew prediate de�nitions, also alled eureka de�nitions, in�uenes the e�ieny

14 A. Pettorossi, M. Proiettiof the derived programs. Various tehniques have been proposed for determiningthe suitable eureka de�nitions to be introdued. Here we only want to men-tion that it is often useful to introdue new prediates whose de�nition lauseshave bodies whih are: (i) instanes of atoms, so to perform program speial-ization, (ii) onjuntions of literals that share variables, so to derive programsthat simultaneously perform the omputations relative to several literals, and(iii) disjuntions of goals, so to derive programs with redued nondeterminism,beause they simultaneously perform the omputations relative to several alter-native goals.We omit here the detailed desription of the unfold, tautology-replae,and define-fold subsidiary strategies. We will see them in ation in the exam-ples given below. Here is our Unfold/Fold Transformation Strategy.The Unfold/Fold Transformation Strategy.Input : (i) a program P , (ii) a onjuntion Cls(g,G) of lauses onstruted asindiated at Step 1, and (iii) a set Laws of equivalenes for the appliation ofrule R9. These equivalenes are assumed to hold in M(P ∧ Cls(g,G)).Output : A program T suh that, for all ground terms t1, . . . , tn,
M(P ∧ Cls(g,G)) |= g(t1, . . . , tn) i� M(T) |= g(t1, . . . , tn).Let us partition Cls(g,G) into K subonjuntions: D1, . . . , DK , as indiated inStep 2 above.

T := P ;for i = 1, . . . ,K doWe onstrut a transformation sequene Si as follows.
Defs := Di; InDefs := Di;By the de�nition introdution rule we add the lauses of InDefs to T , therebyobtaining T ∧ InDefs .while InDefs is not the empty onjuntion do(1) unfold(T ∧ InDefs , T ∧U): From program T ∧ InDefs we derive T ∧U bya �nite sequene of appliations of the positive and negative unfolding rules tothe lauses in InDefs.(2) tautology-replae(Laws, T ∧U , T ∧R): From program T ∧U we derive
T ∧R by a �nite sequene of appliations of the tautology and goal replaementrules to the lauses in U , using the equivalenes in the set Laws.(3) define-fold(Defs , T ∧ R, T ∧ F ∧ NewDefs): From program T ∧ R wederive T ∧F ∧NewDefs by: (3.i) a �nite sequene of appliations of the de�nitionintrodution rule by whih we add to T ∧ R the (possibly empty) onjuntionNewDefs of lauses, followed by (3.ii) a �nite sequene of appliations of thefolding rule to the lauses in R, using lauses ourring in Defs ∧ NewDefs .We assume that the de�nition and folding steps are suh that all non-basiprediates ourring in the body of a lause whih has been derived by folding,are de�ned in Defs ∧ NewDefs .
T := T ∧ F ; Defs := Defs ∧NewDefs ; InDefs := NewDefs

Program Derivation = Rules + Strategies 15end while;Delete from T the de�nitions of useless prediates.end forDelete from T the de�nitions of the prediates upon whih the prediate g doesnot depend.The unfold/fold transformation strategy is orret in the sense that for all groundterms t1, . . . , tn, M(P ∧ Cls(g,G)) |= g(t1, . . . , tn) i� M(T) |= g(t1, . . . , tn), ifeah lause used for folding when exeuting the define-fold subsidiary strategyis unfolded w.r.t. a positive literal during an exeution of the unfold subsidiarystrategy. If this ondition is satis�ed, then the orretness of our transformationstrategy w.r.t. the perfet model semantis follows from the Corretness Theorem1 of Setion 2.2.Notie that the unfold/fold transformation strategy may not terminate, be-ause during the exeution of the while loop, InDefs may never beome theempty onjuntion.Notie also that the iterations of our strategy over the various levels from 1 to
K, orrespond to the onstrution of the perfet model of program P ∧Cls(g,G)derived at the end of Step 1. This onstrution is done, so to speak, level by levelmoving upwards and starting from the perfet model of the program P whoseprediates are assumed to be at level 0.Let us now present an example of program derivation using our unfold/foldtransformation method.Example 2. Complement of a ontext-free language. Let us onsider the follow-ing program CF for deriving a word of a given ontext-free language over thealphabet {a, b}:1. derive([], [])← Program CF2. derive([A|S], [A|W])← terminal(A), derive(S,W)3. derive([A|S],W)← nonterminal(A), production(A,B),

append(B,S, T), derive(T,W)4. terminal (a)←5. terminal (b)←6. nonterminal(s)←7. nonterminal(x)←8. production(s, [a, x, b])←9. production(x, [])←10. production(x, [a, x])←11. production(x, [a, b, x])←12. append([], A,A)←13. append([A|B], C, [A|D])← append(B,C,D)14. word([])←15. word([A|W])← terminal(A), word(W)The relation derive([s],W) holds i� the word W an be derived from the startsymbol s using the following produtions of the grammar de�ning the givenontext-free language (see lauses 8�11):

16 A. Pettorossi, M. Proietti
s→ a x b x→ ε x→ a x x→ a b xThe terminal symbols are a and b (see lauses 4 and 5), the nonterminal symbolsare s and x (see lauses 6 and 7), the empty word ε is represented as the emptylist [], and words in {a, b}∗ are represented as lists of a's and b's.In general, the relation derive(L,W) holds i� L is a sequene of terminalor nonterminal symbols from whih the word W an be derived by using theprodutions.We would like to derive an e�ient program for an initial goal G of the form:

word(W), ¬derive([s],W), whih is true in M(CF) i� W is a word whih is notderived by the given ontext-free grammar. We perform our program derivationas follows.Step 1. We derive the two lauses:16. g(W)← word(W), ¬new1(W)17. new1(W)← derive([s],W)as indiated in the desription of the Step 1 above. The prediate g is at level 2and the prediate new1 is at level 1. All prediates in program CF are at level
0.Step 2. We apply our unfold/fold transformation strategy. During the applia-tion of this strategy we never apply rules R7, R8, R9, and R10. Thus, we useneither the tautology-replae subsidiary strategy nor the deletion of uselessprediates. We have that K=2, D1 = {lause 17}, and D2 = {lause 16}.Level 1. Initially program T is CF. We start o� by adding lause 17 to T . BothDefs and InDefs onsist of lause 17 only. We will perform four iterations ofthe body of the while loop of our strategy before InDefs beomes the emptyonjuntion, and then we exit the while loop. Here we show only the �rst andfourth iterations.First Iteration.unfold. By unfolding, from lause 17 we get:18. new1([a|A])← derive([x, b], A)define-fold. We introdue the following lause19. new2(A)← derive([x, b], A)and by folding lause 18 using lause 19 we get:20. new1([a|A])← new2(A)whih is added to program T .At the end of the �rst iteration T is made out of the lauses of CF togetherwith lause 20, Defs onsists of lauses 17 and 19, and InDefs onsists of lause19. Sine InDefs is not empty, we ontinue by iterating the exeution of the bodyof the while loop of our strategy.During the seond and third iteration of the while loop, by the de�nitionrule we introdue the following lauses:21. new3(A)← derive([], A)

