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Abstract. The many approaches which have been proposed in the liter-
ature for proving the correctness of unfold/fold program transformations,
consist in associating suitable well-founded orderings with the proof trees
of the atoms belonging to the least Herbrand models of the programs.
In practice, these orderings are given by ‘clause measures’, that is, mea-
sures associated with the clauses of the programs to be transformed. In
the unfold/fold transformation systems proposed so far, clause measures
are fixed in advance, independently of the transformations to be proved
correct. In this paper we propose a method for the automatic generation
of the clause measures which, instead, takes into account the particular
program transformation at hand. During the transformation process we
construct a system of linear equations and inequations whose unknowns
are the clause measures to be found, and the correctness of the transfor-
mation is guaranteed by the satisfiability of that system. Through some
examples we show that our method is able to establish in a fully auto-
matic way the correctness of program transformations which, by using
other methods, are proved correct at the expense of fixing sophisticated
clause measures.

1 Introduction

Rule-based program transformation is a program development methodology
which consists in deriving from an initial program a final program, via the ap-
plication of semantics preserving transformation rules [5]. In the field of logic
(or functional) programming, program transformation can be regarded as a de-
ductive process. Indeed, programs are logical (or equational, resp.) theories and
the transformation rules can be viewed as rules for deducing new formulas from
old ones. The logical soundness of the transformation rules easily implies that a
transformation is partially correct, which means that an atom (or an equation,
resp.) is true in the final program only if it is true in the initial program. How-
ever, it is usually much harder to prove that a transformation is totally correct,
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which means that an atom (or an equation, resp.) is true in the initial program
if and only if it is true in the final program.

In the context of functional programming, it has been pointed out in the
seminal paper by Burstall and Darlington [5] that, if the transformation rules
rewrite the equations of the program at hand by using equations which belong to
the same program (like the folding and unfolding rules), the transformations are
always partially correct, but the final program may terminate (w.r.t. a suitable
notion of termination) less often than the initial one. Thus, a sufficient condition
for total correctness is that the final program obtained by transformation always
terminates. This method of proving total correctness is sometimes referred to as
McCarthy’s method [13]. However, the termination condition may be, in practice,
very hard to check.

The situation is similar in the case of definite logic programs, where the
folding and unfolding rules basically consist in applying equivalences that hold
in the least Herbrand model of the initial program. For instance, let us consider
the program:

P : p← q r ← q q ←
The least Herbrand model of P is M(P ) = {p, q, r} and M(P ) |= p ↔ q. If we
replace q by p in r ← q (that is, we fold r ← q using p← q), then we get:

Q : p← q r ← p q ←
The transformation of P into Q is totally correct, because M(P ) = M(Q).
However, if we replace q by p in p ← q (that is, we fold p ← q using p ← q
itself), then we get:

R : p← p r ← q q ←
and the transformation of P into R is partially correct, because M(P ) ⊇M(R),
but it is not totally correct, because M(P ) 6= M(R). Indeed, program R does
not terminate for the goal p.

A lot of work has been devoted to devise methods for proving the total
correctness of transformations based on various sets of rules, including the folding
and the unfolding rules. These methods have been proposed both in the context
of functional programming (see, for instance, [5, 10, 17]) and in the context of
logic programming (see, for instance, [3, 4, 6–9, 11, 14–16, 19–21]).

Some of these methods (such as, [3, 5, 6, 11]) propose sufficient conditions for
total correctness which are explicitly based on the preservation of suitable termi-
nation properties (such as, termination of call-by-name reduction for functional
programs, and universal or existential termination for logic programs).

Other methods, which we may call implicit methods, are based on conditions
on the sequence of applications of the transformation rules that guarantee that
termination is preserved. A notable example of these implicit methods is pre-
sented in [9], where integer counters are associated with program clauses. The
counters of the initial program are set to 1 and are incremented (or decremented)
when an unfolding (or folding, resp.) is applied. A sequence of transformations is
totally correct if the counters of the clauses of the final program are all positive.

The method based on counters allows us to prove the total correctness of
many transformations. Unfortunately, there are also many simple derivations
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where the method fails to guarantee the total correctness. For instance, in the
transformation from P to Q described above, we would get a value of 0 for the
counter of the clause r ← p in the final program Q, because it has been derived
by applying the folding rule from clause r ← p. Thus, the method does not yield
the total correctness of the transformation. In order to overcome the limitations
of the basic counter method, some modifications and enhancements have been
described in [9, 15, 16, 21], where each clause is given a measure which is more
complex than an integer counter.

In this paper we present a different approach to the improvement of the
basic counter method: instead of fixing in advance complex clause measures,
for any given transformation we automatically generate, if at all possible, the
clause measures that prove its correctness. For reasons of simplicity we assume
that clause measures are non-negative integers, also called weights, and given a
transformation starting from a program P , we look for a weight assignment to
the clauses of P that proves that the transformation is totally correct.

Our paper is structured as follows. In Section 2 we present the notion of a
weighted transformation sequence, that is, a sequence of programs constructed by
applying suitable variants of the definition introduction, unfolding, and folding
rules. We associate the clauses of the initial program of the sequence with some
unknown weights, and during the construction of the sequence, we generate a
set of constraints consisting of linear equations and inequations which relate
those weights. If the final set of constraints is satisfiable for some assignment
to the unknown weights, then the transformation sequence is totally correct. In
Section 3 we prove our total correctness result which is based on the well-founded
annotations method proposed in [14]. In Section 4 we consider transformation
sequences constructed by using also the goal replacement rule and we present
a method for proving the total correctness of those transformation sequences.
Finally, in Section 5 we present a method for proving predicate properties which
are needed for applying the goal replacement rule.

