
Derivation of EÆ
ient Logi
 Programs by Spe
ialization and

Redu
tion of Nondeterminism

�

Alberto Pettorossi

DISP, University of Roma Tor Vergata, Roma, Italy

pettorossi�info.uniroma2.it

Maurizio Proietti

IASI-CNR, Roma, Italy

proietti�iasi.rm.
nr.it

Sophie Renault

European Patent OÆ
e, Rijswijk, The Netherlands

srenault�epo.org

May 12, 2005

Abstra
t

Program spe
ialization is a program transformation methodology whi
h improves program eÆ
ien
y

by exploiting the information about the input data whi
h are available at
ompile time. We show

that
urrent te
hniques for program spe
ialization based on partial evaluation do not perform well

on nondeterministi
 logi
 programs. We then
onsider a set of transformation rules whi
h extend

the ones used for partial evaluation, and we propose a strategy for guiding the appli
ation of

these extended rules so to derive very eÆ
ient spe
ialized programs. The eÆ
ien
y improvements

whi
h sometimes are exponential, are due to the redu
tion of nondeterminism and to the fa
t

that the
omputations whi
h are performed by the initial programs in di�erent bran
hes of the

omputation trees, are performed by the spe
ialized programs within single bran
hes. In order to

redu
e nondeterminism we also make use of mode information for guiding the unfolding pro
ess.

To exemplify our te
hnique, we show that we
an automati
ally derive very eÆ
ient mat
hing

programs and parsers for regular languages. The derivations we have performed
ould not have

been done by previously known partial evaluation te
hniques.

Keywords: Automati
 program derivation, program transformation, program spe
ialization, logi

programming, transformation rules and strategies.

1 Introdu
tion

The goal of program spe
ialization [21℄ is the adaptation of a generi
 program to a spe
i�

ontext of

use. Partial evaluation [7, 21℄ is a well established te
hnique for program spe
ialization whi
h from

a program and its stati
 input (that is, the portion of the input whi
h is known at
ompile time),

allows us to derive a new, more eÆ
ient program in whi
h the portion of the output whi
h depends

�

A preliminary version of this paper appears as: Redu
ing Nondeterminism while Spe
ializing Logi
 Programs.

Pro
eedings of the 24th Annual ACM Symposium on Prin
iples of Programming Languages, Paris, Fran
e, January

15{17, 1997, ACM Press, 1997, pp. 414{427.

1

on the stati
 input, has already been
omputed. Partial evaluation has been applied in several areas

of
omputer s
ien
e, and it has been applied also to logi
 programs [13, 26, 29℄, where it is also

alled partial dedu
tion. In this paper we follow a rule-based approa
h to the spe
ialization of logi

programs [4, 36, 37, 41℄. In parti
ular, we
onsider de�nite logi
 programs [28℄ and we propose new

program spe
ialization te
hniques based on unfold/fold transformation rules [6, 46℄. In our approa
h,

the pro
ess of program spe
ialization
an be viewed as the
onstru
tion of a sequen
e, say P

0

; : : : ; P

n

,

of programs, where P

0

is the program to be spe
ialized, P

n

is the derived, spe
ialized program, and

every program of the sequen
e is obtained from the previous one by applying a transformation rule.

As shown in [36, 41℄, partial dedu
tion
an be viewed as a parti
ular rule-based program trans-

formation te
hnique using the de�nition, unfolding, and folding rules [46℄ with the following two

restri
tions: (i) ea
h new predi
ate introdu
ed by the de�nition rule is de�ned by pre
isely one non-

re
ursive
lause whose body
onsists of pre
isely one atom (in this sense, a

ording to the terminology

of [16℄, partial dedu
tion is said to be monogeneti
), and (ii) the folding rule uses only
lauses in-

trodu
ed by the de�nition rule. In what follows the de�nition and folding rules whi
h
omply with

restri
tions (i) and (ii), are
alled atomi
 de�nition and atomi
 folding, respe
tively.

In Se
tion 3 we will see that the use of these restri
ted transformation rules makes it easier

to automate the partial dedu
tion pro
ess, but it may limit the program improvements whi
h
an

be a
hieved during program spe
ialization. In parti
ular, when we perform partial dedu
tion of

nondeterministi
 programs using atomi
 de�nition, unfolding, and atomi
 folding, it is impossible to

ombine information present in di�erent bran
hes of the
omputation trees, and as a
onsequen
e, it

is often the
ase that we
annot redu
e the nondeterminism of the programs.

This weakness of partial dedu
tion is demonstrated in Se
tion 3.3 where we revisit the familiar

problem of looking for o

urren
es of a pattern in a string. It has been shown in [11, 13, 15℄ that by

partial dedu
tion of a string mat
hing program, we may derive a deterministi
 �nite automaton (DFA,

for short), similarly to what is done by the Knuth-Morris-Pratt algorithm [22℄. However, in [11, 13, 15℄

the string mat
hing program to whi
h partial dedu
tion is applied, is deterministi
. We show that by

applying partial dedu
tion to a nondeterministi
 version of the mat
hing program, one
annot derive

a spe
ialized program whi
h is deterministi
, and thus, one
annot get a program whi
h
orresponds

to a DFA.

Conjun
tive partial dedu
tion [8℄ is a program spe
ialization te
hnique whi
h extends partial de-

du
tion by allowing the spe
ialization of logi
 programs w.r.t.
onjun
tions of atoms, instead of a single

atom. Conjun
tive partial dedu
tion
an be realized by the de�nition, unfolding, and folding rules

where ea
h new predi
ate introdu
ed by the de�nition rule is de�ned by pre
isely one non-re
ursive

lause whose body is a
onjun
tion of atoms (in this sense
onjun
tive partial dedu
tion is said to be

polygeneti
).

Conjun
tive partial dedu
tion may sometimes redu
e nondeterminism. In parti
ular, it may trans-

form generate-and-test programs into programs where the generation phase and the test phase are

interleaved. However, as shown in Se
tion 3.3,
onjun
tive partial dedu
tion is not
apable to derive

from the nondeterministi
 version of the mat
hing program a new program whi
h
orresponds to a

DFA.

In our paper, we propose a spe
ialization te
hnique whi
h enhan
es both partial dedu
tion and

onjun
tive partial dedu
tion by making use of more powerful transformation rules. In parti
ular, in

Se
tion 4 we
onsider a version of the de�nition introdu
tion rule so that a new predi
ate may be

introdu
ed by means of several non-re
ursive
lauses whose bodies
onsist of
onjun
tions of atoms,

and we allow folding steps whi
h use these predi
ate de�nitions
onsisting of several
lauses. We also

onsider the following extra rules: head generalization,
ase split, equation elimination, and disequation

repla
ement. These rules may introdu
e, repla
e, and eliminate equations and negated equations

between terms.

Similarly to [14, 46, 40℄, our extended set of program transformation rules preserves the least

2

Herbrand model semanti
s. For the logi
 language with equations and negated equations
onsidered in

this paper, we adopt the usual Prolog operational semanti
s with the left-to-right sele
tion rule, where

equations are evaluated by using uni�
ation. Unfortunately, the unrestri
ted use of the extended set

of transformation rules may not preserve the Prolog operational semanti
s. To over
ome this problem,

we
onsider: (i) the
lass of safe programs and (ii) suitably restri
ted transformation rules,
alled safe

transformation rules. Through some examples we show that the
lass of safe programs and the safe

transformation rules are general enough to allow signi�
ant program spe
ializations.

Our notions of safe programs and transformation rules, and also the notion of determinism are

based on the modes whi
h are asso
iated with predi
ate
alls [32, 49℄. We des
ribe these notions in

Se
tion 5, where we also prove that the appli
ation of safe transformation rules preserve the operational

semanti
s of safe programs.

Then, in Se
tion 6, we introdu
e a strategy,
alled Determinization, for applying our safe trans-

formation rules in an automati
 way, so to spe
ialize programs and redu
e their nondeterminism.

The new features of our strategy w.r.t. other spe
ialization te
hniques are: (i) the use of mode in-

formation for unfolding and produ
ing deterministi
 programs, (ii) the use of the
ase split rule for

deriving mutually ex
lusive
lauses (e.g. from the
lause H Body we may derive the two
lauses:

(H Body)fX=tg and H X 6= t;Body), and (iii) the use of the enhan
ed de�nition and folding

rules for repla
ing many
lauses by one
lause only, thereby redu
ing nondeterminism.

Finally, in Se
tion 7, we show by means of some examples whi
h refer to parsing and mat
hing

problems, that our strategy is more powerful than both partial dedu
tion and
onjun
tive partial

dedu
tion. In parti
ular, given a nondeterministi
 version of the mat
hing program, by using our

strategy one
an derive a spe
ialized program whi
h
orresponds to a DFA.

2 Logi
 Programs with Equations and Disequations between Terms

In this se
tion we introdu
e an extension of de�nite logi
 programs with equations and negated equa-

tions between terms. Negated equations will also be
alled disequations. The introdu
tion of equations

and disequations during program spe
ialization allows us to derive mutually ex
lusive
lauses. The

de
larative semanti
s we
onsider, is a straightforward extension of the usual least Herbrand model

of de�nite logi
 programs. The operational semanti
s essentially is SLD-resolution as implemented

by most Prolog systems: atoms are sele
ted from left to right, and equations are evaluated by us-

ing uni�
ation. This operational semanti
s is sound w.r.t. the de
larative semanti
s (see Theorem 2

below). However, sin
e non-ground disequations
an be sele
ted, a goal evaluated a

ording to our

operational semanti
s
an fail, even if it is true a

ording to the de
larative semanti
s. In this sense,

the operational semanti
s is not
omplete w.r.t. the de
larative semanti
s.

For the notions of substitution,
omposition of substitutions, identity substitution, domain of a

substitution, restri
tion of a substitution, instan
e, most general uni�er (abbreviated as mgu), ground

expression, ground substitution, renaming substitution, variant, and for other notions not de�ned here,

we refer to [28℄.

2.1 Syntax

The syntax of our language is de�ned starting from the following in�nite and pairwise disjoint sets:

(i) variables: X;Y;Z;X

1

;X

2

; : : : ;

(ii) fun
tion symbols (with arity): f; f

1

; f

2

; : : : ; and

(iii) predi
ate symbols (with arity): true, =, 6=, p; p

1

; p

2

; : : : The predi
ate symbols true, =, and 6= are

said to be basi
, and the other predi
ate symbols are said to be non-basi
. Predi
ate symbols will also

be
alled predi
ates, for short.

3

Now we introdu
e the following sets: (iv) Terms: t; t

1

; t

2

; : : : ; (v) Basi
 atoms: B;B

1

; B

2

; : : : ;

(vi) Non-basi
 atoms: A;A

1

; A

2

; : : : ; and (vii) Goals: G;G

1

; G

2

; : : : Their syntax is as follows:

Terms : t ::= X j f(t

1

; : : : ; t

n

)

Basi
 Atoms : B ::= true j t

1

= t

2

j t

1

6= t

2

Non-basi
 Atoms : A ::= p(t

1

; : : : ; t

m

)

Goals : G ::= B j A j G

1

; G

2

Basi
 and non-basi
 atoms are
olle
tively
alled atoms. Goals made out of basi
 atoms only are said

to be basi
 goals. Goals with at least one non-basi
 atom are said to be non-basi
 goals. The binary

operator `,' denotes
onjun
tion and it is assumed to be asso
iative with neutral element true. Thus,

a goal G is the same as goal (true ; G), and it is also the same as goal (G; true).

Clauses: C;C

1

; C

2

; : : : have the following syntax:

C ::= A G

Given a
lause C of the form: A G, the non-basi
 atom A is
alled the head of C and it is denoted

by hd(C), and the goal G is
alled the body of C and it is denoted by bd(C). A
lause A G where

G is a basi
 goal, is
alled a unit
lause. We write a unit
lause of the form: A true also as: A .

We say that C is a
lause for a predi
ate p i� C is a
lause of the form p(: : :) G.

Programs: P; P

1

; P

2

; : : : are sets of
lauses.

In what follows we will feel free to use di�erent meta-variables to denote our synta
ti
 expressions, and

in parti
ular, we will also denote non-basi
 atoms by H;H

1

; : : :, and goals by K;K

1

;Body ;Body

1

; : : :

Given a program P , we
onsider the relation Æ

P

over pairs of predi
ates su
h that Æ

P

(p; q) holds

i� there exists in P a
lause for p whose body
ontains an o

urren
e of q. Let Æ

+

P

be the transitive

losure of Æ

P

. We say that p depends on q in P i� Æ

+

P

(p; q) holds. We say that a predi
ate p depends

on a
lause C in a program P i� either C is a
lause for p or C is a
lause for a predi
ate q and p

depends on q in P .

Terms, atoms, goals,
lauses, and programs are
olle
tively
alled expressions, ranged over by

e; e

1

; e

2

; : : : By vars(e) we denote the set of variables o

urring in an expression e. We say that X is

a lo
al variable of a goal G in a
lause C : H G

1

; G;G

2

i� X 2 vars(G)�vars(H;G

1

; G

2

).

The appli
ation of a renaming substitution to an expression is also
alled a renaming of variables.

A renaming of variables
an be applied to a
lause whenever needed, be
ause it preserves the least

Herbrand model semanti
s whi
h we de�ne below. Given a
lause C, a renamed apart
lause C

0

is any

lause obtained from C by a renaming of variables, so that ea
h variable of C

0

is a fresh new variable.

(For a formal de�nition of this
on
ept, see the de�nition of standardized apart
lause in [1, 28℄)

For any two uni�able terms t

1

and t

2

, there exists at least one mgu # whi
h is relevant (that is, ea
h

variable o

urring in # also o

urs in vars(t

1

)[vars(t

2

)) and idempotent (that is, ## = #) [1℄. Without

loss of generality, we assume that all mgu's
onsidered in this paper are relevant and idempotent.

2.2 De
larative Semanti
s

In this se
tion we extend the de�nition of least Herbrand model of de�nite logi
 programs [28℄ to logi

programs with equations and disequations between terms. We follow the approa
h usually taken when

de�ning the least D-model of a CLP program (see, for instan
e, [20℄). A

ording to this approa
h,

we
onsider a
lass of Herbrand models,
alled H-models, where the predi
ates true, =, and 6= have

a �xed interpretation. In parti
ular, the predi
ate = is interpreted as the identity relation over the

Herbrand universe and the predi
ate 6= is interpreted as the
omplement of the identity relation. Then

we de�ne the least Herbrand model of a logi
 program with equations and disequations between terms

as the least H-model of the program.

The Herbrand base HB is the set of all ground non-basi
 atoms. An H-interpretation is a subset

of HB. Given an H-interpretation I and a ground goal, or ground
lause, or program ', the relation

4

I j= ', read as ' is true in I, is indu
tively de�ned as follows (as usual, by I 6j= ' we indi
ate that

I j= ' does not hold):

(i) I j= true

(ii) for every ground term t, I j= t= t

(iii) for every pair of distin
t ground terms t

1

and t

2

, I j= t

1

6= t

2

(iv) for every non-basi
 ground atom A, I j= A i� A 2 I

(v) for every pair of ground goals G

1

and G

2

, I j= G

1

; G

2

i� I j= G

1

and I j= G

2

(vi) for every ground
lause C, I j= C i� either I j= hd(C) or I 6j= bd(C)

(vii) for every program P , I j= P i� for every ground instan
e C of a
lause in P , I j= C.

As a
onsequen
e of the above de�nition, a ground basi
 goal is true in an H-interpretation i� it is true

in all H-interpretations. We say that a ground basi
 goal holds i� it is true in all H-interpretations.

An H-interpretation I is said to be an H-model of a program P i� I j= P . Sin
e the model

interse
tion property holds for H-models, similarly to [20, 28℄, we
an prove the following important

result.

Theorem 1 For any program P there exists an H-model of P whi
h is the least (w.r.t. set in
lusion)

H-model.

The least Herbrand model of a program P is de�ned as the least H-model of P and is denoted by

M(P).

2.3 Operational Semanti
s

We de�ne the operational semanti
s of our programs by introdu
ing, for ea
h program P , a relation

G

1

#

7�!

P

G

2

, where G

1

and G

2

are goals and # is a substitution, de�ned as follows:

(1) (t

1

= t

2

; G)

#

7�!

P

G# i� t

1

and t

2

are uni�able via an mgu #

(2) (t

1

6= t

2

; G)

"

7�!

P

G i� t

1

and t

2

are not uni�able and " is the identity substitution

(3) (A;G)

#

7�!

P

(bd(C); G)# i� (i) A is a non-basi
 atom;

(ii) C is a renamed apart
lause in P; and

(iii) A and hd(C) are uni�able via an mgu #:

A sequen
e G

0

#

1

7�!

P

: : :

#

n

7�!

P

G

n

, with n�0, is
alled a derivation using P . If G

n

is true then the

derivation is said to be su

essful. If there exists a su

essful derivation G

0

#

1

7�!

P

: : :

#

n

7�!

P

true and

is the substitution obtained by restri
ting the
omposition #

1

: : : #

n

to the variables of G

0

, then we

say that the goal G

0

su

eeds in P with answer substitution #.

When denoting derivations, we will feel free to omit their asso
iated substitutions. In parti
ular,

given two goals G

1

andG

2

, we writeG

1

7�!

P

G

2

i� there exists a substitution # su
h that G

1

#

7�!

P

G

2

.

We say that G

2

is derived in one step from G

1

(using P) i� G

1

7�!

P

G

2

holds. In parti
ular, if G

2

is

derived in one step from G

1

a

ording to Point (3) of the operational semanti
s by using a
lause C,

then we say that G

2

is derived in one step from G

1

using C. The relation 7�!

�

P

is the re
exive and

transitive
losure of 7�!

P

. Given two goals G

1

and G

2

su
h that G

1

7�!

�

P

G

2

holds, we say that G

2

is

derived from G

1

(using P). We will feel free to omit the referen
e to program P when it is understood

from the
ontext.

The operational semanti
s presented above
an be viewed as an abstra
tion of the usual Prolog

semanti
s, be
ause: (i) given a goal G

1

, in order to derive a goal G

2

su
h that G

1

7�!

P

G

2

, we

onsider the leftmost atom in G

1

, (ii) the predi
ate = is interpreted as uni�ability of terms, and

(iii) the predi
ate 6= is interpreted as non-uni�ability of terms. Similarly to [28℄, we have the following

relationship between the de
larative and the operational semanti
s.

5

Theorem 2 For any program P and ground goal G, if G su

eeds in P then M(P) j= G.

The
onverse of Theorem 2 does not hold. Indeed,
onsider the program P
onsisting of the
lause

p(1) X 6=0 only. We have that M(P) j= p(1) be
ause there exists a value for X, namely 1, whi
h

is synta
ti
ally di�erent from 0. However, p(1) does not su

eed in P , be
ause X and 0 are uni�able

terms.

2.4 Deterministi
 Programs

Various notions of determinism have been proposed for logi
 programs in the literature (see, for

instan
e, [10, 18, 31, 43℄). They
apture various properties su
h as: \the program su

eeds at most

on
e", or \the program su

eeds exa
tly on
e", or \the program will never ba
ktra
k to �nd alternative

solutions".

Let us now present the de�nition of deterministi
 program used in this paper. This de�nition is

based on the operational semanti
s des
ribed in Se
tion 2.3.

We �rst need the following notation. Given a program P , a
lause C 2 P , and two goals (A

0

; G

0

)

and (A

n

; G

n

), where A

0

is a non-basi
 atom, we write (A

0

; G

0

))

C

(A

n

; G

n

) i� there exists a derivation

(A

0

; G

0

) 7�!

P

: : : 7�!

P

(A

n

; G

n

), su
h that: (i) n>0, (ii) (A

1

; G

1

) is derived in one step from (A

0

; G

0

)

using C, (iii) for i = 1; : : : ; n � 1, A

i

is a basi
 atom, and (iv) either A

n

is a non-basi
 atom or

(A

n

; G

n

) is the basi
 atom true. We write G

0

)

�

P

G

n

i� there exist
lauses C

1

; : : : ; C

n

in P su
h that

G

0

)

C

1

: : :)

C

n

G

n

.

De�nition 1 (Determinism) A program P is deterministi
 for a non-basi
 atom A i� for ea
h goal

G su
h that A)

�

P

G, there exists at most one
lause C su
h that G)

C

G

0

for some goal G

0

.

We say that a program P is nondeterministi
 for a non-basi
 atom A i� it is not the
ase that P is

deterministi
 for A, that is, there exists a goal G derivable from A, and there exist at least two goals

G

1

and G

2

, and two distin
t
lauses C

1

and C

2

in P , su
h that G)

C

1

G

1

and G)

C

2

G

2

.

A

ording to De�nition 1, the following program is deterministi
 for any atom of the form

non zero(Xs;Ys) where Xs is a ground list.

1. non zero([℄; [℄)

2. non zero([0jXs ℄;Ys) non zero(Xs;Ys)

3. non zero([XjXs ℄; [XjYs ℄) X 6=0;non zero(Xs ;Ys)

Noti
e that the above de�nition of a deterministi
 program for a non-basi
 atom A allows some sear
h

during the
onstru
tion of a derivation starting from A. Indeed, there may be a goal G derived from A

su
h that from G we
an derive in one step two or more new goals using distin
t
lauses. However, if

the program is deterministi
 for A, after evaluating the basi
 atoms o

urring at leftmost positions in

these new goals, at most one derivation
an be
ontinued and at most one su

essful derivation
an be

onstru
ted. For instan
e, from the goal non zero([0; 0; 1℄;Ys) we
an derive in one step two distin
t

goals: (i) non zero([0; 1℄;Ys) (using
lause 2), and (ii) 0 6= 0;non zero([0; 1℄;Ys

0

) (using
lause 3).

However, there exists only one
lause C (that is,
lause 2) su
h that non zero([0; 0; 1℄;Ys))

C

G

0

for

some goal G

0

(that is, non zero([0; 1℄;Ys

0

)).

3 Partial Dedu
tion via Unfold/Fold Transformations

In this se
tion we re
all the rule-based approa
h to partial dedu
tion. We also point out some limi-

tations of partial dedu
tion [36, 41℄ and
onjun
tive partial dedu
tion [8℄. These limitations motivate

the introdu
tion of the new, enhan
ed rules and strategies for program spe
ialization presented in

Se
tions 4, 5, and 6.

6

3.1 Transformation Rules and Strategies for Partial Dedu
tion

In the rule-based approa
h, partial dedu
tion
an be viewed as the
onstru
tion of a sequen
e P

0

; : : : ; P

n

of programs,
alled a transformation sequen
e, where P

0

is the initial program to be spe
ialized, P

n

is

the �nal, spe
ialized program, and for k = 0; : : : ; n� 1, program P

k+1

is derived from program P

k

by

by applying one of the following transformation rules PD1{PD4.

Rule PD1 (Atomi
 De�nition Introdu
tion) We introdu
e a
lause D,
alled atomi
 de�nition

lause, of the form

newp(X

1

; : : : ;X

h

) A

where (i) newp is a non-basi
 predi
ate symbol not o

urring in P

0

; : : : ; P

k

, (ii) A is a non-basi
 atom

whose predi
ate o

urs in program P

0

, and (iii) fX

1

; : : : ;X

h

g = vars(A).

Program P

k+1

is the program P

k

[fDg.

We denote by Defs

k

the set of atomi
 de�nition
lauses whi
h have been introdu
ed by the de�-

nition introdu
tion rule during the
onstru
tion of the transformation sequen
e P

0

; : : : ; P

k

. Thus, in

parti
ular, we have that Defs

0

= ;.

Rule PD2 (De�nition Elimination). Let p be a predi
ate symbol. By de�nition elimination w.r.t.

p we derive the program P

k+1

= fC 2 P

k

j p depends on Cg.

Rule PD3 (Unfolding). Let C be a renamed apart
lause of P

k

of the form: H G

1

; A;G

2

, where A

is a non-basi
 atom. Let C

1

; : : : ; C

m

, with m � 0, be the
lauses of P

k

su
h that, for i = 1; : : : ;m, A

is uni�able with the head of C

i

via the mgu #

i

. By unfolding C w.r.t. A, for i = 1; : : : ;m, we derive

the
lause D

i

: (H G

1

; bd(C

i

); G

2

)#

i

.

Program P

k+1

is the program (P

k

� fCg) [fD

1

; : : : ;D

m

g.

Rule PD4 (Atomi
 Folding). Let C be a renamed apart
lause of P

k

of the form: H G

1

; A#;G

2

,

where: (i) A is a non-basi
 atom, and (ii) # is a substitution, and let D be an atomi
 de�nition
lause

in Defs

k

of the form: N A. By folding C w.r.t. A# using D we derive the non-basi
 atom N# and

we derive the
lause E : H G

1

; N#;G

2

.

Program P

k+1

is the program (P

k

� fCg) [fEg.