Program Derivation = Rules + Strategies 1722. new4(A)← derive([x, b], A)23. new4(A)← derive([b, x, b], A)24. new5(A)← derive([], A)25. new5(A)← derive([x, b], A)At the beginning of the fourth iteration InDefs is made out of lauses 24 and 25only. Here are the details of this fourth iteration whih is the last one.Fourth Iteration.unfold. By unfolding, from lauses 24 and 25 we get:26. new5([])←27. new5([b|A])← derive([], A)28. new5([a|A])← derive([x, b], A)29. new5([a|A])← derive([b, x, b], A)define-fold. We fold lause 27 using lause 21, and lauses 28 and 29 usinglauses 24 and 25, and we get:30. new5([b|A])← new3(A)31. new5([a|A])← new4(A)No new de�nition is introdued during this fourth iteration. Thus, InDefs isempty and we exit from the while loop. The transformation strategy terminatesfor level 1, and program T is made out of CF together with the following lauses:20. new1([a|A])← new2(A)32. new2([b|A])← new3(A)33. new2([a|A])← new4(A)34. new3([])←35. new4([b|A])← new5(A)36. new4([a|A])← new4(A)26. new5([])←30. new5([b|A])← new3(A)31. new5([a|A])← new4(A)Level 2. We start o� by adding lause 16 to T . Both Defs and InDefs onsist oflause 16 only. Then we exeute the body of the while loop.First Iteration.unfold. By positive unfolding from lause 16 we derive:37. g([])← ¬new1([])38. g([a|A])← word(A), ¬new1([a|A])39. g([b|A])← word(A), ¬new1([b|A])By negative unfolding from lauses 37, 38, and 39 we derive:40. g([])←41. g([a|A])← word(A), ¬new2(A)42. g([b|A])← word(A)define-fold. We introdue the following new de�nitions:

18 A. Pettorossi, M. Proietti43. new6(A)← word(A), ¬new2(A)44. new7(A)← word(A)and by folding lauses 41 and 42 we derive:45. g([a|A])← new6(A)46. g([b|A])← new7(A)Clauses 43 and 44 are added to InDefs. Sine InDefs is not empty, we ontinueby a new iteration of the body of the while loop and we stop after the fourthiteration, when InDefs beomes empty. We do not show the seond, third, andfourth iterations. The �nal program, whose lauses are listed below, is derived byeliminating all prediate de�nitions upon whih the prediate g does not depend.40. g([])←45. g([a|A])← new6(A)46. g([b|A])← new7(A)47. new6([])←48. new6([a|A])← new8(A)49. new6([b|A])← new9(A)50. new7([])←51. new7([a|A])← new7(A)52. new7([b|A])← new7(A)53. new8([])←54. new8([a|A])← new8(A)55. new8([b|A])← new10(A)56. new9([a|A])← new7(A)57. new9([b|A])← new7(A)58. new10([a|A])← new8(A)59. new10([b|A])← new9(A)This �nal program orresponds to a deterministi �nite automaton in the sensethat: (i) eah prediate orresponds to a state, (ii) g orresponds to the initialstate, (iii) eah prediate p whih has a unit lause p([]) ←, orresponds to a�nal state, and (iv) eah lause of the form p([s|A]) ← q(A) orresponds to atransition labeled by the symbol s from the state orresponding to p to the stateorresponding to q.The derivation of the �nal program performed aording to our transforma-tion strategy, an be viewed as the derivation of a deterministi �nite automa-ton from a general program for parsing a ontext free language. Obviously, thisderivation has been possible, beause the ontext free grammar enoded by theprodution prediate (see lauses 8�11) generates a regular language.The �nal program is muh more e�ient than the initial program whihonstruts the omplement of a ontext-free language by performing a nonde-terministi searh of the produtions to apply (see lauses 10 and 11). 2

Program Derivation = Rules + Strategies 193 Program Synthesis via Transformation Rules andStrategiesIn this setion we see how one an use for program synthesis the rules and thestrategy for program transformation we have presented in Setions 2.2 and 2.3.The program synthesis problem an be de�ned as follows: Given a spei�ation
S, that is, a formula written in a spei�ation language, we want to derive, byusing some derivation rules, a program T in a suitable programming language,suh that T satis�es S.There are many synthesis methods desribed in the literature for derivingprograms from spei�ations and these methods depend on the hoie of: (i)the spei�ation language, (ii) the derivation rules, and (iii) the programminglanguage.It has been reognized sine the beginning of its development (see, for in-stane, [11,32,39℄), that logi programming is one of the most e�etive settingsfor expressing program synthesis methods, beause in logi programming bothspei�ations and programs are formulas of the same language, i.e., the �rst or-der prediate alulus, and moreover, the derivation rules for deriving programsfrom spei�ations, may be hosen to be the inferene rules of the �rst orderprediate alulus itself.Now we propose a program synthesis method in the ase of logi program-ming. In this ase the program synthesis problem an be more spei�ally de�nedas indiated in the Introdution. Given a loally strati�ed program P and a spe-i�ation of the form: g(X1, . . . , Xn)↔ ϕ, where: (i) g is a new prediate symbolnot ourring in {P, ϕ}, and (ii) ϕ is a formula of the �rst order prediate alu-lus suh that freevars(ϕ) = {X1, . . . , Xn}, we want to derive a omputationallye�ient program T suh that, for all ground terms t1, . . . , tn,
M(P) |= ϕ{X1/t1, . . . , Xn/tn} i� M(T) |= g(t1, . . . , tn) (Synth)The derivation rules we onsider for program synthesis are: (i) a variant of theLloyd-Topor transformation rules [46℄, and (ii) the unfold/fold program trans-formation rules presented in Setion 2.2.Let us begin by presenting the following example of program synthesis. It isour running example for this setion and it will be ontinued in the Examples 4and 5 below.Example 3. Spei�ation of List Maximum. Let us onsider the following List-Membership program:1. list([])←2. list([A|As])← list(As)3. member (X, [A|As])← X=A4. member (X, [A|As])← member (X,As)and = and ≤ are basi prediates denoting, respetively, the equality prediateand a given total order prediate over the given domain. For brevity, we do notshow the lauses de�ning these two basi prediates. The maximum M of a list

L of items may be spei�ed by the following formula:

20 A. Pettorossi, M. Proietti
max (L,M) ↔ (list(L), member(M,L), ∀X (member(X,L)→ X ≤M)) (Φ)By our synthesis method we want to derive an e�ient program Max whihde�nes the prediate max suh that:
M(ListMembership ∧Max) |= ∀L,M (max (L,M)↔ ϕmax)where ϕmax denotes the right hand side of formula (Φ) above. 2In the rest of this setion, we illustrate a synthesis method, alled the unfold/foldsynthesis method, whih we now introdue.The Unfold/Fold Synthesis Method.Given a loally strati�ed program P and a spei�ation formula of the form:

g(X1, . . . , Xn)↔ ϕ, this method onsists of two steps as follows.Step 1.We apply a variant of the Lloyd-Topor transformation [46℄, and we derivea onjuntion Cls(g, ϕ) of lauses suh that P ∧ Cls(g, ϕ) is a loally strati�edprogram and, for all ground terms t1, . . . , tn,(1) M(P) |= ϕ{X1/t1, . . . , Xn/tn} i� M(P ∧ Cls(g, ϕ)) |= g(t1, . . . , tn)Step 2. From the program P , the onjuntion Cls(g, ϕ) of lauses, and a set ofequivalenes to be used for rule R9, by applying the unfold/fold transformationstrategy of Setion 2.3, we derive a program T suh that, for all ground terms
t1, . . . , tn,(2) M(P ∧ Cls(g, ϕ)) |= g(t1, . . . , tn) i� M(T) |= g(t1, . . . , tn)and thus, the above relation (Synth) holds.As already mentioned, our unfold/fold synthesis method is a generalizationof the two step transformation method presented in the previous Setion 2.3,beause here we onsider a �rst order formula ϕ, instead of a goal G. Notiealso that, similarly to the transformation method of Setion 2.3, the program
P ∧Cls(g, ϕ) itself is a partiular program satisfying (2), but usually we have todisard this trivial solution beause we look for an e�ient program T satisfying(2).We now illustrate the variant of the method proposed by Lloyd and Toporin [46℄ whih we use for onstruting the onjuntion of lauses Cls(g, ϕ) start-ing from the given spei�ation formula g(X1, . . . , Xn) ↔ ϕ aording to therequirements indiated in Step 1 above.We need to onsider a lass of formulas, alled statements [46℄, eah of whihis of the form: A ← β, where A is an atom and β, alled the body of thestatement, is a �rst order logi formula. We write C[γ] to denote a �rst orderformula where the subformula γ ours as an outermost onjunt, that is, C[γ] =
ρ1 ∧ . . .∧ρr ∧γ ∧σ1 ∧ . . .∧σs for some �rst order formulas ρ1, . . . , ρr, σ1, . . . , σs,and some r≥0 and s≥0. We will say that the formula C[γ] is transformed intothe formula C[δ] when C[δ] is obtained from C[γ] by replaing the onjunt γby the new onjunt δ.The LT transformation.