2 Weighted Unfold/Fold Transformation Rules

Let us begin by introducing some terminology concerning systems of linear equa-
tions and inequations with integer coefficients and non-negative integer solutions.

By PLIN we denote the set of linear polynomials with integer coefficients.
Variables occurring in polynomials are called unknowns to distinguish them from
logical variables occurring in programs. By CLIN we denote the set of linear equa-
tions and inequations with integer coefficients, that is, CLIN is the set {p1 =p2,
p1 <p2, p1≤p2 | p1, p2 ∈ PLIN }. By p1≥p2 we mean p2≤p1, and by p1 >p2 we
mean p2 < p1. An element of CLIN is called a constraint. A valuation for a set
{u1, . . . , ur} of unknowns is a mapping σ : {u1, . . . , ur} → N, where N is the set of
natural numbers. Let {u1, . . . , ur} be the set of unknowns occurring in p ∈ PLIN .
Given a valuation σ for (a superset of) {u1, . . . , ur}, σ(p) is the integer obtained
by replacing the occurrences of u1, . . . , ur in p by σ(u1), . . . , σ(ur), respectively,
and then computing the value of the resulting arithmetic expression. A valuation
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σ is a solution for the constraint p1 =p2 if σ is a valuation for a superset of the
variables occurring in p1 = p2 and σ(p1) = σ(p2) holds. Similarly, we define a
solution for p1 <p2 and for p1≤p2. σ is a solution for a finite set C of constraints
if, for every c ∈ C, σ is a solution for c. We say that a constraint c is satisfiable
if there exists a solution for c. Similarly, we say that a set C of constraints is
satisfiable if there exists a solution for C. A weight function for a set S of clauses
is a function γ : S → PLIN . A value of γ is also called a weight polynomial.

A weighted unfold/fold transformation sequence is a sequence of programs,
denoted P0 7→P1 7→ · · · 7→Pn, such that n≥ 0 and, for k = 0, . . . , n−1, Pk+1 is
derived from Pk by applying one of the following transformation rules: weighted
definition introduction, weighted unfolding, and weighted folding. These rules,
which will be defined below, are variants of the familiar rules without weights.
For reasons of simplicity, when referring to the transformation rules, we will often
omit the qualification ‘weighted’. For k = 0, . . . , n, we will define: (i) a weight
function γk : Pk → PLIN , (ii) a finite set Ck of constraints, (iii) a set Defsk

of clauses defining the new predicates introduced by the definition introduction
rule during the construction of the sequence P0 7→ P1 7→ · · · 7→ Pk, and (iv) a
weight function δk : P0 ∪ Defsk → PLIN . The weight function γ0 for the initial
program P0 is defined as follows: for every clause C ∈ P0, γ0(C) = u, where u
is an unknown and, for each pair C and D of distinct clauses in P0, we have
that γ0(C) 6=γ0(D). The initial sets C0 and Defs0 are, by definition, equal to the
empty set and δ0 = γ0.

For every k > 0, we assume that P0 and Pk have no variables in common.
This assumption is not restrictive because we can always rename the variables
occurring in a program without affecting its least Herbrand model. Indeed, in
the sequel we will feel free to rename variables, whenever needed.

Rule 1 (Weighted Definition Introduction) Let D1, . . . , Dm, with m > 0,
be clauses such that, for i = 1, . . . ,m, the predicate of the head of Di does
not occur in P0 ∪ Defsk. By definition introduction from Pk we derive Pk+1 =
Pk ∪ {D1, . . . , Dm}.
We set the following: (1.1) for all C in Pk, γk+1(C) = γk(C), (1.2) for i =
1, . . . ,m, γk+1(Di) = ui, where ui is a fresh new unknown, (2) Ck+1 = Ck,
(3) Defsk+1 = Defsk ∪ {D1, . . . , Dm}, (4.1) for all D in P0 ∪Defsk, δk+1(D) =
δk(D), and (4.2) for i = 1, . . . ,m, δk+1(Di) = ui.

Rule 2 (Weighted Unfolding) Let C: H ← GL ∧ A ∧ GR be a clause in
Pk and let C1: H1 ← G1, . . . , Cm: Hm ← Gm, with m ≥ 0, be all clauses
in P0 such that, for i = 1, . . . ,m, A is unifiable with Hi via a most general
unifier ϑi. By unfolding C w.r.t. A using C1, . . . , Cm, we derive the clauses
D1: (H ← GL ∧G1 ∧GR)ϑ1, . . . , Dm: (H ← GL ∧Gm ∧GR)ϑm, and from Pk

we derive Pk+1 = (Pk − {C}) ∪ {D1, . . . , Dm}.
We set the following: (1.1) for all D in Pk − {C}, γk+1(D) = γk(D), (1.2) for
i = 1, . . . ,m, γk+1(Di) = γk(C) + γ0(Ci), (2) Ck+1 = Ck, (3) Defsk+1 = Defsk,
and (4) δk+1 = δk.
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For a goal (or set of goals) G, by vars(G) we denote the set of variables
occurring in G.

