Program Derivation = Rules + Strategies*

Alberto Pettorossi’ and Maurizio Proiettif

TDISP, Universita di Roma Tor Vergata, Roma, Italy. adp@iasi.rm.cnr.it
IASI-CNR, Roma, Italy. proietti@iasi.rm.cnr.it

Abstract. In a seminal paper [38] Prof. Robert Kowalski advocated the
paradigm Algorithm — Logic + Control which was intended to charac-
terize program executions. Here we want to illustrate the corresponding
paradigm Program Derivation = Rules + Strategies which is intended
to characterize program derivations, rather than executions. During pro-
gram execution, the Logic component guarantees that the computed re-
sults are correct, that is, they are true facts in the intended model of the
given program, while the Control component ensures that those facts
are derived in an efficient way. Likewise, during program derivation, the
Rules component guarantees that the derived programs are correct and
the Strategies component ensures that the derived programs are efficient.
In this chapter we will consider the case of logic programs with locally
stratified negation and we will focus on the following three important
methodologies for program derivation: program transformation, program
synthesis, and program verification. Based upon the Rules + Strategies
approach, we will propose a unified method for applying these three
programming methodologies. In particular, we will present: (i) a set of
rules for program transformation which preserve the perfect model se-
mantics and (ii) a general strategy for applying the transformation rules.
We will also show that we can synthesize correct and efficient programs
from first order specifications by: (i) converting an arbitrary first order
formula into a logic program with locally stratified negation by using a
variant of the Lloyd-Topor transformation, and then (ii) applying our
transformation rules according to our general strategy. Finally, we will
demonstrate that the rules and the strategy for program transformation
and program synthesis can also be used for program verification, that is,
for proving first order properties of systems described by logic programs
with locally stratified negation.

1 Introduction

Various models of computation were proposed since the early history of com-
puting. Among others, we may recall the von Neumann machine for imperative
languages, term rewriting for functional languages, and resolution for logical

* Published in: A. Kakas and F. Sadri (Eds). Computational Logic: Logic Programming
and Beyond (Essays in Honour of Robert A. Kowalski - Part I), Lecture Notes in
Artificial Intelligence 2407, Springer, 2002, pp. 273-309. Revised April 2009.

2 A. Pettorossi, M. Proietti

languages. In these three different language paradigms, people explored and an-
alyzed different programming methodologies. In particular, in the area of logical
languages, it was realized that both computing and programming can be viewed
as a deductive activity.

The idea of computation as deduction may be traced back to the beginnings
of the computation theory and recursive function theory, but it emerged clearly
within the Theorem Proving community through the pioneering work of Robin-
son [62] and later, the paper by Kowalski [37], where the author proposed a
particular deduction rule, namely, SLD-resolution, to compute in a logical the-
ory consisting of Horn clauses. The deductive approach to computation was still
considered to be not very practical at that time, but the situation changed when
Warren [75] proposed a Prolog compiler based on SLD-resolution with perfor-
mance comparable to that of the functional language Lisp. Efficiency is obtained
by sacrificing correctness in some cases, but fortunately, that incorrectness turns
out not to be a problem in practice.

The idea of programming and program development as a deduction from
logical specifications to executable expressions in a formal setting, has its roots
in the works by Burstall-Darlington and Manna-Waldinger [10,49] for functional
languages and in the works by Clark et al., Hogger, and Kowalski [11,12,32,39]
for the case of logical languages. Similar ideas were proposed also in the case of
imperative languages and one should mention, among others, the contributions
of Dijkstra and Hoare (see, for instance, [21,31]).

In the paper [38] Kowalski proposes the motto: Algorithm = Logic + Con-
trol, to promote a separation of concern when writing programs: a concern for
correctness in the Logic component, and a concern for efficiency in the Control
component. This separation idea for program development goes back to the sem-
inal paper by Burstall and Darlington [10]. The aim is to derive programs which
are correct and efficient by applying transformation rules in a disciplined manner
according to suitable strategies. In this case the Logic component consists of the
transformation rules, such as unfolding and folding, which are correct because
they preserve the semantics of interest, and the Control component consists of
the strategies which direct the use of the rules so to derive efficient programs.
Our motto, which can be viewed as an application of Kowalski’s motto to the
case of program development, is: Program Derivation — Rules + Strategies.

As we will illustrate in this chapter, our motto also indicates a way of under-
standing the relationship among various techniques for program development
such as program synthesis, program reuse, and program verification. Some of
these techniques based on rules and strategies, are described in [19,20,33,52].

The main objective of this chapter is to provide a unified view of: (i) program
transformation, (ii) program synthesis, and (iii) program verification as deduc-
tive activities based on the unfolding/folding transformation rules and strategies.
We consider the class of logic programs with locally stratified negation. The se-
mantics of a program P in this class is given by its unique perfect model, denoted
M(P), which coincides with its unique stable model and its (total) well-founded
model [2].

Program Derivation = Rules + Strategies 3

In our setting program transformation, synthesis, and verification can be
formulated as follows.

Program Transformation. Given a program P and a goal G with free variables

X1,...,X,, we want to find a computationally efficient program T for a new
n-ary predicate g such that, for all ground terms ¢y,...,%,,
M(P) E G{X1/t1,..., Xn/tn} it M(T)E g(t1,...,tn) (Transf)

Notice that our formulation of program transformation includes program special-
ization [27,33,44,47] which can be regarded as the particular case where G is an
atom with instantiated arguments.

Program Synthesis. Given a program P and a specification of the form g(X;,. ..,
X,) < @, where: (i) ¢ is a first order formula with free variables Xi,..., X,
and (ii) g is a new n-ary predicate, we want to derive a computationally efficient
program T for the predicate g such that, for all ground terms ¢4, ..., t,,

M(P) E o{X1/t1,..., Xn/tn} ff M(T)Eg(t1,...,tn) (Synth)

Program Verification. Given a program P and a closed first order formula ¢, we
want to check whether or not

M(P) k¢ (Verif)

In order to get a unified view of program transformation, program synthesis,
and program verification, let us first notice that each of these three tasks starts
from a given program P and a first order formula. This formula, say v, is: (i)
the goal G in the case of program transformation, (ii) the formula ¢ of the
specification ¢g(X1,...,X,,) < ¢ in the case of program synthesis, and (iii) the
closed first order formula ¢ in the case of program verification. Thus, we can
provide a unified treatment of program transformation, program synthesis, and
program verification, by viewing them as instances of the following general, two
step method for program derivation, which takes as input a given program P
and a first order formula ~.

The Unfold/Fold Method for Program Derivation.

We are given a locally stratified program P and a first order formula .

Step 1. We construct a conjunction of clauses, denoted by Cls(g,~) such that
P A Cls(g,7) is a locally stratified program and, for all ground terms ¢4, ..., ,,

M(P) =y {X1/t1, ..., Xn/ta} iff M(PA Cls(g,7)) | g(t1,... 1)

where X1,..., X, are the free variables of ~.

Step 2. We apply unfold/fold transformation rules which preserve the perfect
model semantics and we derive a new program T such that, for all ground terms
tla R t’n.:

M(P A Cls(g,7)) E glt1,... tn) it M(T)Eg(t,...,tn)

The derivation of program T is made according to a transformation strategy
which guides the application of the rules.

4 A. Pettorossi, M. Proietti

Let us now briefly explain how this general unfold/fold method for program
derivation will be instantiated to three specific methods for program transfor-
mation, program synthesis, and program verification. More details and examples
will be given in Sections 2, 3, and 4.

Among the tasks of program transformation, program synthesis, and program
verification, the one which has the most general formulation is program synthesis,
because the formula ¢ of a specification is any first order formula, whereas the
inputs for program transformation and program verification consist of a goal
(that is, a conjunction of literals) and a closed first order formula, respectively.

A method for program synthesis can be obtained from the general unfold /fold
method for program derivation in a straightforward way by taking ~ as the for-
mula ¢ of the specification g(X1,...,X,) <> ¢. In Section 3 we will see how the
conjunction of clauses Cls(g,) can be constructed by using a suitable variant of
the Lloyd-Topor transformation [46]. Moreover, we will propose (see Section 2) a
general transformation strategy for deriving a suitable program T from program
PACls(g,p) as required by Step 2 of the unfold/fold method. From the fact that
our variant of the Lloyd-Topor transformation and the unfold/fold transforma-
tion rules preserve the perfect model semantics, it follows that the equivalence
(Synth) indeed holds for this program T'.

Similarly, if we consider our general unfold/fold method for program deriva-
tion in the case where v is the goal G, then we derive a program 7" which satis-
fies the relation (Transf), and thus, in this case the general method becomes a
method for program transformation.

Finally, program verification can be viewed as an instance of our general
unfold/fold method in the case where « is the closed first order formula . In
particular, the conjunction of clauses Cls(g, ¢) can be constructed as in the case
of program synthesis by starting from the specification g <> . Then, one can
prove that M(P) = ¢ holds by applying Step 2 of our method for program
derivation and obtaining a program 7' which includes the clause g « .

The contributions of this chapter are the following ones. (i) We describe in
some detail our general, two step method based on rules and strategies, for the
unified treatment of program transformation, synthesis, and verification, and
through some examples, we show that our method is effective for each of these
tasks. (ii) We establish the correctness of the transformation rules by giving suf-
ficient conditions for the preservation of perfect model semantics. These correct-
ness results extend results already published in the literature [70]. In particular,
we take into consideration also the unfolding and folding rules w.r.t. negative
literals, and these rules are crucial in the examples we will present. (iii) We out-
line a general strategy for the application of the transformation rules and we
demonstrate that various techniques for rather different tasks, such as program
transformation, program synthesis, and program verification, can all be realized
by that single strategy.

The plan of the chapter is as follows. In Section 2 we present a set of trans-
formation rules for locally stratified programs and we give sufficient conditions
which ensure their correctness w.r.t. the perfect model semantics. We also present

Program Derivation = Rules + Strategies 5

our general strategy for the application of the transformation rules. In Section 3
we present the instance of our two step unfold/fold method for the synthesis of
logic programs from specifications provided by first order formulas. In Section
4 we show that also program verification can be performed using our two step
method.

2 Transformation Rules and Strategies for Locally
Stratified Logic Programs

In this section we recall the basic concepts of locally stratified programs and
perfect model semantics. We then present the transformation rules which we use
for program transformation, and we provide a sufficient condition which ensures
that these rules preserve the perfect model semantics. We also outline a general
strategy for applying the transformation rules.

2.1 Preliminaries: Syntax and Semantics of Stratified Logic
Programs

We recall some basic definitions and we introduce some terminology and notation
concerning general logic programs and their semantics. In particular, we will
recall the definitions of locally stratified logic programs and their perfect models.
For notions not defined here the reader may refer to [2,46,59].

Given a first order language L, its formulas are constructed out of variables,
function symbols, predicate symbols, terms, atomic formulas (also called atoms),
the formula true, the connectives — and A, and the quantifier 3 (see, for instance,
[2,46]). We feel free to write formulas using also the symbols false, V, —, <,
and V, but we regard them as abbreviations of the equivalent formulas written
using the symbols true, -, A, and 3 only. Following the usual logic programming
convention, we use upper case letters for variables and lower case letters for
function and predicate symbols.

A literal is an atom (i.e., a positive literal) or a negated atom (i.e., a negative
literal). A goal G is a conjunction of n (> 0) literals.