Program Derivation = Rules + Strategies 21Given a onjuntion of statements, perform the following transformations.(A) Eliminate from the body of every statement the ourrenes of logial on-stants, onnetives, and quanti�ers other than true,¬,∧, ∨, and ∃.(B) Repeatedly apply the following rules until a onjuntion of lauses is gener-ated:(1) A← C[¬true] is deleted.(2) A← C[¬¬γ] is transformed into A← C[γ].(3) A← C[¬(γ ∧ δ)] is transformed into
A← C[¬newp(Y1, . . . , Yk)] ∧ newp(Y1, . . . , Yk)← γ ∧ δwhere newp is a new non-basi prediate and {Y1, . . . , Yk} = freevars(γ ∧ δ).(4) A← C[¬(γ ∨ δ)] is transformed into A← C[¬γ] ∧ A← C[¬δ].(5) A← C[¬∃X γ] is transformed into
A← C[¬newp(Y1, . . . , Yk)] ∧ newp(Y1, . . . , Yk)← γwhere newp is a new non-basi prediate and {Y1, . . . , Yk} = freevars(∃X γ).(6) A← C[¬p(t1, . . . , tm)] is transformed into
A← C[¬newp(Y1, . . . , Yk)] ∧ newp(Y1, . . . , Yk)← p(t1, . . . , tm)where p is a non-basi prediate whih depends on existential variables in P ,newp is a new non-basi prediate, and {Y1, . . . , Yk} = vars(p(t1, . . . , tm)).(7) A← C[γ ∨ δ] is transformed into A← C[γ] ∧ A← C[δ].(8) A← C[∃X γ] is transformed into A← C[γ{X/Y }], where Y does not ourin A← C[∃X γ].Given a loally strati�ed program P and a spei�ation g(X1, . . . , Xn)↔ ϕ, wedenote by Cls(g, ϕ) the onjuntion of the lauses derived by applying the LTtransformation to the statement g(X1, . . . , Xn)← ϕ.Example 4. LT transformation of the List Maximum spei�ation. Let us on-sider the program ListMembership and the spei�ation formula (Φ) of Ex-ample 3. By applying the LT transformation to the statement max (L,M) ←

list(L), member(M,L), ∀X (member(X,L) → X ≤M) we derive the onjun-tion Cls(max , ϕmax) onsisting of the following two lauses:5. max (L,M)← list(L), member(M,L), ¬new1(L,M)6. new1(L,M)← member(X,L), ¬X≤MThe program ListMembership ∧ Cls(max , ϕmax) is a very ine�ient, generate-and-test program: it works by nondeterministially generating a member M ofthe list L and then testing whether or not M is the maximum member of L. 2The following result states that the LT transformation is orret w.r.t. the perfetmodel semantis [46,55℄.

22 A. Pettorossi, M. ProiettiTheorem 2. [Corretness of LT Transformation w.r.t. Perfet Models℄Let P be a loally strati�ed program and g(X1, . . . , Xn) ↔ ϕ be a spei�ation.If Cls(g, ϕ) is obtained from g(X1, . . . , Xn)← ϕ by the LT transformation, then(i) P ∧ Cls(g, ϕ) is a loally strati�ed program and (ii), for all ground terms
t1, . . . , tn, M(P) |= ϕ{X1/t1, . . . , Xn/tn} i� M(P ∧ Cls(g, ϕ)) |= g(t1, . . . , tn).Step 2 of our unfold/fold synthesis method makes use, as already said, of theunfold/fold transformation strategy presented in Setion 2.3, starting from pro-gram P, the onjuntion Cls(g, ϕ) of lauses, instead of Cls(g,G), and a set ofequivalenes to be used for the appliation of rule R9.The partition of Cls(g, ϕ) into levels an be onstruted similarly to thepartition of Cls(g,G) in Setion 2.3. Indeed, by onstrution, there exists alevel mapping of Cls(g, ϕ) suh that: (1) Cls(g, ϕ) an be partitioned into Ksubonjuntions D1, . . . , DK , suh that Cls(g, ϕ) = D1 ∧ . . . ∧ DK , and for
i = 1, . . . ,K, the subonjuntion Di onsists of all lauses in Cls(g, ϕ) whosehead prediates are at level i, (2) for i = 1, . . . ,K and for eah lause p(. . .)← Bin Di the level of every prediate symbol in the goal B is stritly smaller thanthe level of p, (3) the prediate g is at the highest level K, and (4) all prediatesof Cls(g, ϕ) whih our in P , are at level 0.The reader may notie that for all K ≥ 0 there exists a formula ψ and aprediate g suh that K is the highest value of the level mapping of Cls(g, ψ).Example 5. Synthesis of the List Maximum program. Let us onsider again theprogram ListMembership and the formula Φ of Example 3. Let us also onsiderthe onjuntion Cls(max , ϕmax) onsisting of lauses 5 and 6 of Example 4 whihde�ne the prediates max and new1. We may hoose the level mapping so thatthe levels of list , member , ≤, = are all 0, the level of new1 is 1, and the level ofmax is 2. Thus, the highest level K is 2, D1 = {lause 6}, and D2 = {lause 5}.We apply our unfold/fold transformation strategy as follows.Level 1. Initially program T is ListMembership. We start o� by adding lause 6to T . Both Defs and InDefs onsist of lause 6 only. Then we exeute the bodyof the while loop as follows.unfold. We unfold lause 6 w.r.t. member(X,L) and we get:7. new1([A|As],M)← X=A, ¬X≤M8. new1([A|As],M)← member(X,As), ¬X≤Mtautology-replae. From lause 7, by applying the goal replaement rule(using the equivalene ∀A,M (∃X (X=A,¬X≤M)↔ ¬A≤M)) we derive:9. new1([A|As],M)← ¬A≤Mdefine-fold. By folding lause 8 using lause 6 we derive the lause:10. new1([A|As],M)← new1(As,M)No new de�nition has been introdued. Thus, InDefs is empty and the transfor-mation strategy terminates for level 1. At this point program T is made out oflauses 1, 2, 3, 4, 9, and 10.

Program Derivation = Rules + Strategies 23Level 2. We start o� the transformation strategy for this level, by adding lause5 to T . Both Defs and InDefs onsist of lause 5 only. Then we iterate twie thebody of the while loop as follows.First Iteration.unfold. By some unfolding steps, from lause 5 in InDefs we derive:11. max ([A|As],M)← list(As), M=A, A≤M, ¬new1(As,M)12. max ([A|As],M)← list(As), member(M,As), A≤M, ¬new1(As,M)tautology-replae. By applying the goal replaement rule, from lause 11we derive:13. max ([A|As],M)← list(As), M=A, ¬new1(As,M)define-fold. The de�nition of prediate max, onsisting of lauses 12 and 13 isnondeterministi, beause an atom of the form max (l,M), where l is a ground,nonempty list, is uni�able with the head of both lauses. We may derive a moree�ient, deterministi de�nition for max by introduing the new prediate new2as follows:14. new2(A,As,M)← list(As), M=A, ¬new1(As,M)15. new2(A,As,M)← list(As), member(M,As), A≤M, ¬new1(As,M)and then folding lauses 12 and 13 using lauses 14 and 15, as follows:16. max ([A|As],M)← new2(A,As,M)Now, (i) T onsists of lauses 1, 2, 3, 4, 9, 10, and 16, (ii) Defs onsists of lauses6, 14, and 15, and (iii) InDefs onsists of lauses 14 and 15 only.Seond Iteration.unfold. By positive and negative unfolding, from lauses 14 and 15 in InDefswe get:17. new2(A, [],M)←M=A18. new2(A, [B|As],M)← list(As), M=A, B≤M, ¬new1(As,M)19. new2(A, [B|As],M)← list(As), M=B, A≤M, B≤M, ¬new1(As,M)20. new2(A, [B|As],M)← list(As), member(M,As), A≤M, B≤M,
¬new1(As,M)tautology-replae. By applying the basi goal replaement rule to lauses18, 19, and 20, and in partiular, by using the equivaleneM(ListMembership) |=

true ↔ B≤A ∨A≤B (reall that ≤ is a total order), we get:18.1. new2(A, [B|As],M)← B≤A, list(As), M=A, ¬new1(As,M)19.1. new2(A, [B|As],M)← A≤B, list(As), M=B, ¬new1(As,M)20.1. new2(A, [B|As],M)← B≤A, list(As), member(M,As), A≤M,
¬new1(As,M)20.2. new2(A, [B|As],M)← A≤B, list(As), member(M,As), B≤M,
¬new1(As,M)define-fold. Now we fold lauses 18.1 and 20.1 using lauses 14 and 15, andwe also fold lauses 19.1 and 20.2 using lauses 14 and 15. We obtain:

24 A. Pettorossi, M. Proietti21. new2(A, [B|As],M)← B≤A, new2(A,As,M)22. new2(A, [B|As],M)← A≤B, new2(B,As,M)No new de�nition has been introdued during the seond iteration. Thus, InDefsis empty and we terminate our unfold/fold transformation strategy also for thehighest level 2. We �nally eliminate all prediate de�nitions on whih max doesnot depend, and we derive our �nal program:16. max ([A|As],M)← new2(A,As,M)17. new2(A, [],M)←M=A21. new2(A, [B|As],M)← B≤A, new2(A,As,M)22. new2(A, [B|As],M)← A≤B, new2(B,As,M)This �nal program deterministially omputes the answers to queries of the form:
max (l,M) where l is a ground list. Indeed, while traversing the given list l, the�rst argument of the prediate new2 holds the maximal item enountered sofar (see lauses 21 and 22) and, at the end of the traversal, the value of thisargument is returned as an answer (see lause 17). 24 Program Veri�ation via Transformation Rules andStrategiesIn this setion we show that the transformation rules and the strategy we havepresented in Setions 2.2 and 2.3, an also be used for program veri�ation. Inpartiular, we an prove a property ϕ of a given loally strati�ed logi program
P by applying the unfold/fold synthesis method of Setion 3. For program ver-i�ation purposes, instead of starting from a spei�ation formula where freevariables may our, the unfold/fold synthesis method is applied starting fromthe losed spei�ation formula g ↔ ϕ, where freevars(ϕ) = ∅ and g is a predi-ate symbol of arity 0.Our method for verifying whether or not ϕ holds in the perfet model of theprogram P is spei�ed as follows.The Unfold/Fold Veri�ation Method.Given a loally strati�ed program P and a losed formula ϕ, we an hekwhether or not M(P) |= ϕ holds by performing the following two steps.Step 1. We introdue a new prediate symbol g of arity 0, not ourring in {P, ϕ}and, by using the LT transformation we transform the statement g ← ϕ, into aonjuntion Cls(g, ϕ) of lauses, suh that M(P) |= ϕ i� M(P ∧Cls(g, ϕ)) |= g.Step 2. From program P , the onjuntion Cls(g, ϕ) of lauses, and a set ofequivalenes to be used for rule R9, by applying the unfold/fold transformationstrategy of Setion 2.3, we derive a program T suh that

M(P ∧Cls(g, ϕ)) |= g i� M(T) |= gThus, if T is the program onsisting of the lause g ← only, then M(P) |= ϕ,and if T is the empty program, then M(P) 6|= ϕ.

Program Derivation = Rules + Strategies 25Let us now see an example of program veri�ation.Example 6. The Yale Shooting Problem. This problem has been often presentedin the literature on temporal and nonmonotoni reasoning. It an be formulatedas follows. Let us onsider a person and a gun and three possible events : (e1) aload event in whih the gun is loaded, (e2) a shoot event in whih the gun shoots,and (e3) a wait event in whih nothing happens. These events are representedby lauses 6, 7, and 8 of the program YSP below. A situation is (the result of)a sequene of events. This sequene is represented as a list whih, so to speak,grows to the left as time progresses. In any situation, at least one of the followingthree fats holds : (f1) the person is alive, (f2) the person is dead, and (f3) thegun is loaded. These fats are represented by lauses 9, 10, and 11 below. Wehave the following statements:(s1) In the initial situation, represented by the empty list [], the person is alive.(s2) After a load event the gun is loaded.(s3) If the gun is loaded, then after a shoot event the person is dead.(s4) If the gun is loaded, then it is abnormal that after a shoot event the personis alive.(s5) If a fat F holds in a situation S and it is not abnormal that F holds afterthe event E following S, then F holds also after the event E. This statement isoften alled the inertia axiom.The following loally strati�ed program, alled YSP, formalizes the abovestatements, and in partiular, lauses 1�5 orrespond to statements (s1)�(s5),respetively. Our YSP program is similar to the one of Apt and Bezem [1℄.1. holds(alive , [])← Program YSP2. holds(loaded , [load |S])←3. holds(dead , [shoot |S])← holds(loaded , S)4. ab(alive , shoot , S)← holds(loaded , S)5. holds(F, [E|S])← fact(F), event(E), holds(F, S), ¬ab(F,E, S)6. event(load)←7. event(shoot)←8. event(wait)←9. fact(alive)←10. fact(dead)←11. fact(loaded)←12. append([], Y, Y)←13. append([A|X], Y, [A|Z])← append(X,Y, Z)Apt and Bezem showed that M(YSP) |= holds(dead , [shoot ,wait , load]) an bederived in a straightforward way by applying SLDNF-resolution. Let us nowonsider the following stronger property σ:
∀S (holds(dead , S)

→ ∃S1, S2, S3, S4 (append(S1, [shoot |S2], S4), append(S4, [load |S3], S)))meaning that the person may be dead in the urrent situation only if a loadevent ourred in the past and that event was followed, maybe not immediately,

26 A. Pettorossi, M. Proiettiby a shoot event. We would like to prove that M(YSP) |= σ. Our two stepveri�ation method works as follows.Step 1. We apply the LT transformation starting from the statement g ← σ andwe derive Cls(g, σ) whih onsists of the following three lauses:14. g ← ¬new115. new1← holds(dead , S), ¬new2(S)16. new2(S)← append(S1, [shoot |S2], S4), append(S4, [load |S3], S)The level of new2 is 1, the level of new1 is 2, and the level of g is 3. The levelof all other prediates is 0.Step 2. We now apply the unfold/fold transformation strategy of Setion 2.3,starting from the program YSP, the onjuntion of lauses Cls(g, σ), and anempty set of equivalenes (rule R9 will not be applied). We have that K = 3,
D1 = {lause 16}, D2 = {lause 15}, and D3 = {lause 14}.Level 1. Initially program T is YSP. We start o� by applying the de�nitionintrodution rule and adding lause 16 to T . Both Defs and InDefs onsist oflause 16 only. Then we iterate the exeution of the body of the while loop ofthe unfold/fold transformation strategy as follows.First Iteration.unfold. By unfolding, from lause 16 we derive:17. new2([shoot |S])← append(S4, [load |S3], S)18. new2([E|S])← append(S1, [shoot |S2], S4), append(S4, [load |S3], S)define-fold. We introdue the following new prediate de�nition:19. new3(A)← append(B, [load |C], A)and we fold lauses 17 and 18 using lauses 19 and 16, respetively:20. new2([shoot |S])← new3(S)21. new2([E|S])← new2(S)At this point (i) program T onsists of lauses 20 and 21 together with lauses1�13, (ii) Defs onsists of lauses 16 and 19, and (iii) InDefs onsists of lause19.Seond Iteration.unfold. By unfolding lause 19 we derive:22. new3([load |S])←23. new3([E|S])← append(S4, [load |S3], S)define-fold. By folding lause 23 using lause 19 we derive:22. new3([load |S])←24. new3([E|S])← new3(S)We need not introdue any new lause for folding. Thus, InDefs is empty andthe while loop terminates for level 1. At this point program T onsists of thefollowing lauses:20. new2([shoot |S])← new3(S)