Rule 3 (Weighted Folding) Let C1: H ← GL ∧ G1 ∧ GR, . . . , Cm: H ←
GL ∧ Gm ∧ GR be clauses in Pk and let D1: K ← B1, . . . , Dm: K ← Bm

be clauses in P0 ∪ Defsk. Suppose that there exists a substitution ϑ such that
the following conditions hold: (i) for i = 1, . . . ,m, Gi = Biϑ, (ii) there exists
no clause in (P0 ∪Defsk)−{D1, . . . , Dm} whose head is unifiable with Kϑ, and
(iii) for i = 1, . . . ,m and for every variable U in vars(Bi)− vars(K): (iii.1) Uϑ
is a variable not occurring in {H,GL, GR}, and (iii.2) Uϑ does not occur in the
term V ϑ, for any variable V occurring in Bi and different from U .
By folding C1, . . . , Cm using D1, . . . , Dm, we derive E: H ← GL∧Kϑ∧GR, and
from Pk we derive Pk+1 = (Pk − {C1, . . . , Cm}) ∪ {E}.
We set the following: (1.1) for all C in Pk − {C1, . . . , Cm}, γk+1(C) = γk(C),
(1.2) γk+1(E) = u, where u is a new unknown, (2) Ck+1 = Ck ∪ {u≤ γk(C1)−
δk(D1), . . . , u≤γk(Cm)−δk(Dm)}, (3) Defsk+1 = Defsk, and (4) δk+1 = δk.

The correctness constraint system associated with a weighted unfold/fold trans-
formation sequence P0 7→ · · · 7→ Pn is the set Cfinal of constraints defined as
follows:
Cfinal = Cn ∪ {γn(C)≥1 | C ∈ Pn}.

The following result, which will be proved in Section 3, guarantees the total
correctness of weighted unfold/fold transformations. By M(P ) we denote the
least Herbrand model of program P .

Theorem 1 (Total Correctness of Weighted Unfold/Fold Transforma-
tions). Let P0 7→ · · · 7→ Pn be a weighted unfold/fold transformation sequence
constructed by using Rules 1–3, and let Cfinal be its associated correctness con-
straint system. If Cfinal is satisfiable then M(P0 ∪Defsn) = M(Pn).

Example 1. (Continuation Passing Style Transformation) Let us consider the
initial program P0 consisting of the following three clauses whose weight polyno-
mials are the unknowns u1, u2, and u3, respectively (we write weight polynomials
on a second column to the right of the corresponding clause):

1. p← u1

2. p← p ∧ q u2

3. q ← u3

We want to derive a continuation-passing-style program defining a predicate
pcont equivalent to the predicate p defined by the program P0. In order to do so,
we introduce by Rule 1 the following clause 4 with its unknown u4:

4. pcont ← p u4

and also the following three clauses for the unary continuation predicate cont
with unknowns u5, u6, and u7, respectively:
(∗)5. cont(ftrue)← u5

6. cont(fp(X))← p ∧ cont(X) u6

7. cont(fq(X))← q ∧ cont(X) u7
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where ftrue , fp, and fq are three function symbols corresponding to the three
predicates true, p, and q, respectively. By folding clause 4 using clause 5 we get
the following clause with the unknown u8 which should satisfy the constraint
u8 ≤ u4−u5 (we write constraints on a third column to the right of the corre-
sponding clause):

8. pcont ← p ∧ cont(ftrue) u8 u8 ≤ u4 − u5

By folding clause 8 using clause 6 we get the following clause 9 with unknown
u9 such that u9 ≤ u8 − u6:

(∗) 9. pcont ← cont(fp(ftrue)) u9 u9 ≤ u8 − u6

By unfolding clause 6 w.r.t. p using clauses 1 and 2, we get:

(∗) 10. cont(fp(X))← cont(X) u6 + u1

11. cont(fp(X))← p ∧ q ∧ cont(X) u6 + u2

Then by folding clause 11 using clause 7 we get:

12. cont(fp(X))← p ∧ cont(fq(X)) u12 u12 ≤ u6 + u2 − u7

and by folding clause 12 using clause 6 we get:

(∗) 13. cont(fp(X))← cont(fp(fq(X))) u13 u13 ≤ u12 − u6

Finally, by unfolding clause 7 w.r.t. q we get:

(∗) 14. cont(fq(X))← cont(X) u7 + u3

The final program is made out of clauses 5, 9, 10, 13, and 14, marked with (∗),
and clauses 1, 2, and 3. The correctness constraint system Cfinal is made out of
the following 11 constraints.

For clauses 5, 9, 10, 13, and 14: u5≥1, u9≥1, u6+u1≥1, u13≥1, u7+u3≥1.
For clauses 1, 2, and 3: u1≥1, u2≥1, u3≥1.
For the four folding steps: u8≤u4−u5, u9≤u8−u6, u12≤u6+u2−u7, u13≤u12−u6.
This system Cfinal of constraints is satisfiable and thus, the transformation from
program P0 to the final program is totally correct.

3 Proving Correctness Via Weighted Programs

In order to prove that a weighted unfold/fold transformation sequence P0 7→
· · · 7→Pn is totally correct (see Theorem 1), we specialize the method based on
well-founded annotations proposed in [14]. In particular, with each program Pk

in the transformation sequence, we associate a weighted program P k by adding an
integer argument n(≥ 0), called a weight, to each atom p(t) occurring in Pk. Here
and in the sequel, t denotes a generic m-tuple of terms t1, . . . , tm, for some m≥0.
Informally, p(t, n) holds in P k if p(t) ‘has a proof of weight at least n’ in Pk. We
will show that if the correctness constraint system Cfinal is satisfiable, then it is
possible to derive from P 0 a weighted program Pn where the weight arguments
determine, for every clause C in Pn, a well-founded ordering between the head
of C and every atom in the body C. Hence Pn terminates for all ground goals
(even if Pn need not) and the immediate consequence operator TP has a unique
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fixpoint [2]. Thus, as proved in [14], the total correctness of the transformation
sequence follows from the unique fixpoint principle (see Corollary 1).