General logic programs, simply called logic programs, or programs, are first
order formulas defined as follows. A program is a conjunction of clauses, each of
which is of the form: G — H, where G is a goal and H is an atom different from
true and false. Normally a clause will be written as H < G. The atom H is called
the head of the clause, denoted by hd(C), and the goal G is called the body of
the clause, denoted by bd(C). A clause H < G where G is the empty conjunction
true, is said to be a unit clause and it is written as H «—. When writing goals,
clauses, and programs, we also denote conjunctions by using comma ‘,” instead of
A. Thus, usually, a goal will be written as L1, ..., L,, where the L;’s are literals,
a clause will be written as H < Lq,..., Ly, and a program will be written as
Ci,...,Cy, where the C;’s are clauses. When writing programs we will also feel
free to omit commas between clauses, if no confusion arises.

6 A. Pettorossi, M. Proietti

A clause is said to be definite iff no negated atom occurs in its body. A
definite program is a conjunction of definite clauses.

Given a term ¢ we denote by vars(t) the set of all variables occurring in ¢. Sim-
ilar notation will be used for the variables occurring in formulas. Given a clause
C, a variable in bd(C) is said to be ezistential iff it belongs to vars(bd(C)) —
vars(hd(C)). Given a formula ¢ we denote by freevars(y) the set of all variables
of ¢ which have a free occurrence in . A clause C is said to be ground iff no
variable occurs in it. We may freely rename the variables occurring in clauses,
and the process of renaming the variables of a clause by using new variables, is
called renaming apart [46].

The definition of a predicate p in a program P, denoted by Def(p, P), is
the conjunction of the clauses of P whose head predicate is p. We say that p is
defined in P iff Def (p, P) is not empty. We say that a predicate p depends on a
predicate ¢ in P iff either there exists in P a clause of the form: p(...) « B such
that ¢ occurs in the goal B or there exists in P a predicate r such that p depends
on r in P and r depends on ¢ in P. The extended definition of a predicate p
in a program P, denoted by Def*(p, P), is the conjunction of the definition of
p and the definition of every predicate on which p depends in P. We say that
a predicate p depends on existential variables in a program P iff in Def™(p, P)
there exists a clause C' whose body has an existential variable.

The set of useless predicates of a program P is the maximal set U of the
predicates of P such that a predicate p is in U iff the body of each clause of
Def (p, P) has a positive literal whose predicate is in U. For instance, p and ¢
are useless and r is not useless in the following program:

p—gqr
q<—p

T <—

By ground(P) we denote the conjunction of all clauses in £ which are ground
instances of clauses of P, and by B, we denote the Herbrand Base of L, that is,
the set of all ground atoms in £. A stratification o is a total function from B,
to the set W of countable ordinals. Given a ground literal L which is the atom
A or the negated atom —A, we say that L is in stratum o iff 0(A4) = a.

A ground clause H < Lq,..., L, is locally stratified w.r.t. a stratification
o iff for every i = 1,...,n, if L; is an atom then o(H) > o(L;), and if L; is a
negated atom, say —A;, then o(H) > o(A4;). We say that the program P is locally
stratified iff there exists a stratification o such that every clause in ground(P) is
locally stratified w.r.t. o. Let P, be the conjunction of the clauses in ground(P)
whose head is in the stratum a. We may assume without loss of generality, that
every ground atom is in a stratum which is greater than 0, so that Py may be
assumed to be the empty conjunction of clauses.

An Herbrand interpretation is a subset of B.. We say that a closed first order
formula ¢ is true in an Herbrand interpretation I, written as I |= ¢, iff one of
the following cases holds: (i) ¢ is the formula true, (ii) ¢ is a ground atom A
which is in I, (iii) ¢ is =1 and ¢ is not true in I, (iv) ¢ is ¢1 A @2 and both

Program Derivation = Rules + Strategies 7

1 and @9 are true in I, (v) ¢ is 3X 1 and there exists a ground term ¢ such
that @1 {X/t} is true in I.

Given a formula ¢ and an Herbrand interpretation I, if it is not the case that
I E ¢, we say that ¢ is false in I and we write I [~ ¢.

The perfect model M(P) of a program P which is locally stratified w.r.t. a
stratification o, is the Herbrand interpretation defined as the subset |J, ¢y Ma
of B, where for every ordinal o in W, the set M, is constructed as follows:
(1) My is the empty set, and
(2) if @ > 0, M,, is the least Herbrand model [46] of the definite program derived
from P, as follows: (i) every literal L in stratum 7, with 7 < ¢, in the body of
a clause in P, is deleted iff M, = L, and (ii) every clause C in P, is deleted iff
in bd(C') there exists a literal L in stratum 7, with 7 < « such that M, F~ L.

For a locally stratified program P, with vars(P) = {X1,...,X,}, we have
that M(P) EVXy,..., X, P.

Our construction of the perfect model differs from the construction presented
in [2,59], but as the reader may verify, the two constructions yield the same
model.

Recall that perfect models are the usual intended semantics for logic pro-
grams with locally stratified negation, and for those programs all major ap-
proaches to the semantics of negation coincide [2]. Indeed, as already mentioned,
a locally stratified program has a unique perfect model which is equal to its
unique stable model, and also equal to its total well-founded model.

2.2 Unfold/Fold Transformation Rules

In this section we present the rules for transforming logic programs and we
provide a sufficient condition which ensures that perfect models are preserved
during program transformation.

For the application of the transformation rules we divide the predicate sym-
bols of the language into two classes: (i) basic predicates and (ii) non-basic
predicates. Atoms, literals, and goals which have occurrences of basic predicates
only, are called basic atoms, basic literals, and basic goals, respectively. We as-
sume that every basic atom is in a strictly smaller stratum w.r.t. every non-basic
atom, and thus, in any given program no basic predicate depends on a non-basic
one. Our partition of the set of predicates into basic or non-basic predicates is
arbitrary and it may be different for different program derivations.

A transformation sequence is a sequence Py, ..., P, of programs, where for
0<k<n-—1, program Py, is derived from program Pj by the application of a
transformation rule as indicated below.

We consider a set Preds of predicates of interest. We also consider, for 0 <
k <mn, the conjunction Defs, of the clauses introduced by using the following
rule R1 during the whole transformation sequence Py, ..., P.

R1. Definition Introduction Rule. We get the new program Py by adding
to program Py a conjunction of m clauses of the form:

8 A. Pettorossi, M. Proietti
newp(Xy,...,Xs) < Body,

newp(Xy,...,Xs) < Body,,
such that:

(i) the predicate newp is a non-basic predicate which does not occur in PyA Defs,,,
(ii) X1,..., X, are distinct variables occurring in Body,, ..., Body,,, and
(iii) every predicate occurring in Body,, ..., Body,, also occurs in Pp.

R2. Definition Elimination Rule. By definition elimination w.r.t. Preds,
from program Py we derive the new program Pj41 by deleting the definitions of
all predicates on which no predicate belonging to Preds depends in Pj.

R3. Positive Unfolding Rule. Let C be a renamed apart clause in Py, of the
form: H «— G1, A, G4, where A is an atom, and G; and G2 are (possibly empty)
goals. Suppose that:

1. Dy,..., Dy, with m>0, are all clauses of program Py, such that A is unifi-
able with hd(D1), ..., hd(D,,), with most general unifiers ¥1, ..., ", re-
spectively, and

2. C; is the clause (H «— G1,bd(D;),G2)9;, for i=1,...,m.

By unfolding clause C w.r.t. A we derive the clauses C, ..., C,,. From program
Py, we derive the new program Py by replacing C with Cy,...,C,,.

In particular, if m = 0, that is, if we unfold a clause C' in program P, w.r.t. an
atom which is not unifiable with the head of any clause in Py, then we derive
the new program Pj;1 by deleting clause C.

RA4. Negative Unfolding Rule. Let C be a renamed apart clause in Py of the
form: H «— G1,-A,Gs. Let Dq,...,D,,, with m > 0, be all clauses of program
Py, such that A is unifiable with hd(D;), ..., hd(D,,), with most general unifiers
Y, ..., %m, respectively. Assume that:

1. A=hd(D1)%1 = -+ = hd(Dy,)0m, that is, fori = 1,...,m, A is an instance
of hd(D;),
2. for i = 1,...,m, D; has no existential variables, and

3. from Gy, —(bd(D1)%1V...Vbd(Dy,)%m), G2 we get an equivalent disjunction
Q1V...VQ, of goals, with » > 0, by first pushing — inside and then pushing
V outside.

By unfolding clause C' w.r.t. = A we derive the clauses C1, ..., C,, where C; is the
clause H «— @, for i = 1,...,r. From program P} we derive the new program
Px41 by replacing C' with C4,...,C,.

In particular: (i) if m = 0, that is, if we unfold a clause C' w.r.t. a negative literal
—A such that A is not unifiable with the head of any clause in Py, then we get
the new program Pji1 by deleting = A from the body of clause C, and (ii) if
for some i € {1,...,m}, bd(D;) = true, that is, if we unfold a clause C w.r.t. a

Program Derivation = Rules + Strategies 9

negative literal = A such that A is an instance of the head of a unit clause in Py,
then we derive from program Py the new program Py by deleting clause C.

R5. Positive Folding Rule. Let Cy,..., (), be renamed apart clauses in P
and Dy, ..., D,, be the definition of a predicate in Defs;. For i = 1,...,m, let
C; be of the form: H «— G4, B;, Go. Suppose that there exists a substitution ¢
such that, for s = 1,...,m the following conditions hold:

(2) for every variable X in the set vars(D;) — vars(hd(D;)), we have that X9
is a variable which occurs neither in {H,G1, G2} nor in the term Y, for any
variable Y occurring in bd(D;) and different from X.

By folding clauses C1,...,C,, using clauses D1, ..., D,, we derive the clause E:
H — Gy, hd(D1)9,G2. From program Py we derive the new program Pji1 by
replacing C4, ..., C,, with E.

Notice that by definition of rule R1, we have that hd(D1) = ... = hd(Dy,).

R6. Negative Folding Rule. Let C' be a renamed apart clause in Py, and let
newp be a predicate in Defs;, whose definition consists of a single clause D. Let
C be of the form: H «— G1,—A, G3. Suppose that the following conditions hold:
(1) A = bd(D)9, for some substitution ¢, and

(2) vars(hd(D)) = vars(bd(D)).

By folding clause C w.r.t. = A using clause D we derive the clause E: H «—
G1,-hd(D)¥, G3. From program Py we derive the new program Pj41 by replac-
ing C' with E.

R7. Tautology Rule. We derive the new program Py, by replacing in Py a
conjunction of clauses y; with a new conjunction of clauses 2, according to the
following rewritings ;3 = 2 , where H and A, denote atoms, G, Gy, Go, Gs,
and G4 denote goals, and C7,Cs denote clauses:

(1) H+— A -AG = true

(2) H+<— H,G = true

(3) H— Gy,G2,Gs,Gy = H+«— G1,G3,G2,Gy

(4) H— A AG = H«< ACG

(5) H<—G1, H<—G1,G2 = H<—G1

(6) H<—A,G1,G2, H — ﬁA, G, = H+ Gl,Gg, H — ﬁA,Gl
(7) Cl, Cz = C27 CVl

R8. Clause Deletion Rule. We derive the new program Pj1 by removing
from Py the definitions of the useless predicates of Pj.

R9. Basic Goal Replacement Rule. Let us consider r (> 0) renamed apart
clauses in Py, of the form: H — G1,Q1,Gs, ..., H — G1,Q,, G2. Suppose that,
for some goals Ry, ..., Rs, we have:

where:

(i) {Y1,...,Y,} = vars(Qq, ..., Q) — vars(H,G1,Gs),
(i) {Z1,...,Zw} = vars(Ry,...,Rs) — vars(H,G1,G2), and

10 A. Pettorossi, M. Proietti

(iii) {Xl,...,Xu} = UG/I“S(Ql,...,QT,Rl,...,RS) — {K,...,K,,Zl,...,zw}.