The partial dedu
tion of a program P may be realized by applying the atomi
 de�nition intro-

du
tion, de�nition elimination, unfolding, and atomi
 folding rules, a

ording to the so
alled partial

dedu
tion strategy whi
h we will des
ribe below. Our partial dedu
tion strategy uses two subsidiary

strategies: (1) an Unfold strategy, whi
h derives new sets of
lauses by repeatedly applying the unfold-

ing rule, and (2) a De�ne-Fold strategy, whi
h introdu
es new atomi
 de�nition
lauses and it folds the

lauses derived by the Unfold strategy. These subsidiary strategies use an unfolding sele
tion fun
tion

and a generalization fun
tion, whi
h we now de�ne. Let us �rst introdu
e the following notation:

(i) NBAtoms is the set of all non-basi
 atoms, (ii) Clauses is the set of all
lauses, (iii) Clauses

�

is

the set of all �nite sequen
es of
lauses, (iv) P(Clauses) is the powerset of Clauses, (v) a sequen
e of

lauses is denoted by C

1

; : : : ; C

n

, and (vi) the empty sequen
e of
lauses is denoted by ().

An unfolding sele
tion fun
tion is a total fun
tion Sele
t : Clauses

�

�Clauses ! NBAtoms[fhaltg,

where halt is a symbol not o

urring in NBAtoms. We assume that, for C

1

; : : : ; C

n

2 Clauses

�

and

C 2 Clauses , Sele
t((C

1

; : : : ; C

n

); C) is a non-basi
 atom in the body of C.

When applying the Unfold strategy the Sele
t fun
tion is used as follows. During the unfolding

pro
ess starting from a set Cls of
lauses, we
onsider a
lause, say C, to be unfolded, and the

sequen
e of its an
estor
lauses, that is, the sequen
e C

1

; : : : ; C

n

of
lauses su
h that: (i) C

1

2 Cls ,

(ii) for k = 1; : : : ; n�1, C

k+1

is derived by unfolding C

k

, and (iii) C is derived by unfolding C

n

. Now,

(i) if Sele
t((C

1

; : : : ; C

n

); C) = A, where A is a non-basi
 atom in the body of C, then C is unfolded

w.r.t. A, and (ii) if Sele
t((C

1

; : : : ; C

n

); C) = halt then C is not unfolded.

7

A generalization fun
tion Gen : P(Clauses) � NBAtoms ! Clauses is de�ned for any set Defs

of atomi
 de�nition
lauses and for any non-basi
 atom A. Gen(Defs; A) is either a
lause in Defs

or a
lause of the form g(X

1

; : : : ;X

h

) GenA, where: (i) fX

1

; : : : ;X

h

g = vars(GenA), (ii) A is an

instan
e of GenA, and (iii) g is a new predi
ate, that is, it o

urs neither in P nor in Defs.

When applying the De�ne-Fold strategy the generalization fun
tion Gen is used as follows: when

we want to fold a
lause C w.r.t. a non-basi
 atom A in its body, we
onsider the set Defs of all

atomi
 de�nition
lauses introdu
ed so far and we apply the folding rule using Gen(Defs; A). This

appli
ation of the folding rule is indeed possible be
ause, by
onstru
tion, A is an instan
e of the body

of Gen(Defs ; A).

Partial Dedu
tion Strategy

Input: A program P and a non-basi
 atom p(t

1

; : : : ; t

h

) w.r.t. whi
h we want to spe
ialize P .

Output: A program P

pd

and a non-basi
 atom p

pd

(X

1

; : : : ;X

r

), su
h that: (i) fX

1

; : : : ;X

r

g =

vars(p(t

1

; : : : ; t

h

)), and (ii) for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g,

M(P) j= p(t

1

; : : : ; t

h

)# i� M(P

pd

) j= p

pd

(X

1

; : : : ;X

r

)#.

Initialize: Let S be the
lause p

pd

(X

1

; : : : ;X

r

) p(t

1

; : : : ; t

h

). Let An
estors(S) be the empty

sequen
e of
lauses.

TransfP := P ; Defs := fSg; Cls := fSg;

while Cls 6= ; do

(1) Unfold :

while there exists a
lause C 2 Cls with Sele
t(An
estors(C); C) 6= halt do

Let Unf (C) = fE j E is derived by unfolding C w.r.t. Sele
t(An
estors(C); C)g.

Cls := (Cls � fCg) [Unf (C);

for ea
h E 2 Unf (C) let An
estors(E) be the sequen
e An
estors(C) followed by C

end-while;

(2) De�ne-Fold :

NewDefs := ;;

while there exists a
lause C 2 Cls and there exists a non-basi
 atom A 2 bd(C) whi
h has not

been derived by folding do

Let G be the atomi
 de�nition
lause Gen(Defs; A) and F be the
lause derived by folding

C w.r.t. A using G.

Cls := (Cls � fCg) [fFg;

if G 62 Defs then (Defs := Defs [fGg; NewDefs := NewDefs [fGg)

end-while;

TransfP := TransfP [Cls ; Cls := NewDefs

end-while;

We derive the �nal program P

pd

by applying the de�nition elimination rule and keeping only the

lauses of TransfP on whi
h p

pd

depends.

A given unfolding sele
tion fun
tion Sele
t is said to be progressive i� for the empty sequen
e ()

of
lauses and for any
lause C whose body
ontains at least one non-basi
 atom, we have that

Sele
t((); C) 6= halt .

We have the following
orre
tness result whi
h is a straightforward
orollary of Theorem 5 of

Se
tion 4.2.

8

Theorem 3 (Corre
tness of Partial Dedu
tion w.r.t. the De
larative Semanti
s)

Let Sele
t be a progressive unfolding sele
tion fun
tion. Given a program P and a non-basi
 atom

p(t

1

; : : : ; t

h

), if the partial dedu
tion strategy using Sele
t terminates with output program P

pd

and

output atom p

pd

(X

1

; : : : ;X

r

), then for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g,

M(P) j= p(t

1

; : : : ; t

h

)# i� M(P

pd

) j= p

pd

(X

1

; : : : ;X

r

)#.

We say that an unfolding sele
tion fun
tion Sele
t is halting i� for any in�nite sequen
e C

1

; C

2

; : : :

of
lauses, there exists n � 0 su
h that Sele
t((C

1

; C

2

; : : : ; C

n

); C

n+1

) = halt .

Given an in�nite sequen
e A

1

; A

2

; : : : of non-basi
 atoms, its image under the generalization fun
-

tion Gen, is the sequen
e of sets of
lauses de�ned as follows:

G

1

= fnewp(X

1

; : : : ;X

n

) A

1

g, where fX

1

; : : : ;X

n

g = vars(A

1

)

G

i+1

= G

i

[fGen(G

i

; A

i+1

)g for i � 1.

We say that Gen is stabilizing i� for any in�nite sequen
e A

1

; A

2

; : : : of non-basi
 atoms whose

image under Gen is G

1

; G

2

; : : : ; there exists n > 0 su
h that G

k

= G

n

for all k � n.

We have the following theorem whose proof is similar to the one in [25℄.

Theorem 4 (Termination of Partial Dedu
tion) Let Sele
t be a halting unfolding sele
tion fun
-

tion and Gen be a stabilizing generalization fun
tion. Then for any input program P and non-basi

atom p(t

1

; : : : ; t

h

), the partial dedu
tion strategy using Sele
t and Gen terminates.

The following example shows that the unfolding rule (and thus, the partial dedu
tion strategy) is

not
orre
t w.r.t. the operational semanti
s.

Example 1 Let us
onsider the following program P

1

:

1. p X 6=a; q(X)

2. q(b)

By unfolding
lause 1 w.r.t. q(X) we derive the following program P

2

:

3. p b 6=a

2. q(b)

We have that the goal p does not su

eed in P

1

, while it su

eeds in P

2

.

We will address this
orre
tness issue in detail in Se
tion 5, where we will present a set of trans-

formation rules whi
h are
orre
t w.r.t. the operational semanti
s for the
lass of safe programs (see

Theorem 6).

3.2 An Example of Partial Dedu
tion: String Mat
hing

In this se
tion we illustrate the partial dedu
tion strategy by means of a well-known program spe
ial-

ization example whi
h
onsists in spe
ializing a general string mat
hing program w.r.t. a given pattern

(see [11, 13, 44℄ for a similar example). Given a program for sear
hing a pattern in a string, and a

�xed ground pattern p, we want to derive a new, spe
ialized program for sear
hing the pattern p in a

given string. Now we present a general program,
alled Mat
h, for sear
hing a pattern P in a string

S in fa; bg

�

. Strings in fa; bg

�

are denoted by lists of a's and b's. This program is deterministi
 for

atoms of the form mat
h(P; S), where P and S are ground lists.

Program Mat
h (initial, deterministi
)

1. mat
h(P; S) mat
h1(P; S; P; S)

2. mat
h1([℄; S; Y; Z)

3. mat
h1([CjP ℄; [CjS ℄; Y; Z) mat
h1(P ;S ; Y; Z)

4. mat
h1([ajP ℄; [bjS ℄; Y; [CjZ℄) mat
h1(Y;Z; Y; Z)

5. mat
h1([bjP ℄; [ajS ℄; Y; [CjZ℄) mat
h1(Y;Z; Y; Z)

9

Let us assume that we want to spe
ialize this program Mat
h w.r.t. the goal mat
h([a; a; b℄; S), that

is, we want to derive a program whi
h tells us whether or not the pattern [a; a; b℄ o

urs in the string

S.

We apply our partial dedu
tion strategy using the following unfolding sele
tion fun
tion DetU and

generalization fun
tion Variant.

(1) The fun
tion DetU : Clauses

�

�Clauses ! NBAtoms [fhaltg is de�ned as follows:

(i) DetU ((); C) = A if A is the leftmost non-basi
 atom in the body of
lause C,

(ii) DetU ((C

1

; C

2

; : : : ; C

n

); C) = A if n � 1 and A is the leftmost non-basi
 atom in the body of C

su
h that A is uni�able with at most one
lause head in the program to be partially evaluated, and

(iii) DetU ((C

1

; C

2

; : : : ; C

n

); C) = halt if there exists no non-basi
 atom in the body of C whi
h is

uni�able with at most one
lause head in the program to be partially evaluated.

(2) The fun
tion Variant : P(Clauses)�NBAtoms ! Clauses is de�ned as follows:

(i) Variant(Defs; A) is a
lause C su
h that bd(C) is a variant of A, if in Defs there exists any su
h

lause C, and

(ii) Variant(Defs ; A) is the
lause newp(X

1

; : : : ;X

h

) A, where newp is a new predi
ate symbol and

fX

1

; : : : ; X

h

g = vars(A), otherwise.

The fun
tion DetU
orresponds to the determinate unfolding rule
onsidered in [13℄. We have that

DetU is not halting and Variant is not stabilizing. Nevertheless, in our example, as the reader may

verify, the partial dedu
tion strategy using DetU and Variant terminates and generates the following

spe
ialized program:

Program Mat
h

pd

(spe
ialized by partial dedu
tion, deterministi
)

6. mat
h

pd

(S) new1(S)

7. new1([ajS℄) new2(S)

8. new1([bjS℄) new1(S)

9. new2([ajS℄) new3(S)

10. new2([bjS℄) new1(S)

11. new3([bjS℄)

12. new3([ajS℄) new3(S)

The program Mat
h

pd

is deterministi
 for atoms of the form mat
h

pd

(S), where S is a ground list, and

it
orresponds to a DFA in the sense that: (i) ea
h predi
ate
orresponds to a state, (ii) ea
h
lause,

ex
ept for
lause 6 and 11,
orresponds to a transition from the state
orresponding to the predi
ate

of the head to the state
orresponding to the predi
ate of the body, (iii) ea
h transition is labelled by

the symbol (either a or b) o

urring in the head of the
orresponding
lause, (iv) by
lause 6 we have

that new1 is the initial state for goals of the form mat
h

pd

(w), where w is any ground list representing

a word in fa; bg

�

, and (v)
lause 11
orresponds to a transition, labeled by b, to an unnamed �nal

state where any remaining portion of the input word is a

epted.

Thus, via partial dedu
tion we
an derive a DFA from a deterministi
 string mat
hing program.

The derived program
orresponds to the Knuth-Morris-Pratt string mat
hing algorithm [22℄.

3.3 Some Limitations of Partial Dedu
tion

The fa
t that the partial dedu
tion strategy derives a DFA is a
onsequen
e of the fa
t that the

initial string mat
hing program Mat
h is rather sophisti
ated and, indeed, the
orre
tness proof of the

program Mat
h is not straightforward. A
tually, the partial dedu
tion strategy does not derive a DFA

if we
onsider, instead of the program Mat
h, the following naive initial program for string mat
hing:

10

Program Naive Mat
h (initial, nondeterministi
)

1. naive mat
h(P; S) append (X;R; S); append (L; P;X)

2. append ([℄; Y; Y)

3. append ([AjX℄; Y; [AjZ℄) append (X;Y;Z)

This program is nondeterministi
 for atoms of the form naive mat
h(P; S), where P and S are ground

lists. The
orre
tness of this naive program is straightforward be
ause for a given pattern P and a

string S, Naive Mat
h tests whether or not P o

urs in S by looking in a nondeterministi
 way for

two strings L and R su
h that S is the
on
atenation of L, P , and R in this order.

The reader may verify that the partial dedu
tion strategy does not derive a DFA when starting from

the programNaive Mat
h. Indeed, if we spe
ializeNaive Mat
h w.r.t. the goal naive mat
h([a; a; b℄; S)

by applying the partial dedu
tion strategy using the unfolding sele
tion fun
tion DetU and the gen-

eralization fun
tion Variant, then we derive the following program Naive Mat
h

pd

whi
h does not

orrespond to a DFA and it is nondeterministi
:

Program Naive Mat
h

pd

(spe
ialized by partial dedu
tion, nondeterministi
)

4. naive mat
h

pd

(S) new1(X;R; S); new2(L;X)

5. new1([℄; Y; Y)

6. new1([AjX℄; Y; [AjZ℄) new1(X;Y;Z)

7. new2([℄; [a; a; b℄)

8. new2([AjX℄; [AjZ℄) new2(X;Z)

Indeed, this Naive Mat
h

pd

program looks in a nondeterministi
 way for two strings L and R su
h

that S is the
on
atenation of L, [a; a; b℄, and R. If the pattern [a; a; b℄ is not found within the string

S at a given position, then the sear
h for [a; a; b℄ is restarted after a shift of one
hara
ter to the right

of that position.

From the program Naive Mat
h we
an derive a spe
ialized program whi
h is mu
h more eÆ
ient

than Naive Mat
h

pd

by applying
onjun
tive partial dedu
tion, instead of partial dedu
tion. Conjun
-

tive partial dedu
tion, viewed as a sequen
e of appli
ations of transformation rules, enhan
es partial

dedu
tion be
ause: (i) one may introdu
e a de�nition
lause whose body is a
onjun
tion of atoms,

instead of one atom only (see Rule PD1), and (ii) one may fold a
lause w.r.t. a
onjun
tion of atoms

in its body, instead of one atom only (see Rule PD4). By applying
onjun
tive partial dedu
tion one

may avoid intermediate data stru
tures, su
h as the list X
onstru
ted by using
lause 1 of program

Naive Mat
h. Indeed, by using the ECCE system for
onjun
tive partial dedu
tion [24℄, from the

Naive Mat
h program we derive the following spe
ialized program:

Program Naive Mat
h

pd

(spe
ialized by
onjun
tive partial dedu
tion, nondeterministi
)

9. naive mat
h

pd

([X;Y;ZjS℄) new1(X;Y;Z; S)

10. new1(a; a; b; S)

11. new1(X;Y;Z; [CjS℄) new1(Y;Z;C; S)

This Naive Mat
h

pd

program sear
hes for the pattern [a; a; b℄ in the input string by looking at the

�rst three elements of that string. If they are a, a, and b, in this order, then the sear
h su

eeds,

otherwise the sear
h for the pattern
ontinues in the tail of the string. Although this Naive Mat
h

pd

program is mu
h more eÆ
ient than the initial Naive Mat
h program, it does not
orrespond to a

DFA be
ause, when sear
hing for the pattern [a; a; b℄, it looks at a pre�x of length 3 of the input

string, instead of one symbol only.

The failure of partial dedu
tion and
onjun
tive partial dedu
tion to derive a DFA when starting

from the Naive Mat
h program, is due to some limitations whi
h
an be over
ome by using the

11

enhan
ed transformation rules we will present in the next se
tion. By applying these enhan
ed rules

we
an de�ne a new predi
ate by introdu
ing several
lauses whose bodies are non-atomi
 goals, while

by applying the rules for partial dedu
tion or
onjun
tive partial dedu
tion, a new predi
ate
an be

de�ned by introdu
ing one
lause only. By folding using de�nition
lauses of the enhan
ed form, we

an derive spe
ialized programs where nondeterminism is redu
ed and intermediate data stru
tures

are avoided. Among our enhan
ed rules we also have the so
alled
ase split rule whi
h, given a

lause, produ
es two mutually ex
lusive instan
es of that
lause by introdu
ing negated equations.

The appli
ation of this rule allows subsequent folding steps whi
h redu
e nondeterminism.

By applying the enhan
ed transformation rules a

ording to the Determinization Strategy we will

present in Se
tion 6, one
an automati
ally spe
ialize the nondeterministi
 program Naive Mat
h w.r.t.

the goal naive mat
h([a; a; b℄; S) thereby deriving the following deterministi
 program (this derivation

is not presented here and it is similar to the one presented in Se
tion 7.1):

Program Naive Mat
h

s

(spe
ialized by Determinization, deterministi
)

12. naive mat
h

s

(S) new1(S)

13. new1([ajS℄) new2(S)

14. new1([CjS℄) C 6=a;new1(S)

15. new2([ajS℄) new3(S)

16. new2([CjS℄) C 6=a;new1(S)

17. new3([bjS℄) new4(S)

18. new3([ajS℄) new3(S)

19. new3([CjS℄) C 6=b; C 6=a;new1(S)

20. new4(S)

The programNaive Mat
h

s

orresponds in a straightforward way to a DFA. Moreover, sin
e the
lauses

of Naive Mat
h

s

are pairwise mutually ex
lusive, the disequations in their bodies
an be dropped in

favor of
uts (or equivalently, if-then-else
onstru
ts) as follows:

Program Naive Mat
h

ut

(spe
ialized, with
uts)

21. naive mat
h

s

(S) new1(S)

22. new1([ajS℄) !; new2(S)

23. new1([CjS℄) new1(S)

24. new2([ajS℄) !; new3(S)

25. new2([CjS℄) new1(S)

26. new3([bjS℄) !; new4(S)

27. new3([ajS℄) !; new3(S)

28. new3([CjS℄) new1(S)

29. new4(S)

Computer experiments
on�rm that the �nal Naive Mat
h

ut

program is indeed more eÆ
ient than

the Naive Mat
h, Naive Mat
h

pd

, and Naive Mat
h

pd

programs. In Se
tion 7 we will present more

experimental results whi
h demonstrate that the spe
ialized programs derived by our te
hnique are

more eÆ
ient than those derived by partial dedu
tion or
onjun
tive partial dedu
tion.

4 Transformation Rules for Logi
 Programs with Equations and Dis-

equations between Terms

In this se
tion we present the program transformation rules whi
h we use for program spe
ialization.

These rules extend the unfold/fold rules
onsidered in [14, 40, 46℄ to logi
 programs with atoms whi
h

12

denote equations and disequations between terms. The transformation rules we present in this se
tion

enhan
e in several respe
ts the rules PD1-PD4 for partial dedu
tion whi
h we have
onsidered in

Se
tion 3. In parti
ular, we
onsider a de�nition introdu
tion rule (see Rule 1) whi
h allows the

introdu
tion of new predi
ates de�ned by several
lauses whose bodies are non-atomi
 goals, while by

Rule PD1 a new predi
ate
an be de�ned by introdu
ing one
lause whose body is an atomi
 goal.

We also
onsider a folding rule (see Rule 4) by whi
h we
an fold several
lauses at a time, while

by Rule PD4 we
an fold one
lause only. In addition, we
onsider the subsumption rule and the

following transformation rules for introdu
ing and eliminating equations and disequations: (i) head

generalization, (ii)
ase split, (iii) equation elimination, and (iv) disequation repla
ement. Our rules

preserve the least Herbrand model as indi
ated in Theorem 5 below.

4.1 Transformation Rules

Similarly to Se
tion 3, the pro
ess of program transformation is viewed as a transformation sequen
e

onstru
ted by applying some transformation rules. However, as already mentioned, in this se
tion we

onsider an enhan
ed set of transformation rules. A transformation sequen
e P

0

; : : : ; P

n

is
onstru
ted

from a given initial program P

0

by appli
ations of the transformation rules 1{9 given below, as follows.

For k = 0; : : : ; n � 1, program P

k+1

is derived from program P

k

by: (i) sele
ting a (possibly empty)

subset

1

of
lauses of P

k

, (ii) deriving a set

2

of
lauses by applying a transformation rule to

1

, and

(iii) repla
ing

1

by

2

in P

k

.

Noti
e that Rules 2 and 3 are in fa
t equal to Rules PD2 and PD3, respe
tively. However, we

rewrite them below for the reader's
onvenien
e.

Rule 1 (De�nition Introdu
tion) We introdu
e m (�1) new
lauses,
alled de�nition
lauses, of

the form:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) Body

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) Body

m

where: (i) newp is a non-basi
 predi
ate symbol not o

urring in P

0

; : : : ; P

k

, (ii) the variablesX

1

; : : : ;X

h

are all distin
t and for all i 2 f1; : : : ; hg there exists j 2 f1; : : : ;mg su
h that X

i

o

urs in the goal

Body

j

, (iii) for all j 2 f1; : : : ;mg, every non-basi
 predi
ate o

urring in Body

j

also o

urs in P

0

, and

(iv) for all j 2 f1; : : : ;mg, there exists at least one non-basi
 atom in Body

j

.

Program P

k+1

is the program P

k

[fD

1

; : : : ;D

m

g.

As in Se
tion 3, we denote by Defs

k

the set of de�nition
lauses introdu
ed by the de�nition

introdu
tion rule during the
onstru
tion of the transformation sequen
e P

0

; : : : ; P

k

. In parti
ular, we

have that Defs

0

= ;.

Rule 2 (De�nition Elimination) Let p be a predi
ate symbol. By de�nition elimination w.r.t. p

we derive the program P

k+1

= fC 2 P

k

j p depends on Cg.

Rule 3 (Unfolding) Let C be a renamed apart
lause of P

k

of the form: H G

1

; A;G

2

, where A

is a non-basi
 atom. Let C

1

; : : : ; C

m

, with m � 0, be the
lauses of P

k

su
h that, for i = 1; : : : ;m, A

is uni�able with the head of C

i

via the mgu #

i

. By unfolding C w.r.t. A, for i = 1; : : : ;m, we derive

the
lause D

i

: (H G

1

; bd(C

i

); G

2

)#

i

.

Program P

k+1

is the program (P

k

� fCg) [fD

1

; : : : ;D

m

g.

Noti
e that an appli
ation of the unfolding rule to
lause C amounts to the deletion of C i� m=0.

Sometimes in the literature this parti
ular instan
e of the unfolding rule is treated as an extra rule.

13

Rule 4 (Folding) Let

8

>

<

>

:

C

1

: H G

1

;Body

1

#;G

2

� � �

C

m

: H G

1

;Body

m

#;G

2

be renamed
lauses of P

k

, for a suitable substitution #, and let

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) Body

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) Body

m

be all
lauses in Defs

k

whi
h have newp as head predi
ate. Suppose that for i = 1; : : : ;m; the following

ondition holds: for every variable X o

urring in the goal Body

i

and not in fX

1

; : : : ;X

h

g, we have

that: (i) X# is a variable whi
h does not o

ur in (H;G

1

; G

2

), and (ii) X# does not o

ur in Y #, for

any variable Y o

urring in Body

i

and di�erent from X. By folding C

1

; : : : ; C

m

using D

1

; : : : ;D

m

we

derive the single
lause E: H G

1

;newp(X

1

; : : : ;X

h

)#;G

2

.

Program P

k+1

is the program (P

k

� fC

1

; : : : ; C

m

g) [fEg.

For instan
e, the
lauses C

1

: p(X) q(t(X); Y); r(Y) and C

2

: p(X) s(X); r(Y)
an be folded

(by
onsidering the substitution # = fU=X; V=Y g) using the two de�nition
lauses D

1

: a(U; V)

q(t(U); V) andD

2

: a(U; V) s(U), and we repla
e C

1

and C

2

by the
lause E: p(X) a(X;Y); r(Y).

Rule 5 (Subsumption) (i) Given a substitution #, we say that a
lause H G

1

subsumes a
lause

(H G

1

; G

2

)#.