Our transformation rules can be regarded as rules for replacing a set of clauses
by an equivalent one. Let us introduce the notions of implication and equivalence
between sets of clauses according to [14].

Definition 1. Let I be an Herbrand interpretation and let Γ1 and Γ2 be two
sets of clauses. We write I |= Γ1 ⇒ Γ2 if for every ground instance H ← G2 of
a clause in Γ2 such that I |= G2 there exists a ground instance H ← G1 of a
clause in Γ1 such that I |= G1. We write I |= Γ1 ⇐ Γ2 if I |= Γ2 ⇒ Γ1, and we
write I |= Γ1 ⇔ Γ2 if (I |= Γ1 ⇒ Γ2 and I |= Γ1 ⇐ Γ2).

For all Herbrand interpretations I and sets of clauses Γ1, Γ2, and Γ3 the
following properties hold:

Reflexivity : I |= Γ1 ⇒ Γ1

Transitivity : if I |= Γ1 ⇒ Γ2 and I |= Γ2 ⇒ Γ3 then I |= Γ1 ⇒ Γ3

Monotonicity : if I |= Γ1 ⇒ Γ2 then I |= Γ1 ∪ Γ3 ⇒ Γ2 ∪ Γ3.

Given a program P , we denote its associated immediate consequence operator
by TP [1, 12]. We denote the least and greatest fixpoint of TP by lfp(TP ) and
gfp(TP ), respectively. Recall that M(P ) = lfp(TP ).

Now let us consider the transformation of a program P into a program Q
consisting in the replacement of a set Γ1 of clauses in P by a new set Γ2 of
clauses. The following result, proved in [14], expresses the partial correctness of
the transformation of P into Q.

Theorem 2 (Partial Correctness). Given two programs P and Q, such that :
(i) for some sets Γ1 and Γ2 of clauses, Q = (P − Γ1) ∪ Γ2, and (ii) M(P ) |=
Γ1 ⇒ Γ2. Then M(P ) ⊇M(Q).

In order to establish a sufficient condition for the total correctness of the
transformation of P into Q, that is, M(P ) = M(Q), we consider programs
whose associated immediate consequence operators have unique fixpoints.

Definition 2 (Univocal Program). A program P is said to be univocal if TP

has a unique fixpoint, that is, lfp(TP ) = gfp(TP ).

The following theorem is proved in [14].

Theorem 3 (Conservativity). Given two programs P and Q, such that : (i) for
some sets Γ1 and Γ2 of clauses, Q = (P − Γ1) ∪ Γ2, (ii) M(P ) |= Γ1 ⇐ Γ2, and
(iii) Q is univocal. Then M(P ) ⊆M(Q).

As a straightforward consequence of Theorems 2 and 3 we get the following.

Corollary 1 (Total Correctness Via Unique Fixpoint). Given two pro-
grams P and Q such that : (i) for some sets Γ1, Γ2 of clauses, Q = (P −Γ1)∪Γ2,
(ii) M(P ) |= Γ1 ⇔ Γ2, and (iii) Q is univocal. Then M(P ) = M(Q).
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Corollary 1 cannot be directly applied to prove the total correctness of a
transformation sequence generated by applying the unfolding and folding rules,
because the programs derived by these rules need not be univocal. To overcome
this difficulty we introduce the notion of weighted program.

Given a clause C of the form p0(t0)← p1(t1)∧. . .∧pm(tm), where t0, t1, . . . ,
tm are tuples of terms, a weighted clause, denoted C(w), associated with C is a
clause of the form:

C(w): p0(t0, N0)← N0 ≥ N1+· · ·+Nm + w ∧ p1(t1, N1) ∧ . . . ∧ pm(tm, Nm)
where w is a natural number called the weight of C(w). Clause C(w) is denoted
by C when we do not need refer to the weight w. A weighted program is a set of
weighted clauses. Given a program P = {C1, . . . , Cr}, by P we denote a weighted
program of the form {C1, . . . , Cr}. Given a weight function γ and a valuation σ,
by C(γ, σ) we denote the weighted clause C(σ(γ(C))) and by P (γ, σ) we denote
the weighted program {C1(γ, σ), . . . , Cr(γ, σ)}.

For reasons of conciseness, we do not formally define here when a formula
of the form N0 ≥ N1 + · · · + Nm + w (see clause C(w) above) holds in an
interpretation, and we simply say that for every Herbrand interpretation I and
ground terms n0, n1, . . . , nm, w, we have that I |= n0 ≥ n1 + · · ·+ nm + w holds
iff n0, n1, . . . , nm, w are (terms representing) natural numbers such that n0 is
greater than or equal to n1 + · · ·+ nm + w.

The following lemma (proved in [14]) establishes the relationship between
the semantics of a program P and the semantics of any weighted program P
associated with P .

Lemma 1. Let P be a program. For every ground atom p(t), p(t) ∈ M(P ) iff
there exists n ∈ N such that p(t, n) ∈M(P ).

By erasing weights from clauses we preserve clause implications, in the sense
stated by the following lemma (proved in [14]).

Lemma 2. Let P be a program, and Γ1 and Γ2 be any two sets of clauses. If
M(P ) |= Γ 1 ⇒ Γ 2 then M(P ) |= Γ1 ⇒ Γ2.

A weighted program P is said to be decreasing if every clause in P has a
positive weight.