Suppose also that Ry,..., R, are basic goals and H is a non-basic atom.

Then from program Py we derive the new program Py by replacing the clauses
H — Gl,Ql,GQ, ceey H Gl,QT,GQ with the clauses H « Gl,Rl,GQ, ey
H — Gl, RS, GQ.

We assume that the equality predicate = is a basic predicate which is defined
in each program by the single clause X =X « .

R10. Equality Introduction and Elimination. Let C' be a clause of the form
(H < Body){X/t}, such that the variable X does not occur in ¢ and let D be
the clause: H <« X =t, Body.

By equality introduction we derive clause D from clause C'. By equality elimina-
tion we derive clause C' from clause D.

If C occurs in Py, then we derive the new program Pj41 by replacing C' with D.
If D occurs in Py then we derive the new program Py by replacing D with C.

The transformation rules from rule R1 to rule R10 we have introduced above,
will collectively be called unfold/fold transformation rules.

Theorem 1. [Correctness of the Unfold /fold Transformation Rules] Let
Py, ..., P, be a transformation sequence and Preds be a set of predicates of in-
terest. Let us assume that:

(1) during the construction of Py, ..., P, each clause introduced by the definition
introduction rule and used for folding, is unfolded (before or after its use for
folding) w.r.t. a non-basic positive literal in its body, and

(2) during the transformation sequence Py, ..., Py, either the definition elimina-
tion rule is never applied or it is applied at the end of that sequence.

Then, for all ground atoms A with predicate in Preds, M(Py A Defs,) = A iff
M(P,) E A.

Notice that the statement obtained from Theorem 1 by replacing ‘positive unfold-
ing’ by ‘negative unfolding’ is not a theorem as shown by the following example.

Ezample 1. Let Py be the program:

1. p— —q(X)
2. ¢(X) < q(X)
3. ¢(X)—r

By negative unfolding w.r.t. =¢(X), from clause 1 we get the following clause 4:
4. p——q(X),-r
Then by folding clause 4 w.r.t. —¢(X), we get the following clause 5:
5. p«—p,Tr
The final program P; consists of clauses 2, 3, and 5. We have that M (Py) = p,
while M (Py) E —p. a

Our presentation of the transformation rules essentially follows the style of
Tamaki and Sato who first introduced the unfold/fold transformation rules in the
case of definite programs [74] and proved their correctness w.r.t. the least Her-
brand model semantics. Among the rules presented in this section, the following

Program Derivation — Rules + Strategies 11

ones were introduced by Tamaki and Sato in [74] (actually, their presentation
was a bit different): R1 restricted to m = 1, R3, R5 restricted to m =1, R7
restricted to definite clauses, R8, R9 restricted to r=s=1, and R10. Thus, some
of our rules may be considered an extension of those in [74].

One of the most relevant features of Tamaki and Sato’s rules is that their
correctness is ensured by conditions on the construction of the transformation
sequences similar to Condition (1) of Theorem 1.

A subset of Tamaki and Sato’s rules, namely R3 (positive unfolding) and
R5 (positive folding) with m =1, has been extended to general logic programs
by Seki and proved correct w.r.t. various semantics, including the perfect model
semantics [70,71].

An extension of Seki’s rules has been recently proposed by Roychoudhury et
al. in [63]. In particular, they drop the restrictions that we can fold one clause
only and the clauses used for folding are not recursive. The correctness of this
extension of Seki’s rules is ensured by a rather sophisticated condition which,
in the case where recursive clauses cannot be used for folding, is implied by
Condition (1) of Theorem 1.

Thus, the positive folding rule presented here is less powerful than the fold-
ing rule of [63], because we can only fold using clauses taken from Defs;, and
according to the definition introduction rule R1, we cannot introduce recursive
clauses in Defs;,. However, our set of rules includes the negative unfolding (R4),
the negative folding (R6), and the basic goal replacement rules (R9) which are
not present in [63], and these rules are indeed very useful in practice and they
are needed for the program derivation examples given in the next sections. We
believe that we can easily incorporate the more powerful folding rule of [63]
into our set of rules, but for reasons of simplicity, we stick to our version of the
positive folding rule which has much simpler applicability conditions.

2.3 A Transformation Method

Now we outline our two step method for program transformation based on: (i)
the unfold/fold transformation rules presented in Section 2.2, and (ii) a sim-
ple, yet powerful strategy, called unfold/fold transformation strategy, for guiding
the application of the transformation rules. This method is an instance of the
general unfold/fold method described in Section 1. Actually, our strategy is not
fully specified, in the sense that many transformation steps can be performed in
a nondeterministic way, and thus, we cannot prove that it improves efficiency in
all cases. However, our strategy can be regarded as a generalization and adap-
tation to the case of general logic programs of a number of efficiency improving
transformation strategies for definite programs presented in the literature, such
as strategies for specializing programs, achieving tail recursion, avoiding interme-
diate data structures, avoiding redundant computations, and reducing nondeter-
minism (see [53] for a survey). Through some examples, we will indeed show that
program efficiency can be improved by applying our unfold/fold transformation
strategy.

12 A. Pettorossi, M. Proietti

The Unfold/Fold Transformation Method.
Given a locally stratified program P and a goal G such that vars(G) = {Xi,
..., Xpn}, our transformation method consists of two steps as follows.

Step 1. We introduce a new n-ary predicate, say g, not occurring in {P, G} and
we derive a conjunction Cls(g, G) of clauses such that P A Cls(g, G) is a locally
stratified program and, for all ground terms t¢4,...,t,,

(1) M(P) = G{X1/t1,..., Xn/tn} it M(PACls(g,G)) Eg(t1,..., tn).
Step 2. From the program P, the conjunction Cls(g,G) of clauses, and a set of
equivalences to be used for rule R9, by applying the unfold/fold transformation
strategy described below, we derive a program T such that, for all ground terms
t1, ..t

(2) M(PACls(g, G)) = glta,... 1) iff M(T) = g(tr.. .. 1)

and thus, the relation (Transf) considered in the Introduction holds.

Clearly, a program T which satisfies (2) is P A Cls(g, G) itself. However, most
often we are not interested in such trivial derivation because, as already men-
tioned, we look for an efficient program T which satisfies (2).

Now let us look at the above two steps of our transformation method in more
detail.

Step 1 is performed by first introducing the clause Ci: g(X1,...,X,) «— G
and then replacing this clause by a conjunction Cls(g, G) of clauses as follows:

for each non-basic negative literal =p(u1,...,u,,) in G such that p depends on
existential variables in P,
(i) we introduce the clause D: new(Y1,...,Ys) < p(u1,...,un), where

vars(p(ug, ..., um)) = {¥1,..., Y%}, and
(ii) we fold clause g(X,...,X,) — G w.r.t. =p(uy,...,uy) using D.
For instance, in Example 2 below, from the initial goal
G: word(W), —derive([s], W)

we introduce the clause: g(W) «— word(W'), —derive([s], W), because the defini-
tion of the predicate derive includes clause 3 which has the existential variables
B and T'. At the end of Step 1, we derive the following two clauses:

16. g(W) «— word(W), —newl(W)
17. newl (W) «— derive([s], W)

Step 1 is motivated by the fact that it is often useful, for reasons of efficiency, to
transform the definitions of the predicates occurring in negative literals, if these
definitions include clauses with existential variables. Indeed, since the unfolding
w.r.t. a negative literal, say —p(uq,...,un), is defined only if the clauses whose
heads unify with p(us,...,u.), have no existential variables, it is desirable to
transform Def™(p, P) A (newl(Y1,...,Ys) < p(ui,...,um)) so to derive a new
definition for the predicate newl whose clauses do not have existential variables.
Then, this new definition of newl can be used for performing unfolding steps

Program Derivation — Rules + Strategies 13

w.r.t. literals of the form —newl(us, ..., u,) and it may also allow more effective
transformations of the clauses where newl occurs.

Step 2 consists in applying the unfold/fold transformation strategy which we
describe below. This strategy constructs n program transformation sequences
Sl ...,8", where for i = 1,...,n—1, the final program of the sequence S°
coincides with the initial program of the sequence S**!'. Each transformation
sequence corresponds to a level which is induced by the construction of the
conjunction Cls(g, G) of clauses. We will define these levels according to the
following notion of level mapping [46].

Definition 1. A level mapping of a program P is a mapping from the set of
predicate symbols occurring in P to the set of natural numbers. Given a level
mapping m, the level of the predicate p is the number assigned to p by m.

Given a program P and a goal GG, by construction there exists a level mapping
of Cls(g, G) such that: (1) the conjunction Cls(g, G) can be partitioned into
K subconjunctions: D!,..., DX such that Cls(g, G) = D' A ... A DX and,
for i« = 1,..., K, the subconjunction D of clauses consists of all clauses in
Cls(g, G) whose head predicates are at level ¢, (2) for i = 1,..., K and for each
clause p(...) « B in D’ the level of each predicate symbol in the goal B is
strictly smaller than the level of p, (3) the predicate g is at the highest level K,
and (4) all predicates of Cls(g, G) which occur in P, are at level 0.

The reader may notice that, according to our definition of Step 1 above, K
is at most 2. However, we have considered the case of an arbitrary value of K,
because this will be appropriate when in Sections 3 and 4 below we consider
program synthesis and program verification, respectively.

For the conmstruction of each transformation sequence S?, for i = 1,...,
n — 1, our unfold/fold transformation strategy uses the following three sub-
sidiary strategies: (i) UNFOLD(P, @), (ii) TAUTOLOGY-REPLACE(Laws, P, @), and
(iii) DEFINE-FOLD(Defs, P,Q A NewDefs).

(i) Given a program P, UNFOLD(P, Q) specifies how to derive a new program
Q@ by performing positive and negative unfolding steps (rules R3 and R4).

(ii) Given a program P and a set Laws of equivalences needed for the appli-
cation of the goal replacement rule, TAUTOLOGY-REPLACE(Laws, P, Q) specifies
how to derive a new program () by applying the tautology, goal replacement,
and equality introduction and elimination rules (rules R8, R9, and R10).

(iii) Given a program P and a conjunction Defs of predicate definitions,
DEFINE-FOLD(Defs, P,Q A NewDefs) specifies how to derive a new program Q A
NewDefs by introducing a new conjunction NewDefs of predicate definitions and
performing folding steps using clauses occurring in Defs A NewDefs (rules R1,
R5, and R6).

The effectiveness of the unfold/fold transformation strategy depends upon
the choice of these subsidiary strategies, and much research, mostly in the case
of definite programs, has been devoted to devise subsidiary strategies which al-
low us to derive very efficient programs [53]|. For instance, the introduction of
new predicate definitions, also called eureka definitions, influences the efficiency

14 A. Pettorossi, M. Proietti

of the derived programs. Various techniques have been proposed for determining
the suitable eureka definitions to be introduced. Here we only want to men-
tion that it is often useful to introduce new predicates whose definition clauses
have bodies which are: (i) instances of atoms, so to perform program special-
ization, (ii) conjunctions of literals that share variables, so to derive programs
that simultaneously perform the computations relative to several literals, and
(iii) disjunctions of goals, so to derive programs with reduced nondeterminism,
because they simultaneously perform the computations relative to several alter-
native goals.

We omit here the detailed description of the UNFOLD, TAUTOLOGY-REPLACE,
and DEFINE-FOLD subsidiary strategies. We will see them in action in the exam-
ples given below. Here is our Unfold/Fold Transformation Strategy.