Program P

k+1

is derived from program P

k

by deleting a
lause whi
h is subsumed by another
lause

in P

k

.

Rule 6 (Head Generalization) Let C be a
lause of the form: HfX=tg Body in P

k

, where

fX=tg is a substitution su
h that X o

urs in H and X does not o

ur in C. By head generalization,

we derive the
lause GenC : H X= t;Body .

Program P

k+1

is the program (P

k

� fCg) [fGenC g.

Rule 6 is a parti
ular
ase of the rule of generalization + equality introdu
tion
onsidered, for

instan
e, in [38℄.

Rule 7 (Case Split) Let C be a
lause in P

k

of the form: H Body . By
ase split of C w.r.t. the

binding X=t, where X does not o

ur in t, we derive the following two
lauses:

C

1

. (H Body)fX=tg

C

2

. H X 6= t;Body .

Program P

k+1

is the program (P

k

� fCg) [fC

1

; C

2

g.

In this Rule 7 we do not assume that X o

urs in C. However, in the Determinization Strategy of

Se
tion 6, we will always apply the
ase split rule to a
lause C : H Body w.r.t. a bindingX=t where

X o

urs in H. This use of the
ase split rule will be suÆ
ient to derive mutually ex
lusive
lauses.

Indeed, a

ording to our operational semanti
s, if G 7�!

P

k+1

G

1

using
lause C

1

and X o

urs in H,

then no G

2

exists su
h that G 7�!

P

k+1

G

2

using
lause C

2

. The same holds by inter
hanging C

1

and

C

2

. We will return to this property in De�nitions 8 (Semideterminism) and 12 (Mutual Ex
lusion)

below.

Rule 8 (Equation Elimination) Let C

1

be a
lause in P

k

of the form:

C

1

. H G

1

; t

1

= t

2

; G

2

14

If t

1

and t

2

are uni�able via the most general uni�er #, then by equation elimination we derive the

following
lause:

C

2

. (H G

1

; G

2

)#

Program P

k+1

is the program (P

k

� fC

1

g) [fC

2

g.

If t

1

and t

2

are not uni�able then by equation elimination we derive program P

k+1

whi
h is P

k

�fC

1

g.

Rule 9 (Disequation Repla
ement) Let C be a
lause in program P

k

. Program P

k+1

is derived

from P

k

by either removing C or repla
ing C as we now indi
ate:

9.1 if C is of the form: H G

1

; t

1

6= t

2

; G

2

and t

1

and t

2

are not uni�able, then C is repla
ed by

H G

1

; G

2

9.2 if C is of the form: H G

1

; f(t

1

; : : : ; t

m

) 6= f(u

1

; : : : ; u

m

); G

2

, then C is repla
ed by the

following m (� 0)
lauses: H G

1

; t

1

6=u

1

; G

2

, : : : ; H G

1

; t

m

6=u

m

; G

2

9.3 if C is of the form: H G

1

;X 6=X;G

2

, then C is removed from P

k

9.4 if C is of the form: H G

1

; t 6=X;G

2

, then C is repla
ed by H G

1

;X 6= t;G

2

9.5 if C is of the form: H G

1

;X 6= t

1

; G

2

;X 6= t

2

; G

3

and there exists a substitution � whi
h is

a bije
tive mapping from the set of the lo
al variables of X 6= t

1

in C onto the set of the lo
al

variables of X 6= t

2

in C su
h that t

1

� = t

2

, then C is repla
ed by H G

1

;X 6= t

1

; G

2

; G

3

.

In parti
ular, by Rule 9.5, if a disequation o

urs twi
e in the body of a
lause, then we
an remove

the rightmost o

urren
e.

4.2 Corre
tness of the Transformation Rules w.r.t. the De
larative Semanti
s

In this se
tion we show that, under suitable hypotheses, our transformation rules preserve the de
lar-

ative semanti
s presented in Se
tion 2.2. In that sense we also say that our transformation rules

are
orre
t w.r.t. the given de
larative semanti
s. The following
orre
tness theorem extends simi-

lar results holding for logi
 programs [14, 40, 46℄ to the
ase of logi
 programs with equations and

disequations.

Theorem 5 (Corre
tness of the Rules w.r.t. the De
larative Semanti
s) Let P

0

; : : : ; P

n

be

a transformation sequen
e
onstru
ted by using the transformation rules 1{9 and let p be a non-

basi
 predi
ate in P

n

. Let us assume that:

1. if the folding rule is applied for the derivation of a
lause C in program P

k+1

from
lauses

C

1

; : : : ; C

m

in program P

k

using
lauses D

1

; : : : ;D

m

in Defs

k

, with 0�k<n,

then for every i 2 f1; : : : ;mg there exists j 2 f1; : : : ; n�1g su
h that D

i

o

urs in P

j

and P

j+1

is derived from P

j

by unfolding D

i

;

2. during the transformation sequen
e P

0

; : : : ; P

n

the de�nition elimination rule either is never

applied or it is applied w.r.t. predi
ate p on
e only, in the last step, that is, when deriving P

n

from P

n�1

.

Then, for every ground atom A with predi
ate p, we have that M(P

0

[Defs

n

) j= A i� M(P

n

) j= A.

Proof : It is a simple extension of a similar result presented in [14℄ for the
ase where we use the

unfolding, folding, and generalization + equality introdu
tion rules. The proof te
hnique used in [14℄

an be adapted to prove also the
orre
tness of our extended set of rules. 2

15

In Example 1 of Se
tion 3 we have shown that the unfolding rule may not preserve the operational

semanti
s. The following examples show that also other transformation rules may not preserve the

operational semanti
s.

Example 2 Let us
onsider the following program P

1

:

1. p(X) q(X); X 6=a

2. q(X)

3. q(X) X=b

By Rule 5 we may delete
lause 3 whi
h is subsumed by
lause 2 and we derive a new program P

2

.

Now, we have that p(X) su

eeds in P

1

, while it does not su

eed in P

2

.

Example 3 Let us
onsider the following program P

3

:

1. p(X)

By the
ase split rule we may repla
e
lause 1 by the two
lauses:

2. p(a)

3. p(X) X 6=a

and we derive a new program P

4

. The goal p(X);X = b su

eeds in P

3

, while it does not su

eed in

P

4

.

Example 4 Let us
onsider the following program P

5

:

1. p X 6=a; X=b

By Rule 8 we may repla
e
lause 1 by:

2. p b 6=a

and we derive a new program P

6

. The goal p does not su

eed in P

5

, while it su

eeds in P

6

.

Finally, let us
onsider the following two operations on the body of a
lause: (i) removal of a dupli
ate

atom, and (ii) reordering of atoms. The following examples show that these two operations, whi
h

preserve the de
larative semanti
s, may not preserve the operational semanti
s. Noti
e, however,

that the removal of a dupli
ate atom and the reordering of atoms
annot be a

omplished by the

transformation rules listed in Se
tion 4, ex
ept for the spe
ial
ase
onsidered at Point 9.5 of the

disequation repla
ement rule.

Example 5 Let us
onsider the program P

7

:

1. p q(X;Y); q(X;Y); X 6=Y

2. q(X; b)

3. q(a; Y)

and the program P

8

obtained from P

7

by repla
ing
lause 1 by the following
lause:

4. p q(X;Y); X 6=Y

The goal p su

eeds in P

7

, while it does not su

eed in P

8

. Indeed, (i) for program P

7

we have that:

p 7�!

P

7

q(X;Y); q(X;Y);X 6=Y 7�!

P

7

q(X; b);X 6=b 7�!

P

7

a 6=b 7�!

P

7

true, and (ii) for program

P

8

we have that: either p 7�!

P

8

X 6= b or p 7�!

P

8

a 6=Y . In Case (ii), sin
e X and Y are uni�able

with b and a, respe
tively, we have that p 7�!

�

P

8

true does not hold.

Example 6 Let us
onsider the program P

9

:

1. p q(X); r(X)

2. q(a)

3. r(X) X 6=b

16

and the program P

10

obtained from P

9

by repla
ing
lause 1 by the following
lause:

4. p r(X); q(X)

The goal p su

eeds in P

9

, while it does not su

eed in P

10

.

In the next se
tion we will introdu
e a
lass of programs and a
lass of goals for whi
h our transfor-

mation rules preserve both the de
larative semanti
s and the operational semanti
s. In order to do

so, we asso
iate a mode with every predi
ate. A mode of a predi
ate spe
i�es the input arguments of

that predi
ate, and we assume that whenever the predi
ate is
alled, its input arguments are bound to

ground terms. We will see that, if some suitable
onditions are satis�ed,
omplian
e to modes guar-

antees the preservation of the operational semanti
s. This fa
t is illustrated by the above Examples 2

and 3, and indeed, in ea
h of them, if we restri
t ourselves to
alls of the predi
ate p with ground

arguments, then the initial program and the derived program have the same operational semanti
s.

Noti
e, however, that the in
orre
tness of the transformation of Example 4 does not depend on

the modes. Thus, in order to ensure
orre
tness w.r.t. the operational semanti
s we have to rule out

lauses su
h as
lause 1 of program P

5

. Indeed, as we will see in the next se
tion, the
lauses we will

onsider satisfy the following
ondition: ea
h variable whi
h o

urs in a disequation either o

urs in

an input argument of the head predi
ate or it is a lo
al variable of the disequation.

5 Program Transformations based on Modes

Modes provide information about the dire
tionality of predi
ates, by spe
ifying whether an argument

should be used as input or output (see, for instan
e, [32, 49℄). Mode information is very useful for

spe
ifying and verifying logi
 programs [2, 10℄ and it is used in existing
ompilers, su
h as Ciao and

Mer
ury, to generate very eÆ
ient
ode [19, 45℄. Mode information has also been used in the
ontext

of program transformation to provide suÆ
ient
onditions whi
h ensure that reorderings of atoms in

the body of a
lause preserve program termination [5℄.

In this paper we use mode information for: (i) spe
ifying
lasses of programs and goals w.r.t. whi
h

the transformation rules we have presented in Se
tion 4.1 preserve the operational semanti
s (see

Se
tion 2.3), and (ii) designing our strategy for spe
ializing programs and redu
ing nondeterminism.

5.1 Modes

A mode for a non-basi
 predi
ate p of arity h (� 0) is an expression of the form p(m

1

; : : : ;m

h

),

where for i = 1; : : : ; h, m

i

is either + (denoting any ground term) or ? (denoting any term). In

parti
ular, if h = 0, then p has a unique mode whi
h is p itself. Given an atom p(t

1

; : : : ; t

h

) and a

mode p(m

1

; : : : ;m

h

),

(1) for i = 1; : : : ; h, the term t

i

is said to be an input argument of p i� m

i

is +, and

(2) a variable of p(t

1

; : : : ; t

h

) with an o

urren
e in an input argument of p, is said to be an input

variable of p(t

1

; : : : ; t

h

).

A mode for a program P is a set of modes for non-basi
 predi
ates
ontaining exa
tly one mode

for every distin
t, non-basi
 predi
ate p o

urring in P .

Noti
e that a mode for a program P may or may not
ontain modes for non-basi
 predi
ates whi
h

do not o

ur in P . Thus, if M is a mode for a program P

1

and, by applying a transformation rule,

from P

1

we derive a new program P

2

where all o

urren
es of a predi
ate have been eliminated, then

M is a mode also for P

2

. The following rules may eliminate o

urren
es of predi
ates: de�nition

elimination, unfolding, folding, subsumption, disequation repla
ement (
ase 9.5). Clearly, if from P

1

we derive P

2

by applying the de�nition introdu
tion rule, then in order to obtain a mode for P

2

we

should add to M a mode for the newly introdu
ed predi
ate (unless it is already in M).

17

Example 7 Given the program P :

p(0; 1)

p(0; Y) q(Y)

the set M

1

= fp(+; ?); q(?)g is a mode for P . M

2

= fp(+; ?); q(+); r(+)g is a di�erent mode for P .

De�nition 2 Let M be a mode for a program P and p a non-basi
 predi
ate. We say that an atom

p(t

1

; : : : ; t

h

) satis�es the mode M i� (1) a mode for p belongs to M and (2) for i = 1; : : : ; h, if the

argument t

i

is an input argument of p a

ording to M , then t

i

is a ground term. In parti
ular, when

h=0, we have that p satis�es M i� p 2M .

The program P satis�es the mode M i� for ea
h non-basi
 atom A

0

whi
h satis�es M , and for ea
h

non-basi
 atom A and goal G su
h that A

0

7�!

�

P

(A;G), we have that A satis�es M .

With referen
e to Example 7 above, program P satis�es mode M

1

, but it does not satisfy mode M

2

.

In general, the property that a program satis�es a mode is unde
idable. Two approa
hes are

usually followed for verifying this property: (i) the �rst one uses abstra
t interpretation methods (see,

for instan
e, [9, 32℄) whi
h always terminate, but may return a don't know answer, and (ii) the se
ond

one
he
ks suitable synta
ti
 properties of the program at hand, su
h as well-modedness [2℄, whi
h

imply that the mode is satis�ed.

Our te
hnique is independent of any spe
i�
 method used for verifying that a program satis�es

a mode. However, as the reader may verify, all programs presented in the examples of Se
tion 7 are

well-moded and, thus, they satisfy the given modes.

5.2 Corre
tness of the Transformation Rules w.r.t. the Operational Semanti
s

Now we introdu
e a
lass of programs,
alled safe programs, and we prove that if the transformation

rules are applied to a safe program and suitable restri
tions hold, then the given program and the

derived program are equivalent w.r.t. the operational semanti
s.

De�nition 3 (Safe Programs) Let M be a mode for a program P . We say that a
lause C in P

is safe w.r.t. M i� for ea
h disequation t

1

6= t

2

in the body of C, we have that: for ea
h variable X

o

urring in t

1

6= t

2

either X is an input variable of hd(C) or X is a lo
al variable of t

1

6= t

2

in C.

Program P is safe w.r.t. M i� all its
lauses are safe w.r.t. M .

For instan
e, let us
onsider the mode M = fp(+); q(?)g. Clause p(X) X 6= f(Y) is safe w.r.t. M

and
lause p(X) X 6=f(Y); q(Y) is not safe w.r.t. M be
ause Y o

urs both in f(Y) and in q(Y).

When mentioning the safety property w.r.t. a given mode M , we feel free to omit the referen
e to

M , if it is irrelevant or understood from the
ontext.

In order to get our desired
orre
tness result (see Theorem 6 below), we need to restri
t the use of

our transformation rules as indi
ated in De�nitions 4-7 below. In parti
ular, these restri
tions ensure

that, by applying the transformation rules, program safety and mode satisfa
tion are preserved (see

Propositions 3 and 4 in Appendix A).

De�nition 4 (Safe Unfolding) Let P

k

be a program and M be a mode for P

k

. Let us
onsider an

appli
ation of the unfolding rule (see Rule 3 in Se
tion 4.1) whereby from the following
lause of P

k

:

H G

1

; A;G

2

we derive the
lauses:

8

>

<

>

:

D

1

: (H G

1

; bd(C

1

); G

2

)#

1

� � �

D

m

: (H G

1

; bd(C

m

); G

2

)#

m

18

where C

1

; : : : ; C

m

are the
lauses in P

k

su
h that, for i 2 f1; : : : ;mg, A is uni�able with the head of

C

i

via the mgu #

i

.

We say that this appli
ation of the unfolding rule is safe w.r.t. mode M i� for all i = 1; : : : ;m, for all

disequations d in bd(C

i

), and for all variables X o

urring in d#

i

, we have that either X is an input

variable of H#

i

or X is a lo
al variable of d in C

i

.

To see that unrestri
ted appli
ations of the unfolding rule may not preserve safety, let us
onsider

the following program:

1. p q(X); r(X)

2. q(1)

3. r(X) X 6=0

and the mode M = fp; q(?); r(+)g for it. By unfolding
lause 1 w.r.t. the atom r(X) we derive the

lause:

4. p q(X); X 6=0

This
lause is not safe w.r.t. M be
ause X does not o

ur in its head.

De�nition 5 (Safe Folding) Let us
onsider a program P

k

and a mode M for P

k

. Let us also

onsider an appli
ation of the folding rule (see Rule 4 in Se
tion 4.1) whereby from the following

lauses in P

k

:

8

>

<

>

:

C

1

: H G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H G

1

; (A

m

;K

m

)#;G

2

and the following de�nition
lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

we derive the new
lause:

H G

1

;newp(X

1

; : : : ;X

h

)#;G

2

We say that this appli
ation of the folding rule is safe w.r.t. mode M i� the following Property �

holds:

(Property �) Ea
h input variable of newp(X

1

; : : : ;X

h

)# is also an input variable of at least one of

the non-basi
 atoms o

urring in (H;G

1

; A

1

#; : : : ; A

m

#).

Unrestri
ted appli
ations of the folding rule may not preserve modes. Indeed, let us
onsider the

following initial program:

1. p q(X)

2. q(1)

Suppose that �rst we introdu
e the de�nition
lause:

3. new(X) q(X)

and then we apply the
lause split rule, thereby deriving:

4. new(0) q(0)

5. new(X) X 6=0; q(X)

The program made out of
lauses 1, 2, 4, and 5 satis�es the mode M = fp; q(?); new(+)g. By folding

lause 1 using
lause 3 we derive:

19

6. p new(X)

This appli
ation of the folding rule is not safe and the program we have derived,
onsisting of
lauses

2, 4, 5, and 6, does not satisfy M .

De�nition 6 (Safe Head Generalization) Let us
onsider a program P

k

and a mode M for P

k

.

We say that an appli
ation of the head generalization rule (see Rule 6 in Se
tion 4.1) to a
lause of

P

k

is safe i� X is not an input variable w.r.t. M .

The restri
tions
onsidered in De�nition 6 are needed to preserve safety. For instan
e, the
lause

p(t(X)) X 6=0 is safe w.r.t. the mode M = fp(+)g, while p(Y) Y = t(X);X 6=0 is not.

De�nition 7 (Safe Case Split) Let us
onsider a program P

k

and a modeM for P

k

. Let us
onsider

also an appli
ation of the
ase split rule (see Rule 7 in Se
tion 4.1) whereby from a
lause C in P

k

of

the form: H Body we derive the following two
lauses:

C

1

. (H Body)fX=tg

C

2

. H X 6= t;Body .

We say that this appli
ation of the
ase split rule is safe w.r.t. mode M i� X is an input variable of

H, X does not o

ur in t, and for all variables Y 2 vars(t), either Y is an input variable of H or Y

does not o

ur in C.

When applying the safe
ase split rule, X o

urs in H and thus, given a goal G, it is not the
ase

that for some goals G

1

and G

2

, we have both G 7�! G

1

using
lause C

1

and G 7�! G

2

using
lause

C

2

. In De�nition 12 below, we will formalize this property by saying that the
lauses C

1

and C

2

are

mutually ex
lusive.

Similarly to the unfolding and head generalization rules, the unrestri
ted use of the
ase split

rule may not preserve safety. For instan
e, from the
lause p(X) whi
h is safe w.r.t. the mode

M = fp(?)g, we may derive the two
lauses p(0) and p(X) X 6=0, and this last
lause is not safe

w.r.t. M .

We have shown in Se
tion 4.1 (see Example 6), that the reordering of atoms in the body of a

lause may not preserve the operational semanti
s. Now we prove that a parti
ular reordering of

atoms,
alled disequation promotion, whi
h
onsists in moving to the left the disequations o

urring in

the body of a safe
lause, preserves the operational semanti
s. Disequation promotion (not in
luded,

for reason of simpli
ity, among the transformation rules) allows us to rewrite the body of a safe
lause

so that every disequation o

urs to the left of every atom di�erent from a disequation thereby deriving

the normal form of that
lause (see Se
tion 6). The use of normal forms will simplify the proof of

Theorem 6 below and the presentation of the Determinization Strategy in Se
tion 6.

Proposition 1 (Corre
tness of Disequation Promotion) Let M be a mode for a program P

1

.

Let us assume that P

1

is safe w.r.t. M and P

1

satis�es M . Let C

1

: H G

1

; G

2

; t

1

6= t

2

; G

3

be a
lause in P

1

. Let P

2

be the program derived from P

1

by repla
ing
lause C

1

by
lause C

2

:

H G

1

; t

1

6= t

2

; G

2

; G

3

. Then: (i) P

2

is safe w.r.t. M , (ii) P

2

satis�es M , and (iii) for ea
h

non-basi
 atom A whi
h satis�es mode M , A su

eeds in P

1

i� A su

eeds in P

2

.

Proof : Point (i) follows from the fa
t that safety does not depend on the position of the disequation in

a
lause. Moreover, the evaluation of goal G

2

in program P

1

a

ording to our operational semanti
s,

does not bind any variable in t

1

6= t

2

, and thus, we get Point (ii). Point (iii) is a
onsequen
e of

Points (i) and (ii) and the fa
t that the evaluation of t

1

6= t

2

does not bind any variable in the goals

G

2

and G

3

. 2

20

The above proposition does not hold if we inter
hange
lause C

1

and C

2

. Consider, in fa
t, the

following
lause whi
h is safe w.r.t. mode M = fp(+); q(+)g:

C

3

. p(X) X 6=Y; q(Z)

This
lause satis�es M be
ause for all derivations starting from a ground instan
e p(t) of p(X) the

atom t 6=Y does not su

eed. In
ontrast, if we use the
lause C

4

: p(X) q(Z);X 6=Y , we have that

in the derivation starting from p(t), the variable Z is not bound to a ground term and thus,
lause C

4

does not satisfy the mode M whi
h has the element q(+).

In Theorem 6 below we will show that if we apply our transformation rules and their safe versions

in a restri
ted way, then a program P whi
h satis�es a mode M and is safe w.r.t. M , is transformed

into a new program, say Q, whi
h satis�es M and is safe w.r.t. M . Moreover, the programs P and Q

have the same operational semanti
s.

Theorem 6 (Corre
tness of the Rules w.r.t. the Operational Semanti
s) Let P

0

; : : : ; P

n

be

a transformation sequen
e
onstru
ted by using the transformation rules 1{9 and let p be a non-basi

predi
ate in P

n

. LetM be a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is safe w.r.t.M , (ii) P

0

[Defs

n

satis�esM , and (iii) the appli
ations of the unfolding, folding, head generalization, and
ase split rules

during the
onstru
tion of P

0

; : : : ; P

n

are all safe w.r.t. M . Suppose also that Conditions 1 and 2 of

Theorem 5 hold. Then: (i) P

n

is safe w.r.t. M , (ii) P

n

satis�es M , and (iii) for ea
h atom A whi
h

has predi
ate p and satis�es mode M , A su

eeds in P

0

[Defs

n

i� A su

eeds in P

n

.

Proof : See Appendix A. 2

5.3 Semideterministi
 Programs

In this se
tion we introdu
e the
on
ept of semideterminism whi
h
hara
terizes the
lass of programs

whi
h
an be obtained by using the Determinization Strategy of Se
tion 6. (The reader should not

onfuse the notion of semideterminism presented here with the one
onsidered in [18℄.)

We have already noti
ed that if a program P is deterministi
 for an atom A a

ording to De�ni-

tion 1, then there is at most one su

essful derivation starting from A, and A su

eeds in P with at

most one answer substitution. Thus, if an atom su

eeds in a program with more than one answer

substitution, and none of these substitutions is more general than another, then there is no
han
e to

transform that program into a new program whi
h is deterministi
 for that atom.

For instan
e, let us
onsider the following generalization of the problem of Se
tions 3.2 and 3.3:

Given a pattern P and a string S we want to
ompute the position, say N , of an o

urren
e of P in

S, that is, we want to �nd two strings L and R su
h that: (i) S is the
on
atenation of L, P , and R,

and (ii) the length of L is N . The following program Mat
h Pos
omputes N for any given P and S:

Program Mat
h Pos (initial, nondeterministi
)

1. mat
h pos(P; S;N) append (Y;R; S); append (L; P; Y); length(L; N)

2. length([℄; 0)

3. length([HjT ℄; s(N)) length(T;N)

4. append ([℄; Y; Y)

5. append ([AjX℄; Y; [AjZ℄) append (X;Y;Z)

The Mat
h Pos program is nondeterministi
 for atoms of the form mat
h pos(P; S;N) where P and

S are ground lists, and it
omputes one answer substitution for ea
h o

urren
e of P in S.

Suppose that we want to spe
ialize Mat
h Pos w.r.t. the atom mat
h pos([a; a; b℄; S;N). Thus,

we want to derive a new, spe
ialized program Mat
h Pos

s

and a new binary predi
ate mat
h pos

s

.

This new program should be able to
ompute multiple answer substitutions for a goal. For instan
e,

21

for the atom mat
h pos

s

([a; a; b; a; a; b℄; N) the program Mat
h Pos

s

should
ompute the two sub-

stitutions fN=0g and fN=s(s(s(0)))g and, thus, Mat
h Pos

s

annot be deterministi
 for the atom

mat
h pos

s

([a; a; b; a; a; b℄; N).