Lemma 3. Every decreasing program is univocal.

Now, we have the following result, which is a consequence of Lemmata 1, 3,
and Theorems 2 and 3. Unlike Corollary 1, this result can be used to prove the
total correctness of the transformation of program P into program Q also in the
case where Q is not univocal.

Theorem 4 (Total Correctness Via Weights). Let P and Q be programs
such that: (i) M(P ) |= P ⇒ Q, (ii) M(P ) |= P ⇐ Q, and (iii) Q is decreasing.
Then M(P ) = M(Q).

By Theorem 4, in order to prove Theorem 1, that is, the total correctness of
weighted unfold/fold transformations, it is enough to show that, given a weighted
unfold/fold transformation sequence P0 7→· · · 7→Pn, we have that:
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(P1) M(P0 ∪Defsn) |= P0 ∪Defsn ⇒ Pn

and there exist suitable weighted programs P 0 ∪Defsn and Pn, associated with
P0 ∪Defsn and Pn, respectively, such that:

(P2) M(P 0 ∪Defsn) |= P 0 ∪Defsn ⇐ Pn, and

(P3) Pn is decreasing.

The suitable weighted programs P 0 ∪Defsn and Pn are constructed as we now
indicate by using the hypothesis that the correctness constraint system Cfinal

associated with the transformation sequence, is satisfiable. Let σ be a solution for
Cfinal . For every k = 0, . . . , n and for every clause C ∈ Pk, we take C = C(γk, σ),
where γk is the weight function associated with Pk. For C ∈ Defsk we take
C = C(δk, σ). Thus, P k = P k(γk, σ) and Defsk = Defsk(δk, σ).

In order to prove Theorem 1 we need the following two lemmata.

Lemma 4. Let P0 7→ · · · 7→ Pk be a weighted unfold/fold transformation se-
quence. Let C be a clause in Pk, and let D1, . . . , Dm be the clauses derived by
unfolding C w.r.t. an atom in its body, as described in Rule 2. Then:

M(P 0 ∪Defsn) |= {C} ⇔ {D1, . . . , Dm}

Lemma 5. Let P0 7→ · · · 7→ Pk be a weighted unfold/fold transformation se-
quence. Let C1, . . . , Cm be clauses in Pk, D1, . . . , Dm be clauses in P0 ∪ Defsk,
and E be the clause derived by folding C1, . . . , Cm using D1, . . . , Dm, as described
in Rule 3. Then:

(i) M(P0 ∪Defsn) |= {C1, . . . , Cm} ⇒ {E}
(ii) M(P 0 ∪Defsn) |= {C1, . . . , Cm} ⇐ {E}

We are now able to prove Theorem 1. For a weighted unfold/fold transformation
sequence P0 7→· · · 7→Pn, the following properties hold:

(R1) M(P0∪Defsn) |= Pk ∪ (Defsn−Defsk)⇒ Pk+1∪ (Defsn−Defsk+1), and

(R2) M(P 0 ∪Defsn) |= P k ∪ (Defsn−Defsk)⇐ P k+1 ∪ (Defsn−Defsk+1).

Indeed, Properties (R1) and (R2) can be proved by reasoning by cases on the
transformation rule applied to derive Pk+1 from Pk, as follows. If Pk+1 is de-
rived from Pk by applying the definition introduction rule then Pk ∪ (Defsn −
Defsk) = Pk+1 ∪ (Defsn − Defsk+1) and, therefore, Properties (R1) and (R2)
are trivially true. If Pk+1 is derived from Pk by applying the unfolding rule,
then Pk+1 = (Pk − {C}) ∪ {D1, . . . , Dm} and Defsk = Defsk+1. Hence, Prop-
erties (R1) and (R2) follow from Lemma 2, Lemma 4 and from the mono-
tonicity of ⇒. If Pk+1 is derived from Pk by applying the folding rule, then
Pk+1 = (Pk−{C1, . . . , Cm})∪{E} and Defsk = Defsk+1. Hence, Properties (R1)
and (R2) follow from Points (i) and (ii) of Lemma 5 and the monotonicity of⇒.

By the transitivity of ⇒ and by Properties (R1) and (R2), we get Proper-
ties (P1) and (P2). Moreover, since σ is a solution for Cfinal and Pn = Pn(γn, σ),
Property (P3) holds. Thus, by Theorem 4, M(P0 ∪Defsn) = M(Pn).
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4 Weighted Goal Replacement

In this section we extend the notion of a weighted unfold/fold transformation
sequence P0 7→ P1 7→ · · · 7→ Pn by assuming that Pk+1 is derived from Pk by
applying, besides the definition introduction, unfolding, and folding rules, also
the goal replacement rule defined as Rule 4 below. The goal replacement rule
consists in replacing a goal G1 occurring in the body of a clause of Pk, by a new
goal G2 such that G1 and G2 are equivalent in M(P0 ∪Defsk). Some conditions
are also needed in order to update the value of the weight function and the
associated constraints. To define these conditions we introduce the notion of
weighted replacement law (see Definition 3), which in turn is based on the notion
of weighted program introduced in Section 3.

In Definition 3 below we will use the following notation. Given a goal G :
p1(t1)∧. . .∧pm(tm), a variable N , and a natural number w, by G[N,w] we denote
the formula ∃N1 . . .∃Nm(N ≥ N1+· · ·+Nm+w∧p1(t1, N1)∧. . .∧pm(tm, Nm)).
Given a set X = {X1, . . . , Xm} of variables, we will use ‘∃X’ as a shorthand for
‘∃X1 . . .∃Xm’ and ‘∀X’ as a shorthand for ‘∀X1 . . .∀Xm’.