Program Derivation = Rules + Strategies 2721. new2([E|S])← new2(S)22. new3([load |S])←24. new3([E|S])← new3(S)together with lauses 1�13.Level 2. We apply the de�nition introdution rule and we add lause 15 to T .Both Defs and InDefs onsist of lause 15 only. Then we iterate the exeutionof the body of the while loop as follows.First Iteration.unfold. By unfolding, from lause 15 we derive:25. new1← holds(loaded , S), ¬new3(S), ¬new2(S)26. new1← holds(dead , S), ¬new2(S)27. new1← holds(dead , S), ¬new3(S), ¬new2(S)28. new1← holds(dead , S), ¬new2(S)tautology-replae. Clauses 27 and 28 are subsumed by lause 26 and theyan be deleted.define-fold. We introdue the following new prediate:29. new4← holds(loaded , S), ¬new3(S), ¬new2(S)and we fold lauses 25 and 28 using lauses 29 and 15, respetively. We get:30. new1← new431. new1← new1Now (i) T is made out of lauses 1�13, 20�24, and 30�31, (ii) Defs onsists oflauses 15 and 29, and (iii) InDefs onsists of lause 29. Sine InDefs is not theempty onjuntion, we proeed by a seond exeution of the body of the whileloop of the unfold/fold transformation strategy.Seond Iteration.unfold. By unfolding, from lause 29 we derive:32. new4← holds(loaded , S), ¬new3(S), ¬new3(S), ¬new2(S)33. new4← holds(loaded , S), ¬new3(S), ¬new2(S)tautology-replae. Clause 32 is deleted beause it is subsumed by lause 33.define-fold. We fold lause 32 using lause 29, and we derive:34. new4← new4No new lause is added by the de�nition introdution rule. Thus, InDefs is theempty onjuntion and the while loop terminates for level 2. Now, prediatesnew1 and new4 are useless and their de�nitions, that is, lauses 30, 31, and 34,are deleted.Thus, at the end of the transformation strategy for level 2, the derived pro-gram T onsists of lauses 1�13 and 20�24.Level 3. We add lause 14 to program T . By unfolding lause 14 we derive:35. g ←

28 A. Pettorossi, M. ProiettiOur transformation strategy terminates by applying the de�nition eliminationrule and deleting all de�nitions of prediates upon whih g does not depend.Thus our �nal program onsists of lause 35 only, and we have proved that
M(YSP ∧Cls(g, σ)) |= g and thus, M(YSP) |= σ.The reader may hek that g annot be derived from YSP ∧ Cls(g, σ) usingSLDNF-resolution, beause an SLDNF-refutation of g would require the on-strution of a �nitely failed SLDNF-tree for new1 and no suh a �nite tree exists.Indeed, g may be derived by using SLS-resolution, that is, resolution augmentedwith the negation as (�nite or in�nite) failure rule. However, the appliabilityonditions of the negation as in�nite failure rule are, in general, not deidableand even not semi-deidable. On the ontrary, in our approah we use a setof transformation rules whih have deidable appliability onditions, assumingthat the equivalene of basi goals is deidable (see the goal replaement ruleR9). 25 Related WorkThe idea of program development as a dedutive ativity in a formal theoryhas been very fertile in the �eld of programming methodologies. Early resultson this topi are reported, for instane, in [10,11,12,21,32,39,49℄. Here we wouldlike to mention some of the ontributions to this �eld, fousing on logi programtransformation. In the pioneering work by Hogger [32℄ program transformationwas intended as a partiular form of dedution in �rst order logi. Later, the ap-proah based on the unfold/fold transformations proposed by Burstall and Dar-lington [10℄ for funtional languages, was adapted to logi languages by Tamakiand Sato [74℄. These authors proposed a set of rules for transforming de�nitelogi programs and proved their orretness w.r.t. the least Herbrand model se-mantis. Sine then, several researhers have investigated various aspets of theunfold/fold transformation approah. They also onsidered its extension to dealwith negation [6,29,48,63,70,71℄, disjuntive programs [30℄, onstraints [4,22℄,and onurreny [23℄.In this hapter we have essentially followed the approah of Tamaki and Satowhere the orretness of the transformations is ensured by onditions on thesequene of the transformation rules whih are applied during program derivation[74℄. The main novelty w.r.t. other papers whih follow a similar approah anddeal with general logi programs (see, for instane, [63,70,71℄) is that our setof rules inludes the negative unfolding (R4), the negative folding (R6), andthe basi goal replaement rules (R9) whih are very useful for the programderivation examples we have presented.Together with the formalization and the study of the properties of the trans-formation rules, various strategies for the appliation of these rules have beenonsidered in the literature. Among others, for ase of logi programs we reall:(i) the strategies for deriving tail reursive programs [3,17℄, (ii) the promotionstrategy for reduing nondeterminism within generate-and-test programs [72℄,

Program Derivation = Rules + Strategies 29(iii) the strategy for eliminating unneessary variables and thus, avoiding mul-tiple traversals and intermediate data strutures [58℄, and (iv) the strategy forreduing nondeterminism during program speialization [56℄.The general unfold/fold transformation strategy we have presented in Se-tion 2.3, extends the above mentioned strategies to the ase of programs withloally strati�ed negation. The interesting fat to notie is that the same generalstrategy an be re�ned in di�erent ways so to realize not only program trans-formation, but also program synthesis and program veri�ation. However, inorder to be e�etive in pratie, our general strategy requires some informationonerning spei� omputation domains and lasses of programs. For instane,information on the omputation domains is needed for the appliation of thegoal replaement rule. The merit of a general purpose transformation strategyrests upon the fat that it provides a uniform guideline for performing programderivation in di�erent omputation domains.The work on unfold/fold program transformation is tightly related to othertransformation tehniques. In partiular, partial evaluation (also alled partialdedution) and other program speialization tehniques à la Lloyd-Shepherdson[16,27,44,47℄ an be rephrased in terms of a subset of the unfold/fold rules [56,67℄.Compiling ontrol [7℄ is another transformation tehnique whih is related to therules and strategies approah. Compiling ontrol is based on the idea expressedby Kowalski's motto: Algorithm = Logi + Control, and it works as follows.Let us onsider a logi program P1 and let us assume that it is evaluated byusing a given ontrol strategy C1. For instane, C1 may be the Prolog left-to-right, depth-�rst ontrol strategy. However, for e�ieny reasons we may wantto use a di�erent ontrol strategy, say C2. Compiling ontrol works by derivingfrom program P1 a new program P2 suh that P2 with ontrol strategy C1 isoperationally equivalent to P1 with ontrol strategy C2. Although the ompilingontrol tehnique was not originally presented following the rules and strategiesapproah, the transformation of program P1 into program P2, may often beperformed by applying a suitable unfold/fold strategy (see, for instane, [53℄).Moreover, during the last two deades there has been a fruitful interation be-tween unfold/fold program transformation and program synthesis. To illustratethis point, let us reall here the program synthesis methods based on derivationrules, suh as the one proposed by Hogger [32℄ and, along similar lines, thosereported in [34,35,42,68,69℄ whih make use of derivation rules similar to theunfold/fold rules. In this regard, the spei� ontribution of our hapter on-sists in providing a method for program synthesis whih ensures the orretnessw.r.t. the perfet model semantis.Also related to our rules and strategies approah, is the proofs-as-programsapproah (see, for instane, [8,25℄ for its presentation in the ase of logi pro-gramming) whih works by extrating a program from a onstrutive proof of aspei�ation formula. Thus, in the proofs-as-programs approah, programs syn-thesis is regarded as a theorem proving ativity, whereas by using our unfold/foldmethod we view theorem proving as a partiular ase of program synthesis.