Now, in order to deal with programs whi
h may return multiple answer substitutions, we introdu
e

the notion of semideterminism, whi
h is weaker than that of determinism. Informally, we may say

that a semideterministi
 program has the minimum amount of nondeterminism whi
h is needed to

ompute multiple answer substitutions. In Se
tion 6 we will prove that the Determinization Strategy,

if it terminates, derives a semideterministi
 program.

De�nition 8 (Semideterminism) A program P is semideterministi
 for a non-basi
 atom A i� for

ea
h goal G su
h that A)

�

P

G, there exists at most one
lause C su
h that G)

C

G

0

for some goal

G

0

di�erent from true.

Given a modeM for a program P , we say that P is semideterministi
 w.r.t.M i� P is semideterministi

for ea
h non-basi
 atom whi
h satis�es M .

We will show in Se
tion 7.1 that by applying the Determinization Strategy, from Mat
h Pos

s

we

derive the following spe
ialized program Mat
h Pos

s

whi
h is semideterministi
 for atoms of the form

mat
h pos

s

(S;N), where S is a ground list.

Program Mat
h Pos

s

(spe
ialized, semideterministi
)

9. mat
h pos

s

(S;N) new1(S;N)

20. new1([ajS℄;M) new2(S;M)

21. new1([CjS℄; s(N)) C 6=a; new1(S;N)

32. new2([ajS℄;M) new3(S;M)

33. new2([CjS℄; s(s(N))) C 6=a; new1(S;N)

46. new3([ajS℄; s(M)) new3(R;S)

47. new3([bjS℄;M) new4(R;S)

48. new3([CjS℄; s(s(s(N)))) C 6=a; C 6=b; new1(S;N)

49. new4(S; 0)

55. new4([ajS℄; s(s(s(M)))) new2(S;M)

56. new4([CjS℄; s(s(s(s(N))))) C 6=a; new1(S;N)

Now we give a simple suÆ
ient
ondition whi
h ensures semideterminism. It is based on the
on
ept

of mutually ex
lusive
lauses whi
h we introdu
e below. We need some preliminary de�nitions.

De�nition 9 (Satis�ability of Disequations w.r.t. a Set of Variables) Given a set V of vari-

ables, we say that a
onjun
tion D of disequations, is satis�able w.r.t. V i� there exists a ground

substitution � with domain V , su
h that every ground instan
e of D� holds (see Se
tion 2.2). In

parti
ular, D is satis�able w.r.t. ; i� every ground instan
e of D holds.

The satis�ability of a
onjun
tionD of disequations w.r.t. a given set V of variables,
an be
he
ked

by using the following algorithm de�ned by stru
tural indu
tion:

(1) true, i.e., the empty
onjun
tion of disequations, is satis�able w.r.t. V ,

(2) (D

1

; D

2

) is satis�able w.r.t. V i� both D

1

and D

2

are satis�able w.r.t. V ,

(3) X 6= t is satis�able w.r.t. V i� X o

urs in V and t is either a non-variable term or a variable

o

urring in V distin
t from X,

(4) t 6= X is satis�able w.r.t. V i� X 6= t is satis�able w.r.t. V ,

(5) f(: : :) 6= g(: : :), where f and g are distin
t fun
tion symbols, is satis�able w.r.t. V , and

22

(6) f(t

1

; : : : ; t

m

) 6= f(u

1

; : : : ; u

m

) is satis�able w.r.t. V i� at least one disequation among t

1

6=u

1

; : : : ;

t

m

6=u

m

is satis�able w.r.t. V .

The
orre
tness of this algorithm relies on the fa
t that the set of fun
tion symbols is in�nite (see

Se
tion 2.1).

De�nition 10 (Linearity) A program P is said to be linear i� every
lause of P has at most one

non-basi
 atom in its body.

De�nition 11 (Guard of a Clause) The guard of a
lause C, denoted grd(C), is bd(C) if all atoms

in bd (C) are disequations, otherwise grd(C) is the (possibly empty)
onjun
tion of the disequations

o

urring in bd(C) to the left of the leftmost atom whi
h is not a disequation.

De�nition 12 (Mutually Ex
lusive Clauses) Let us
onsider a mode M for the following two,

renamed apart
lauses:

C

1

. p(t

1

; u

1

) G

1

C

2

. p(t

2

; u

2

) G

2

where: (i) p is a predi
ate of arity k (�0) whose �rst h arguments, with 0�h�k, are input arguments

a

ording to M , (ii) t

1

and t

2

are h-tuples of terms denoting the input arguments of p, and (iii) u

1

and u

2

are (k�h)-tuples of terms.

We say that C

1

and C

2

are mutually ex
lusive w.r.t. mode M i� either (i) t

1

is not uni�able with t

2

or

(ii) t

1

and t

2

are uni�able via an mgu # and (grd (C

1

); grd (C

2

))# is not satis�able w.r.t. vars(t

1

; t

2

).

If h= 0 we stipulate that the empty tuples t

1

and t

2

are uni�able via an mgu whi
h is the identity

substitution.

The following proposition is useful for proving that a program is semideterministi
.

Proposition 2 (SuÆ
ient Condition for Semideterminism) If (i) P is a linear program, (ii) P

is safe w.r.t. a given mode M , (iii) P satis�es M , and (iv) the non-unit
lauses of P are pairwise

mutually ex
lusive w.r.t. M , then P is semideterministi
 w.r.t. M .

Proof : See Appendix B. 2

In Se
tion 6, we will present a strategy for deriving spe
ialized programs whi
h satis�es the hy-

potheses (i){(iv) of the above Proposition 2, and thus, these derived programs are semideterministi
.

The following examples show that in Proposition 2 no hypothesis on program P
an be dis
arded.

Example 8 Consider the following program P and the mode M = fp; qg for P :

1. p q; q

2. q

3. q q

P is not linear, but P is safe w.r.t. M and P satis�es M . The non-unit
lauses of P whi
h are

the
lauses 1 and 3, are pairwise mutually ex
lusive. However, P is not semideterministi
 w.r.t. M ,

be
ause p 7�!

�

P

(q; q), and there exist two non-basi
 goals, namely q and (q; q), su
h that (q; q))

P

q

and (q; q))

P

(q; q).

Example 9 Consider the following program Q and the mode M = fp(?); q

1

; q

2

g for Q:

1. p(X) X 6=0; q

1

2. p(1) q

2

Q is linear and it satis�esM , butQ is not safe w.r.t.M be
auseX is not an input variable of p. Clauses

1 and 2 are mutually ex
lusive w.r.t. M , be
ause the set of input variables in p(X) is empty and X 6=0

is not satis�able w.r.t. ;. However, Q is not semideterministi
 w.r.t. M , be
ause p(1) 7�!

�

Q

p(1), and

there exist two non-basi
 goals, namely q

1

and q

2

, su
h that p(1))

Q

q

1

and p(1))

Q

q

2

.

23

Example 10 Consider the following program R and the mode M = fp; r(+); r

1

; r

2

g for R:

1. p r(X)

2. r(1) r

1

3. r(2) r

2

R is linear and safe w.r.t. M , but R does not satisfy M , be
ause p 7�!

R

r(X) and X is not a ground

term. Clauses 1, 2, and 3 are pairwise mutually ex
lusive. However, R is not semideterministi
 w.r.t.

M , be
ause p 7�!

�

R

r(X) and there exist two non-basi
 goals, namely r

1

and r

2

, su
h that r(X))

R

r

1

and r(X))

R

r

2

.

Example 11 Consider the following program S and the mode M = fp; r

1

; r

2

g for S:

1. p r

1

2. p r

2

S is linear and safe w.r.t. M , and S satis�es M . Clauses 1 and 2 are not pairwise mutually ex
lusive.

S is not semideterministi
 w.r.t. M , be
ause p 7�!

�

S

p, and there exist two non-basi
 goals, namely r

1

and r

2

, su
h that p)

S

r

1

and p)

S

r

2

.

We
on
lude this se
tion by observing that when a program
onsists of mutually ex
lusive
lauses

and, thus, it is semideterministi
, it may be exe
uted very eÆ
iently on standard Prolog systems by

inserting
uts in a suitable way. We will return to this point in Se
tion 8 when we dis
uss the speedups

obtained by our spe
ialization te
hnique.

6 A Transformation Strategy for Spe
ializing Programs and Redu
-

ing Nondeterminism

In this se
tion we present a strategy,
alled Determinization, for guiding the appli
ation of the trans-

formation rules presented in Se
tion 4.1. Our strategy pursues the following obje
tives. (1) The

spe
ialization of a program w.r.t. a parti
ular goal. This is similar to what partial dedu
tion does.

(2) The elimination of multiple or intermediate data stru
tures. This is similar to what the strategies

for eliminating unne
essary variables [38℄ and
onjun
tive partial dedu
tion do. (3) The redu
tion

of nondeterminism. This is a

omplished by deriving programs whose non-unit
lauses are mutually

ex
lusive w.r.t. a given mode, that is, by Proposition 2, semideterministi
 programs.

The Determinization Strategy is based upon three subsidiary strategies: (i) the Unfold-Simplify

subsidiary strategy, whi
h uses the safe unfolding, equation elimination, disequation repla
ement,

and subsumption rules, (ii) the Partition subsidiary strategy, whi
h uses the safe
ase split, equation

elimination, disequation repla
ement, subsumption, and safe head generalization rules, and (iii) the

De�ne-Fold subsidiary strategy whi
h uses the de�nition introdu
tion and safe folding rules. For rea-

sons of
larity, during the presentation of the Determinization Strategy we use high-level des
riptions

of the subsidiary strategies. These des
riptions are used to establish the
orre
tness of Determinization

(see Theorem 7). Full details of the subsidiary strategies will be given in Se
tions 6.2, 6.3, and 6.4,

respe
tively.

6.1 The Determinization Strategy

Given an initial program P , a mode M for P , and an atom p(t

1

; : : : ; t

h

) w.r.t. whi
h we want to

spe
ialize P , we introdu
e by the de�nition introdu
tion rule, the
lause

S: p

s

(X

1

; : : : ; X

r

) p(t

1

; : : : ; t

h

)

where X

1

; : : : ; X

r

are the distin
t variables o

urring in p(t

1

; : : : ; t

h

).

24

We also de�ne a mode p

s

(m

1

; : : : ; m

r

) for the predi
ate p

s

by stipulating that, for any j = 1; : : : ; r;

m

j

is + i� X

j

is an input variable of p(t

1

; : : : ; t

h

) a

ording to the mode M . We assume that the

program P is safe w.r.t. M . Thus, also program P [fSg is safe w.r.t. M [fp

s

(m

1

; : : : ; m

r

)g. We also

assume that P satis�es mode M and thus, program P [fSg satis�es mode M [fp

s

(m

1

; : : : ;m

r

)g.

Our Determinization Strategy is presented below as an iterative pro
edure that, at ea
h iteration,

manipulates the following three sets of
lauses: (1) TransfP, whi
h is the set of
lauses from whi
h

we will
onstru
t the spe
ialized program, (2) Defs, whi
h is the set of
lauses introdu
ed by the

de�nition introdu
tion rule, and (3) Cls, whi
h is the set of
lauses to be transformed during the

urrent iteration. Initially, Cls
onsists of the single
lause S: p

s

(X

1

; : : : ;X

r

) p(t

1

; : : : ; t

h

) whi
h is

onstru
ted as we have indi
ated above.

The Determinization Strategy starts o� ea
h iteration by applying the Unfold-Simplify subsidiary

strategy to the set Cls, thereby deriving a new set of
lauses
alled UnfoldedCls. The Unfold-Simplify

strategy �rst unfolds the
lauses in Cls, and then it simpli�es the derived set of
lauses by applying

the equation elimination, disequation repla
ement, and subsumption rules.

Then the set UnfoldedCls is divided into two sets: (i) UnitCls, whi
h is the set of unit
lauses,

and (ii) NonunitCls, whi
h is the set of non-unit
lauses. The Determinization Strategy pro
eeds by

applying the Partition subsidiary strategy to NonunitCls, thereby deriving a new set of
lauses
alled

PartitionedCls. The Partition strategy
onsists of suitable appli
ations of the
ase split, equation

elimination, disequation repla
ement, and head generalization rules su
h that the set PartitionedCls

has the following property: it
an be partitioned into sets of
lauses,
alled pa
kets, su
h that two

lauses taken from di�erent pa
kets are mutually ex
lusive (w.r.t. a suitable mode).

The Determinization Strategy
ontinues by applying the De�ne-Fold subsidiary strategy to the

lauses in PartitionedCls, thereby deriving a new, semideterministi
 set of
lauses
alled FoldedCls.

The De�ne-Fold subsidiary strategy introdu
es a (possibly empty) set NewDefs of de�nition
lauses

su
h that ea
h pa
ket
an be folded into a single
lause by using a set of de�nition
lauses in Defs [

NewDefs. We have that
lauses derived by folding di�erent pa
kets are mutually ex
lusive and, thus,

UnitCls [FoldedCls is semideterministi
.

At the end of ea
h iteration, UnitCls [FoldedCls is added to TransfP, NewDefs is added to Defs,

and the value of the set Cls is updated to NewDefs.

The Determinization Strategy terminates when Cls = ;, that is, no new predi
ate is introdu
ed

during the
urrent iteration.

Determinization Strategy

Input: A program P , an atom p(t

1

; : : : ; t

h

) w.r.t. whi
h we want to spe
ialize P , and a mode M for

P su
h that P is safe w.r.t. M and P satis�es M .

Output: A spe
ialized program P

s

, and an atom p

s

(X

1

;: : : ;X

r

), with fX

1

;: : : ;X

r

g=vars(p(t

1

;: : : ; t

h

))

su
h that: (i) for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g, M(P) j= p(t

1

; : : : ; t

h

)# i�

M(P

s

) j= p

s

(X

1

; : : : ;X

r

)#, and (ii) for every substitution � = fX

1

=v

1

; : : : ;X

r

=v

r

g su
h that the atom

p(t

1

; : : : ; t

h

)� satis�es mode M , we have that: (ii.1) p(t

1

; : : : ; t

h

)� su

eeds in P i� p

s

(X

1

; : : : ;X

r

)�

su

eeds in P

s

, and (ii.2) P

s

is semideterministi
 for p

s

(X

1

; : : : ;X

r

)�.

Initialize: Let S be the
lause p

s

(X

1

; : : : ;X

r

) p(t

1

; : : : ; t

h

).

TransfP := P ; Defs := fSg; Cls := fSg; M

s

:= M [fp

s

(m

1

; : : : ;m

r

)g, where for any j = 1; : : : ; r;

m

j

= + i� X

j

is an input variable of p(t

1

; : : : ; t

h

) a

ording to the mode M ;

while Cls 6= ; do

(1) Unfold-Simplify:

We apply the safe unfolding, equation elimination, disequation repla
ement, and subsumption

25

rules a

ording to the Unfold-Simplify Strategy given in Se
tion 6.2 below, and from Cls we

derive a new set of
lauses UnfoldedCls .

(2) Partition:

Let UnitCls be the unit
lauses o

urring in UnfoldedCls , and NonunitCls be the set of non-unit

lauses in UnfoldedCls .

We apply the safe
ase split, equation elimination, disequation repla
ement, and safe head

generalization rules a

ording to the Partition Strategy given in Se
tion 6.3 below, and from

NonunitCls we derive a set PartitionedCls of
lauses whi
h is the union of disjoint subsets of

lauses. Ea
h subset is
alled a pa
ket. The pa
kets of PartitionedCls enjoy the following prop-

erties:

(2a) ea
h pa
ket is a set of
lauses of the form (modulo renaming of variables):

8

>

<

>

:

H Diseqs; G

1

� � �

H Diseqs; G

m

where Diseqs is a
onjun
tion of disequations and for k = 1; : : : ;m, no disequation o

urs in G

k

,

and

(2b) for any two
lauses C

1

and C

2

, if the pa
ket of C

1

is di�erent from the pa
ket of C

2

, then

C

1

and C

2

are mutually ex
lusive w.r.t. mode M

s

.

(3) De�ne-Fold:

We apply the de�nition introdu
tion and the safe folding rules a

ording to the De�ne-Fold

subsidiary strategy given in Se
tion 6.4 below. A

ording to that strategy, we introdu
e a

(possibly empty) set NewDefs of new de�nition
lauses and a set M

new

of modes su
h that:

(3a) in M

new

there exists exa
tly one mode for ea
h distin
t head predi
ate in NewDefs, and

(3b) from ea
h pa
ket in PartitionedCls we derive a single
lause of the form:

H Diseqs;newp(: : :)

by an appli
ation of the folding rule, whi
h is safe w.r.t. M

new

, using the
lauses in Defs [

NewDefs.

Let FoldedCls be the set of
lauses derived by folding the pa
kets in PartitionedCls .

(4) TransfP := TransfP [UnitCls [FoldedCls ; Defs := Defs [NewDefs; Cls := NewDefs;

M

s

:=M

s

[M

new

end-while

We derive the spe
ialized program P

s

by applying the de�nition elimination rule and keeping only the

lauses of TransfP on whi
h p

s

depends.

The Determinization Strategy may fail to terminate for two reasons: (i) the Unfold-Simplify subsidiary

strategy may not terminate, be
ause it may perform in�nitely many unfolding steps, and (ii) the

ondition Cls 6= ; for exiting the while-do loop may always be false, be
ause at ea
h iteration the

De�ne-Fold subsidiary strategy may introdu
e new de�nition
lauses. We will dis
uss these issues in

more detail in Se
tion 9.

Now we show that, if the Determinization Strategy terminates, then the least Herbrand model and

the operational semanti
s are preserved. Moreover, the derived spe
ialized program P

s

is semideter-

ministi
 for p

s

(X

1

; : : : ;X

r

)� as indi
ated by the following theorem.

26

Theorem 7 (Corre
tness of the Determinization Strategy) Let us
onsider a program P , a

non-basi
 atom p(t

1

; : : : ; t

h

), and a mode M for P su
h that: (1) P is safe w.r.t. M and (2) P

satis�es M . If the Determinization Strategy terminates with output program P

s

and output atom

p

s

(X

1

; : : : ;X

r

) where fX

1

; : : : ;X

r

g = vars(p(t

1

; : : : ; t

h

)), then

(i) for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g,

M(P) j= p(t

1

; : : : ; t

h

)# i� M(P

s

) j= p

s

(X

1

; : : : ;X

r

)# and

(ii) for every substitution � = fX

1

=v

1

; : : : ;X

r

=v

r

g su
h that the atom p(t

1

; : : : ; t

h

)� satis�es mode

M ,

(ii.1) p(t

1

; : : : ; t

h

)� su

eeds in P i� p

s

(X

1

; : : : ;X

r

)� su

eeds in P

s

, and

(ii.2) P

s

is semideterministi
 for p

s

(X

1

; : : : ;X

r

)�.

Proof : Let Defs and P

s

be the set of de�nition
lauses and the spe
ialized program obtained at the

end of the Determinization Strategy.

(i) Sin
e p

s

(X

1

; : : : ;X

r

) p(t

1

; : : : ; t

h

) is the only
lause for p

s

in P [Defs and fX

1

; : : : ;X

r

g =

vars(p(t

1

; : : : ; t

h

)), for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g we have that M(P) j=

p(t

1

; : : : ; t

h

)# i� M(P [Defs) j= p

s

(X

1

; : : : ;X

r

)#. By the
orre
tness of the transformation rules

w.r.t. the least Herbrand model (see Theorem 5), we have that M(P [Defs) j= p

s

(X

1

; : : : ;X

r

)# i�

M(P

s

) j= p

s

(X

1

; : : : ;X

r

)#.

Point (ii.1) follows from Theorem 6 be
ause during the Determinization Strategy, ea
h appli
ation of

the unfolding, folding, head generalization, and
ase split rule is safe.

(ii.2) We �rst observe that, by
onstru
tion, for every substitution �, the atom p(t

1

; : : : ; t

h

)� satis�es

mode M i� p

s

(X

1

; : : : ;X

r

)� satis�es mode M

s

, where M

s

is the mode obtained from M at the end of

the Determinization Strategy. Thus, Point (ii.2)
an be shown by proving that P

s

is semideterministi

w.r.t. M

s

. In order to prove this fa
t, it is enough to prove that TransfP

w

�P is semideterministi

w.r.t. M

s

, where TransfP

w

is the set of
lauses whi
h is the value of the variable TransfP at the end of

the while-do statement of the Determinization Strategy. Indeed, P

s

is equal to TransfP

w

�P be
ause,

by
onstru
tion, p

s

does not depend on any
lause of P , and thus, by the �nal appli
ation of the

de�nition elimination rule, all
lauses of P are removed from TransfP

w

.

By Proposition 2, it is enough to prove that: (a) TransfP

w

�P is linear, (b) TransfP

w

�P is safe

w.r.t. M

s

, (
) TransfP

w

�P satis�es M

s

, and (d) the non-unit
lauses of TransfP

w

�P are pairwise

mutually ex
lusive w.r.t. M

s

.

Property (a) holds be
ause a

ording to the Determinization Strategy, after every appli
ation of

the safe folding rule we get a
lause of the form: H Diseqs ;newp(: : :), where a single non-basi

atom o

urs in the body. All other
lauses in TransfP

w

�P are unit
lauses.

Properties (b) and (
) follow from Theorem 6 re
alling that the appli
ation of the unfolding,

folding, head generalization, and
ase split rules are all safe.

Property (d)
an be proved by showing that, during the exe
ution of the Determinization Strat-

egy, the following Property (I) holds: all the non-unit
lauses of TransfP�P are pairwise mutually

ex
lusive w.r.t. M

s

. Indeed, initially TransfP�P is empty and thus, Property (I) holds. Furthermore,

Property (I) is an invariant of the while-do loop. Indeed, at the end of ea
h exe
ution of the body of

the while-do (see Point (4) of the strategy), the non-unit
lauses whi
h are added to the
urrent value

of TransfP are the elements of the set FoldedCls and those non-unit
lauses are derived by applying

the Partition and De�ne-Fold subsidiary strategies at Points (3) and (4), respe
tively. By
onstru
-

tion, the
lauses in FoldedCls are pairwise mutually ex
lusive w.r.t. M

new

, and their head predi
ates

do not o

ur in TransfP . Thus, the
lauses of TransfP [UnitCls [FoldedCls are pairwise mutually

ex
lusive w.r.t.M

s

[M

new

. As a
onsequen
e, after the two assignments (see Point (4) of the strategy)

TransfP := TransfP [UnitCls [FoldedCls and M

s

:= M

s

[M

new

, we have that Property (I) holds. 2

27

Now we des
ribe the three subsidiary strategies for realizing the Unfold-Simplify, Partition, and

De�ne-Fold transformations as spe
i�ed by the Determinization Strategy. We will see these subsidiary

strategies in a
tion in the examples of Se
tion 7.

During the appli
ation of our subsidiary strategies it will be
onvenient to rewrite every safe
lause

into its normal form. The normal formN of a safe
lause
an be
onstru
ted by performing disequation

repla
ements and disequation promotions, so that the following Properties N1{N5 hold:

(N1) every disequation is of the form: X 6= t, with t di�erent from X and uni�able with X,

(N2) every disequation o

urs in bd(N) to the left of every atom di�erent from a disequation,

(N3) if X 6= Y o

urs in bd(N) and both X and Y are input variables of hd(N), then in hd(N) the

leftmost o

urren
e of X is to the left of the leftmost o

urren
e of Y ,

(N4) for every disequation of the form X 6=Y where Y is an input variable, we have that also X is an

input variable, and

(N5) for any pair of disequations d

1

and d

2

in bd(N), it does not exist a substitution � whi
h is a

bije
tive mapping from the set of the lo
al variables of d

1

in N onto the set of the lo
al variables of

d

2

in N su
h that d

1

� = d

2

.

We have that: (i) the normal form of a safe
lause is unique, modulo renaming of variables and

disequation promotion, (ii) no two equal disequations o

ur in the normal form of a safe
lause, and

(iii) given a program P and a mode M for P su
h that P is safe w.r.t. M and P satis�es M , if we

rewrite a
lause of P into its normal form, then the least Herbrand model semanti
s and the operational

semanti
s are preserved (this fa
t is a
onsequen
e of Theorem 5, Theorem 6, and Proposition 1).

A safe
lause for whi
h Properties N1{N5 hold, is said to be in normal form. If a
lause C is in

normal form, then by Property N2, every disequation in bd(C) o

urs also in grd(C).

6.2 The Unfold-Simplify Subsidiary Strategy

The Unfold-Simplify strategy �rst unfolds the
lauses in Cls w.r.t. the leftmost atom in their body,

and then it keeps unfolding the derived
lauses as long as input variables are not instantiated. Now, in

order to give the formal de�nition of the Unfold-Simplify strategy we introdu
e the following
on
ept.