Definition 3 (Weighted Replacement Law). Let P be a program, γ be a
weight function for P , and C be a finite set of constraints. Let G1 and G2 be goals,
u1 and u2 be unknowns, and X ⊆ vars(G1)∪ vars(G2) be a set of variables. We
say that the weighted replacement law (G1, u1)⇒X (G2, u2) holds with respect
to the triple 〈P, γ, C〉, and we write 〈P, γ, C〉 |= (G1, u1) ⇒X (G2, u2), if the
following conditions hold:
(i) M(P ) |= ∀X (∃Y G1 ← ∃Z G2), and
(ii) for every solution σ for C,

M(P ) |= ∀X∀U (∃Y (G1[U, σ(u1)])→ ∃Z (G2[U, σ(u2)]))
where: (1) P is the weighted program P (γ, σ), (2) U is a variable, (3) Y =
vars(G1)−X, and (4) Z = vars(G2)−X.

By using Lemma 2 it can be shown that, if C is satisfiable, then Condi-
tion (ii) of Definition 3 implies M(P ) |= ∀X (∃Y G1 → ∃Z G2) and, there-
fore, if 〈P, γ, C〉 |= (G1, u1) ⇒X (G2, u2) and C is satisfiable, we have that
M(P ) |= ∀X (∃Y G1 ↔ ∃Z G2).

Example 2. (Associativity of List Concatenation) Let us consider the following
program Append for list concatenation. To the right of each clause we indicate
the corresponding unknown.

1. a([ ], L, L) u1

2. a([H|T ], L, [H|R])← a(T,L,R) u2

The following replacement law expresses the associativity of list concatenation:
Law (α): (a(L1, L2,M) ∧ a(M,L3, L), w1)

⇒{L1,L2,L3,L} (a(L2, L3, R) ∧ a(L1, R, L), w2)
where w1 and w2 are new unknowns. In Example 4 below we will show that
Law (α) holds w.r.t. 〈Append , γ, C〉, where C is the set of constraints {u1 ≥ 1,
u2≥1, w1≥w2, w2 + u1≥1}.

10



In Section 5 we will present a method, called weighted unfold/fold proof method,
for generating a suitable set C of constraints such that 〈P, γ, C〉 |= (G1, u1)⇒X

(G2, u2) holds.
Now we introduce the Weighted Goal Replacement Rule, which is a variant

of the rule without weights (see, for instance, [20]).

Rule 4 (Weighted Goal Replacement) Let C: H ← GL ∧ G1 ∧ GR be a
clause in program Pk and let C be a set of constraints such that the weighted
replacement law λ : (G1, u1)⇒X (G2, u2) holds w.r.t. 〈P0 ∪Defsk, δk, C〉, where
X = vars({H,GL, GR}) ∩ vars({G1, G2}).
By applying the replacement law λ, from C we derive D : H ← GL ∧G2 ∧GR,
and from Pk we derive Pk+1 = (Pk−{C})∪{D}. We set the following: (1.1) for
all E in Pk−{C}, γk+1(E) = γk(E), (1.2) γk+1(D) = γk(C)−u1+u2, (2) Ck+1 =
Ck ∪ C, (3) Defsk+1 = Defsk, and (4) δk+1 = δk.

The proof of the following result is similar to the one of Theorem 1.

Theorem 5 (Total Correctness of Weighted Unfold/Fold/Replacement
Transformations). Let P0 7→· · · 7→Pn be a weighted unfold/fold transformation
sequence constructed by using Rules 1–4, and let Cfinal be its associated correct-
ness constraint system. If Cfinal is satisfiable then M(P0 ∪Defsn) = M(Pn).

Example 3. (List Reversal) Let Reverse be a program for list reversal consisting
of the clauses of Append (see Example 2) together with the following two clauses
(to the right of the clauses we write the corresponding weight polynomials):

3. r([ ], [ ])← u3

4. r([H|T ], L)← r(T,R) ∧ a(R, [H], L) u4

We will transform the Reverse program into a program that uses an accumula-
tor [5]. In order to do so, we introduce by Rule 1 the following clause:

5. g(L1, L2, A)← r(L1, R) ∧ a(R,A, L2) u5

We apply the unfolding rule twice starting from clause 5 and we get:
6. g([ ], L, L)← u5 + u3 + u1

7. g([H|T ], L,A)← r(T,R) ∧ a(R, [H], S) ∧ a(S, A,L) u5 + u4

By applying the replacement law (α), from clause 7 we derive:
8. g([H|T ],L,A)← r(T,R) ∧ a([H],A,S) ∧ a(R,S,L) u5 + u4 − w1 + w2

together with the constraints (see Example 2): u1≥1, u2≥1, w1≥w2, w2+u1≥1.
By two applications of the unfolding rule, from clause 8 we get:

9. g([H|T ], L,A)← r(T,R) ∧ a(R, [H|A], L) u5+u4−w1+w2+u2+u1

By folding clause 9 using clause 5 we get:
10. g([H|T ], L,A)← g(T,L, [H|A]) u6

together with the constraint u6 ≤ u4 − w1 + w2 + u2 + u1.
Finally, by folding clause 4 using clause 5 we get:

11. r([H|T ], L)← g(T,L, [H]) u7

together with the constraint u7 ≤ u4 − u5.