30 A. Pettorossi, M. ProiettiOur unfold/fold veri�ation method is related to other methods for verifyingprogram properties. The existene of a relation between program transformationand program veri�ation was pointed out by Burstall and Darlington [10℄ andthen formalized by Kott [36℄ and Courelle [14℄ in the ase of appliative programshemata. The essential idea is that, sine the transformation rules preserve agiven semantis, the transformation of a program P1 into a program P2 is also aproof of the equivalene of P1 and P2 w.r.t. that semantis. In [54℄ this idea hasalso been developed in the ase of de�nite logi programs. The method presentedin that paper, alled unfold/fold proof method, allows us to prove the equivaleneof onjuntions of atoms w.r.t. the least Herbrand model of a program. In [64℄ theunfold/fold proof method has been extended by using a more powerful foldingrule and in [65,66℄ the extended unfold/fold proof method has been applied forthe proof of properties of parametrized �nite state onurrent systems.A further extension of the unfold/fold proof method has been presented in[55℄. By using the proof method desribed in [55℄ one an prove properties of theform M(P) |= ϕ where P is a logi programs with loally strati�ed negation,
M(P) is its perfet model, and ϕ is any �rst order formula. In the present hapterwe basially followed the presentation of [55℄.In reent developments (see, for instane, [24℄), it has been shown that theunfold/fold proof method an be used to perform model heking [13℄ of �niteor in�nite state onurrent systems. To see how this an be done, let us reallthat in the model heking approah one formalizes the problem of verifyingtemporal properties of �nite or in�nite state systems as the problem of verifyingthe satisfation relation T, s |=CTL F , where (i) T is a state transition system(regarded as a Kripke struture), (ii) s is the initial state of the system, and (iii)
F is a formula of the CTL branhing time temporal logi. In [24℄ the problem ofverifying T, s |=CTL F is redued to that of verifying M(PT) |= sat(s, F), where
M(PT) is the perfet model of a loally strati�ed program PT de�ning a prediate
sat whih enodes the satisfation relation |=CTL. Thus, the unfold/fold proofmethod desribed in Setion 4 an be used for performing �nite or in�nite statemodel heking starting from the program PT and the atomi formula sat(s, F).An essential point indiated in [24℄ is that, in order to deal with in�nite sets ofstates, it is useful to onsider logi programs extended with onstraints.Finally, we would like to mention that the unfold/fold proof method falls intothe wide ategory of methods that use (onstraint) logi programming for soft-ware veri�ation. In the spei� area of the veri�ation of onurrent systems,we may brie�y reall the following ones. (i) The method desribed in [45℄ usespartial dedution and abstrat interpretation [15℄ of logi programs for verifyingsafety properties of in�nite state systems. (ii) The method presented in [26℄ useslogi programs with linear arithmeti onstraints to enode Petri nets. The least�xpoint of one suh program orresponds to the reahability set of the Petri net.This method works by �rst applying some program transformations (di�erentfrom the unfold/fold ones) to ompute a Presburger formula whih is a symbolirepresentation of the least �xpoint of the program, and then proving that agiven safety property holds by proving that it is implied by that Presburger for-

Program Derivation = Rules + Strategies 31mula. (iii) Similarly to [24,26℄, also the method presented in [18℄ uses onstraintlogi programs to represent in�nite state systems. This method an be used toverify CTL properties of these systems by omputing approximations of leastand greatest �xpoints via abstrat interpretation. (iv) The methods in [50℄ and[61℄ make use of logi programs (with and without onstraints, respetively) torepresent �nite state systems. These two methods employ tabulation tehniques[76℄ to ompute �xpoints and they may be used for verifying CTL propertiesand modal µ-alulus [40,57℄ properties, respetively.It is di�ult to make a preise onnetion between the unfold/fold proofmethod and the veri�ation methods listed above, beause of the di�erent for-malizations and tehniques whih are used. However, we would like to notie thatall veri�ation methods we mentioned above, work by �nding, in a more or lessexpliit way, properties whih are invariants of the behaviour of a system, andwithin the unfold/fold proof method, the disovery of invariants is performedby the introdution of suitable prediate de�nitions whih allow folding. Thisintrodution of new de�nitions is the most reative and least mehanizable stepduring program transformation.6 ConlusionsThe main objetive of this hapter has been to illustrate the power of the rulesand strategies approah to the development of programs. This approah is par-tiularly appealing in the ase of logi programming and it allows us to separatethe orretness requirement from the e�ieny requirement during program de-velopment. This separation is expressed by our motto: Program Derivation =Rules + Strategies. It an be viewed as a variant of Kowalski's motto for programexeution: Algorithm = Logi + Control.More spei�ally, we have onsidered the unfold/fold transformation rulesfor loally strati�ed logi programs and we have outlined a strategy for the ap-pliation of these transformation rules. As a novel ontribution of this hapterwe have proposed a general, two step method for performing program trans-formation, program synthesis, and program veri�ation, and we have presenteda powerful unfold/fold transformation strategy whih allows one to perform:(1) elimination of multiple visits of data strutures, program speialization, andother e�ieny improving program transformations, (2) program synthesis from�rst order spei�ations, and (3) program veri�ation.The main advantage of developing several tehniques for program deriva-tion in a uni�ed framework, is that we may reuse similar tehniques in di�erentontexts. For instane, the program transformation strategy for eliminating un-neessary variables [58℄ may be reused as a quanti�er elimination tehnique fortheorem proving [55℄. Moreover, our uni�ed view of program derivation allowsus to design a general tool whih may be used for mahine assisted programtransformation, synthesis, and veri�ation.It should be pointed out that, besides the many appealing features illustratedin this hapter, the transformational approah to program derivation has also

32 A. Pettorossi, M. Proiettisome limitations. Indeed, the problems takled by program transformation haveinherent theoretial limitations due to well-known undeidability results. Thus,in general, program derivation annot be fully mehanial.Now we mention some approahes by whih we an fae this limitation andprovide tehniques whih are e�etive in pratie.(1) We may design interative program transformation systems, so that manyingenious steps an be performed under the user's guidane, while the most te-dious and routine tasks are automatially performed by the system. For instane,KIDS [73℄ is a suessful representative of suh interative systems for programderivation. An important line of further development of interative transfor-mation systems, is the design of appropriate user interfaes and programmableprogram transformers, whih allow the user to interat with the system at a veryhigh level. In partiular, in suh systems the user should be able to program hisown rules and strategies. There are some ahievements in this diretion in therelated �elds of term rewriting, program synthesis, and theorem proving. Forinstane, we reall (i) the ELAN system [5℄ where the user may speify his ownstrategy for applying rewriting rules, (ii) the Oyster/Clam system [9℄ where onean make a plan to onstrut a proof or synthesize a program, and (iii) theIsabelle generi theorem prover [51℄, where it is possible to speify ustomizeddedutive systems.(2) We may onsider restrited sets of transformation rules or restritedlasses of programs, where ertain transformation strategies an be performedin a fully mehanial, algorithmi fashion. For logi programs, a number of al-gorithmi transformation strategies have been developed, suh as the alreadymentioned tehniques for partial dedution, eliminating unneessary variables,and reduing nondeterminism.(3) We may enhane the program transformation methodology by using teh-niques for global programs analysis, suh as abstrat interpretation. This ap-proah may remedy to the fat that the transformation rules are designed tomake small, loal hanges of program ode, but for their e�etive appliationsometimes we need information on the operational or denotational semantis ofthe whole program. Various tehniques whih ombine program transformationand abstrat interpretation have been developed, espeially for the task of pro-gram speialization (see, for instane, [28,43,60℄ in the ase of logi programs),but also for the veri�ation of onurrent systems (see [45℄). We believe that thisline of researh is very promising.Finally, we would like to notie that the program derivation tehniques wehave desribed in this hapter are essentially oriented to the development ofprograms in-the-small, that is, within a single software module. We believe thatone of the main hallenges for logi program development is the extension ofthese tehniques for program transformation, synthesis, and veri�ation, to dealwith programs in-the-large, that is, with many software modules. Some resultsin this diretion are presented in the hapter by Lau and Ornaghi [41℄ wheresoftware engineering methodologies for developing logi programs in-the-largeare proposed.