The Unfold/Fold Transformation Strategy.

Input: (i) a program P, (ii) a conjunction Cls(g, G) of clauses constructed as
indicated at Step 1, and (iii) a set Laws of equivalences for the application of
rule R9. These equivalences are assumed to hold in M (P A Cls(g, G)).

Output: A program T such that, for all ground terms #1, ..., t,,

M(P A Cls(g, G)) b= gltr, ... tn) iff M(T) = g(t1, ..., t,).

Let us partition Cls(g, G) into K subconjunctions: D!, ... DX as indicated in
Step 2 above.

T :=P;

FOR¢=1,...,K DO

We construct a transformation sequence S as follows.

Defs := D*; InDefs := D",

By the definition introduction rule we add the clauses of InDefs to T', thereby
obtaining T'A InDefs.

WHILE InDefs is not the empty conjunction DO

(1) uNFOLD(T A InDefs, T'A U): From program T A InDefs we derive T'A U by
a finite sequence of applications of the positive and negative unfolding rules to
the clauses in InDefs.

(2) TAUTOLOGY-REPLACE(Laws, TA U, TAR): From program T'A U we derive
T A R by a finite sequence of applications of the tautology and goal replacement
rules to the clauses in U, using the equivalences in the set Laws.

(3) DEFINE-FOLD(Defs, T AN R, T A\ F A NewDefs): From program T A R we
derive T A F A NewDefs by: (3.1) a finite sequence of applications of the definition
introduction rule by which we add to T'A R the (possibly empty) conjunction
NewDefs of clauses, followed by (3.ii) a finite sequence of applications of the
folding rule to the clauses in R, using clauses occurring in Defs A NewDefs.
We assume that the definition and folding steps are such that all non-basic
predicates occurring in the body of a clause which has been derived by folding,
are defined in Defs A NewDefs.

T:=TANF; Defs:= Defs N NewDefs; InDefs := NewDefs

Program Derivation — Rules + Strategies 15

END WHILE;

Delete from T the definitions of useless predicates.

END FOR

Delete from T the definitions of the predicates upon which the predicate g does
not depend.

The unfold/fold transformation strategy is correct in the sense that for all ground
terms t1,...,tn, M(P A Cls(g, G)) = g(t1,...,tn) ifft M(T) = g(t1,...,tn), if
each clause used for folding when executing the DEFINE-FOLD subsidiary strategy
is unfolded w.r.t. a positive literal during an execution of the UNFOLD subsidiary
strategy. If this condition is satisfied, then the correctness of our transformation
strategy w.r.t. the perfect model semantics follows from the Correctness Theorem
1 of Section 2.2.

Notice that the unfold/fold transformation strategy may not terminate, be-
cause during the execution of the WHILE loop, InDefs may never become the
empty conjunction.

Notice also that the iterations of our strategy over the various levels from 1 to
K, correspond to the construction of the perfect model of program P A Cls(g, G)
derived at the end of Step 1. This construction is done, so to speak, level by level
moving upwards and starting from the perfect model of the program P whose
predicates are assumed to be at level 0.

Let us now present an example of program derivation using our unfold/fold
transformation method.

Example 2. Complement of a context-free language. Let us consider the follow-
ing program CF for deriving a word of a given context-free language over the
alphabet {a,b}:
1. derive([],[]) < Program CF
2. derive([A|S], [A|W]) « terminal(A), derive(S, W)
3. derive([A|S], W) « nonterminal(A), production(A, B),
append(B, S, T), derive(T, W)
terminal(a) «—
terminal (b) —
nonterminal(s) —
nonterminal(x) —
production(s, [a, x,b]) —
9. production(x,[]) «—
10. production(z, [a, x]) «—
11. production(z, [a, b, x]) —
12. append([], A, A) —
13. append([A|B], C, [A|D]) « append(B,C, D)
14. word([]) <
15. word ([A|W]) « terminal(A), word(W)

The relation derive([s], W) holds iff the word W can be derived from the start
symbol s using the following productions of the grammar defining the given
context-free language (see clauses 8-11):

® N o ok

16 A. Pettorossi, M. Proietti

s—axb T — € T —ax Tz —abx

The terminal symbols are a and b (see clauses 4 and 5), the nonterminal symbols
are s and z (see clauses 6 and 7), the empty word ¢ is represented as the empty
list [], and words in {a,b}* are represented as lists of a’s and b’s.

In general, the relation derive(L, W) holds iff L is a sequence of terminal
or nonterminal symbols from which the word W can be derived by using the
productions.

We would like to derive an efficient program for an initial goal G of the form:
word(W), —derive([s], W), which is true in M (CF) iff W is a word which is not
derived by the given context-free grammar. We perform our program derivation
as follows.

Step 1. We derive the two clauses:

16. g(W) «— word(W), -newl(W)

17. newl(W) « derive([s], W)
as indicated in the description of the Step 1 above. The predicate g is at level 2
and the predicate newl is at level 1. All predicates in program CF are at level
0.
Step 2. We apply our unfold/fold transformation strategy. During the applica-
tion of this strategy we never apply rules R7, R8, R9, and R10. Thus, we use
neither the TAUTOLOGY-REPLACE subsidiary strategy nor the deletion of useless
predicates. We have that K =2, D' = {clause 17}, and D? = {clause 16}.

Lewel 1. Initially program T is CF. We start off by adding clause 17 to T'. Both
Defs and InDefs consist of clause 17 only. We will perform four iterations of
the body of the WHILE loop of our strategy before InDefs becomes the empty
conjunction, and then we exit the WHILE loop. Here we show only the first and
fourth iterations.

First Iteration.
UNFOLD. By unfolding, from clause 17 we get:
18. newl([a|A]) «— derive([x,b], A)

DEFINE-FOLD. We introduce the following clause
19. new2(A) « derive([z,b], A)

and by folding clause 18 using clause 19 we get:
20. newl([a|A]) < new2(A)

which is added to program T'.

At the end of the first iteration T" is made out of the clauses of CF together
with clause 20, Defs consists of clauses 17 and 19, and InDefs consists of clause
19. Since InDefs is not empty, we continue by iterating the execution of the body
of the WHILE loop of our strategy.

During the second and third iteration of the WHILE loop, by the definition
rule we introduce the following clauses:

21. new3(A) «— derive([], A)

Program Derivation — Rules + Strategies 17

22. new4(A) «— derive([z,b], A)
23. new4(A) « derive([b, z,b], A)
24. newb(A) «— derive([], A)

25. newb(A) «— derive([z,b], A)

At the beginning of the fourth iteration InDefs is made out of clauses 24 and 25
only. Here are the details of this fourth iteration which is the last one.

Fourth Iteration.
UNFOLD. By unfolding, from clauses 24 and 25 we get:

26. new5([]) <
27. newb([b|4]) « derive([], A)
28. new5({a|A]) — derive([x,b], A)

29. newb([a|4]) « derive([b, z,b], A)
DEFINE-FOLD. We fold clause 27 using clause 21, and clauses 28 and 29 using
clauses 24 and 25, and we get:

30. newb5([b|A]) «— new3(A)
31. newb([a|A]) «— newd(A)

No new definition is introduced during this fourth iteration. Thus, InDefs is
empty and we exit from the WHILE loop. The transformation strategy terminates
for level 1, and program 7' is made out of CF' together with the following clauses:

20. newl([a|4]) «— new2(A)

32. new2([b|A4]) « new3(A)
33. new2([a|A]) < newd(A)
34. new3([]) «—

35. newd([b|A4]) « new5(A)
36. new4([a|A]) «— newd(A)
26. new5([]) «—

30. newb5([b|A]) «— new3(A)
31. newb([a|A]) «— newd(A)

Level 2. We start off by adding clause 16 to T'. Both Defs and InDefs consist of
clause 16 only. Then we execute the body of the WHILE loop.

First Iteration.
UNFOLD. By positive unfolding from clause 16 we derive:

37 9([]) — —newl([])
38. g([a]4]) «— word(A), -newl(]alA])
39. g([b|4]) «— word(A), —newl([b|A])
By negative unfolding from clauses 37, 38, and 39 we derive:
40. 9([]) —
41. g([a|A]) — word(A), ~new2(A)
42. g([b|A]) < word(A)

DEFINE-FOLD. We introduce the following new definitions:

18 A. Pettorossi, M. Proietti

43. new6(A) — word(A), ~new2(A)
44. newT7(A) — word(A)

and by folding clauses 41 and 42 we derive:

45. g([a]A]) — new6(A)
46. g([b|A]) — newT(A)

Clauses 43 and 44 are added to InDefs. Since InDefs is not empty, we continue
by a new iteration of the body of the WHILE loop and we stop after the fourth
iteration, when InDefs becomes empty. We do not show the second, third, and
fourth iterations. The final program, whose clauses are listed below, is derived by
eliminating all predicate definitions upon which the predicate g does not depend.

10. ¢([) —

45. g([a|A]) — new6(A)
46. g([b|A]) — newT(A)
47. new6([]) <

48. new6
49. new6([b|A]) «— new9(A)
50. new7([]) «

51. new7
52. new’7
93. new8
54. new8([a|A]) «— new8(A)
55. new8([b|A]) <« newl0(A)
56. new9) — newT7(A)
57. new9) — newT7(A)
58. newl0([a|A]) « new8(A)
59. newl0([b|4]) « new9(A)

This final program corresponds to a deterministic finite automaton in the sense
that: (i) each predicate corresponds to a state, (ii) g corresponds to the initial
state, (iii) each predicate p which has a unit clause p([]) <, corresponds to a
final state, and (iv) each clause of the form p([s|A]) < ¢(A) corresponds to a
transition labeled by the symbol s from the state corresponding to p to the state
corresponding to q.

The derivation of the final program performed according to our transforma-
tion strategy, can be viewed as the derivation of a deterministic finite automa-
ton from a general program for parsing a context free language. Obviously, this
derivation has been possible, because the context free grammar encoded by the
production predicate (see clauses 8 11) generates a regular language.

The final program is much more efficient than the initial program which
constructs the complement of a context-free language by performing a nonde-
terministic search of the productions to apply (see clauses 10 and 11). O

Program Derivation — Rules + Strategies 19

3 Program Synthesis via Transformation Rules and
Strategies

In this section we see how one can use for program synthesis the rules and the
strategy for program transformation we have presented in Sections 2.2 and 2.3.
The program synthesis problem can be defined as follows: Given a specification
S, that is, a formula written in a specification language, we want to derive, by
using some derivation rules, a program T in a suitable programming language,
such that T satisfies S.

There are many synthesis methods described in the literature for deriving
programs from specifications and these methods depend on the choice of: (i)
the specification language, (ii) the derivation rules, and (iii) the programming
language.

It has been recognized since the beginning of its development (see, for in-
stance, [11,32,39]), that logic programming is one of the most effective settings
for expressing program synthesis methods, because in logic programming both
specifications and programs are formulas of the same language, i.e., the first or-
der predicate calculus, and moreover, the derivation rules for deriving programs
from specifications, may be chosen to be the inference rules of the first order
predicate calculus itself.

Now we propose a program synthesis method in the case of logic program-
ming. In this case the program synthesis problem can be more specifically defined
as indicated in the Introduction. Given a locally stratified program P and a spec-
ification of the form: g(Xi,...,X,) < ¢, where: (i) g is a new predicate symbol
not occurring in {P, ¢}, and (ii) ¢ is a formula of the first order predicate calcu-

lus such that freevars(p) = {X1,..., X,}, we want to derive a computationally
efficient program T such that, for all ground terms t1,...,t,,
M(P) E o{X1/t1,..., Xn/tn} ff M(T)Eg(t1,...,tn) (Synth)

The derivation rules we counsider for program synthesis are: (i) a variant of the
Lloyd-Topor transformation rules [46], and (ii) the unfold/fold program trans-
formation rules presented in Section 2.2.