11



The final program consists of clauses 1, 2, 3, 11, 6, and 10. The correctness
constraint system associated with the transformation sequence is as follows.
For clauses 1, 2, and 3: u1≥1, u2≥1, u3≥1.
For clauses 11, 6, and 10: u7≥1, u5 + u3 + u1≥1, u6≥1.
For the goal replacement: u1≥1, u2≥1, w1≥w2, w2 + u1≥1.
For the two folding steps: u6 ≤ u4 − w1 + w2 + u2 + u1, u7 ≤ u4 − u5.
This set of constraints is satisfiable and, therefore, the transformation sequence
is totally correct.

5 The Weighted Unfold/Fold Proof Method

In this section we present the unfold/fold method for proving the replacement
laws to be used in Rule 4. In order to do so, we introduce the notions of: (i) syn-
tactic equivalence, (ii) symmetric folding, and (iii) symmetric goal replacement.

A predicate renaming is a bijective mapping ρ : Preds1 → Preds2, where
Preds1 and Preds2 are two sets of predicate symbols. Given a formula (or a set
of formulas) F , by preds(F ) we denote the set of predicate symbols occurring
in F . Suppose that preds(F ) ⊆ Preds1, then by ρ(F ) we denote the formula
obtained from F by replacing every predicate symbol p by ρ(p). Two programs
Q and R are syntactically equivalent if there exists a predicate renaming ρ :
preds(Q)→ preds(R), such that R = ρ(Q), modulo variable renaming.

An application of the folding rule by which from program Pk we derive pro-
gram Pk+1, is said to be symmetric if Ck+1 is set to Ck ∪ {u= γk(C1)−δk(D1),
. . . , u=γk(Cm)−δk(Dm)} (see Point 2 of Rule 3).
Given a program P , a weight function γ, and a set C of constraints, we say that
the replacement law (G1, u1) ⇒X (G2, u2) holds symmetrically w.r.t. 〈P, γ, C〉,
and we write 〈P, γ, C〉 |= (G1, u1)⇔X (G2, u2), if the following condition holds:
(ii*) for every solution σ for C,

M(P ) |= ∀X∀U (∃Y (G1[U, σ(u1)])↔ ∃Z (G2[U, σ(u2)]))
where P , U , Y , and Z are defined as in Definition 3. Note that, by Lemma 2,
Condition (ii*) implies Condition (i) of Definition 3. An application of the goal
replacement rule is symmetric if it consists in applying a replacement law that
holds symmetrically w.r.t. 〈P0∪Defsk, δk, C〉. A weighted unfold/fold transfor-
mation sequence is said to be symmetric if it is constructed by applications of
the definition and unfolding rules and by symmetric applications of the folding
and goal replacement rules.

Now we are ready to present the weighted unfold/fold proof method, which
is itself based on weighted unfold/fold transformations.

The Weighted Unfold/Fold Proof Method. Let us consider a program P , a weight
function γ for P , and a replacement law (G1, u1)⇒X (G2, u2). Suppose that X
is the set of variables {X1, . . . , Xm} and let X denote the sequence X1, . . . , Xm.
Step 1. First we introduce two new predicates new1 and new2 defined by the fol-
lowing two clauses: D1: new1(X)← G1 and D2: new2(X)← G2, associated
with the unknowns u1 and u2, respectively.
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Step 2. Then we construct two weighted unfold/fold transformation sequences
of the forms: P ∪ {D1} 7→ · · · 7→Q and P ∪ {D2} 7→ · · · 7→R, such that the
following three conditions hold:
(1) For i = 1, 2, the weight function associated with the initial program P ∪{Di}
is γi

0 defined as: γi
0(C) = γ(C) if C ∈ P , and γi

0(Di) = ui;
(2) The final programs Q and R are syntactically equivalent; and
(3) The transformation sequence P ∪ {D2} 7→· · · 7→R is symmetric.
Step 3. Finally, we construct a set C of constraints as follows. Let γQ and γR be
the weight functions associated with Q and R, respectively. Let CQ and CR be
the correctness constraint systems associated with the transformation sequences
P ∪ {D1} 7→ · · · 7→ Q and P ∪ {D2} 7→ · · · 7→ R, respectively, and let ρ be the
predicate renaming such that ρ(Q) = R. Suppose that both CQ and CR are
satisfiable.
(3.1) Let the set C be {γQ(C)≥γR(ρ(C)) | C ∈ Q} ∪ CQ ∪ CR. Then we infer:
〈P, γ, C〉 `UF (G1, u1)⇒X (G2, u2)

(3.2) Suppose that the transformation sequence P ∪{D1} 7→· · · 7→Q is symmetric
and let the set C be {γQ(C)=γR(ρ(C)) | C ∈ Q} ∪ CQ ∪ CR. Then we infer:
〈P, γ, C〉 `UF (G1, u1)⇔X (G2, u2)

It can be shown that the unfold/fold proof method is sound.

Theorem 6 (Soundness of the Unfold/Fold Proof Method).
If 〈P, γ, C〉 `UF (G1, u1)⇒X (G2, u2) then 〈P, γ, C〉 |= (G1, u1)⇒X (G2, u2).
If 〈P, γ, C〉 `UF (G1, u1)⇔X (G2, u2) then 〈P, γ, C〉 |= (G1, u1)⇔X (G2, u2).