Program Derivation = Rules + Strategies 33AknowledgmentsWe would like to thank Antonis Kakas and Fariba Sadri for their kind invitationto ontribute to this book in honor of Prof. Robert Kowalski. Our derivationexamples were worked out by using the MAP transformation system mostlydeveloped by Sophie Renault. We also thank the anonymous referees for theironstrutive omments.Referenes1. K. R. Apt and M. Bezem. Ayli programs. In D.H.D. Warren and P. Szeredi,editors, Proeedings of the 7th International Conferene on Logi Programming,Jerusalem, Israel, pages 617�633. MIT Press, 1990.2. K. R. Apt and R. N. Bol. Logi programming and negation: A survey. Journal ofLogi Programming, 19, 20:9�71, 1994.3. N. Azibi. TREQUASI: Un système pour la transformation automatique de pro-grammes Prolog réursifs en quasi-itératifs. PhD thesis, Université de Paris-Sud,Centre d'Orsay, Frane, 1987.4. N. Bensaou and I. Guessarian. Transforming onstraint logi programs. TheoretialComputer Siene, 206:81�125, 1998.5. P. Borovansky, C. Kirhner, H. Kirhner, and C. Ringeissen. Rewriting with strate-gies in ELAN: A funtional semantis. International Journal of Foundations ofComputer Siene, 12(1):69�95, 2001.6. A. Bossi, N. Coo, and S. Etalle. Transforming normal programs by replaement.In A. Pettorossi, editor, Proeedings 3rd International Workshop on Meta-Pro-gramming in Logi, Meta '92, Uppsala, Sweden, Leture Notes in Computer Siene649, pages 265�279, Berlin, 1992. Springer-Verlag.7. M. Bruynooghe, D. De Shreye, and B. Krekels. Compiling ontrol. Journal ofLogi Programming, 6:135�162, 1989.8. A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logi programs from indu-tive proofs. In J. W. Lloyd, editor, Computational Logi, Symposium Proeedings,Brussels, November 1990, pages 135�149, Berlin, 1990. Springer-Verlag.9. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.In M. E. Stikel, editor, 10th International Conferene on Automated Dedution,Kaiserslautern, Germany, Leture Notes in Computer Siene, Vol. 449, pages647�648. Springer, 1990.10. R. M. Burstall and J. Darlington. A transformation system for developing reursiveprograms. Journal of the ACM, 24(1):44�67, January 1977.11. K. L. Clark and S. Sikel. Prediate logi: A alulus for deriving programs. In Pro-eedings 5th International Joint Conferene on Arti�ial Intelligene, Cambridge,Massahusetts, USA, pages 419�420, 1977.12. K. L. Clark and S.-Å. Tärnlund. A �rst order theory of data and programs. InProeedings Information Proessing '77, pages 939�944. North-Holland, 1977.13. E. M. Clarke, O. Grumberg, and D. Peled. Model Cheking. MIT Press, 2000.14. B. Courelle. Equivalenes and transformations of regular systems � appliationsto reursive program shemes and grammars. Theoretial Computer Siene, 42:1�122, 1986.

34 A. Pettorossi, M. Proietti15. P. Cousot and R. Cousot. Abstrat interpretation: A uni�ed lattie model for statianalysis of programs by onstrution of approximation of �xpoints. In Proeedings4th ACM-SIGPLAN Symposium on Priniples of Programming Languages (POPL'77), pages 238�252. ACM Press, 1977.16. D. De Shreye, R. Glük, J. Jørgensen, M. Leushel, B. Martens, and M. H.Sørensen. Conjuntive partial dedution: Foundations, ontrol, algorithms, andexperiments. Journal of Logi Programming, 41(2�3):231�277, 1999.17. S. K. Debray. Optimizing almost-tail-reursive Prolog programs. In ProeedingsIFIP International Conferene on Funtional Programming Languages and Com-puter Arhiteture, Nany, Frane, Leture Notes in Computer Siene 201, pages204�219. Springer-Verlag, 1985.18. G. Delzanno and A. Podelski. Model heking in CLP. In R. Cleaveland, editor,5th International Conferene on Tools and Algorithms for the Constrution andAnalysis of Systems (TACAS'99), Leture Notes in Computer Siene 1579, pages223�239. Springer-Verlag, 1999.19. Y. Deville. Logi Programming: Systemati Program Development. Addison-Wesley, 1990.20. Y. Deville and K.-K. Lau. Logi program synthesis. Journal of Logi Programming,19, 20:321�350, 1994.21. E.W. Dijkstra. A Disipline of Programming. Prentie-Hall, Englewod Cli�s, N.J.,1976.22. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretial Com-puter Siene, 166:101�146, 1996.23. S. Etalle, M. Gabbrielli, and M. C. Meo. Unfold/fold transformations of CCPprograms. In D. Sangiorgi and R. de Simone, editors, Proeedings of the Interna-tional Conferene on Conurreny Theory, Conur98, Leture Notes in ComputerSiene 1466, pages 348�363, 1998.24. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of in�-nite state systems by speializing onstraint logi programs. In Proeedings ofthe ACM Sigplan Workshop on Veri�ation and Computational Logi VCL'01,Florene (Italy), Tehnial Report DSSE-TR-2001-3, pages 85�96. University ofSouthampton, UK, 2001.25. L. Fribourg. Extrating logi programs from proofs that use extended Prologexeution and indution. In D. H. D. Warren and P. Szeredi, editors, ProeedingsSeventh International Conferene on Logi Programming, Jerusalem, Israel, June18-20, 1990, pages 685�699. The MIT Press, 1990.26. L. Fribourg and H. Olsén. A deompositional approah for omputing least �xed-points of Datalog programs with Z-ounters. Constraints, 2(3/4):305�335, 1997.27. J. P. Gallagher. Tutorial on speialisation of logi programs. In Proeedings ofACM SIGPLAN Symposium on Partial Evaluation and Semantis Based ProgramManipulation, PEPM '93, Copenhagen, Denmark, pages 88�98. ACM Press, 1993.28. J. P. Gallagher and J. C. Peralta. Using regular approximations for generalisationduring partial evalution. In Proeedings of the 2000 ACM SIGPLAN Workshopon Partial Evaluation and Semantis-Based Program Manipulation (PEPM '00),Boston, Massahusetts, USA, January 22-23, 2000., pages 44�51. ACM Press,November 1999.29. P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations of logi pro-grams. In J.-L. Lassez and G. Plotkin, editors, Computational Logi, Essays inHonor of Alan Robinson, pages 565�583. MIT, 1991.30. M. Gergatsoulis. Unfold/fold transformations for disjuntive logi programs. In-formation Proessing Letters, 62:23�29, 1997.