Let us begin by presenting the following example of program synthesis. It is
our running example for this section and it will be continued in the Examples 4
and 5 below.

Ezxample 8. Specification of List Mazimum. Let us consider the following List-
Membership program:

1. lst([]) <

2. list([A|As]) < list(As)

3. member(X,[A|As]) — X=A

4. member (X, [A|As]) «— member (X, As)
and = and < are basic predicates denoting, respectively, the equality predicate
and a given total order predicate over the given domain. For brevity, we do not
show the clauses defining these two basic predicates. The maximum M of a list
L of items may be specified by the following formula:

20 A. Pettorossi, M. Proietti

maz(L, M) < (list(L), member(M, L), VX (member(X,L) - X < M)) ()
By our synthesis method we want to derive an efficient program Maz which
defines the predicate maz such that:

M (ListMembership A Maz) = VL, M (max(L, M) < @maz)
where ¢4, denotes the right hand side of formula (&) above. O

In the rest of this section, we illustrate a synthesis method, called the unfold/fold
synthesis method, which we now introduce.

The Unfold/Fold Synthesis Method.

Given a locally stratified program P and a specification formula of the form:
g(X1,...,X,) < ¢, this method consists of two steps as follows.

Step 1. We apply a variant of the Lloyd-Topor transformation [46], and we derive
a conjunction Cls(g,) of clauses such that P A Cls(g,) is a locally stratified
program and, for all ground terms ¢1,...,%,,

(1) M(P) Ee{X1/t1,..., Xn/tn} ff M(PACls(g,¢)) =gt tn)

Step 2. From the program P, the conjunction Cls(g,) of clauses, and a set of
equivalences to be used for rule R9, by applying the unfold/fold transformation
strategy of Section 2.3, we derive a program T such that, for all ground terms
tyenostn,

(2) M(PACls(g,90) Eglts,... tn) it M(T)Eg(t,... tn)
and thus, the above relation (Synth) holds.

As already mentioned, our unfold/fold synthesis method is a generalization
of the two step transformation method presented in the previous Section 2.3,
because here we consider a first order formula ¢, instead of a goal G. Notice
also that, similarly to the transformation method of Section 2.3, the program
P A Cls(g,) itself is a particular program satisfying (2), but usually we have to
discard this trivial solution because we look for an efficient program T satisfying
(2).

We now illustrate the variant of the method proposed by Lloyd and Topor
in [46] which we use for constructing the conjunction of clauses Cls(g,) start-
ing from the given specification formula g(Xi,...,X,) < ¢ according to the
requirements indicated in Step 1 above.

We need to consider a class of formulas, called statements [46], each of which
is of the form: A «— [, where A is an atom and [, called the body of the
statement, is a first order logic formula. We write C[y] to denote a first order
formula where the subformula v occurs as an outermost conjunct, that is, Cly] =
P1INA ... Npr AYANo1A... Ao for some first order formulas py, ..., pr,01,...,0s,
and some r>0 and s>0. We will say that the formula C[y] is transformed into
the formula C[§] when C[§] is obtained from C[y] by replacing the conjunct
by the new conjunct 6.

The LT transformation.

Program Derivation — Rules + Strategies 21

Given a conjunction of statements, perform the following transformations.
(A) Eliminate from the body of every statement the occurrences of logical con-
stants, connectives, and quantifiers other than true, -, A, Vv, and 3.

(B) Repeatedly apply the following rules until a conjunction of clauses is gener-
ated:

(1) A «— C[~true] is deleted.
(2) A — C[-—] is transformed into A «— C[r].

(3) A — C[~(vy Ad)] is transformed into
A — Cl-newp(Y1,..., Ye)] A newp(Y1,...,Yr) — NS
where newp is a new non-basic predicate and {Y7,..., Y3} = freevars(y A §).

(4) A — C[~(y V d)] is transformed into A — C[-y] A A« C[-9].
(5) A — C[-3X ~] is transformed into
A — Cl-newp(Y1,..., Yr)] AN newp(Y1,..., V) —~
where newp is a new non-basic predicate and {Y1,..., Yy} = freevars(3X 7).
(6) A — C[-p(t1,...,tm)] is transformed into
A — Cl-newp(Y1,..., Y)] AN newp(Y1,..., i) < p(t1,...,tm)
where p is a non-basic predicate which depends on existential variables in P,
newp is a new non-basic predicate, and {Y1,..., Yi} = vars(p(t1,...,tm))-
(7) A — C[y V4] is transformed into A — C[y] A A — C[d].

(8) A« C[3X 4] is transformed into A < C[y{X/Y}], where Y does not occur
in A« C[3X~].

Given a locally stratified program P and a specification g(X7,...,X,) < ¢, we
denote by Cls(g,) the conjunction of the clauses derived by applying the LT
transformation to the statement g(Xi,...,X,) < ¢.

Ezample 4. LT transformation of the List Mazimum specification. Let us con-
sider the program ListMembership and the specification formula (@) of Ex-
ample 3. By applying the LT transformation to the statement maz(L, M) «—
list(L), member(M, L), VX (member(X,L) — X < M) we derive the conjunc-
tion Cls(maz, may) consisting of the following two clauses:

5. maz(L, M) < list(L), member(M, L), -newl(L, M)

6. newl(L,M) — member(X,L), - X <M
The program ListMembership A Cls(maz, omas) is a very inefficient, generate-

and-test program: it works by nondeterministically generating a member M of
the list L and then testing whether or not M is the maximum member of L. O

The following result states that the LT transformation is correct w.r.t. the perfect
model semantics [46,55].

22 A. Pettorossi, M. Proietti

Theorem 2. [Correctness of LT Transformation w.r.t. Perfect Models]
Let P be a locally stratified program and g(X1,...,X,) < ¢ be a specification.
If Cls(g,) is obtained from g(X1,...,X,) < ¢ by the LT transformation, then
(i) P A Cls(g,p) is a locally stratified program and (ii), for all ground terms

tyeestn, M(P) E o{X1/t, ..., Xn/ta} iff M(P A Cls(g,0)) = g(ti, ... tn).

Step 2 of our unfold/fold synthesis method makes use, as already said, of the
unfold/fold transformation strategy presented in Section 2.3, starting from pro-
gram P, the conjunction Cls(g, ¢) of clauses, instead of Cls(g, G), and a set of
equivalences to be used for the application of rule R9.

The partition of Cls(g,) into levels can be constructed similarly to the
partition of Cls(g,G) in Section 2.3. Indeed, by construction, there exists a
level mapping of Cls(g,) such that: (1) Cls(g,¢) can be partitioned into K
subconjunctions D!,..., DX such that Cls(g,) = D' A ... A DX and for
i = 1,..., K, the subconjunction D? consists of all clauses in Cls(g, @) whose
head predicates are at level ¢, (2) for i = 1,..., K and for each clause p(...) — B
in D? the level of every predicate symbol in the goal B is strictly smaller than
the level of p, (3) the predicate g is at the highest level K, and (4) all predicates
of Cls(g,¢) which occur in P, are at level 0.

The reader may notice that for all K > 0 there exists a formula ¥ and a
predicate g such that K is the highest value of the level mapping of Cls(g,).

Ezxample 5. Synthesis of the List Mazimum program. Let us consider again the

program ListMembership and the formula @ of Example 3. Let us also consider

the conjunction Cls(maz, pmas) consisting of clauses 5 and 6 of Example 4 which

define the predicates maz and newl. We may choose the level mapping so that

the levels of list, member, <, = are all 0, the level of newl is 1, and the level of

maz is 2. Thus, the highest level K is 2, D' = {clause 6}, and D? = {clause 5}.
We apply our unfold/fold transformation strategy as follows.

Level 1. Initially program T is ListMembership. We start off by adding clause 6
to T'. Both Defs and InDefs consist of clause 6 only. Then we execute the body
of the WHILE loop as follows.

UNFOLD. We unfold clause 6 w.r.t. member(X, L) and we get:
7. newl([A|As],M) — X=A, - X<M
8. newl([A|As], M) — member(X, As), "X <M
TAUTOLOGY-REPLACE. From clause 7, by applying the goal replacement rule
(using the equivalence VA, M (3X (X =A,~-X < M) — -A<M)) we derive:
9. newl([A|As], M) — A<M
DEFINE-FOLD. By folding clause 8 using clause 6 we derive the clause:
10. new1([A|As], M) — newl(As, M)

No new definition has been introduced. Thus, InDefs is empty and the transfor-
mation strategy terminates for level 1. At this point program 7' is made out of
clauses 1, 2, 3, 4, 9, and 10.

Program Derivation — Rules + Strategies 23

Level 2. We start off the transformation strategy for this level, by adding clause
5 to T. Both Defs and InDefs consist of clause 5 only. Then we iterate twice the
body of the WHILE loop as follows.

First Iteration.
UNFOLD. By some unfolding steps, from clause 5 in InDefs we derive:
11. maz([A|As], M) « list(As), M=A, A<M, -newl(As, M)
12. maz([A]As], M) « list(As), member(M, As), A<M, -newl(As, M)

TAUTOLOGY-REPLACE. By applying the goal replacement rule, from clause 11
we derive:

13. maz([A|As], M) « list(As), M=A, -newl(As, M)

DEFINE-FOLD. The definition of predicate maz, consisting of clauses 12 and 13 is
nondeterministic, because an atom of the form maz(l, M), where [is a ground,
nonempty list, is unifiable with the head of both clauses. We may derive a more
efficient, deterministic definition for maz by introducing the new predicate new2
as follows:

14. new2(A, As, M) «— list(As), M=A, -newl(As, M)

15. new2(A, As, M) « list(As), member(M, As), A<M, ~newl(As, M)

and then folding clauses 12 and 13 using clauses 14 and 15, as follows:
16. maz([A|As], M) «— new2(A, As, M)

Now, (i) T consists of clauses 1, 2, 3, 4, 9, 10, and 16, (ii) Defs consists of clauses
6, 14, and 15, and (iii) InDefs consists of clauses 14 and 15 only.