De�nition 13 (Consumer Atom) Let P be a program and M a mode for P . A non-basi
 atom

q(t

1

; : : : ; t

k

) is said to be a
onsumer atom i� for every non-unit
lause in P whose head uni�es with

that non-basi
 atom via an mgu #, we have that for i = 1; : : : ; k, if t

i

is an input argument of q then

t

i

is a variant of t

i

.

The Unfold-Simplify strategy is realized by the following Unfold-Simplify pro
edure, where the

expression Simplify(S) denotes the set of
lauses derived from a given set S of
lauses by: (1) �rst,

applying whenever possible the equation elimination rule to the
lauses in S, (2) then, rewriting the

derived
lauses into their normal form, and (3) �nally, applying as long as possible the subsumption

rule.

Pro
edure Unfold-Simplify(Cls ;UnfoldedCls).

Input: A set Cls of
lauses in a program P and a mode M

s

for P . P is safe w.r.t. M

s

and for ea
h

C 2 Cls , the input variables of the leftmost non-basi
 atom in the body of C are input variables of

the head of C.

Output: A new set UnfoldedCls of
lauses whi
h are derived from Cls by applying the safe unfolding,

equation elimination, disequation repla
ement, and subsumption rules. The
lauses in UnfoldedCls

are safe w.r.t. M

s

.

(1) Unfold w.r.t. Leftmost Non-basi
 Atom:

28

UnfoldedCls := fE j there exists a
lause C 2 Cls and
lause E is derived by unfolding C w.r.t.

the leftmost non-basi
 atom in its bodyg;

UnfoldedCls := Simplify(UnfoldedCls)

(2) Unfold w.r.t. Leftmost Consumer Atom:

while there exists a
lause C 2 UnfoldedCls whose body has a leftmost
onsumer atom, say A,

su
h that the unfolding of C w.r.t. A is safe do

UnfoldedCls := (UnfoldedCls � fCg) [fE j E is derived by unfolding C w.r.t. Ag;

UnfoldedCls := Simplify(UnfoldedCls)

end-while

Noti
e that our assumptions on the input program P and
lauses Cls ensure that the �rst unfolding

step performed by the Unfold-Simplify pro
edure is safe.

Noti
e also that our Unfold-Simplify strategy may fail to terminate. We will brie
y return to this

issue in Se
tion 9.

Our Unfold-Simplify strategy di�ers from usual unfolding strategies for (
onjun
tive) partial de-

du
tion (see, for instan
e, [8, 13, 36, 41℄), be
ause mode information is used. We have found this

strategy very e�e
tive on several examples as shown in the following Se
tion 7.

6.3 The Partition Subsidiary Strategy

The Partition strategy is realized by the following pro
edure, where we will write p(t; u) to denote an

atom with non-basi
 predi
ate p of arity k (� 0), su
h that: (i) t is an h-tuple of terms, with 0�h�k,

denoting the h input arguments of p, and (ii) u is a (k�h)-tuple of terms denoting the arguments of

p whi
h are not input arguments.

Pro
edure Partition(NonunitCls ;PartitionedCls).

Input: A set NonunitCls of non-unit
lauses in normal form and without variables in
ommon. A

mode M

s

for NonunitCls. The
lauses in NonunitCls are safe w.r.t. M

s

.

Output: A set PartitionedCls of
lauses whi
h is the union of disjoint pa
kets of
lauses su
h that:

(2a) ea
h pa
ket is a set of
lauses of the form (modulo renaming of variables):

8

>

<

>

:

H Diseqs; G

1

� � �

H Diseqs; G

m

where Diseqs is a
onjun
tion of disequations and for k = 1; : : : ;m, no disequation o

urs in G

k

, and

(2b) for any two
lauses C

1

and C

2

, if the pa
ket of C

1

is di�erent from the pa
ket of C

2

, then C

1

and

C

2

are mutually ex
lusive w.r.t. mode M

s

.

The
lauses in PartitionedCls are in normal form and they are safe w.r.t. M

s

.

while there exist in NonunitCls two
lauses of the form:

C

1

. p(t

1

; u

1

) Body

1

C

2

. p(t

2

; u

2

) Body

2

su
h that: (i) C

1

and C

2

are not mutually ex
lusive w.r.t. mode M

s

, and either

(ii.1) t

1

is not a variant of t

2

or

(ii.2) t

1

is a variant of t

2

via an mgu # su
h that t

1

#= t

2

, and for any substitution � whi
h is a bije
tive

mapping from the set of lo
al variables of grd(C

1

#) in C

1

onto the set of lo
al variables of grd(C

2

)

in C

2

, grd(C

1

#�)
annot be made synta
ti
ally equal to grd(C

2

) by applying disequation promotion

do

29

We take a binding X=r as follows.

(Case 1) Suppose that t

1

is not a variant of t

2

. In this
ase, sin
e C

1

and C

2

are not mutually

ex
lusive, we have that t

1

and t

2

are uni�able and, for some i; j 2 f1; 2g, with i 6=j, there exists

an mgu # of t

i

and t

j

and a binding Y=t

a

in # su
h that t

j

fY=t

a

g is not a variant of t

j

. Without

loss of generality we may assume that i=1 and j=2. Then we take the binding X=r to be Y=t

a

.

(Case 2) Suppose that t

1

is a variant of t

2

via an mgu #. Now every safe
lause whose normal

form has a disequation of the form X 6= t, where X is a lo
al variable of that disequation in

that
lause, is mutually ex
lusive w.r.t. any other safe
lause. This is the
ase be
ause, for any

substitution � whi
h does not bind X, t� is uni�able with X and, thus, X 6= t� is not satis�able.

Thus, for some i; j 2 f1; 2g, with i 6= j, there exists a disequation (Y 6= t

a

)# in grd(C

i

#) where

Y # is an input variable of hd(C

i

#), su
h that for any substitution � whi
h is a bije
tive mapping

from the set of lo
al variables of grd(C

i

#) in C

i

onto the set of lo
al variables of grd(C

j

#) in

C

j

and for every disequation (Z 6= t

b

)# in grd (C

j

#), we have that (Y 6= t

a

)#� is di�erent from

(Z 6= t

b

)#. We also have that Y # is an input variable of hd (C

j

#). Without loss of generality

we may assume that i=1, j=2, t

1

#= t

2

, and C

2

#=C

2

. Then we take the binding X=r to be

(Y=t

a

)#.

We apply the
ase split rule to
lause C

2

w.r.t. X=r, that is, we derive the two
lauses:

C

21

. (p(t

2

; u

2

) Body

2

)fX=rg

C

22

. p(t

2

; u

2

) X 6=r;Body

2

We update the value of NonunitCls as follows:

NonunitCls := (NonunitCls � fC

2

g) [fC

21

; C

22

g

NonunitCls := Simplify(NonunitCls).

end-while

Now the set NonunitCls is partitioned into subsets of
lauses and after suitable renaming of variables

and disequation promotion, ea
h subset is of the form:

8

>

<

>

:

p(t; u

1

) Diseqs;Goal

1

� � �

p(t; u

m

) Diseqs;Goal

m

where Diseqs is a
onjun
tion of disequations and for k = 1; : : : ;m, no disequation o

urs in Goal

k

,

and any two
lauses in di�erent subsets are mutually ex
lusive w.r.t. mode M

s

.

Then we pro
ess every subset of
lauses we have derived, by applying the safe head generalization

rule so to repla
e the non-input arguments in the heads of the
lauses belonging to the same subset

by their most spe
i�

ommon generalization. Thus, every subset of
lauses will eventually take the

form:

8

>

<

>

:

p(t; u) Eqs

1

;Diseqs ;Goal

1

� � �

p(t; u) Eqs

m

;Diseqs ;Goal

m

where u is the most spe
i�

ommon generalization of the terms u

1

; : : : ; u

m

and, for k = 1; : : : ;m, the

goal Eqs

k

is a
onjun
tion of the equations V

1

=v

1

; : : : ; V

r

=v

r

su
h that ufV

1

=v

1

; : : : ; V

r

=v

r

g = u

k

.

Finally, we move all disequations to the leftmost positions of the body of every
lause, thereby getting

the set PartitionedCls.

Noti
e that in the above pro
edure the appli
ation of the
ase split rule to
lause C

2

w.r.t. X=r is safe

be
ause: (i)
lauses C

1

and C

2

are safe w.r.t. M

s

, (ii) X is an input variable of hd(C

22

) (re
all that

30

our
hoi
e of X=r in Case 2 ensures that X is an input variable of hd (C

2

)), and (iii) ea
h variable in

r is either an input variable of hd (C

22

) or a lo
al variable of X 6=r in C

22

. Thus,
lauses C

21

and C

22

are safe w.r.t. mode M

s

and they are also mutually ex
lusive w.r.t. M

s

.

The following property is parti
ularly important for the me
hanization of our Determinization

Strategy.

Theorem 8 The Partition pro
edure terminates.

Proof : See Appendix C. 2

When the Partition pro
edure terminates, it returns a set PartitionedCls of
lauses whi
h is the

union of pa
kets of
lauses enjoying Properties (2a) and (2b) indi
ated in the Output spe
i�
ation of

that pro
edure. These properties are a straightforward
onsequen
e of the termination
ondition of

the while-do statement of that same pro
edure.

6.4 The De�ne-Fold Subsidiary Strategy

The De�ne-Fold strategy is realized by the following pro
edure.

Pro
edure De�ne-Fold(PartitionedCls ;Defs;NewDefs;FoldedCls).

Input: (i) A mode M

s

, (ii) a set PartitionedCls of
lauses whi
h are safe w.r.t. M

s

, and (iii) a set

Defs of de�nition
lauses. PartitionedCls is the union of the disjoint pa
kets of
lauses
omputed by

the Partition subsidiary strategy.

Output: (i) A (possibly empty) set NewDefs of de�nition
lauses, together with a mode M

new

on-

sisting of exa
tly one mode for ea
h distin
t head predi
ate in NewDefs. For ea
h C 2 NewDefs, the

input variables of the leftmost non-basi
 atom in the body of C are input variables of the head of C.

(ii) A set FoldedCls of folded
lauses.

NewDefs := ;; M

new

:= ;; FoldedCls := ;;

while there exists in PartitionedCls a pa
ket Q of the form:

8

>

<

>

:

H Diseqs; G

1

� � �

H Diseqs; G

m

where Diseqs is a
onjun
tion of disequations and for k = 1; : : : ;m, no disequation o

urs in G

k

,

do PartitionedCls := PartitionedCls �Q and apply the de�nition and safe folding rules as follows.

Case (�) Let us suppose that the set Defs of the available de�nition
lauses
ontains a subset of

lauses of the form:

8

>

<

>

:

newq(X

1

; : : : ;X

h

) G

1

� � �

newq(X

1

; : : : ;X

h

) G

m

su
h that: (i) they are all the
lauses in Defs for predi
ate newq, (ii) X

1

; : : : ;X

h

in
lude every

variable whi
h o

urs in one of the goals G

1

; : : : ; G

m

and also o

urs in one of the goals H;Diseqs

(this property is needed for the
orre
tness of folding, see Se
tion 4.1), and (iii) for i = 1; : : : ; h, if

X

i

is an input argument of newq then X

i

is either an input variable of H (a

ording to the given

mode M

s

) or an input variable of the leftmost non-basi
 atom of one of the goals G

1

; : : : ; G

m

.

Then we fold the given pa
ket and we get:

FoldedCls := FoldedCls [fH Diseqs;newq(X

1

; : : : ;X

h

)g

31

Case (�) If in Defs there is no set of de�nition
lauses satisfying the
onditions des
ribed in Case (�),

then we add to NewDefs the following
lauses for a new predi
ate newr :

8

>

<

>

:

newr(X

1

; : : : ;X

h

) G

1

� � �

newr(X

1

; : : : ;X

h

) G

m

where, for i = 1; : : : ; h, either (i) X

i

o

urs in one of the goals G

1

; : : : ; G

m

and also o

urs in one

of the goals H;Diseqs, or (ii) X

i

is an input variable of the leftmost non-basi
 atom of one of

the goals G

1

; : : : ; G

m

. We add to M

new

the mode newr (m

1

; : : : ; m

h

) su
h that for i = 1; : : : ; h,

m

i

=+ i� X

i

is either an input variable of H or an input variable of the leftmost non-basi
 atom

of one of the goals G

1

; : : : ; G

m

. We then fold the pa
ket under
onsideration and we get:

FoldedCls := FoldedCls [fH Diseqs;newr (X

1

; : : : ;X

h

)g

end-while

Noti
e that the post-
onditions on the set NewDefs whi
h is derived by the De�ne-Fold pro
edure (see

Point (i) of the Output of the pro
edure), ensure the satisfa
tion of the pre-
onditions on the set Cls

whi
h is an input of the Unfold-Simplify pro
edure. Indeed, re
all that the set Cls is
onstru
ted during

the Determinization Strategy by the assignment Cls := NewDefs. Re
all also that these pre-
onditions

are needed to ensure that the �rst unfolding step performed by the Unfold-Simplify pro
edure is safe.

Noti
e also that ea
h appli
ation of the folding rule is safe (see De�nition 5). This fa
t is implied

in Case (�) by Condition (iii), and in Case (�) by the de�nition of the mode for newr .

Finally, noti
e that the De�ne-Fold pro
edure terminates. However, this pro
edure does not guar-

antee the termination of the spe
ialization pro
ess, be
ause at ea
h iteration of the while-do loop of the

Determinization Strategy, the De�ne-Fold pro
edure may introdu
e a nonempty set of new de�nition

lauses. We will brie
y dis
uss this issue in Se
tion 9.

7 Examples of Appli
ation of the Determinization Strategy

In this se
tion we will present some examples of program spe
ialization where we will see in a
tion

our Determinization Strategy together with the Unfold-Simplify, Partition, and De�ne-Fold subsidiary

strategies.

7.1 A Complete Derivation: Computing the O

urren
es of a Pattern in a String

We
onsider again the program Mat
h Pos of Se
tion 5.3. The modeM for the program Mat
h Pos is

fmat
h pos(+;+; ?), append (?; ?;+), length(+; ?)g. We leave it to the reader to verify thatMat
h Pos

satis�es M .

The derivation we will perform using the Determinization Strategy is more
hallenging than the

ones presented in the literature (see, for instan
e, [11, 12, 13, 15, 44℄) be
ause an o

urren
e of the

pattern P in the string S is spe
i�ed in the initial program (see
lause 1) in a nondeterministi
 way

by stipulating the existen
e of two substrings L and R su
h that S is the
on
atenation of L, P , and

R.

We want to spe
ialize the Mat
h Pos program w.r.t. the atom mat
h pos([a; a; b℄; S;N). Thus, we

�rst introdu
e the de�nition
lause:

6. mat
h pos

s

(S;N) mat
h pos([a; a; b℄; S;N)

The mode of the new predi
ate is mat
h pos

s

(+; ?) be
ause S is an input argument of mat
h pos and

N is not an input argument. Our transformation strategy starts o� with the following initial values:

Defs = Cls = f6g, TransfP = Mat
h Pos , and M

s

=M [fmat
h pos

s

(+; ?)g.

32

First iteration

Unfold-Simplify. By unfolding
lause 6 w.r.t. the leftmost atom in its body we derive:

7. mat
h pos

s

(S;N) append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

The body of
lause 7 has no
onsumer atoms (noti
e that, for instan
e, the mgu of append (Y;R; S) and

the head of
lause 5 has the binding S=[AjZ℄ where S is an input variable). Thus, the Unfold-Simplify

subsidiary strategy terminates. We have: UnfoldedCls = f7g.

Partition. NonunitCls is made out of
lause 7 only, and thus, the Partition subsidiary strategy

immediately terminates and produ
es a set PartitionedCls whi
h
onsists of a single pa
ket made out

of
lause 7.

De�ne-Fold. In order to fold
lause 7 in PartitionedCls, the De�ne-Fold subsidiary strategy introdu
es

the following de�nition
lause:

8. new1(S;N) append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

The mode of new1 is new1(+; ?). By folding
lause 7 using
lause 8 we derive:

9. mat
h pos

s

(S;N) new1(S;N)

Thus, the �rst iteration of the Determinization Strategy terminates with Defs = f6; 8g, Cls = f8g,

TransfP = Mat
h Pos [f9g, and M

s

=M [fmat
h pos

s

(+; ?); new1(+; ?)g.

Se
ond iteration

Unfold-Simplify. We follow the subsidiary strategy des
ribed in Se
tion 6.2 and we �rst unfold
lause

8 in Cls w.r.t. the leftmost atom in its body. We get:

10. new1(S;N) append (L; [a; a; b℄; [℄); length(L;N)

11. new1([CjS℄; N) append (Y;R; S); append (L; [a; a; b℄; [CjY ℄); length(L;N)

Now we unfold
lauses 10 and 11 w.r.t. the leftmost
onsumer atom of their bodies (see the underlined

atoms). The unfolding of
lause 10 amounts to its deletion be
ause the atom append (L; [a; a; b℄; [℄) is

not uni�able with any head in program Mat
h Pos. The unfolding of
lause 11 yields two new
lauses

that are further unfolded a

ording to the Unfold-Simplify subsidiary strategy. After some unfolding

steps, we derive the following
lauses:

12. new1([ajS℄; 0) append ([a; b℄; R; S)

13. new1([CjS℄; s(N)) append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

Partition. We apply the safe
ase split rule to
lause 13 w.r.t. to the binding C=a, be
ause the input

argument in the head of this
lause is uni�able with the input argument in the head of
lause 12 via

the mgu fC=ag. We derive the following two
lauses:

14. new1([ajS℄; s(N)) append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

15. new1([CjS℄; s(N)) C 6=a; append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

Now, the set of
lauses derived so far by the Partition subsidiary strategy
an be partitioned into two

pa
kets: the �rst one is made out of
lauses 12 and 14, where the input argument of the head predi
ate

is of the form [ajS℄, and the se
ond one is made out of
lause 15 only, where the input argument of

the head predi
ate is of the form [CjS℄ with C 6=a.

The Partition subsidiary strategy terminates by applying the safe head generalization rule to

lauses 12 and 14, so to repla
e the se
ond arguments in their heads by the most spe
i�

ommon

generalization of those arguments, that is, a variable. We get the pa
ket:

16. new1([ajS℄;M) M=0; append ([a; b℄; R; S)

17. new1([ajS℄;M) M=s(N); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

33

For the pa
ket made out of
lause 15 only, no appli
ation of the safe head generalization rule is

performed. Thus, we have derived the set of
lauses PartitionCls whi
h is the union of the two pa
kets

f16; 17g and f15g.

De�ne-Fold. Sin
e there is no set of de�nition
lauses in Defs whi
h
an be used to fold the pa
ket

f16; 17g, we are in Case (�) of the De�ne-Fold subsidiary strategy. Thus, we introdu
e a new predi
ate

new2 as follows:

18. new2(S;M) M=0; append ([a; b℄; R; S)

19. new2(S;M) M=s(N); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

The mode of new2 is new2(+; ?) be
ause S is an input variable of the head of ea
h
lause of the

orresponding pa
ket. By folding
lauses 16 and 17 using
lauses 18 and 19 we derive the following

lause:

20. new1([ajS℄;M) new2(S;M)

We then
onsider the pa
ket made out of
lause 15 only. This pa
ket
an be folded using
lause 8 in

Defs. Thus, we are in Case (�) of the De�ne-Fold subsidiary strategy. By folding
lause 15 we derive

the following
lause:

21. new1([CjS℄; s(N)) C 6=a; new1(S;N)

Thus, FoldedCls is the set f20; 21g.

After these folding steps we
on
lude the se
ond iteration of the Determinization Strategy with

the following assignments: Defs := Defs [f18; 19g; Cls := f18; 19g; TransfP := TransfP [f20; 21g;

M

s

:=M

s

[fnew2(+; ?)g.

Third iteration

Unfold-Simplify. From Cls, that is,
lauses 18 and 19, we derive the set UnfoldedCls made out of the

following
lauses:

22. new2([ajS℄; 0) append ([b℄; R; S)

23. new2([ajS℄; s(0)) append ([a; b℄; R; S)

24. new2([CjS℄; s(s(N))) append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

Partition. The set NonunitCls is identi
al to UnfoldedCls. From NonunitCls we derive the set Parti-

tionedCls whi
h is the union of two pa
kets. The �rst pa
ket
onsists of the following
lauses:

25. new2([ajS℄;M) M=0; append ([b℄; R; S)

26. new2([ajS℄;M) M=s(0); append ([a; b℄; R; S)

27. new2([ajS℄;M) M=s(s(N)); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

The se
ond pa
ket
onsists of the following
lause only:

28. new2([CjS℄; s(s(N))) C 6=a; append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

De�ne-Fold. We introdu
e the following de�nition
lauses:

29. new3(S;M) M=0; append ([b℄; R; S)

30. new3(S;M) M=s(0); append ([a; b℄; R; S)

31. new3(S;M) M=s(s(N)); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

where the mode for new3 is new3(+; ?). By folding, from PartitionedCls we derive the following two

lauses:

32. new2([ajS℄;M) new3(S;M)

33. new2([CjS℄; s(s(N))) C 6=a; new1(S;N)

whi
h
onstitute the set FoldedCls.

34

The third iteration of the Determinization Strategy terminates with the following assignments:

Defs := Defs [f29; 30; 31g; Cls := f29; 30; 31g; TransfP := TransfP [f32; 33g; M

s

:= M

s

[

fnew3(+; ?)g.

Fourth iteration

Unfold-Simplify. From Cls we derive the new set UnfoldedCls made out of the following
lauses:

34. new3([bjS℄; 0) append ([℄; R; S)

35. new3([ajS℄; s(0)) append ([b℄; R; S)

36. new3([ajS℄; s(s(0))) append ([a; b℄; R; S)

37. new3([CjS℄; s(s(s(N)))) append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

Partition. The set NonunitCls is identi
al to UnfoldedCls. From NonunitCls we derive the new set

PartitionedCls made out of the following
lauses:

38. new3([ajS℄; s(M)) M=0; append ([b℄; R; S)

39. new3([ajS℄; s(M)) M=s(0); append ([a; b℄; R; S)

40. new3([ajS℄; s(M)) M=s(s(N)); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

41. new3([bjS℄;M) M=0; append ([℄; R; S)

42. new3([bjS℄;M) M=s(s(s(N))); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

43. new3([CjS℄; s(s(s(N)))) C 6=a;C 6=b; append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

PartitionedCls
onsists of three pa
kets: f38; 39; 40g, f41; 42g, and f43g.

De�ne-Fold. We introdu
e two new predi
ates by means of the following de�nition
lauses:

44. new4(S;M) M=0; append ([℄; R; S)

45. new4(S;M) M=s(s(s(N))); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

We now fold the
lauses in PartitionedCls and we derive the set FoldedCls made out of the following

lauses:

46. new3([ajS℄; s(M)) new3(R;S)

47. new3([bjS℄;M) new4(R;S)

48. new3([CjS℄; s(s(s(N)))) C 6=a; C 6=b; new1(S;N)

The fourth iteration terminates with the following assignments: Defs := Defs [f44; 45g; Cls :=

f44; 45g; TransfP := TransfP [f46; 47; 48g; M

s

:=M

s

[fnew4(+; ?)g.

Fifth iteration

Unfold-Simplify. From Cls we derive the new set UnfoldedCls made out of the following
lauses:

49. new4(S; 0)

50. new4([ajS℄; s(s(s(0)))) append ([a; b℄; R; S)

51. new4([CjS℄; s(s(s(s(N))))) append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

Partition. The set NonunitCls is made out of
lauses 50 and 51. From NonunitCls we derive the new

set PartitionedCls made out of the following
lauses:

52. new4([ajS℄; s(s(s(M)))) M=0; append ([a; b℄; R; S)

53. new4([ajS℄; s(s(s(M)))) M=s(N); append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

54. new4([CjS℄; s(s(s(s(N))))) C 6=a; append (Y;R; S); append (L; [a; a; b℄; Y); length(L;N)

PartitionedCls
onsists of two pa
kets: f52; 53g and f54g.

De�ne-Fold. We are able to perform all required folding steps without introdu
ing new de�nition

lauses (see Case (�) of the De�ne-Fold pro
edure). In parti
ular, (i) we fold
lauses 52 and 53 using

lauses 18 and 19, and (ii) we fold
lause 54 using
lause 8. Sin
e no new de�nition is introdu
ed,

35

N :=0

new1 new2 new3 new4 true

=a, N :=N+1

= a, N :=N+3

any
hara
ter

return N

6=a, N :=N+4

6=a, N :=N+1

=a =a =b

6= a, N :=N+2

6=a and 6=b, N :=N+3

Figure 1: The �nite automaton with the
ounter N whi
h
orresponds to Mat
h Pos

s

.

the set Cls is empty and the transformation strategy terminates. Our �nal spe
ialized program is the

program Mat
h Pos

s

shown in Se
tion 5.3.