Example 4. (An Unfold/Fold Proof ) Let us consider again the program Append
and the replacement law (α), expressing the associativity of list concatenation,
presented in Example 2. By applying the unfold/fold proof method we will gen-
erate a set C of constraints such that law (α) holds w.r.t. 〈Append , γ, C〉.
Step 1. We start off by introducing the following two clauses:

D1. new1(L1, L2, L3, L)← a(L1, L2,M) ∧ a(M,L3, L) w1

D2. new2(L1, L2, L3, L)← a(L2, L3, R) ∧ a(L1, R, L) w2

Step 2. First, let us construct a transformation sequence starting from Append ∪
{D1}. By two applications of the unfolding rule, from clause D1 we derive:

E1. new1([ ], L2, L3, L)← a(L2, L3, L) w1 + u1

E2. new1([H|T ], L2, L3, [H|R])← a(T,L2,M) ∧ a(M,L3, R) w1 + 2u2

By folding clause E2 using clause D1 we derive:
E3. new1([H|T ], L2, L3, [H|R])← new1(T,L2, L3, R) u8

together with the constraint u8 ≤ 2u2.
Now, let us construct a transformation sequence starting from Append ∪ {D2}.
By unfolding clause D2 w.r.t. a(L1, R, L) in its body we get:

F1. new2([ ], L2, L3, L)← a(L2, L3, L) w2 + u1
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F2. new2([H|T ], L2, L3, [H|R])← a(L2, L3,M) ∧ a(T,M,R) w2 + u2

By a symmetric application of the folding rule using clause D2, from clause F2

we get:
F3. new2([H|T ], L2, L3, [H|R])← new2(T,L2, L3, R) u9

together with the constraint u9 =u2.
The final programs Append ∪ {E1, E3} and Append ∪ {F1, F3} are syntactically
equivalent via the predicate renaming ρ such that ρ(new1) = new2. The trans-
formation sequence Append ∪ {D2} 7→ · · · 7→ Append ∪ {F1, F3} is symmetric.
Step 3. The correctness constraint system associated with the transformation
sequence Append ∪ {D1} 7→ · · · 7→ Append ∪ {E1, E3} is the following:
C1: {u1≥1, u2≥1, w1 + u1≥1, u8≥1, u8≤2u2}

The correctness constraint system associated with the transformation sequence
Append ∪ {D2} 7→ · · · 7→ Append ∪ {F1, F3} is the following:
C2: {u1≥1, u2≥1, w2 + u1≥1, u9≥1, u9 =u2}

Both C1 and C2 are satisfiable and thus, we infer:
〈Append , γ, C12〉 `UF

(a(L1, L2,M)∧a(M,L3, L), w1)⇒{L1,L2,L3,L} (a(L2, L3, R)∧a(L1, R, L), w2)
where C12 is the set {w1 + u1 ≥ w2 + u1, u8 ≥ u9} ∪ C1 ∪ C2.
Notice that the constraints w1 +u1≥w2 +u1 and u8≥u9 are determined by the
two pairs of syntactically equivalent clauses (E1, F1) and (E3, F3), respectively.
By eliminating the unknowns u8 and u9, which occur in the proof of law (α)
only, and by performing some simple simplifications we get, as anticipated, the
following set C of constraints: {u1≥1, u2≥1, w1≥w2, w2 + u1≥1}.

6 Conclusions

We have presented a method for proving the correctness of rule-based logic pro-
gram transformations in an automatic way. Given a transformation sequence,
constructed by using the unfold, fold, and goal replacement transformation rules,
we associate some unknown natural numbers, called weights, with the clauses
of the programs in the transformation sequence and we also construct a set of
linear constraints that these weights must satisfy to guarantee the total correct-
ness of the transformation sequence. Thus, the correctness of the transformation
sequence can be proven in an automatic way by checking that the corresponding
set of constraints is satisfiable over the natural numbers. However, it can be
shown that our method is incomplete and, in general, it can be shown that there
exists no algorithmic method for checking whether or not any given unfold/fold
transformation sequence is totally correct.

As already mentioned in the Introduction, our method is related to the many
methods given in the literature for proving the correctness of program trans-
formation by showing that suitable conditions on the transformation sequence
hold (see, for instance, [4, 8, 9, 16, 20, 21], for the case of definite logic programs).
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Among these methods, the one presented in [16] is the most general and it makes
use of clause measures to express complex conditions on the transformation se-
quence. The main novelty of our method with respect to [16] is that in [16]
clause measures are fixed in advance, independently of the specific transforma-
tion sequence under consideration, while by the method proposed in this paper
we automatically generate specific clause measures for each transformation se-
quence to be proved correct.

Thus, in principle, our method is more powerful than the one presented
in [16]. For a more accurate comparison between the two methods, we did some
practical experiments. We implemented our method in the MAP transformation
system (http://www.iasi.cnr.it/~proietti/system.html) and we worked
out some transformation examples taken from the literature. Our system runs
on SICStus Prolog (v. 3.12.5) and for the satisfiability of the sets of constraints
over the natural numbers it uses the clpq SICStus library.

By using our system we did the transformation examples presented in this
paper (see Examples 1, 3, and 4) and the following examples taken from the
literature: (i) the Adjacent program which checks whether or not two elements
have adjacent occurrences in a list [9], (ii) the Equal Frontier program which
checks whether or not the frontiers of two binary trees are equal [5, 21], (iii) a
program for solving the N -queens problem [18], (iv) the In Correct Position
program taken from [8], and (v) the program that encodes a liveness property
of an n-bit shift register [16]. Even in the most complex derivation we carried
out, that is, the Equal Frontier example taken from [21], consisting of 86 trans-
formation steps, the system checked the total correctness of the transformation
within milliseconds. For making that derivation we also had to apply several re-
placement laws which were proved correct by using the unfold/fold proof method
described in Section 5.
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