Second Iteration.
UNFOLD. By positive and negative unfolding, from clauses 14 and 15 in InDefs
we get:

17. new2(A,[],M) — M=A

18. new2(A, [B|As], M) « list(As), M=A, B<M, -newl(As, M)

19. new2(A, [B|As], M) « list(As), M=B, A<M, B<M, —-newl(As, M)
20. new2(A, [B|As], M) « list(As), member(M, As), A<M, B<M,

—newl(As, M)

TAUTOLOGY-REPLACE. By applying the basic goal replacement rule to clauses
18, 19, and 20, and in particular, by using the equivalence M (ListMembership) =
true < B< AV A< B (recall that < is a total order), we get:

18.1. new2(A, [B|As], M) «— B<A, list(As), M= A, -newl(As, M)
19.1. new2(A, [B|As], M) «— A<B, list(As), M =B, -newl(As, M)

20.1. new2(A, [B|As], M) «— B<A, list(As), member(M, As), A<M,
ﬁnewl(As M)

20.2. new2(A, [B|As], M) — A< B, list(As),
—mewl(As,M)

member(M, As), B< M,

DEFINE-FOLD. Now we fold clauses 18.1 and 20.1 using clauses 14 and 15, and
we also fold clauses 19.1 and 20.2 using clauses 14 and 15. We obtain:

24 A. Pettorossi, M. Proietti

21. new2(A, [B|As], M) — B<A, new2(A, As, M)
22. new2(A, [B|As], M) — A< B, new2(B, As, M)

No new definition has been introduced during the second iteration. Thus, InDefs
is empty and we terminate our unfold/fold transformation strategy also for the
highest level 2. We finally eliminate all predicate definitions on which maz does
not depend, and we derive our final program:

16. maz([A|As], M) «— new2(A, As, M)

17. new2(A,[],M) — M=A

21. new2(A, [B|As], M) — B<A, new2(A, As, M)

22. new2(A, [B|As], M) — A< B, new2(B, As, M)

This final program deterministically computes the answers to queries of the form:
max (I, M) where [is a ground list. Indeed, while traversing the given list [, the
first argument of the predicate new2 holds the maximal item encountered so
far (see clauses 21 and 22) and, at the end of the traversal, the value of this
argument is returned as an answer (see clause 17). O

4 Program Verification via Transformation Rules and
Strategies

In this section we show that the transformation rules and the strategy we have
presented in Sections 2.2 and 2.3, can also be used for program verification. In
particular, we can prove a property ¢ of a given locally stratified logic program
P by applying the unfold/fold synthesis method of Section 3. For program ver-
ification purposes, instead of starting from a specification formula where free
variables may occur, the unfold/fold synthesis method is applied starting from
the closed specification formula g < ¢, where freevars(¢) = () and g is a predi-
cate symbol of arity 0.

Our method for verifying whether or not ¢ holds in the perfect model of the
program P is specified as follows.

The Unfold/Fold Verification Method.

Given a locally stratified program P and a closed formula ¢, we can check
whether or not M (P) | ¢ holds by performing the following two steps.

Step 1. We introduce a new predicate symbol g of arity 0, not occurring in { P, ¢}

and, by using the LT transformation we transform the statement g < ¢, into a
conjunction Cls(g, ¢) of clauses, such that M (P) |= ¢ ifft M(P A Cls(g,¢)) = g.

Step 2. From program P, the conjunction Cls(g,) of clauses, and a set of
equivalences to be used for rule R9, by applying the unfold/fold transformation
strategy of Section 2.3, we derive a program 7T such that

M(PACls(g,0) Eg i M(T)Eg

Thus, if T is the program consisting of the clause g « only, then M (P) = ¢,
and if T is the empty program, then M (P) b~ ¢.

Program Derivation — Rules + Strategies 25

Let us now see an example of program verification.

Ezxample 6. The Yale Shooting Problem. This problem has been often presented
in the literature on temporal and nonmonotonic reasoning. It can be formulated
as follows. Let us consider a person and a gun and three possible events: (el) a
load event in which the gun is loaded, (e2) a shoot event in which the gun shoots,
and (e3) a wait event in which nothing happens. These events are represented
by clauses 6, 7, and 8 of the program YSP below. A situation is (the result of)
a sequence of events. This sequence is represented as a list which, so to speak,
grows to the left as time progresses. In any situation, at least one of the following
three facts holds: (f1) the person is alive, (f2) the person is dead, and (3) the
gun is loaded. These facts are represented by clauses 9, 10, and 11 below. We
have the following statements:

(s1) In the initial situation, represented by the empty list [], the person is alive.
(s2) After a load event the gun is loaded.

(s3) If the gun is loaded, then after a shoot event the person is dead.

(s4) If the gun is loaded, then it is abnormal that after a shoot event the person
is alive.

(s5) If a fact F' holds in a situation S and it is not abnormal that F' holds after
the event E following S, then F' holds also after the event E. This statement is
often called the inertia axiom.

The following locally stratified program, called YSP, formalizes the above
statements, and in particular, clauses 1-5 correspond to statements (s1)—(s5),
respectively. Our YSP program is similar to the one of Apt and Bezem [1].

holds (alive, []) — Program YSP
holds(loaded, [load|S]) —
holds(dead, [shoot|S]) < holds(loaded, S)
ab(alive, shoot, S) < holds(loaded, S)
holds(F, [E|S]) « fact(F), event(E), holds(F,S), —~ab(F, E, S)
event(load) —
event(shoot) «—
event(wait) «—

9. fact(alive) «—

10. fact(dead) «—

11. fact(loaded) «—

12. append([],Y,Y) «

13. append([A|X],Y, [A|Z]) < append(X,Y, Z)
Apt and Bezem showed that M (YSP) | holds(dead, [shoot, wait, load]) can be
derived in a straightforward way by applying SLDNF-resolution. Let us now
consider the following stronger property o:
V.S (holds(dead, S)
— 351,52, .53, 54 (append(S1, [shoot|S2], 54), append(S4, [load|S3],S)))

meaning that the person may be dead in the current situation only if a load
event occurred in the past and that event was followed, maybe not immediately,

© N ook D=

26 A. Pettorossi, M. Proietti

by a shoot event. We would like to prove that M(YSP) E o. Our two step
verification method works as follows.

Step 1. We apply the LT transformation starting from the statement g « o and
we derive Cls(g, o) which consists of the following three clauses:

14. g «— —newl
15. newl « holds(dead, S), ~new2(S)
16. new2(S) < append(S1,[shoot|S2],S4), append (54, [load|S3], S)

The level of new?2 is 1, the level of newl is 2, and the level of g is 3. The level
of all other predicates is 0.

Step 2. We now apply the unfold/fold transformation strategy of Section 2.3,
starting from the program YSP, the conjunction of clauses Cls(g,0), and an
empty set of equivalences (rule R9 will not be applied). We have that K =3,
D' = {clause 16}, D? = {clause 15}, and D?® = {clause 14}.

Level 1. Initially program T is YSP. We start off by applying the definition
introduction rule and adding clause 16 to T. Both Defs and InDefs consist of
clause 16 only. Then we iterate the execution of the body of the WHILE loop of
the unfold/fold transformation strategy as follows.

First Iteration.
UNFOLD. By unfolding, from clause 16 we derive:

17. new?2([shoot|S]) «— append(S4, [load|S3], S)
18. new2([E|S]) < append(S1, [shoot|S2], S4), append(S4,[load|S3], S)

DEFINE-FOLD. We introduce the following new predicate definition:
19. new3(A) «— append(B, [load|C], A)
and we fold clauses 17 and 18 using clauses 19 and 16, respectively:

20. new?2([shoot|S]) « new3(S)
21. new2([E|S]) <« new2(S)

At this point (i) program T consists of clauses 20 and 21 together with clauses
1-13, (ii) Defs consists of clauses 16 and 19, and (iii) InDefs consists of clause
19.

Second Iteration.
UNFOLD. By unfolding clause 19 we derive:

22. new3([load|S]) —
23. new3([E|S]) < append (5S4, [load|S3], S)

DEFINE-FOLD. By folding clause 23 using clause 19 we derive:

22. new3([load|S]) —
24. new3([E|S]) <« new3(S)

We need not introduce any new clause for folding. Thus, InDefs is empty and
the WHILE loop terminates for level 1. At this point program T consists of the
following clauses:

20. new2([shoot|S]) «— new3(S)

Program Derivation — Rules + Strategies 27

21. new2([E|S]) « new2(S)
22. new3([load|S]) —
24. new3([E|S]) <« new3(S)

together with clauses 1 13.

Level 2. We apply the definition introduction rule and we add clause 15 to T.
Both Defs and InDefs consist of clause 15 only. Then we iterate the execution
of the body of the WHILE loop as follows.

First Iteration.
UNFOLD. By unfolding, from clause 15 we derive:

25. newl «— holds(loaded, S), ~new3(S), ~new2(S)
26. newl « holds(dead, S), =new2(S)

27. newl «— holds(dead, S), —new3(S), ~new2(S)
28. newl « holds(dead, S), —new2(S)

TAUTOLOGY-REPLACE. Clauses 27 and 28 are subsumed by clause 26 and they
can be deleted.

DEFINE-FOLD. We introduce the following new predicate:
29. new4 «— holds(loaded, S), ~new3(S), ~new2(S)
and we fold clauses 25 and 28 using clauses 29 and 15, respectively. We get:

30. newl «+— new4
31. newl <+ newl

Now (i) T is made out of clauses 1 13, 20 24, and 30 31, (ii) Defs consists of
clauses 15 and 29, and (iii) InDefs consists of clause 29. Since InDefs is not the
empty conjunction, we proceed by a second execution of the body of the WHILE
loop of the unfold/fold transformation strategy.

Second Iteration.
UNFOLD. By unfolding, from clause 29 we derive:

32. newd — holds(loaded, S), —new3(S), —new3(S), ~new2(S)
33. newd « holds(loaded, S), —new3(S), -new2(S)

TAUTOLOGY-REPLACE. Clause 32 is deleted because it is subsumed by clause 33.
DEFINE-FOLD. We fold clause 32 using clause 29, and we derive:

34. newd «— newd

No new clause is added by the definition introduction rule. Thus, InDefs is the
empty conjunction and the WHILE loop terminates for level 2. Now, predicates
newl and new4 are useless and their definitions, that is, clauses 30, 31, and 34,
are deleted.

Thus, at the end of the transformation strategy for level 2, the derived pro-
gram 1" consists of clauses 1 13 and 20 24.

Level 8. We add clause 14 to program T'. By unfolding clause 14 we derive:
35. g «—

28 A. Pettorossi, M. Proietti

Our transformation strategy terminates by applying the definition elimination
rule and deleting all definitions of predicates upon which g does not depend.
Thus our final program consists of clause 35 only, and we have proved that
M(YSP A Cls(g,0)) E g and thus, M(YSP) E o.

The reader may check that g cannot be derived from YSP A Cls(g,0) using
SLDNF-resolution, because an SLDNF-refutation of g would require the con-
struction of a finitely failed SLDNF-tree for new1 and no such a finite tree exists.
Indeed, g may be derived by using SLS-resolution, that is, resolution augmented
with the negation as (finite or infinite) failure rule. However, the applicability
conditions of the negation as infinite failure rule are, in general, not decidable
and even not semi-decidable. On the contrary, in our approach we use a set
of transformation rules which have decidable applicability conditions, assuming
that the equivalence of basic goals is decidable (see the goal replacement rule
R9). a

5 Related Work

The idea of program development as a deductive activity in a formal theory
has been very fertile in the field of programming methodologies. Early results
on this topic are reported, for instance, in [10,11,12,21,32,39,49]. Here we would
like to mention some of the contributions to this field, focusing on logic program
transformation. In the pioneering work by Hogger [32] program transformation
was intended as a particular form of deduction in first order logic. Later, the ap-
proach based on the unfold/fold transformations proposed by Burstall and Dar-
lington [10] for functional languages, was adapted to logic languages by Tamaki
and Sato [74]. These authors proposed a set of rules for transforming definite
logic programs and proved their correctness w.r.t. the least Herbrand model se-
mantics. Since then, several researchers have investigated various aspects of the
unfold/fold transformation approach. They also considered its extension to deal
with negation [6,29,48,63,70,71], disjunctive programs [30], constraints [4,22],
and concurrency [23].

In this chapter we have essentially followed the approach of Tamaki and Sato
where the correctness of the transformations is ensured by conditions on the
sequence of the transformation rules which are applied during program derivation
[74]. The main novelty w.r.t. other papers which follow a similar approach and
deal with general logic programs (see, for instance, [63,70,71]) is that our set
of rules includes the negative unfolding (R4), the negative folding (R6), and
the basic goal replacement rules (R9) which are very useful for the program
derivation examples we have presented.