The Mat
h Pos

s

program is semideterministi
 and it
orresponds to the �nite automaton with

one
ounter depi
ted in Fig. 1. The predi
ates
orrespond to the states of the automaton and the

lauses
orrespond to the transitions. The predi
ate new1
orresponds to the initial state, be
ause the

program is intended to be used for goals of the form mat
h pos

s

(S;N), where S is bound to a list of

hara
ters, and by
lause 1 mat
h pos

s

(S;N)
alls new1(S;N). Noti
e that this �nite automaton is

deterministi
 ex
ept for the state
orresponding to the predi
ate new4, where the automaton
an either

(i) a

ept the input string by returning the value of N and moving to the �nal state true, even if the

input string has not been
ompletely s
anned (see
lause 49), or (ii) move to the state
orresponding

to new2, if the symbol of the input string whi
h is s
anned is a (see
lause 55), or (iii) move to the

state
orresponding to new1, if the symbol of the input string whi
h is s
anned is di�erent from a (see

lause 56).

7.2 Multiple Pattern Mat
hing

Given a list Ps of patterns and a string S we want to
ompute the position, say N , of any o

urren
e

in S of a pattern whi
h is a member of the list Ps. For any given Ps and S the following program

omputes N in a nondeterministi
 way:

Program Mmat
h (initial, nondeterministi
)

1. mmat
h([P jPs ℄; S;N) mat
h pos(P; S;N)

2. mmat
h([P jPs ℄; S;N) mmat
h(Ps; S;N)

The atom mmat
h(Ps ; S;N) holds i� there exists a pattern in the list Ps of patterns whi
h o

urs

in the string S at position N . The predi
ate mat
h pos is de�ned as in program Mat
h Pos of

Se
tion 7.1, and its
lauses are not listed here. We
onsider the following mode for the program

Mmat
h: fmmat
h(+;+; ?); mat
h pos(+;+; ?), append (?; ?;+), length(+; ?)g.

We want to spe
ialize this multi-pattern mat
hing program w.r.t. the list [[a; a; a℄; [a; a; b℄℄ of

patterns. Thus, we introdu
e the following de�nition
lause:

36

3. mmat
h

s

(S;N) mmat
h([[a; a; a℄; [a; a; b℄℄; S;N)

The mode of the new predi
ate is mmat
h

s

(+; ?) be
ause S is an input argument of mmat
h and N is

not an input argument. Thus, our Determinization Strategy starts o� with the following initial values:

Defs = Cls = f3g, TransfP = Mmat
h , and M

s

=M [fmmat
h

s

(+; ?)g.

The output of the Determinization Strategy is the following program Mmat
h

s

:

Program Mmat
h

s

(spe
ialized, semideterministi
)

4. mmat
h

s

(S;N) new1(S;N)

5. new1([ajS℄;M) new2(S;M)

6. new1([CjS℄; s(N)) C 6=a; new1(S;N)

7. new2([ajS℄;M) new3(S;M)

8. new2([CjS℄; s(s(N))) C 6=a; new1(S;N)

9. new3([ajS℄;M) new4(S;M)

10. new3([bjS℄;M) new5(S;M)

11. new3([CjS℄; s(s(s(N)))) C 6=a; C 6=b; new1(S;N)

12. new4(S; 0)

13. new4([ajS℄; s(N)) new4(S;N)

14. new4([bjS℄; s(N)) new5(S;N)

15. new4([CjS℄; s(s(s(s(N))))) C 6=a; C 6=b; new1(S;N)

16. new5(S; 0)

17. new5([ajS℄; s(s(s(N)))) new2(S;N)

18. new5([CjS℄; s(s(s(s(N))))) C 6=a; new1(S;N)

Similarly to the single-pattern string mat
hing example of the previous Se
tion 7.1, this spe
ialized,

semideterministi
 program
orresponds to a �nite automaton with
ounters. This �nite automaton

is deterministi
, ex
ept for the states
orresponding to the predi
ates new4 and new5 where any

remaining portion of the input word is a

epted. A similar derivation
annot be performed by usual

partial dedu
tion te
hniques without a prior transformation into failure
ontinuation passing style [44℄.

7.3 From Regular Expressions to Finite Automata

In this example we show the derivation of a deterministi
 �nite automaton by spe
ializing a general

parser for regular expressions w.r.t. a given regular expression. The initial program Reg Expr for

testing whether or not a string belongs to the language denoted by a regular expression over the

alphabet fa; bg, is the one given below.

37

Program Reg Expr (initial, nondeterministi
)

1. in language(E;S) string(S); a

epts(E;S)

2. string([℄)

3. string([ajS℄) string(S)

4. string([bjS℄) string(S)

5. a

epts(E; [E℄) symbol (E)

6. a

epts(E

1

E

2

; S) append (S

1

; S

2

; S); a

epts(E

1

; S

1

); a

epts(E

2

; S

2

)

7. a

epts(E

1

+E

2

; S) a

epts(E

1

; S)

8. a

epts(E

1

+E

2

; S) a

epts(E

2

; S)

9. a

epts(E

�

; [℄)

10. a

epts(E

�

; S) ne append (S

1

; S

2

; S); a

epts(E;S

1

); a

epts(E

�

; S

2

)

11. symbol(a)

12. symbol(b)

13. ne append ([A℄; Y; [AjY ℄)

14. ne append ([AjX℄; Y; [AjZ℄) ne append (X;Y;Z)

We have that in language(E;S) holds i� S is a string in fa; bg

�

and S belongs to the language denoted

by the regular expressionE. In this Reg Expr program we have used the predi
ate ne append (S

1

; S

2

; S)

whi
h holds i� the non-empty string S is the
on
atenation of the nonempty string S

1

and the string

S

2

. The use of the atom ne append (S

1

; S

2

; S) in
lause 10 ensures that we have a terminating program,

that is, a program for whi
h we
annot have an in�nite derivation when starting from a ground goal.

Indeed, if in
lause 10 we repla
e ne append (S

1

; S

2

; S) by append (S

1

; S

2

; S), then we may
onstru
t

an in�nite derivation be
ause from a goal of the form a

epts(E

�

; S) we
an derive a new goal of the

form (a

epts(E; [℄); a

epts(E

�

; S)).

We
onsider the following mode for the program Reg Expr :

fin language(+;+); string(+); a

epts(+;+); symbol(+); ne append (?; ?;+); append (?; ?;+)g.

We use our Determinization Strategy to spe
ialize the program Reg Expr w.r.t. the atom

in language((aa

�

(b+bb))

�

; S). Thus, we begin by introdu
ing the de�nition
lause:

15. in language

s

(S) in language((aa

�

(b+bb))

�

; S)

The mode for this new predi
ate is in language

s

(+) be
ause S is an input argument of in language.

The output of the Determinization Strategy is the following spe
ialized program Reg Expr

s

:

Program Reg Expr

s

(spe
ialized, semideterministi
)

16. in language

s

(S) new1(S)

17. new1([℄)

18. new1([ajS℄) new2(S)

19. new2([ajS℄) new3(S)

20. new2([bjS℄) new4(S)

21. new3([ajS℄) new3(S)

22. new3([bjS℄) new4(S)

23. new4([℄)

24. new4([ajS℄) new2(S)

25. new4([bjS℄) new1(S)

This spe
ialized program
orresponds to a deterministi
 �nite automaton.

38

7.4 Mat
hing Regular Expressions

The following nondeterministi
 program de�nes a relation re mat
h(E;S), where E is a regular ex-

pression and S is a string, whi
h holds i� there exists a substring P of S su
h that P belongs to the

language denoted by E:

Program Reg Expr Mat
h (initial, nondeterministi
)

1. re mat
h(E;S) append (Y;R; S); append (L; P; Y); a

epts(E;P)

The predi
ates append and a

epts are de�ned as in the programs Naive Mat
h (see Se
tion 3.3) and

Reg Expr (see Se
tion 7.3), respe
tively, and their
lauses are not listed here. We
onsider the following

mode for the program Reg Expr Mat
h: fappend (?; ?;+); a

epts(+;+); re mat
h(+;+)g.

We want to spe
ialize the program Reg Expr Mat
h w.r.t. the regular expression aa

�

b. Thus, we

introdu
e the following de�nition
lause:

2. re mat
h

s

(S) re mat
h(aa

�

b; S)

The mode of this new predi
ate is re mat
h

s

(+) be
ause S is an input argument of re mat
h . The

output of the Determinization Strategy is the following program:

Program Reg Expr Mat
h

s

(spe
ialized, semideterministi
)

3. re mat
h

s

(S) new1(S)

4. new1([ajS℄) new2(S)

5. new1([CjS℄) C 6=a; new1(S)

6. new2([ajS℄) new3(S)

7. new2([CjS℄) C 6=a; new1(S)

8. new3([ajS℄) new4(S)

9. new3([bjS℄) new3(S)

10. new3([CjS℄) C 6=a; C 6=b; new1(S)

11. new4(S)

Similarly to the single-pattern string mat
hing example of Se
tion 3.3, this spe
ialized, semidetermin-

isti
 program
orresponds to a deterministi
 �nite automaton.

7.5 Spe
ializing Context-free Parsers to Regular Grammars

Let us
onsider the following program for parsing
ontext-free languages:

Program CF Parser (initial, nondeterministi
)

1. string parse(G;A;W) string(W); parse(G;A;W)

2. string([℄)

3. string([0jW ℄) string(W)

4. string([1jW ℄) string(W)

5. parse(G ; [℄; [℄)

6. parse(G ; [AjX℄; [AjY ℄) terminal (A); parse(G;X; Y)

7. parse(G; [AjX℄; Y) nonterminal (A); member(A! B;G);

append (B;X;Z); parse(G;Z; Y)

8. member(A; [AjX℄)

9. member(A; [BjX℄) member(A;X)

together with the
lauses for the predi
ate append de�ned as in program Mat
h Pos (see Se
tion 7.1),

and the unit
lauses stating that 0 and 1 are terminals and s; u; v; and w are nonterminals. The �rst

39

argument of parse is a
ontext-free grammar, the se
ond argument is a list of terminal and nonterminal

symbols, and the third argument is a word represented as a list of terminal symbols. We assume that a

ontext-free grammar is represented as a list of produ
tions of the form x! y, where x is a nonterminal

symbol and y is a list of terminal and nonterminal symbols. We have that parse(G; [s℄;W) holds i� from

the symbol s we
an derive the wordW using the grammar G. We
onsider the following mode for the

program CF Parser : fstring parse(+;+;+); string(+); parse(+;+;+); terminal (+);nonterminal (+);

member (?;+); append (+;+; ?)g.

We want to spe
ialize our parsing program w.r.t. the following regular grammar:

s! 0u s! 0 v s! 0w

u! 0 u! 0u u! 0 v

v ! 0 v ! 0 v v ! 0u

w ! 1 w ! 0w

To this aim we apply our Determinization Strategy starting from the following de�nition
lause:

10. string parse

s

(W) parse([s! [0; u℄, s! [0; v℄, s! [0; w℄,

u! [0℄, u! [0; u℄, u! [0; v℄,

v ! [0℄, v ! [0; v℄, v ! [0; u℄,

w ! [1℄, w ! [0; w℄ ℄; [s℄; W)

The mode for this new predi
ate is string parse

s

(+). The output of the Determinization Strategy is

the following spe
ialized program CF Parser

s

:

Program CF Parser

s

(spe
ialized, semideterministi
)

11. string parse

s

(W) new1(W)

12. new1([0jW ℄) new2(W)

13. new2([0jW ℄) new3(W)

14. new2([1jW ℄) new4(W)

15. new3([℄)

16. new3([0jW ℄) new5(W)

17. new3([1jW ℄) new4(W)

18. new4([℄)

19. new5([℄)

20. new5([0jW ℄) new3(W)

21. new5([1jW ℄) new4(W)

This program
orresponds to a deterministi
 �nite automaton.

Now, we would like to dis
uss the improvements we a
hieved in this example by applying our

Determinization Strategy. Let us
onsider the derivation tree T

1

(see Fig. 2) generated by the initial

program CF Parser starting from the goal string parse(g; [s℄; [0

n

1℄), where g denotes the grammar

w.r.t. whi
h we have spe
ialized the CF Parser program and [0

n

1℄ denotes the list [0; : : : ; 0; 1℄ with n

o

urren
es of 0. The nodes of T

1

are labeled by the goals derived from string parse(g; [s℄; [0

n

1℄). In

parti
ular, the root of the derivation tree is labeled by string parse(g; [s℄; [0

n

1℄) and a node labeled by

a goal G has k
hildren labeled by the goals G

1

; : : : ; G

k

whi
h are derived from G (see Se
tion 2.3). The

tree T

1

has a number of nodes whi
h is O(2

n

). Thus, by using the initial program CF Parser it takes

O(2

n

) number of steps to sear
h for a derivation from the root goal string parse(g; [s℄; [0

n

1℄) to the

goal true. (Indeed, this is the
ase if one uses a Prolog
ompiler.) In
ontrast, by using the spe
ialized

program CF Parser

s

, it takes O(n) steps to sear
h for a derivation from the goal string parse

s

([0

n

1℄)

to true, be
ause the derivation tree T

2

has a number of nodes whi
h is O(n) (see Fig. 3).

The improvement of performan
e is due to the fa
t that our Determinization Strategy is able to

avoid repeated derivations by introdu
ing new de�nition
lauses whose bodies have goals from whi
h

40

string([0

n

1℄); parse(g; [s℄; [0

n

1℄)

string parse(g; [s℄; [0

n

1℄)

parse(g; [w℄; [0

n�1

1℄)

parse(g; [w℄; [0

n�2

1℄)

true

parse(g; [u℄; [0

n�2

1℄)

parse(g; [s℄; [0

n

1℄)

(n�2)

parse(g; [u℄; [0

n�2

1℄)

parse(g; [u℄; [0

n�1

1℄) parse(g; [v℄; [0

n�1

1℄)

parse(g; [v℄; [0

n�2

1℄)parse(g; [v℄; [0

n�2

1℄)

no su

esses

Figure 2: Derivation tree T

1

for string parse(g; [s℄; [0

n

1℄).

(n�2)string parse

s

(g; [s℄; [0

n

1℄)

new1([0

n

1℄)

new2([0

n�1

1℄)

new3([0

n�2

1℄)

true

Figure 3: Derivation tree T

2

for string parse

s

([0

n

1℄).

ommon subgoals are derived. Thus, after performing folding steps whi
h use these de�nition
lauses,

we redu
e the sear
h spa
e during program exe
ution.

For instan
e, our strategy introdu
es the predi
ate new2 de�ned by the following
lauses:

new2(W) string(W); parse(g; [u℄;W)

new2(W) string(W); parse(g; [v℄;W)

new2(W) string(W); parse(g; [w℄;W)

whose bodies are goals from whi
h
ommon subgoals are derived forW =[0

n�1

1℄ and n�2. Indeed, for

instan
e, parse(g; [u℄; [0

n�2

1℄)
an be derived from both parse(g; [u℄; [0

n�1

1℄) and parse(g; [v℄; [0

n�1

1℄)

(see Fig. 2). The reader may verify that by using the spe
ialized program CF Parser

s

no repeated

goal is derived from string parse

s

(g; [s℄; [0

n

1℄).

The ability of our Determinization Strategy of putting together the
omputations performed by

the initial program in di�erent bran
hes of the
omputation tree, so that
ommon repeated sub
om-

putations are avoided, is based on the ideas whi
h motivate the tupling strategy [34℄, �rst proposed

as a transformation te
hnique for fun
tional languages.

41

8 Experimental Evaluation

The Determinization Strategy has been implemented in the MAP program transformation system [39℄.

All program spe
ialization examples presented in Se
tions 3.3, 5.3, and 7 have been worked out in

a fully automati
 way by the MAP system. We have
ompared the spe
ialization times and the

speedups obtained by the MAP system with those obtained by ECCE, a system for (
onjun
tive)

partial dedu
tion [24℄. All experimental results reported in this se
tion have been obtained by using

SICStus Prolog 3.8.5 running on a Pentium II under Linux.

In Table 1 we
onsider the examples of Se
tions 3.3, 5.3, and 7, and we show the times taken

(i) for performing partial dedu
tion by using the ECCE system, (ii) for performing
onjun
tive partial

dedu
tion by using the ECCE system, and (iii) for applying the Determinization Strategy by using

the MAP system. The stati
 input shown in Column 2 of Table 1 is the goal w.r.t. whi
h we have

spe
ialized the programs of Column 1. For running the ECCE system suitable
hoi
es among the

available unfolding strategies and generalization strategies should be made. We have used the
hoi
es

suggested by the system itself for partial dedu
tion and
onjun
tive partial dedu
tion, and we made

some
hanges only when spe
ialization was not performed within a reasonable amount of time. For

running the MAP system the only information to be provided by the user is the mode for the program

to be spe
ialized. The system assumes that the program satis�es this mode and no mode analysis is

performed.

Program Stati
 Input ECCE ECCE MAP

(PD) (CPD) (Det)

Naive Mat
h naive mat
h([aab℄; S) 360 370 70

Naive Mat
h naive mat
h([aaaaaaaaab℄; S) 420 2120 480

Mat
h Pos mat
h pos([aab℄; S;N) 540 360 100

Mat
h Pos mat
h pos([aaaaaaaaab℄; S;N) 650 910 500

Mmat
h mmat
h([[aaa℄; [aab℄℄; S;N) 1150 1400 280

Mmat
h mmat
h([[aa℄; [aaa℄; [aab℄℄; S;N) 1740 2040 220

Reg Expr in language((aa

�

(b+bb))

�

; S) 6260 138900 420

Reg Expr in language(a

�

(b+bb+bbb); S) 3460 5430 230

Reg Expr Mat
h re mat
h(aa

�

b; S) 970 5290 210

Reg Expr Mat
h re mat
h(a

�

(b+ bb); S) 1970 11200 300

CF Parser string parse(g; [s℄;W) 23400 32700 1620

CF Parser string parse(g

1

; [s℄;W) 31200 31800 2000

Table 1: Spe
ialization Times (in millise
onds).

The experimental results of Table 1 show that the MAP implementation of the Determinization

Strategy is mu
h faster than the ECCE implementation of both partial dedu
tion and
onjun
tive

partial dedu
tion. We believe that, essentially, this is due to the fa
t that ECCE employs very sophis-

ti
ated te
hniques, su
h as those based on homeomorphi
 embeddings, for
ontrolling the unfolding

and the generalization steps, and ensuring the termination of the spe
ialization pro
ess. For a fair

omparison, however, we should re
all that Determinization may not terminate on examples di�erent

from those
onsidered in this paper.

We have already mentioned in Se
tion 3.3 that the performan
e of the programs derived by the

Determinization Strategy may be further improved by applying post-pro
essing transformations whi
h

exploit the semideterminism of the programs. In parti
ular, we may: (i) reorder the
lauses so that unit

42

lauses appear before non-unit
lauses, and (ii) remove disequations by introdu
ing
uts instead. The

reader may verify that these transformations preserve the operational semanti
s. For a systemati

treatment of
ut introdu
tion, the reader may refer to [10, 43℄. As an example we now show the

program obtained from Mat
h Pos

s

(see Se
tion 5.3) after the above post-pro
essing transformations

have been performed.

Program Mat
h Pos

ut

(spe
ialized, with
uts)

mat
h pos

s

(S;N) new1(S;N)

new1([ajS℄;M) !; new2(S;M)

new1([CjS℄; s(N)) new1(S;N)

new2([ajS℄;M) !; new3(S;M)

new2([CjS℄; s(s(N))) new1(S;N)

new3([ajS℄; s(M)) !; new3(R;S)

new3([bjS℄;M) !; new4(R;S)

new3([CjS℄; s(s(s(N)))) new1(S;N)

new4(S; 0)

new4([ajS℄; s(s(s(M)))) !; new2(S;M)

new4([CjS℄; s(s(s(s(N))))) new1(S;N)

In Table 2 below we report the speedups obtained by partial dedu
tion,
onjun
tive partial dedu
tion,

Determinization, and Determinization followed by disequation removal and
ut introdu
tion. Every

speedup is
omputed as the ratio between the timing of the initial program and the timing of the

spe
ialized program. These timings were obtained by running the various programs several times (up

to 10,000) on signi�
antly large input lists (up to 4,000 items).

Program Stati
 Input Speedup Speedup Speedup Speedup

(PD) (CPD) (Det) (Det &Cut)

Naive Mat
h naive mat
h([aab℄; S) 3.1 5:8�10

3

3:0�10

3

6:8�10

3

Naive Mat
h naive mat
h([aaaaaaaaab℄; S) 3.3 6:9�10

3

5:8�10

3

12:4�10

3

Mat
h Pos mat
h pos([aab℄; S;N) 1.6 3:6�10

3

1:8�10

3

4:0�10

3

Mat
h Pos mat
h pos([aaaaaaaaab℄; S;N) 2.1 5:3�10

3

2:9�10

3

8:1�10

3

Mmat
h mmat
h([[aaa℄; [aab℄℄; S;N) 1.7 4:5�10

3

3:5�10

3

6:2�10

3

Mmat
h mmat
h([[aa℄; [aaa℄; [aab℄℄; S;N) 1.6 2:5�10

3

3:9�10

3

5:4�10

3

Reg Expr in language((aa

�

(b+bb))

�

; S) 29.8 6:2�10

3

2:3�10

5

3:9�10

5

Reg Expr in language(a

�

(b+bb+bbb); S) 1:3�10

4

3:3�10

4

4:6�10

4

5:7�10

4

Reg Expr Mat
h re mat
h(aa

�

b; S) 5:7�10

2

2:7�10

4

1:5�10

6

3:0�10

6

Reg Expr Mat
h re mat
h(a

�

(b+ bb); S) 2:1�10

2

3:4�10

3

2:5�10

5

4:1�10

5

CF Parser string parse(g; [s℄;W) 1.5 1.5 87.1 87.1

CF Parser string parse(g

1

; [s℄;W) 1.1 1.1 61.3 61.3

Table 2: Speedups.

To
larify the
ontent of Table 2 let us remark that:

Column 1 shows the names of the initial programs with referen
e to Se
tions 3.3, 5.3, and 7.

Column 2 shows the stati
 input. The argument [aab℄ denotes the list [a; a; b℄. Similar notation

has been used for the other stati
 input arguments. The argument g of the �rst string parse atom

denotes the regular grammar
onsidered in Example 7.5. The argument g

1

of the last string parse

43

atom denotes the regular grammar:

fs! 0u, s! 1 v, u! 0, u! 0 v, u! 0w, v ! 1, v ! 0 v, v ! 1u, w! 1, w ! 1wg.

Column 3,
alled Speedup (PD), shows the speedups we have obtained after the appli
ation of partial

dedu
tion.

Column 4,
alled Speedup (CPD), shows the speedups we have obtained after the appli
ation of

onjun
tive partial dedu
tion.

Column 5,
alled Speedup (Det), shows the speedups we have obtained after the appli
ation of the

Determinization Strategy.

Column 6,
alled Speedup (Det & Cut), shows the speedups we have obtained after the appli
ation of

the Determinization Strategy followed by the removal of disequations and the introdu
tion of
uts.

Let us now dis
uss our experimental results of Table 2. In all examples the best speedups are those

obtained after the appli
ation of the Determinization Strategy followed by the removal of disequations

and the introdu
tion of
uts (see
olumn Det & Cut).

As expe
ted,
onjun
tive partial dedu
tion gives higher speedups than partial dedu
tion.

In some
ases,
onjun
tive partial dedu
tion gives better results than Determinization (see the �rst

5 rows of
olumns CPD and Det). This happens in examples where most nondeterminism is avoided by

eliminating intermediate lists (see, for instan
e, the example of Se
tion 3.3). In those examples, in fa
t,

the Determinization Strategy may be less advantageous than
onjun
tive partial dedu
tion be
ause it

introdu
es disequations whi
h may be
ostly to
he
k at runtime. However, as already mentioned, all

disequations may be eliminated by introdu
ing
uts (or, equivalently, if-then-else
onstru
ts) and the

programs derived after disequation removal and
ut introdu
tion are indeed more eÆ
ient than those

derived by
onjun
tive partial dedu
tion (see
olumn Det & Cut).

For some programs (see, for instan
e, the entries for Reg Expr and CF Parser) the speedups of

the (Det)
olumn are equal to the speedups of the (Det & Cut)
olumn. The reason for this fa
t is the

absen
e of disequations in the spe
ialized program, so that the introdu
tion of
uts does not improve

eÆ
ien
y.