Program Derivation = Rules + Strategies 3531. C.A.R. Hoare. An axiomati basis for omputer programming. CACM, 12(10):576�580, 583, Otober 1969.32. C. J. Hogger. Derivation of logi programs. Journal of the ACM, 28(2):372�392,1981.33. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and AutomatiProgram Generation. Prentie Hall, 1993.34. T. Kanamori and K. Horiuhi. Constrution of logi programs based on generalizedunfold/fold rules. In Proeedings of the Fourth International Conferene on LogiProgramming, pages 744�768. The MIT Press, 1987.35. T. Kawamura. Logi program synthesis from �rst-order spei�ations. TheoretialComputer Siene, 122:69�96, 1994.36. L. Kott. Unfold/fold program transformation. In M. Nivat and J.C. Reynolds,editors, Algebrai Methods in Semantis, pages 411�434. Cambridge UniversityPress, 1985.37. R. A. Kowalski. Prediate logi as a programming language. In Proeedings IFIP'74, pages 569�574. North-Holland, 1974.38. R. A. Kowalski. Algorithm = Logi + Control. Communiations of the ACM,22(7):424�436, 1979.39. R. A. Kowalski. Logi for Problem Solving. North Holland, 1979.40. D. Kozen. Results on the propositional µ-alulus. Theoretial Computer Siene,27:333�354, 1983.41. K.-K. Lau and M. Ornaghi. Logi for omponent-based software development.In A. Kakas and F. Sadri, editors, Computational Logi: Logi Programming andBeyond (Essays in honour of Bob Kowalski, Part I), Leture Notes in ComputerSiene 2407, pages 347�373. Springer, 2002.42. K.-K. Lau and S.D. Prestwih. Top-down synthesis of reursive logi proeduresfrom �rst-order logi spei�ations. In D.H.D. Warren and P. Szeredi, editors,Proeedings of the Seventh International Conferene on Logi Programming (ICLP'90), pages 667�684. MIT Press, 1990.43. M. Leushel. Program speialisation and abstrat interpretation reoniled. InJ. Ja�ar, editor, Proeedings of the Joint International Conferene and Symposiumon Logi Programming, Manhester, UK, 15-19 June 1998., pages 220�234. TheMIT Press, 1998.44. M. Leushel, B. Martens, and D. de Shreye. Some ahievements and prospets inpartial dedution. ACM Computing Surveys, 30 (Eletroni Setion)(3es):4, 1998.45. M. Leushel and T. Massart. In�nite state model heking by abstrat interpre-tation and program speialization. In A. Bossi, editor, Proeedings of LOPSTR'99, Venie, Italy, Leture Notes in Computer Siene 1817, pages 63�82. Springer,1999.46. J. W. Lloyd. Foundations of Logi Programming. Springer-Verlag, Berlin, 1987.Seond Edition.47. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logi programming.Journal of Logi Programming, 11:217�242, 1991.48. M. J. Maher. A transformation system for dedutive database modules with perfetmodel semantis. Theoretial Computer Siene, 110:377�403, 1993.49. Z. Manna and R. Waldinger. A dedutive approah to program synthesis. ACMToplas, 2:90�121, 1980.50. U. Nilsson and J. Lübke. Constraint logi programming for loal and symbolimodel-heking. In J. W. Lloyd et al., editor, First International Conferene onComputational Logi, CL 2000, London, UK, 24-28 July, 2000, Leture Notes inArti�ial Intelligene 1861, pages 384�398. Springer-Verlag, 2000.

36 A. Pettorossi, M. Proietti51. L. C. Paulson. The foundation of a generi theorem prover. J. Automated Reason-ing, 5:363�397, 1989.52. A. Pettorossi and M. Proietti. Rules and strategies for transforming funtional andlogi programs. ACM Computing Surveys, 28(2):360�414, 1996.53. A. Pettorossi and M. Proietti. Transformation of logi programs. In D. M. Gabbay,C. J. Hogger, and J. A. Robinson, editors, Handbook of Logi in Arti�ial Intelli-gene and Logi Programming, volume 5, pages 697�787. Oxford University Press,1998.54. A. Pettorossi and M. Proietti. Synthesis and transformation of logi programsusing unfold/fold proofs. Journal of Logi Programming, 41(2&3):197�230, 1999.55. A. Pettorossi and M. Proietti. Perfet model heking via unfold/fold transfor-mations. In J. W. Lloyd, editor, First International Conferene on ComputationalLogi, CL 2000, London, UK, 24-28 July, 2000, Leture Notes in Arti�ial Intel-ligene 1861, pages 613�628. Springer, 2000.56. A. Pettorossi, M. Proietti, and S. Renault. Reduing nondeterminism while spe-ializing logi programs. In Pro. 24-th ACM Symposium on Priniples of Pro-gramming Languages, Paris, Frane, pages 414�427. ACM Press, 1997.57. V. Pratt. A deidable µ-alulus. In 22nd Symposium on Foundations of ComputerSiene, Washington (DC), 1981. IEEE Computer Soiety Press.58. M. Proietti and A. Pettorossi. Unfolding-de�nition-folding, in this order, foravoiding unneessary variables in logi programs. Theoretial Computer Siene,142(1):89�124, 1995.59. T. C. Przymusinski. On the delarative and proedural semantis of logi programs.Journ. of Automated Reasoning, 5:167�205, 1989.60. G. Puebla and M. Hermenegildo. Abstrat multiple speialization and its applia-tion to program parallelization. J. of Logi Programming. Speial Issue on Synthe-sis, Transformation and Analysis of Logi Programs, 41(2&3):279�316, November1999.61. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,T. Swift, and D. S. Warren. E�ient model heking using tabled resolution.In CAV '97, Leture Notes in Computer Siene 1254, pages 143�154. Springer-Verlag, 1997.62. J. A. Robinson. A mahine-oriented logi based on the resolution priniple. Journalof the ACM, 12(1):23�41, 1965.63. A. Royhoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ramakrish-nan. Beyond Tamaki-Sato style unfold/fold transformations for normal logi pro-grams. In P. S. Thiagarajan and R. H. C. Yap, editors, Proeedings of ASIAN'99,5th Asian Computing Siene Conferene, Phuket, Thailand, Deember 10-12, Le-ture Notes in Computer Siene 1742, pages 322�333. Springer-Verlag, 1999.64. A. Royhoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ramakr-ishnan. Proofs by program transformation. In PreProeedings of LOPSTR '99,Venie, Italy, pages 57�64. Università Ca' Fosari di Venezia, Dipartimento di In-formatia, 1999.65. A. Royhoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrish-nan, and S. A. Smolka. Veri�ation of parameterized systems using logi programtransformations. In Proeedings of the Sixth International Conferene on Tools andAlgorithms for the Constrution and Analysis of Systems, TACAS 2000, Berlin,Germany, Leture Notes in Computer Siene 1785, pages 172�187. Springer, 2000.66. A. Royhoudhury and I. V. Ramakrishnan. Automated indutive veri�ation ofparameterized protools. In CAV 2001, pages 25�37, 2001.

Program Derivation = Rules + Strategies 3767. D. Sahlin. Mixtus: An automati partial evaluator for full Prolog. New GenerationComputing, 12:7�51, 1993.68. T. Sato and H. Tamaki. Transformational logi program synthesis. In Proeedingsof the International Conferene on Fifth Generation Computer Systems, pages 195�201. ICOT, 1984.69. T. Sato and H. Tamaki. First order ompiler: A deterministi logi program syn-thesis algorithm. Journal of Symboli Computation, 8:625�627, 1989.70. H. Seki. Unfold/fold transformation of strati�ed programs. Theoretial ComputerSiene, 86:107�139, 1991.71. H. Seki. Unfold/fold transformation of general logi programs for well-foundedsemantis. Journal of Logi Programming, 16(1&2):5�23, 1993.72. H. Seki and K. Furukawa. Notes on transformation tehniques for generate andtest logi programs. In Proeedings of the International Symposium on Logi Pro-gramming, San Franiso, USA, pages 215�223. IEEE Press, 1987.73. D. R. Smith. KIDS: A semi-automati program development system. IEEE Trans-ations on Software Engineering � Speial Issue on Formal Methods, 16(9):1024�1043, September 1990.74. H. Tamaki and T. Sato. Unfold/fold transformation of logi programs. In S.-Å. Tärnlund, editor, Proeedings of the Seond International Conferene on LogiProgramming, pages 127�138, Uppsala, Sweden, 1984. Uppsala University.75. D. H. D. Warren. Implementing Prolog � ompiling prediate logi programs.Researh Report 39 & 40, Department of Arti�ial Intelligene, University of Ed-inburgh, 1977.76. D. S. Warren. Memoing for logi programs. Communiations of the ACM, 35(3):93�111, 1992.