Together with the formalization and the study of the properties of the trans-
formation rules, various strategies for the application of these rules have been
considered in the literature. Among others, for case of logic programs we recall:
(i) the strategies for deriving tail recursive programs [3,17], (ii) the promotion
strategy for reducing nondeterminism within generate-and-test programs [72],

Program Derivation — Rules + Strategies 29

(iii) the strategy for eliminating unnecessary variables and thus, avoiding mul-
tiple traversals and intermediate data structures [58], and (iv) the strategy for
reducing nondeterminism during program specialization [56].

The general unfold/fold transformation strategy we have presented in Sec-
tion 2.3, extends the above mentioned strategies to the case of programs with
locally stratified negation. The interesting fact to notice is that the same general
strategy can be refined in different ways so to realize not only program trans-
formation, but also program synthesis and program verification. However, in
order to be effective in practice, our general strategy requires some information
concerning specific computation domains and classes of programs. For instance,
information on the computation domains is needed for the application of the
goal replacement rule. The merit of a general purpose transformation strategy
rests upon the fact that it provides a uniform guideline for performing program
derivation in different computation domains.

The work on unfold/fold program transformation is tightly related to other
transformation techniques. In particular, partial evaluation (also called partial
deduction) and other program specialization techniques & la Lloyd-Shepherdson
[16,27,44,47] can be rephrased in terms of a subset of the unfold /fold rules [56,67].
Compiling control 7] is another transformation technique which is related to the
rules and strategies approach. Compiling control is based on the idea expressed
by Kowalski’s motto: Algorithm — Logic + Control, and it works as follows.
Let us consider a logic program P; and let us assume that it is evaluated by
using a given control strategy C;. For instance, C; may be the Prolog left-to-
right, depth-first control strategy. However, for efficiency reasons we may want
to use a different control strategy, say C2. Compiling control works by deriving
from program P; a new program P, such that P, with control strategy C; is
operationally equivalent to P; with control strategy Cs. Although the compiling
control technique was not originally presented following the rules and strategies
approach, the transformation of program P; into program P,, may often be
performed by applying a suitable unfold/fold strategy (see, for instance, [53]).

Moreover, during the last two decades there has been a fruitful interaction be-
tween unfold/fold program transformation and program synthesis. To illustrate
this point, let us recall here the program synthesis methods based on derivation
rules, such as the one proposed by Hogger [32] and, along similar lines, those
reported in [34,35,42,68,69] which make use of derivation rules similar to the
unfold/fold rules. In this regard, the specific contribution of our chapter con-
sists in providing a method for program synthesis which ensures the correctness
w.r.t. the perfect model semantics.

Also related to our rules and strategies approach, is the proofs-as-programs
approach (see, for instance, [8,25] for its presentation in the case of logic pro-
gramming) which works by extracting a program from a constructive proof of a
specification formula. Thus, in the proofs-as-programs approach, programs syn-
thesis is regarded as a theorem proving activity, whereas by using our unfold /fold
method we view theorem proving as a particular case of program synthesis.

30 A. Pettorossi, M. Proietti

Our unfold /fold verification method is related to other methods for verifying
program properties. The existence of a relation between program transformation
and program verification was pointed out by Burstall and Darlington [10] and
then formalized by Kott [36] and Courcelle [14] in the case of applicative program
schemata. The essential idea is that, since the transformation rules preserve a
given semantics, the transformation of a program P; into a program P, is also a
proof of the equivalence of P; and P, w.r.t. that semantics. In [54] this idea has
also been developed in the case of definite logic programs. The method presented
in that paper, called unfold/fold proof method, allows us to prove the equivalence
of conjunctions of atoms w.r.t. the least Herbrand model of a program. In [64] the
unfold/fold proof method has been extended by using a more powerful folding
rule and in [65,66] the extended unfold/fold proof method has been applied for
the proof of properties of parametrized finite state concurrent systems.

A further extension of the unfold/fold proof method has been presented in
[55]. By using the proof method described in [55] one can prove properties of the
form M(P) = ¢ where P is a logic programs with locally stratified negation,
M (P) is its perfect model, and ¢ is any first order formula. In the present chapter
we basically followed the presentation of [55].

In recent developments (see, for instance, [24]), it has been shown that the
unfold/fold proof method can be used to perform model checking [13] of finite
or infinite state concurrent systems. To see how this can be done, let us recall
that in the model checking approach one formalizes the problem of verifying
temporal properties of finite or infinite state systems as the problem of verifying
the satisfaction relation T, s =crp F, where (i) T is a state transition system
(regarded as a Kripke structure), (ii) s is the initial state of the system, and (iii)
F is a formula of the CTL branching time temporal logic. In [24] the problem of
verifying T, s Ecrr, F is reduced to that of verifying M (Pr) = sat(s, F'), where
M (Pr) is the perfect model of a locally stratified program Pr defining a predicate
sat which encodes the satisfaction relation = cry. Thus, the unfold/fold proof
method described in Section 4 can be used for performing finite or infinite state
model checking starting from the program Pr and the atomic formula sat(s, F).
An essential point indicated in [24] is that, in order to deal with infinite sets of
states, it is useful to consider logic programs extended with constraints.

Finally, we would like to mention that the unfold /fold proof method falls into
the wide category of methods that use (constraint) logic programming for soft-
ware verification. In the specific area of the verification of concurrent systems,
we may briefly recall the following ones. (i) The method described in [45] uses
partial deduction and abstract interpretation [15] of logic programs for verifying
safety properties of infinite state systems. (ii) The method presented in [26] uses
logic programs with linear arithmetic constraints to encode Petri nets. The least
fixpoint of one such program corresponds to the reachability set of the Petri net.
This method works by first applying some program transformations (different
from the unfold/fold ones) to compute a Presburger formula which is a symbolic
representation of the least fixpoint of the program, and then proving that a
given safety property holds by proving that it is implied by that Presburger for-

Program Derivation = Rules + Strategies 31

mula. (iii) Similarly to [24,26], also the method presented in [18] uses constraint
logic programs to represent infinite state systems. This method can be used to
verify CTL properties of these systems by computing approximations of least
and greatest fixpoints via abstract interpretation. (iv) The methods in [50] and
[61] make use of logic programs (with and without constraints, respectively) to
represent finite state systems. These two methods employ tabulation techniques
[76] to compute fixpoints and they may be used for verifying CTL properties
and modal p-calculus [40,57] properties, respectively.

It is difficult to make a precise connection between the unfold/fold proof
method and the verification methods listed above, because of the different for-
malizations and techniques which are used. However, we would like to notice that
all verification methods we mentioned above, work by finding, in a more or less
explicit way, properties which are invariants of the behaviour of a system, and
within the unfold/fold proof method, the discovery of invariants is performed
by the introduction of suitable predicate definitions which allow folding. This
introduction of new definitions is the most creative and least mechanizable step
during program transformation.

6 Conclusions

The main objective of this chapter has been to illustrate the power of the rules
and strategies approach to the development of programs. This approach is par-
ticularly appealing in the case of logic programming and it allows us to separate
the correctness requirement from the efficiency requirement during program de-
velopment. This separation is expressed by our motto: Program Derivation =
Rules + Strategies. It can be viewed as a variant of Kowalski’s motto for program
execution: Algorithm — Logic + Control.

More specifically, we have considered the unfold/fold transformation rules
for locally stratified logic programs and we have outlined a strategy for the ap-
plication of these transformation rules. As a novel contribution of this chapter
we have proposed a general, two step method for performing program trans-
formation, program synthesis, and program verification, and we have presented
a powerful unfold/fold transformation strategy which allows one to perform:
(1) elimination of multiple visits of data structures, program specialization, and
other efficiency improving program transformations, (2) program synthesis from
first order specifications, and (3) program verification.

The main advantage of developing several techniques for program deriva-
tion in a unified framework, is that we may reuse similar techniques in different
contexts. For instance, the program transformation strategy for eliminating un-
necessary variables [58] may be reused as a quantifier elimination technique for
theorem proving [55]. Moreover, our unified view of program derivation allows
us to design a general tool which may be used for machine assisted program
transformation, synthesis, and verification.

It should be pointed out that, besides the many appealing features illustrated
in this chapter, the transformational approach to program derivation has also

32 A. Pettorossi, M. Proietti

some limitations. Indeed, the problems tackled by program transformation have
inherent theoretical limitations due to well-known undecidability results. Thus,
in general, program derivation cannot be fully mechanical.

Now we mention some approaches by which we can face this limitation and
provide techniques which are effective in practice.

(1) We may design interactive program transformation systems, so that many
ingenious steps can be performed under the user’s guidance, while the most te-
dious and routine tasks are automatically performed by the system. For instance,
KIDS [73] is a successful representative of such interactive systems for program
derivation. An important line of further development of interactive transfor-
mation systems, is the design of appropriate user interfaces and programmable
program transformers, which allow the user to interact with the system at a very
high level. In particular, in such systems the user should be able to program his
own rules and strategies. There are some achievements in this direction in the
related fields of term rewriting, program synthesis, and theorem proving. For
instance, we recall (i) the ELAN system [5] where the user may specify his own
strategy for applying rewriting rules, (ii) the Oyster/Clam system [9] where one
can make a plan to construct a proof or synthesize a program, and (iii) the
Isabelle generic theorem prover [51], where it is possible to specify customized
deductive systems.

(2) We may consider restricted sets of transformation rules or restricted
classes of programs, where certain transformation strategies can be performed
in a fully mechanical, algorithmic fashion. For logic programs, a number of al-
gorithmic transformation strategies have been developed, such as the already
mentioned techniques for partial deduction, eliminating unnecessary variables,
and reducing nondeterminism.

(3) We may enhance the program transformation methodology by using tech-
niques for global programs analysis, such as abstract interpretation. This ap-
proach may remedy to the fact that the transformation rules are designed to
make small, local changes of program code, but for their effective application
sometimes we need information on the operational or denotational semantics of
the whole program. Various techniques which combine program transformation
and abstract interpretation have been developed, especially for the task of pro-
gram specialization (see, for instance, [28,43,60] in the case of logic programs),
but also for the verification of concurrent systems (see [45]). We believe that this
line of research is very promising.

Finally, we would like to notice that the program derivation techniques we
have described in this chapter are essentially oriented to the development of
programs in-the-small, that is, within a single software module. We believe that
one of the main challenges for logic program development is the extension of
these techniques for program transformation, synthesis, and verification, to deal
with programs in-the-large, that is, with many software modules. Some results
in this direction are presented in the chapter by Lau and Ornaghi [41] where
software engineering methodologies for developing logic programs in-the-large
are proposed.

Program Derivation = Rules + Strategies 33

Acknowledgments

We would like to thank Antonis Kakas and Fariba Sadri for their kind invitation
to contribute to this book in honor of Prof. Robert Kowalski. Our derivation
examples were worked out by using the MAP transformation system mostly
developed by Sophie Renault. We also thank the anonymous referees for their
constructive comments.

References

1.

10.

11.

12.

13.
14.

K. R. Apt and M. Bezem. Acyclic programs. In D.H.D. Warren and P. Szeredi,
editors, Proceedings of the 7th International Conference on Logic Programming,
Jerusalem, Israel, pages 617 633. MIT Press, 1990.

K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19, 20:9 71, 1994.

N. Azibi. TREQUASI: Un systéme pour la transformation automatique de pro-
grammes Prolog récursifs en quasi-itératifs. PhD thesis, Université de Paris-Sud,
Centre d’Orsay, France, 1987.