We would like to noti
e that further post-pro
essing te
hniques are appli
able. For instan
e, sim-

ilarly to the familiar
ase of �nite automata, we may eliminate
lauses
orresponding to "-transitions

where no input symbols are
onsumed (su
h as
lause 9 in program Mat
h Pos

s

), and we may also

minimize the number of predi
ate symbols (this
orresponds to the minimization of the number of

states). We do not present here these post-pro
essing te
hniques be
ause they are outside the s
ope

of the paper.

In summary, the experimental results of Table 2
on�rm that in the examples we have
onsidered,

the Determinization Strategy followed by the removal of disequations in favour of
uts, a
hieves

greater speedups than (
onjun
tive) partial dedu
tion. However, it should be noti
ed that, as already

mentioned, Determinization does not guarantee termination, while (
onjun
tive) partial dedu
tion

does, and in order to terminate in all
ases, (
onjun
tive) partial dedu
tion employs generalization

te
hniques that may redu
e speedups. In the next se
tion we further dis
uss the issue of devising a

generalization te
hnique that ensures the termination of the Determinization Strategy.

9 Con
luding Remarks and Related Work

We have proposed a spe
ialization te
hnique for logi
 programs based on an automati
 strategy,
alled

Determinization Strategy, whi
h makes use of the following transformation rules: (1) de�nition intro-

du
tion, (2) de�nition elimination, (3) unfolding, (4) folding, (5) subsumption, (6) head generalization,

(7)
ase split, (8) equation elimination, and (9) disequation repla
ement. (A
tually, we make use of

the safe versions of Rules 4, 6, 7, and 8.) We have also shown that our strategy may redu
e the

44

amount of nondeterminism in the spe
ialized programs and it may a
hieve exponential gains in time

omplexity.

To get these results, we allow new predi
ates to be introdu
ed by one or more non-re
ursive

de�nition
lauses whose bodies may
ontain more than one atom. We also allow folding steps using

these de�nition
lauses. By a folding step several
lauses are repla
ed by a single
lause, thereby

redu
ing nondeterminism.

The use of the subsumption rule is motivated by the desire of in
reasing eÆ
ien
y by avoiding

redundant
omputations. Head generalizations are used for deriving
lauses with equal heads and

thus, they allow us to perform folding steps. The
ase split rule is very important for redu
ing

nondeterminism be
ause it repla
es a
lause, say C, by several
lauses whi
h
orrespond to exhaustive

and mutually ex
lusive instantiations of the head of C. To get exhaustiveness and mutual ex
lusion,

we allow the introdu
tion of disequalities. To further in
rease program eÆ
ien
y, in a post-pro
essing

phase these disequalities may be removed in favour of
uts.

We assume that the initial program to be spe
ialized is asso
iated with a mode of use for its

predi
ates. Our Determinization Strategy makes use of this mode information for dire
ting the various

transformation steps, and in parti
ular, the appli
ations of the unfolding and
ase split rules. Moreover,

if our strategy terminates, it derives spe
ialized programs whi
h are semideterministi
 w.r.t. the given

mode. This notion has been formally de�ned in Se
tion 5.3. Although semideterminism is not in

itself a guarantee for eÆ
ien
y improvement, it is often the
ase that eÆ
ien
y is in
reased be
ause

nondeterminism is redu
ed and redundant
omputations are avoided.

We have shown that the transformation rules we use for program spe
ialization, are
orre
t w.r.t.

the de
larative semanti
s of logi
 programs based on the least Herbrand model. The proof of this

orre
tness result is similar to the proofs of the
orre
tness results whi
h are presented in [14, 40, 46℄.

We have also
onsidered an operational semanti
s for our logi
 language where a disequation t

1

6= t

2

holds i� t

1

and t

2

are not uni�able. This operational semanti
s is sound, but not
omplete w.r.t. the

de
larative semanti
s. Indeed, if a goal operationally su

eeds in a program, then it is true in the

least Herbrand model of the program, but not vi
e versa. Thus, the proof of
orre
tness of our

transformation rules w.r.t. the operational semanti
s
annot be based on previous results and it is

mu
h more elaborate. Indeed, it requires some restri
tions, related to the modes of the predi
ates,

both on the programs to be spe
ialized and on the appli
ability of the transformation rules.

In Se
tion 3 we have extensively dis
ussed the fa
t that our spe
ialization te
hnique is more

powerful than partial dedu
tion [21, 29℄. The main reason of the greater power of our te
hnique is

that it uses more powerful transformation rules. In parti
ular, partial dedu
tion
orresponds to the

use the de�nition introdu
tion, de�nition elimination, unfolding, and folding transformation rules,

with the restri
tion that we may only fold a single atom at a time in the body of a
lause.

Our extended rules allow us to introdu
e and transform new predi
ates de�ned in terms of dis-

jun
tions of
onjun
tions of atoms (re
all that a set of
lauses with the same head is equivalent to

a single
lause whose premise is the disjun
tion of the bodies of the
lauses in the given set). In

this respe
t, our te
hnique improves over
onjun
tive partial dedu
tion [8℄, whi
h is a spe
ialization

te
hnique where new predi
ates are de�ned in terms of
onjun
tions of atoms.

We have implemented the Determinization Strategy in the MAP transformation system [39℄ and we

have tested this implementation by performing several spe
ializations of string mat
hing and parsing

programs. We have also
ompared the results obtained by using the MAP system with those obtained

by using the ECCE system for (
onjun
tive) partial dedu
tion [24℄. Our
omputer experiments
on-

�rm that the Determinization Strategy pays o� w.r.t. both partial dedu
tion and
onjun
tive partial

dedu
tion.

Our transformation te
hnique works for programs where the only negative literals whi
h are allowed

in the body of a
lause, are disequations between terms. The extension of the Determinization Strategy

to normal logi
 programs would require an extension of the transformation rules and, in parti
ular,

45

it would be ne
essary to use a negative unfolding rule, that is, a rule for unfolding a
lause w.r.t.

a (possibly nonground) negative literal di�erent from a disequation. The
orre
tness of unfold/fold

transformation systems whi
h use the negative unfolding rule has been studied in
ontexts rather

di�erent from the one
onsidered here (see, for instan
e, the work on transformation of �rst order

programs [42℄) and its use within the Determinization Strategy requires further work.

The Determinization Strategy may fail to terminate for two reasons: (i) the Unfold-Simplify sub-

sidiary strategy may apply the unfolding rule in�nitely often, and (ii) the while-do loop of the Deter-

minization Strategy may not terminate, be
ause at ea
h iteration the De�ne-Fold subsidiary strategy

may introdu
e new predi
ates.

The termination of the Unfold-Simplify strategy
an be guaranteed by applying the te
hniques for

�nite unfolding already developed for (
onjun
tive) partial dedu
tion (see, for instan
e, [8, 23, 30℄).

Indeed, the unfolding rule used in this paper is similar to the unfolding rule used in partial dedu
tion.

The introdu
tion of an in�nite number of new predi
ates
an be avoided by extending various

methods based on generalization, su
h as those used in (
onjun
tive) partial dedu
tion [8, 13, 25,

37℄. Re
all that in
onjun
tive partial dedu
tion we may generalize a predi
ate de�nition essentially

by means of two te
hniques: (i) the repla
ement of a term by a variable, whi
h is then taken as

an argument of a new predi
ate de�nition, and (ii) the splitting of a
onjun
tion of literals into

sub
onjun
tions (together with the introdu
tion of a new predi
ate for ea
h sub
onjun
tion). It has

been shown that the use of (i) and (ii) in a suitably
ontrolled way, allows
onjun
tive partial dedu
tion

to terminate in all
ases. However, termination is guaranteed at the expense of a possibly in
omplete

spe
ialization or a possibly in
omplete elimination of the intermediate data stru
tures.

In order to avoid the introdu
tion of an in�nite number of new predi
ate de�nitions while applying

the Determinization Strategy, we may follow an approa
h similar to the one used in the
ase of

onjun
tive partial dedu
tion. However, besides the generalization te
hniques (i) and (ii) mentioned

above, we may also need (iii) the splitting of the set of
lauses de�ning a predi
ate into subsets (together

with the introdu
tion of a new predi
ate for ea
h subset). Similarly to the
ase of
onjun
tive partial

dedu
tion, it
an be shown that suitably
ontrolled appli
ations of the generalization te
hniques (i),

(ii), and (iii) guarantee the termination of the Determinization Strategy at the expense of deriving

programs whi
h may fail to be semideterministi
.

We leave it for further resear
h the issue of
ontrolling generalization, so that we a
hieve the

termination of the spe
ialization pro
ess and at the same time we maximize the redu
tion of nonde-

terminism.

In the string mat
hing examples we have worked out, our strategy is able to automati
ally derive

programs whi
h behave like Knuth-Morris-Pratt algorithm, in the sense that they generate a �nite

automaton from any given pattern and a general pattern mat
her. This was done also in the
ase of

programs for mat
hing sets of patterns and programs for mat
hing regular expressions.

In these examples the improvement over similar derivations performed by partial dedu
tion te
h-

niques [11, 13, 44℄
onsists in the fa
t that we have started from naive, nondeterministi
 initial pro-

grams, while the
orresponding derivations by partial dedu
tion des
ribed in the literature, use initial

programs whi
h are deterministi
. Our derivations also improve over the derivations performed by

using super
ompilation with perfe
t driving [15, 47℄ and generalized partial
omputation [12℄, whi
h

start from initial fun
tional programs whi
h already in
orporate some ingenuity.

A formal derivation of the Knuth-Morris-Pratt algorithm for pattern mat
hing has also been pre-

sented in [3℄. This derivation follows the
al
ulational approa
h whi
h
onsists in applying equivalen
es

of higher order fun
tions. On the one hand the
al
ulational derivation is more general than ours,

be
ause it takes into
onsideration a generi
 pattern, not a �xed one (the string [a; a; b℄ in our Exam-

ple 3.3), on the other hand the
al
ulational derivation is more spe
i�
 than ours, be
ause it deals with

single-pattern string mat
hing only, whereas our strategy is able to automati
ally derive programs in

a mu
h larger
lass whi
h also in
ludes multi-pattern mat
hing, mat
hing with regular expressions,

46

and parsing.

The use of the
ase split rule is a form of reasoning by
ases, whi
h is a very well-known te
hnique

in me
hani
al theorem proving (see, for instan
e, the Edinburgh LCF theorem prover [17℄). Forms of

reasoning by
ases have been in
orporated in program spe
ialization te
hniques su
h as the already

mentioned super
ompilation with perfe
t driving [15, 47℄ and generalized partial
omputation [12℄.

However, the strategy presented in this paper is the �rst fully automati
 transformation te
hnique

whi
h uses
ase reasoning to redu
e nondeterminism of logi
 programs.

Besides spe
ializing programs and redu
ing nondeterminism, our strategy is able to eliminate

intermediate data stru
tures. Indeed, the initial programs of our examples in Se
tion 7 all have

intermediate lists, while the spe
ialized programs do not have them. Thus, our strategy
an be

regarded as an extension of the transformation strategies for the elimination of intermediate data

stru
tures (see the deforestation te
hnique [48℄ for the
ase of fun
tional programs and the strategy

for eliminating unne
essary variables [38℄ for the
ase of logi
 programs). Moreover, our strategy

derives spe
ialized programs whi
h avoid repeated sub
omputations (see the Context-free Parsing

example of Se
tion 7.5). In this respe
t our strategy is similar to the tupling strategy for fun
tional

programs [34℄.

Finally, our spe
ialization strategy is related to the program derivation te
hniques
alled �nite

di�eren
ing [33℄ and in
rementalization [27℄. These te
hniques use program invariants to avoid
ostly,

repeated
al
ulations of fun
tion
alls. Our spe
ialization strategy impli
itly dis
overs and exploits

program invariants when using the folding rule. It should be noti
ed, however, that it is diÆ
ult to

establish in a rigorous way the formal
onne
tion between the basi
 ideas underlying our spe
ialization

strategy and the above mentioned program derivation methods based on program invariants. These

methods, in fa
t, are presented in a very di�erent framework.

This paper is an improved version of [35℄.

47

Appendix A. Proof of Theorem 6

For the reader's
onvenien
e, we rewrite the statement of Theorem 6.

Theorem 6 (Corre
tness of the Rules w.r.t. the Operational Semanti
s) Let P

0

; : : : ; P

n

be

a transformation sequen
e
onstru
ted by using the transformation rules 1{9 and let p be a non-basi

predi
ate in P

n

. Let M be a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii)

P

0

[Defs

n

satis�es M , and (iii) the appli
ations of the unfolding, folding, head generalization, and

ase split rules during the
onstru
tion of P

0

; : : : ; P

n

are all safe w.r.t. M . Suppose also that:

1. if the folding rule is applied for the derivation of a
lause C in program P

k+1

from
lauses

C

1

; : : : ; C

m

in program P

k

using
lauses D

1

; : : : ;D

m

in Defs

k

, with 0�k<n,

then for every i 2 f1; : : : ;mg there exists j 2 f1; : : : ; n�1g su
h that D

i

o

urs in P

j

and P

j+1

is derived from P

j

by unfolding D

i

.

2. during the transformation sequen
e P

0

; : : : ; P

n

the de�nition elimination rule either is never

applied or it is applied w.r.t. predi
ate p on
e only, when deriving P

n

from P

n�1

.

Then: (i) P

n

is safe w.r.t. M , (ii) P

n

satis�es M , and (iii) for ea
h atom A whi
h has predi
ate p and

satis�es mode M , A su

eeds in P

0

[Defs

n

i� A su

eeds in P

n

.

The proof of Theorem 6 will be divided in four parts,
orresponding to Propositions 3, 4, 5, and 6

presented below.

Proposition 3 (Preservation of Safety) shows that the program P

n

derived a

ording to the hy-

potheses of Theorem 6, is safe w.r.t. modeM (that is, Point (i) of the thesis of Theorem 6). Proposition

4 (Preservation of Modes) shows that P

n

satis�es M (that is, Point (ii) of the thesis of Theorem 6).

Propositions 5 (Partial Corre
tness) and 6 (Completeness) show the if part and the only-if part, re-

spe
tively, of Point (iii) of the thesis of Theorem 6. For proving these propositions we will use various

notions and lemmata whi
h we introdu
e below.

A1. Preservation of Safety

In this se
tion we prove that, if the transformation rules are applied a

ording to the restri
tions

indi
ated in Theorem 6, then from a program whi
h is safe w.r.t. a given mode we derive a program

whi
h is safe w.r.t. the same mode.

Proposition 3 (Preservation of Safety) Let P

0

; : : : ; P

n

be a transformation sequen
e
onstru
ted

by using the transformation rules 1{9. Let M be a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is safe w.r.t. M and (ii) the appli
ations of the unfolding, head generalization, and
ase split rules

during the
onstru
tion of P

0

; : : : ; P

n

are safe w.r.t. M . Then, for k = 0; : : : ; n, the program P

k

is

safe w.r.t. M .

Proof : The proof pro
eeds by indu
tion on k. During the proof we will omit the referen
e to mode

M . In parti
ular, we will simply say that a program (or a
lause) is safe, instead of saying that a

program (or a
lause) is safe w.r.t. M .

For k = 0 the thesis follows dire
tly from the hypothesis that P

0

[Defs

n

is safe and thus, P

0

is

safe. Let us now assume that, for k < n, program P

k

is safe. We will show that also P

k+1

is safe. We

onsider the following
ases,
orresponding to the rule whi
h is applied to derive P

k+1

from P

k

.

Case 1: P

k+1

is derived by applying the de�nition introdu
tion rule. P

k+1

is safe be
ause P

k

is safe

and, by hypothesis, every de�nition
lause in Defs

n

is safe.

48

Case 2: P

k+1

is derived by applying the de�nition elimination rule. Then P

k+1

is safe be
ause P

k

is

safe and P

k+1

� P

k

.

Case 3: P

k+1

is derived by a safe appli
ation of the unfolding rule (see De�nition 4). Let us
onsider

a
lause D

i

in P

k+1

whi
h has been derived by unfolding a
lause C in P

k

of the form: H

G

1

; A;G

2

w.r.t. the atom A. Then there exists a
lause C

i

in P

k

su
h that (i) A is uni�able with

hd(C

i

) via the mgu #

i

, and (ii)
lause D

i

in P

k+1

is of the form (H G

1

; bd (C

i

); G

2

)#

i

.

Let us now show that D

i

is safe. We take a variable X o

urring in a disequation t

1

6= t

2

in

the body of D

i

, and we prove that X is either an input variable of hd(D

i

) or a lo
al variable

of t

1

6= t

2

in D

i

. We have that t

1

6= t

2

is of the form (u

1

6=u

2

)#

i

, where u

1

6=u

2

is a disequation

o

urring in G

1

; bd(C

i

); G

2

. We
onsider two
ases:

Case A: u

1

6= u

2

o

urs in G

1

or G

2

. Sin
e t

1

6= t

2

is of the form (u

1

6= u

2

)#

i

, there exists a

variable Y 2 vars(u

1

6=u

2

) su
h that X 2 vars(Y #). By the indu
tive hypothesis, C is safe and

thus, Y is either an input variable of hd(C) or a lo
al variable of u

1

6=u

2

in C. We have that:

(i) if Y is an input variable of hd(C) then X is an input variable of hd(D

i

), and (ii) if Y is a

lo
al variable of u

1

6=u

2

in C then X = Y = Y #

i

and X is a lo
al variable of t

1

6= t

2

in D

i

.

Case B: u

1

6=u

2

o

urs in bd(C

i

). From the de�nition of safe unfolding we have that X is either:

(B.1) an input variable of H#

i

or (B.2) a lo
al variable of u

1

6=u

2

in C

i

. In
ase (B.1) X is an

input variable of hd(D

i

), whi
h is equal to H#

i

. In
ase (B.2) X does not o

ur in #

i

and, sin
e

vars(C) \ vars(C

i

) = ;, X is a lo
al variable of (u

1

6=u

2

)#

i

, whi
h is equal to t

1

6= t

2

, in D

i

.

Case 4: P

k+1

is derived by applying the folding rule. Let us
onsider a
lause P

k+1

of the form:

C. H G

1

;newp(X

1

; : : : ;X

h

)#;G

2

whi
h has been derived by folding the following
lauses in P

k

:

8

>

<

>

:

C

1

: H G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H G

1

; (A

m

;K

m

)#;G

2

using the following de�nition
lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

Now we take a variable X o

urring in a disequation t

1

6= t

2

in the body of C, and we prove that

X is either an input variable of H or a lo
al variable of t

1

6= t

2

in C.

The disequation t

1

6= t

2

o

urs in G

1

or G

2

and, by the hypothesis that P

k

is safe, either X is an

input variable of H or, for i = 1; : : : ;m, X is a lo
al variable of t

1

6= t

2

in C

i

. If for i = 1; : : : ;m,

X is a lo
al variable of t

1

6= t

2

in C

i

, then X is a lo
al variable of t

1

6= t

2

in C, be
ause by the

de�nition of the folding rule (see Rule 4) X does not o

ur in newp(X

1

; : : : ;X

h

)#.

Case 5: P

k+1

is derived by applying the subsumption rule. P

k+1

is safe be
ause P

k+1

� P

k

.

Case 6: P

k+1

is derived by a safe appli
ation of the head generalization rule (see De�nition 6). Let

GenC be a
lause in P

k+1

of the form:

H Y = t;Body

derived from a
lause C in P

k

of the form:

49

HfY=tg Body

where fY=tg is a substitution su
h that Y o

urs in H and Y does not o

ur in C.

Let us now prove that GenC is safe. Let X be a variable o

urring in a disequation t

1

6= t

2

in

Body. By indu
tive hypothesis C is safe and thus, X is either an input variable of HfY=tg or a

lo
al variable of t

1

6= t

2

in C. If X is an input variable of HfY=tg, then it is also an input variable

of H, be
ause from the de�nition of safe head generalization it follows that H and HfY=tg have

the same input variables. If X is a lo
al variable of t

1

6= t

2

in C, then X is a lo
al variable of

t

1

6= t

2

in GenC , be
ause X does not o

ur in Y = t.

Case 7: P

k+1

is derived by a safe appli
ation of the
ase split rule (see De�nition 7) to a
lause C in

P

k

. Let us
onsider the following two
lauses in P

k+1

:

C

1

. (H Body)fX=tg

C

2

. H X 6= t;Body .

derived by safe
ase split from C. Let us now show that C

1

and C

2

are safe. Let us
onsider

lause C

1

and let Y be a variable o

urring in a disequation t

1

6= t

2

in BodyfX=tg. t

1

6= t

2

is of

the form (u

1

6=u

2

)fX=tg where u

1

6=u

2

o

urs in Body. We
onsider two
ases.

Case A: Y 2 vars(t). By the de�nition of safe
ase split, either Y is an input variable of H or

Y does not o

ur in C. If Y is an input variable of H, then Y is an input variable of HfX=tg,

and if Y does not o

ur in C, then Y is a lo
al variable of (u

1

6=u

2

)fX=tg in C

1

.

Case B: Y 62 vars(t). We have that Y o

urs in u

1

6=u

2

, and thus, from the indu
tive hypothesis

that C is safe, it follows that Y is either an input variable of H or a lo
al variable of u

1

6= u

2

in C. If Y is an input variable of H, then Y is an input variable of HfX=tg, and if Y a lo
al

variable of u

1

6=u

2

in C, then it is a lo
al variable of (u

1

6=u

2

)fX=tg in C

1

.

Thus, C

1

is a safe
lause.

Let us now
onsider
lause C

2

and let Y be a variable o

urring in a disequation t

1

6= t

2

in

X 6= t;Body . If t

1

6= t

2

o

urs in Body then from the indu
tive hypothesis that C is safe, it

follows that Y is either an input variable of H or a lo
al variable of t

1

6= t

2

in C

2

. If t

1

6= t

2

is X 6= t, then by the de�nition of safe
ase split (i) X is an input variable of H, and (ii) for

every variable Y 2 vars(t), either (ii.1) Y is an input variable of H or (ii.2) Y does not o

ur in

(H;Body), and thus, Y is a lo
al variable of X 6= t in C

2

.

Thus, C

2

is a safe
lause.

Case 8: P

k+1

is derived by applying the equation elimination rule to a
lause C

1

in P

k

of the form:

H G

1

; t

1

= t

2

; G

2

. We
onsider two
ases:

Case A: t

1

and t

2

are uni�able via the most general uni�er #. We derive the
lause: C

2

: (H

G

1

; G

2

)#. We
an show that
lause C

2

is safe similarly to Case 3 (A).

Case B: t

1

and t

2

are not uni�able. In this
ase P

k+1

is safe be
ause P

k+1

is P

k

� fC

1

g and, by

indu
tive hypothesis, all
lauses in P

k

are safe.

Case 9: P

k+1

is derived by applying the disequation repla
ement rule to
lause C in P

k

. Let us

onsider the
ases 9.1{9.5 of Rule 9. Cases 9.1 and 9.3{9.5 are straightforward, be
ause they

onsist in the deletion of a disequation in bd(C) or in the deletion of
lause C. Thus, in these

ases the safety of program P

k+1

derives dire
tly from the safety of P

k

.

Let us now
onsider
ase 9.2. Suppose that
lause C is of the form: H G

1

; f(t

1

; : : : ; t

m

) 6=

f(u

1

; : : : ; u

m

); G

2

, and it is repla
ed by the following m (� 0)
lauses:

50

C

1

. H G

1

; t

1

6=u

1

; G

2

: : :

C

m

. H G

1

; t

m

6=u

m

; G

2

We now prove that, for j = 0; : : : ;m, C

j

is safe. Indeed, for j = 0; : : : ;m, if we
onsider a variable

X o

urring in t

j

6=u

j

then, by the indu
tive hypothesis, either (i) X is an input variable of H

or (ii) X is a lo
al variable of f(t

1

; : : : ; t

m

) 6=f(u

1

; : : : ; u

m

) in C, and thus, X is a lo
al variable

of t

j

6=u

j

in C

j

.

In the
ase where X o

urs in a disequation in G

1

or G

2

, it follows dire
tly from the indu
tive

hypothesis that X is either an input variable of H or a lo
al variable of that disequation in C

j

.

Thus, C

j

is safe.

2

A2. Preservation of Modes

Here we show that, if the program P

0

[Defs

n

satis�es a mode M and we apply our transformation

rules a

ording to the restri
tions indi
ated in Theorem 6, then the derived program P

n

satis�es M .

In this se
tion and in the rest of the paper, we will use the following notation and terminology. Let

us
onsider two non-basi
 atoms A

1

and A

2

of the form p(t

1

; : : : ; t

m

) and p(u

1

; : : : ; u

m

), respe
tively.