N. Bensaou and I. Guessarian. Transforming constraint logic programs. Theoretical
Computer Science, 206:81 125, 1998.

P. Borovansky, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting with strate-
gies in ELAN: A functional semantics. International Journal of Foundations of
Computer Science, 12(1):69-95, 2001.

A. Bossi, N. Cocco, and S. Etalle. Transforming normal programs by replacement.
In A. Pettorossi, editor, Proceedings 3rd International Workshop on Meta-Pro-
gramming in Logic, Meta ’92, Uppsala, Sweden, Lecture Notes in Computer Science
649, pages 265—279, Berlin, 1992. Springer-Verlag.

. M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling control. Journal of

Logic Programming, 6:135 162, 1989.

A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logic programs from induc-
tive proofs. In J. W. Lloyd, editor, Computational Logic, Symposium Proceedings,
Brussels, November 1990, pages 135-149, Berlin, 1990. Springer-Verlag.

A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.
In M. E. Stickel, editor, 10th International Conference on Automated Deduction,
Kaiserslautern, Germany, Lecture Notes in Computer Science, Vol. 449, pages
647-648. Springer, 1990.

R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44 67, January 1977.

K. L. Clark and S. Sickel. Predicate logic: A calculus for deriving programs. In Pro-
ceedings 5th International Joint Conference on Artificial Intelligence, Cambridge,
Massachusetts, USA, pages 419-420, 1977.

K. L. Clark and S-A. Tirnlund. A first order theory of data and programs. In
Proceedings Information Processing 77, pages 939 944. North-Holland, 1977.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

B. Courcelle. Equivalences and transformations of regular systems — applications
to recursive program schemes and grammars. Theoretical Computer Science, 42:1
122, 1986.

34

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Pettorossi, M. Proietti

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In Proceedings
4th ACM-SIGPLAN Symposium on Principles of Programming Languages (POPL
17), pages 238-252. ACM Press, 1977.

D. De Schreye, R. Gliick, J. Jgrgensen, M. Leuschel, B. Martens, and M. H.
Sgrensen. Conjunctive partial deduction: Foundations, control, algorithms, and
experiments. Journal of Logic Programming, 41(2-3):231-277, 1999.

S. K. Debray. Optimizing almost-tail-recursive Prolog programs. In Proceedings
IFIP International Conference on Functional Programming Languages and Com-
puter Architecture, Nancy, France, Lecture Notes in Computer Science 201, pages
204-219. Springer-Verlag, 1985.

G. Delzanno and A. Podelski. Model checking in CLP. In R. Cleaveland, editor,
5th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), Lecture Notes in Computer Science 1579, pages
223 239. Springer-Verlag, 1999.

Y. Deville. Logic Programming: Systematic Program Development. Addison-
Wesley, 1990.

Y. Deville and K.-K. Lau. Logic program synthesis. Journal of Logic Programming,
19, 20:321-350, 1994.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewod Cliffs, N.J.,
1976.

S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101 146, 1996.

S. Etalle, M. Gabbrielli, and M. C. Meo. Unfold/fold transformations of CCP
programs. In D. Sangiorgi and R. de Simone, editors, Proceedings of the Interna-
tional Conference on Concurrency Theory, Concur98, Lecture Notes in Computer
Science 1466, pages 348 363, 1998.

F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infi-
nite state systems by specializing constraint logic programs. In Proceedings of
the ACM Sigplan Workshop on Verification and Computational Logic VCL’01,
Florence (Italy), Technical Report DSSE-TR-2001-3, pages 85-96. University of
Southampton, UK, 2001.

L. Fribourg. Extracting logic programs from proofs that use extended Prolog
execution and induction. In D. H. D. Warren and P. Szeredi, editors, Proceedings
Seventh International Conference on Logic Programming, Jerusalem, Israel, June
18-20, 1990, pages 685 699. The MIT Press, 1990.

L. Fribourg and H. Olsén. A decompositional approach for computing least fixed-
points of Datalog programs with Z-counters. Constraints, 2(3/4):305 335, 1997.
J. P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program
Manipulation, PEPM 93, Copenhagen, Denmark, pages 88 98. ACM Press, 1993.
J. P. Gallagher and J. C. Peralta. Using regular approximations for generalisation
during partial evalution. In Proceedings of the 2000 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’00),
Boston, Massachusetts, USA, January 22-23, 2000., pages 44-51. ACM Press,
November 1999.

P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations of logic pro-
grams. In J.-L. Lassez and G. Plotkin, editors, Computational Logic, Essays in
Honor of Alan Robinson, pages 565—583. MIT, 1991.

M. Gergatsoulis. Unfold/fold transformations for disjunctive logic programs. In-
formation Processing Letters, 62:23—29, 1997.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Program Derivation = Rules + Strategies 35

C.A.R. Hoare. An axiomatic basis for computer programming. CACM, 12(10):576—
580, 583, October 1969.

C. J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372-392,
1981.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

T. Kanamori and K. Horiuchi. Construction of logic programs based on generalized
unfold/fold rules. In Proceedings of the Fourth International Conference on Logic
Programming, pages 744 768. The MIT Press, 1987.

T. Kawamura. Logic program synthesis from first-order specifications. Theoretical
Computer Science, 122:69 96, 1994.

L. Kott. Unfold/fold program transformation. In M. Nivat and J.C. Reynolds,
editors, Algebraic Methods in Semantics, pages 411-434. Cambridge University
Press, 1985.

R. A. Kowalski. Predicate logic as a programming language. In Proceedings IFIP
74, pages 569-574. North-Holland, 1974.

R. A. Kowalski. Algorithm = Logic + Control. Communications of the ACM,
22(7):424-436, 1979.

R. A. Kowalski. Logic for Problem Solving. North Holland, 1979.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354, 1983.

K.-K. Lau and M. Ornaghi. Logic for component-based software development.
In A. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and
Beyond (Essays in honour of Bob Kowalski, Part I), Lecture Notes in Computer
Science 2407, pages 347 373. Springer, 2002.

K.-K. Lau and S.D. Prestwich. Top-down synthesis of recursive logic procedures
from first-order logic specifications. In D.H.D. Warren and P. Szeredi, editors,
Proceedings of the Seventh International Conference on Logic Programming (ICLP
’90), pages 667 684. MIT Press, 1990.

M. Leuschel. Program specialisation and abstract interpretation reconciled. In
J. Jaffar, editor, Proceedings of the Joint International Conference and Symposium
on Logic Programming, Manchester, UK, 15-19 June 1998., pages 220-234. The
MIT Press, 1998.

M. Leuschel, B. Martens, and D. de Schreye. Some achievements and prospects in
partial deduction. ACM Computing Surveys, 30 (Electronic Section)(3es):4, 1998.
M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialization. In A. Bossi, editor, Proceedings of LOPSTR
’99, Venice, Italy, Lecture Notes in Computer Science 1817, pages 63 82. Springer,
1999.

J. W. Lloyd. Foundations of Logic Programmaing. Springer-Verlag, Berlin, 1987.
Second Edition.

J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11:217-242, 1991.

M. J. Maher. A transformation system for deductive database modules with perfect
model semantics. Theoretical Computer Science, 110:377-403, 1993.

Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Toplas, 2:90-121, 1980.

U. Nilsson and J. Liibcke. Constraint logic programming for local and symbolic
model-checking. In J. W. Lloyd et al., editor, First International Conference on
Computational Logic, CL 2000, London, UK, 24-28 July, 2000, Lecture Notes in
Artificial Intelligence 1861, pages 384-398. Springer-Verlag, 2000.

36

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

A. Pettorossi, M. Proietti

L. C. Paulson. The foundation of a generic theorem prover. J. Automated Reason-
ing, 5:363-397, 1989.

A. Pettorossi and M. Proietti. Rules and strategies for transforming functional and
logic programs. ACM Computing Surveys, 28(2):360-414, 1996.

A. Pettorossi and M. Proietti. Transformation of logic programs. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelli-
gence and Logic Programming, volume 5, pages 697-787. Oxford University Press,
1998.

A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs
using unfold/fold proofs. Journal of Logic Programming, 41(2&3):197-230, 1999.

A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold transfor-
mations. In J. W. Lloyd, editor, First International Conference on Computational
Logic, CL 2000, London, UK, 24-28 July, 2000, Lecture Notes in Artificial Intel-
ligence 1861, pages 613—628. Springer, 2000.

A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism while spe-
cializing logic programs. In Proc. 24-th ACM Symposium on Principles of Pro-
gramming Languages, Paris, France, pages 414-427. ACM Press, 1997.

V. Pratt. A decidable p-calculus. In 22nd Symposium on Foundations of Computer
Science, Washington (DC), 1981. IEEE Computer Society Press.

M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for
avoiding unnecessary variables in logic programs. Theoretical Computer Science,
142(1):89 124, 1995.

T. C. Przymusinski. On the declarative and procedural semantics of logic programs.
Journ. of Automated Reasoning, 5:167 205, 1989.

G. Puebla and M. Hermenegildo. Abstract multiple specialization and its applica-
tion to program parallelization. J. of Logic Programming. Special Issue on Synthe-
sis, Transformation and Analysis of Logic Programs, 41(2&3):279 316, November
1999.

Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
In CAV ’97, Lecture Notes in Computer Science 1254, pages 143 154. Springer-
Verlag, 1997.

J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23 41, 1965.

A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ramakrish-
nan. Beyond Tamaki-Sato style unfold/fold transformations for normal logic pro-
grams. In P. S. Thiagarajan and R. H. C. Yap, editors, Proceedings of ASIAN’99,
5th Asian Computing Science Conference, Phuket, Thailand, December 10-12, Lec-
ture Notes in Computer Science 1742, pages 322-333. Springer-Verlag, 1999.

A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ramakr-
ishnan. Proofs by program transformation. In PreProceedings of LOPSTR ’99,
Venice, Italy, pages 57—64. Universita Ca’ Foscari di Venezia, Dipartimento di In-
formatica, 1999.

A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrish-
nan, and S. A. Smolka. Verification of parameterized systems using logic program
transformations. In Proceedings of the Sizth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2000, Berlin,
Germany, Lecture Notes in Computer Science 1785, pages 172-187. Springer, 2000.
A. Roychoudhury and I. V. Ramakrishnan. Automated inductive verification of
parameterized protocols. In CAV 2001, pages 25-37, 2001.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Program Derivation = Rules + Strategies 37

D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12:7-51, 1993.

T. Sato and H. Tamaki. Transformational logic program synthesis. In Proceedings
of the International Conference on Fifth Generation Computer Systems, pages 195—
201. ICOT, 1984.

T. Sato and H. Tamaki. First order compiler: A deterministic logic program syn-
thesis algorithm. Journal of Symbolic Computation, 8:625—-627, 1989.

H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer
Science, 86:107 139, 1991.

H. Seki. Unfold/fold transformation of general logic programs for well-founded
semantics. Journal of Logic Programming, 16(1&2):5-23, 1993.

H. Seki and K. Furukawa. Notes on transformation techniques for generate and
test logic programs. In Proceedings of the International Symposium on Logic Pro-
gramming, San Francisco, USA, pages 215-223. IEEE Press, 1987.

D. R. Smith. KIDS: A semi-automatic program development system. IEEE Trans-
actions on Software Engineering — Special Issue on Formal Methods, 16(9):1024—
1043, September 1990.

H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-
A. Térnlund, editor, Proceedings of the Second International Conference on Logic
Programming, pages 127 138, Uppsala, Sweden, 1984. Uppsala University.

D. H. D. Warren. Implementing Prolog compiling predicate logic programs.
Research Report 39 & 40, Department of Artificial Intelligence, University of Ed-
inburgh, 1977.

D. S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93
111, 1992.