By A

1

=A

2

we denote the
onjun
tion of equations: t

1

=u

1

; : : : ; t

m

=u

m

. By mgu(A

1

; A

2

) we denote a

relevant mgu of two uni�able non-basi
 atoms A

1

and A

2

. Similarly, bymgu(t

1

; t

2

) we denote a relevant

mgu of two uni�able terms t

1

and t

2

. The length of the derivation G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

n

is

n. Given a program P and a mode M for P , we say that a derivation G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

n

is
onsistent with M i� for i = 0; : : : ; n� 1, if the leftmost atom of G

i

is a non-basi
 atom A then A

satis�es M .

The following properties of the operational semanti
s
an be proved by indu
tion on the length of

the derivations.

Lemma 1 Let P be a program and G

1

a goal. If G

1

su

eeds in P with answer substitution #, then

for all goals G

2

, (G

1

; G

2

) 7�!

�

P

G

2

#:

Lemma 2 Let P be a safe program w.r.t. mode M , let Eqs be a
onjun
tion of equations, and let

G

1

be a goal without o

urren
es of disequations. For all goals G

2

, if there exists a goal (A

0

; G

0

) su
h

that A

0

is a non-basi
 atom whi
h does not satisfy M and

(Eqs; G

1

; G

2

) 7�!

�

P

(A

0

; G

0

)

then there exists a goal (A

00

; G

00

) su
h that A

00

is a non-basi
 atom whi
h does not satisfy M and

(G

1

; Eqs ; G

2

) 7�!

�

P

(A

00

; G

00

):

Lemma 3 Let P

0

; : : : ; P

n

be a transformation sequen
e
onstru
ted by using the transformation rules

1{9. Let M be a mode for P

0

[Defs

n

su
h that: (i) P

0

;[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es

M , and (iii) the appli
ations of the unfolding, folding, head generalization, and
ase split rules during

the
onstru
tion of P

0

; : : : ; P

n

are safe w.r.t.M . Then, for k = 0; : : : ; n, for all goals G, if all derivations

from G using P

0

[Defs

n

are
onsistent with M , then all derivations from G using P

k

are
onsistent

with M .

Proof : By Proposition 3 we have that, for k = 0; : : : ; n, the program P

k

is safe w.r.t. M .

The proof pro
eeds by indu
tion on k.

The base
ase (k = 0) follows from the fa
t that all derivations from G using P

0

are also derivations

using P

0

[Defs

n

.

51

In order to prove the step
ase, we prove the following
ounterpositive statement:

for all goals (A

0

; G

0

), if there exists a goal (A

s

; G

s

) su
h that (A

0

; G

0

) 7�!

�

P

k+1

(A

s

; G

s

) and (A

s

; G

s

)

does not satisfy M , then there exists a goal (A

t

; G

t

) su
h that (A

0

; G

0

) 7�!

�

P

k

(A

t

; G

t

) and A

t

does

not satisfy M .

We pro
eed by indu
tion on the length s of the derivation of (A

s

; G

s

) from (A

0

; G

0

) using P

k+1

. As

an indu
tive hypothesis we assume that, for all r < s and for all goals

^

G, if there exists a derivation

^

G 7�!

P

k+1

: : : 7�!

P

k+1

(A

r

; G

r

) of length r, su
h that A

r

does not satisfy M , then there exists (A

0

; G

0

)

su
h that

^

G 7�!

�

P

k

(A

0

; G

0

) and A

0

does not satisfy M .

Let us
onsider the derivation (A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

) of length s, su
h that A

s

does

not satisfy M .

If s=0 then G is (A

s

; G

s

) and (A

0

; G

0

) 7�!

�

P

k

(A

s

; G

s

) where A

s

does not satisfy M .

If s > 0 then we may assume A

0

6= true, and we have the following
ases.

Case 1: A

0

is the equation t

1

= t

2

. Thus, by Point (1) of the operational semanti
s of Se
tion 2.3, the

derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

)

By the indu
tive hypothesis there exists (A

0

; G

0

) su
h that G

0

mgu(t

1

; t

2

) 7�!

�

P

k

(A

0

; G

0

) and A

0

does

not satisfy M . Thus, (A

0

; G

0

) 7�!

�

P

k

(A

0

; G

0

).

Case 2: A

0

is the disequation t

1

6= t

2

. The proof pro
eeds as in Case 1, by using Point (2) of the

operational semanti
s and the indu
tive hypothesis.

Case 3: A

0

is a non-basi
 atom whi
h satis�esM . (The
ase where A

0

does not satisfyM is subsumed

by the
ase s=0.) By Point (3) of the operational semanti
s, the derivation from (A

0

; G

0

) to (A

s

; G

s

)

using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

(bd(E); G

0

)mgu(A

0

; hd(E)) 7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

)

where E is a renamed apart
lause in P

k+1

.

If E 2 P

k

then (A

0

; G

0

) 7�!

P

k

(bd(E); G

0

)mgu(A

0

; hd(E)) and the thesis follows dire
tly from the

indu
tive hypothesis.

Otherwise, if E 2 (P

k+1

� P

k

), we prove the following:

Property (y): there exists a goal (A

t

; G

t

) su
h that (A

0

; G

0

) 7�!

�

P

k

(A

t

; G

t

) and A

t

does not satisfy M .

The proof is done by
onsidering the following
ases,
orresponding to the rule whi
h is applied to

derive E.

Case 3.1: E is derived by applying the de�nition introdu
tion rule. Thus, E 2 Defs

n

and Property (y)

follows from the indu
tive hypothesis and the hypothesis that P

0

[Defs

n

satis�es M .

Case 3.2: E is derived by unfolding a
lause C in P

k

of the form H D;G

1

; A;G

2

, where D is a

onjun
tion of disequations, w.r.t. the non-basi
 atom A. By Proposition 1 we may assume that

no disequation o

urs in G

1

; A;G

2

. Let C

1

; : : : ; C

m

, with m � 0, be the
lauses of P

k

su
h that,

for all i 2 f1; : : : ;mg, A is uni�able with the head of C

i

via the mgu #

i

.

Thus, E is of the form (H D;G

1

; bd(C

i

); G

2

)#

i

, for some i 2 f1; : : : ;mg, and the derivation

from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

)

where �

i

is an mgu of A

0

and H#

i

. By the indu
tive hypothesis there exists (A

0

; G

0

) su
h that

A

0

does not satisfy M and:

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

�

P

k

(A

0

; G

0

)

Sin
e #

i

is mgu(A; hd(C

i

)), #

i

is relevant, and vars(G

0

) \ vars((A; hd(C

i

))) = ;, we have that:

52

(D;G

1

; bd(C

i

); G

2

; G

0

)#

i

�

i

7�!

�

P

k

(A

0

; G

0

)

and thus, by the de�nition of the operational semanti
s (Point 1), we have that:

(A=hd(C

i

); A

0

=H;D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Then, by properties of mgu's, we have that:

(A

0

=H;A=hd(C

i

);D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Sin
e A

0

satis�es M , C is safe, and C

i

is renamed apart, we have that vars(Dmgu(A

0

;H)) \

vars(A; hd(C

i

)) = ;. Thus, (D mgu(A

0

;H) mgu(A mgu(A

0

;H); hd(C

i

))) = (D mgu(A

0

;H))

and we have that:

(A

0

=H;D;A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Now, by Lemma 2, there exists a goal (A

00

; G

00

) su
h that:

(A

0

=H;D;G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

00

; G

00

)

where A

00

is a non-basi
 atom whi
h does not satisfy M . There are two
ases:

Case A. (A

0

= H;D;G

1

) 7�!

�

P

k

(A

00

; G

000

) for some goal G

000

. In this
ase, by using
lause

C 2 P

k

, we have that:

(A

0

; G

0

) 7�!

P

k

(D;G

1

; A;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

00

; G

0000

)

for some goal G

0000

.

Case B. There is no (A

000

; G

000

) su
h that (A

0

= H;D;G

1

) 7�!

�

P

k

(A

000

; G

000

) and A

000

does not

satisfy M . In this
ase (A

0

=H;D;G

1

; A= hd(C

i

)) su

eeds in P

k

. It follows that, for some

substitution #,

(A

0

=H;D;G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

)

7�!

�

P

k

(A=hd(C

i

); bd(C

i

); G

2

; G

0

)# (by Lemma 1)

7�!

P

k

(bd(C

i

); G

2

; G

0

)# mgu(A#; hd(C

i

))

(be
ause mgu's are relevant and C

i

is renamed apart)

7�!

�

P

k

(A

00

; G

0000

)

for some goal G

0000

. Thus,

(A

0

=H;D;G

1

; A;G

2

; G

0

)

7�!

�

P

k

(A;G

2

; G

0

)#

7�!

P

k

(bd(C

i

); G

2

; G

0

)# mgu(A#; hd(C

i

))

7�!

�

P

k

(A

00

; G

0000

)

and therefore, by using
lause C 2 P

k

,

(A

0

; G

0

) 7�!

�

P

k

(A

00

; G

0000

)

where A

00

is a non-basi
 atom whi
h does not satisfy M . Thus, Property (y) holds.

Case 3.3: E is derived by a safe appli
ation of the folding rule (see De�nition 5). In parti
ular,

suppose that from the following
lauses in P

k

:

8

>

<

>

:

C

1

: H G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H G

1

; (A

m

;K

m

)#;G

2

53

and the following de�nition
lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

we have derived the
lause E of the form:

E: H G

1

;newp(X

1

; : : : ;X

h

)#;G

2

where Property � of De�nition 5 holds, that is, ea
h input variable of newp(X

1

; : : : ;X

h

)#, is

also an input variable of at least one of the non-basi
 atoms o

urring in (H;G

1

; A

1

#; : : : ; A

m

#).

Thus, the derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k+1

(A

s

; G

s

)

By the indu
tive hypothesis, there exists a goal (A

0

; G

0

) su
h that A

0

does not satisfy M and the

following holds:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

There are two
ases:

Case A: G

1

mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

00

) for some goal G

00

. In this
ase we have that, for some

i 2 f1; : : : ;mg, and for some goal G

000

,

(A

0

; G

0

) 7�!

P

k

(G

1

; (A

i

;K

i

)#;G

2

; G

0

)mgu(A

0

;H) (by using
lause C

i

in P

k

)

7�!

�

P

k

(A

0

; G

000

)

Thus, Property (y) holds.

Case B: There is no (A

00

; G

00

) su
h that G

1

mgu(A

0

;H) 7�!

�

P

k

(A

00

; G

00

) and A

00

does not satisfy

M . In this
ase G

1

mgu(A

0

;H) su

eeds in P

k

, and thus, for some substitution �,

(A

0

; G

0

) 7�!

�

P

k

(newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)� 7�!

�

P

k

(A

0

; G

0

)

By Property �, we have that newp(X

1

; : : : ;X

h

)#� satis�es M .

It
an be shown the following fa
t. Let us
onsider the set of all de�nition
lauses with head

predi
ate newp in Defs

k

, for any k 2 f0; : : : ; ng:

8

>

<

>

:

newp(X

1

; : : : ;X

h

) Body

1

� � �

newp(X

1

; : : : ;X

h

) Body

m

If for a substitution � and a goal G, the atom newp(X

1

; : : : ;X

h

)� satis�es M and

(newp(X

1

; : : : ;X

h

)�;G) 7�!

�

P

k

(A

0

; G

0

), where A

0

is a non-basi
 atom whi
h does not sat-

isfy M , then for some i 2 f1; : : : ;mg we have that there exists a goal (A

t

; G

t

) su
h that

(Body

i

�;G) 7�!

�

P

k

(A

t

; G

t

), where A

t

is a non-basi
 atom whi
h does not satisfy M .

By using this fa
t, we have that, for some i 2 f1; : : : ;mg,

(A

0

; G

0

) 7�!

�

P

k

((A

i

;K

i

)#;G

2

; G

0

)� 7�!

�

P

k+1

(A

t

; G

t

)

where A

t

is a non-basi
 atom whi
h does not satisfy M and thus, Property (y) holds.

Case 3.4: E is derived by applying the head generalization rule. In this
ase Property (y) follows

from the indu
tive hypothesis and from the de�nition of the operational semanti
s (Point 1).

54

Case 3.5: E is derived by safe
ase split (see De�nition 7) from a
lause C in P

k

. By Proposition 1,

we may assume that C is of the form: H D;B, where D is a
onjun
tion of disequations and

in B there are no o

urren
es of disequations. Thus, E is of one of the following two forms:

C

1

. (H D;B)fX=tg

C

2

. H X 6= t;D;B

where X is an input variable of H, X does not o

ur in t, and for all variables Y 2 vars(t),

either Y is an input variable of H or Y does not o

ur in C.

Case A: E is C

1

. Thus, the derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

takes the form:

(A

0

; G

0

) 7�!

P

k+1

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k+1

(A

s

; G

s

)

By the indu
tive hypothesis, there exists a goal (A

0

; G

0

) su
h that A

0

does not satisfy M and the

following holds:

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k

(A

0

; G

0

)

By properties of mgu's and Point (1) of the operational semanti
s, we have that:

(A

0

=H; X= t; D; B; G

0

) 7�!

�

P

k

(A

0

; G

0

)

By the
onditions for safe
ase split, we have that:

vars((X= t)mgu(A

0

;H)) \ vars((D; B; G

0

)mgu(A

0

;H)) = ;

and therefore:

(A

0

=H; D; B; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Thus, by using
lause C 2 P

k

,

(A

0

; G

0

) 7�!

P

k

(D; B; G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

and Property (y) holds.

Case B: E is C

2

. Thus, the derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

takes the form:

(A

0

; G

0

) 7�!

P

k+1

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k+1

(A

s

; G

s

)

By the indu
tive hypothesis, there exists a goal (A

0

; G

0

) su
h that A

0

does not satisfy M and:

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

Sin
e the answer substitution for any su

essful disequation is the identity substitution, we have

that:

(D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

Thus, by using
lause C 2 P

k

, we have that

(A

0

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

and Property (y) holds.

Case 3.6: E is derived by applying the equation elimination rule. In this
ase Property (y) is a

onsequen
e of the indu
tive hypothesis, Point (1) of the operational semanti
s, the safety of

P

k

, and Lemma 2.

Case 3.7: E is derived by applying the disequation repla
ement rule. In this
ase Property (y)

is a
onsequen
e of the indu
tive hypothesis, Point (2) of the operational semanti
s, and the

properties of uni�
ation.

2

From Lemma 3 and De�nition 2 we have the following proposition.

55

Proposition 4 (Preservation of Modes) Let P

0

; : : : ; P

n

be a transformation sequen
e
onstru
ted

by using the transformation rules 1{9. Let M be a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es M , and (iii) the appli
ations of the unfolding, folding, head

generalization, and
ase split rules during the
onstru
tion of P

0

; : : : ; P

n

are safe w.r.t. M . Then, for

k = 0; : : : ; n, the program P

k

satis�es M .

A3. Partial Corre
tness

For proving the partial
orre
tness of the transformation rules w.r.t. the operational semanti
s (that

is, Proposition 5), we will use the following two lemmata.

Lemma 4 Let P be a safe program w.r.t. mode M , let Eqs be a
onjun
tion of equations, and let G

1

be a goal without o

urren
es of disequations. For all goals G

2

, if

(Eqs; G

1

; G

2

) 7�!

�

P

G

2

#

then either

(G

1

; Eqs ; G

2

) 7�!

�

P

G

2

#

or there exists a goal (A

0

; G

0

) su
h that A

0

is a non-basi
 atom whi
h does not satisfy M and

G

1

7�!

�

P

(A

0

; G

0

):

Lemma 5 Let P

0

; : : : ; P

n

be a transformation sequen
e
onstru
ted by using the transformation rules

1{9. Let M be a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es

M , and (iii) the appli
ations of the unfolding, folding, head generalization, and
ase split rules during

the
onstru
tion of P

0

; : : : ; P

n

are all safe w.r.t. M .

Then, for k = 0; : : : ; n � 1, for ea
h goal G, if there exists a derivation G 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is
onsistent with M , then G 7�!

�

P

k

[Defs

n

true, that is, G su

eeds in P

k

[Defs

n

.

Proof : By hypotheses (i{iii), and Propositions 3 and 4, for k = 0; : : : ; n, program P

k

is safe and

satis�es M . Let G be a goal of the form (A

0

; G

0

), su
h that there exists a derivation

Æ : (A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is
onsistent with M . We will prove that:

(A

0

; G

0

) 7�!

�

P

k

[Defs

n

true

The proof pro
eeds by indu
tion on the length s of the derivation Æ.

Base Case. For s = 0, the goal (A

0

; G

0

) is true and the thesis follows from the fa
t that true su

eeds

in all programs.

Step Case. Let us now assume the following

Indu
tive Hypothesis: for all r < s and for all goals G, if there exists a derivationG 7�!

P

k+1

: : : 7�!

P

k+1

true of length r whi
h is
onsistent with M , then G 7�!

�

P

k

[Defs

n

true.

There are the following three
ases.

Case 1: A

0

is the equation t

1

= t

2

. By Point (1) of the operational semanti
s of Se
tion 2.3, the

derivation Æ is of the form:

(t

1

= t

2

; G

0

) 7�!

P

k+1

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true

Thus, the derivation G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true has length s � 1 and it is
onsistent

with M . By the indu
tive hypothesis there exists a derivation G

0

mgu(t

1

; t

2

) 7�!

�

P

k

true. Thus,

(A

0

; G

0

) 7�!

�

P

k

true and (A

0

; G

0

) su

eeds in P

k

[Defs

n

.

Case 2: A

0

is the disequation t

1

6= t

2

. The proof pro
eeds as in Case 1, by using Point (2) of the

operational semanti
s and the indu
tive hypothesis.

56

Case 3: A

0

is a non-basi
 atom whi
h satis�es M (otherwise there is no derivation starting from

(A

0

; G

0

) whi
h is
onsistent with M). By Point (3) of the operational semanti
s, the derivation Æ is

of the form:

(A

0

; G

0

) 7�!

P

k+1

(bd(E); G

0

)mgu(A

0

; hd(E)) 7�!

P

k+1

: : : 7�!

P

k+1

true

where E is a renamed apart
lause in P

k+1

.

If E 2 P

k

then (A

0

; G

0

) 7�!

P

k

(bd(E); G

0

)mgu(A

0

; hd(E)) and the thesis follows dire
tly from the

indu
tive hypothesis.

Otherwise, if E 2 (P

k+1

� P

k

), we prove that (A

0

; G

0

) su

eeds in P

k

[Defs

n

by
onsidering the

following
ases, whi
h
orrespond to the rules applied for deriving E.

Case 3.1: E is derived by applying the de�nition introdu
tion rule. Thus, E is a
lause in Defs

n

of

the form: newp(X

1

; : : : ;X

h

) B and the derivation Æ is of the form:

(newp(t

1

; : : : ; t

h

); G

0

) 7�!

Defs

n

(BfX

1

=t

1

; : : : ;X

h

=t

h

g; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

By the indu
tive hypothesis, we have that:

(BfX

1

=t

1

; : : : ;X

h

=t

h

g; G

0

) 7�!

�

P

k

true

and thus,

(newp(t

1

; : : : ; t

h

); G

0

) 7�!

�

P

k

[Defs

n

true

Case 3.2: E is derived by unfolding a
lause C in P

k

of the form H D;G

1

; A;G

2

, where D is a

onjun
tion of disequations, w.r.t. the non-basi
 atom A. By Proposition 1 we may assume that

no disequation o

urs in (G

1

; A;G

2

). Let C

1

; : : : ; C

m

, with m � 0, be the
lauses of P

k

su
h

that, for all i 2 f1; : : : ;mg A is uni�able with the head of C

i

via the mgu #

i

.

Thus, E is of the form (H D;G

1

; bd(C

i

); G

2

)#

i

, for some i 2 f1; : : : ;mg, and the derivation

Æ is of the form:

(A

0

; G

0

) 7�!

P

k+1

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

P

k+1

: : : 7�!

P

k+1

true

where �

i

is an mgu of A

0

and H#

i

. By the indu
tive hypothesis we have that:

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

�

P

k

true

Sin
e #

i

is mgu(A; hd(C

i

)), #

i

is relevant, and vars(G

0

) \ vars((A; hd(C

i

))) = ;, we have that:

(D;G

1

; bd(C

i

); G

2

; G

0

)#

i

�

i

7�!

�

P

k

true

and thus, by the de�nition of the operational semanti
s (Point 1), we have that:

(A=hd(C

i

); A

0

=H;D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

Then, by properties of mgu's, we have that:

(A

0

=H;A=hd(C

i

);D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

Sin
e A

0

satis�es M , C is safe, and C

i

is renamed apart, we have that vars(Dmgu(A

0

;H)) \

vars(A; hd(C

i

)) = ;. Thus, (D mgu(A

0

;H) mgu(A mgu(A

0

;H); hd(C

i

))) = (D mgu(A

0

;H))

and we have that:

(A

0

=H;D;A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

Now, by Lemma 4, there are the following two
ases.

Case A. (A

0

=H;D;G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

In this
ase, by Points (1) and (3) of the operational semanti
s we have that:

57

(A

0

=H;D;G

1

; A;G

2

; G

0

) 7�!

�

P

k

true

and thus, by using
lause C in P

k

,

(A

0

; G

0

) 7�!

�

P

k

true

Case B. There exists a goal (A

0

; G

0

) su
h that:

(A

0

=H;D;G

1

) 7�!

�

P

k

(A

0

; G

0

)

where A

0

is a non-basi
 atom whi
h does not satisfy the mode M . In this
ase we have that, for

some goal G

00

,

A

0

7�!

�

P

k

(A

0

; G

00

)

whi
h is impossible be
ause A

0

and P

k

satisfy M .

Case 3.3: E is derived by a safe appli
ation of the folding rule (see De�nition 5). In parti
ular,

suppose that from the following
lauses in P

k

:

8

>

<

>

:

C

1

: H G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H G

1

; (A

m

;K

m

)#;G

2

and the following de�nition
lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

we have derived the
lause E of the form:

E: H G

1

;newp(X

1

; : : : ;X

h

)#;G

2

where Property � of De�nition 5 holds, that is, ea
h input variable of newp(X

1

; : : : ;X

h

)#, is

also an input variable of at least one of the non-basi
 atoms o

urring in (H;G

1

; A

1

#; : : : ; A

m

#).

Thus, the derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k+1

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k+1

true

By the indu
tive hypothesis, the following holds:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k

true

and therefore, for some substitution �,

(A

0

; G

0

) 7�!

�

P

k

(newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)� 7�!

�

P

k

true

By Property �, we have that newp(X

1

; : : : ;X

h

)#� satis�es M .

It
an be shown the following fa
t. Let us
onsider the set of all de�nition
lauses with head

predi
ate newp in Defs

k

, for any k 2 f0; : : : ; ng:

8

>

<

>

:

newp(X

1

; : : : ;X

h

) Body

1

� � �

newp(X

1

; : : : ;X

h

) Body

m

If for a substitution � and for a goal G, the atom newp(X

1

; : : : ;X

h

)� satis�es M and we

have that (newp(X

1

; : : : ;X

h

)�;G) 7�!

�

P

k

true, then for some i 2 f1; : : : ;mg we have that

(Body

i

�;G) 7�!

�

P

k

true.

By using this fa
t, we have that, for some i 2 f1; : : : ;mg,

(A

0

; G

0

) 7�!

�

P

k

((A

i

;K

i

)#;G

2

; G

0

)� 7�!

�

P

k

true

58

Case 3.4: E is derived by applying the head generalization rule. In this
ase (A

0

; G

0

) 7�!

�

P

k

true

follows from the indu
tive hypothesis and from the de�nition of the operational semanti
s (Point

1).

Case 3.5: E is derived by safe
ase split (see De�nition 7) from a
lause C in P

k

. By Proposition 1,

we may assume that C is of the form: H D;B, where D is a
onjun
tion of disequations and

in B there are no o

urren
es of disequations. Thus, E is of one of the following two forms:

C

1

. (H D;B)fX=tg

C

2

. H X 6= t;D;B

where X is an input variable of H, X does not o

ur in t, and for all variables Y 2 vars(t),

either Y is an input variable of H or Y does not o

ur in C.

Case A: E is C

1

. Thus, the derivation Æ takes the form:

(A

0

; G

0

) 7�!

P

k+1

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k+1

true

By the indu
tive hypothesis, we have that:

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k

true

By properties of mgu's and Point (1) of the operational semanti
s, we have that:

(A

0

=H; X= t; D; B; G

0

) 7�!

�

P

k

true

By the
onditions for safe
ase split, we have that:

vars((X= t)mgu(A

0

;H)) \ vars((D; B; G

0

)mgu(A

0

;H)) = ;

and therefore:

(A

0

=H; D; B; G

0

) 7�!

�

P

k

true

Thus, by using
lause C 2 P

k

,

(A

0

; G

0

) 7�!

P

k

(D; B; G

0

)mgu(A

0

;H) 7�!

�

P

k

true

Case B: E is C

2

. Thus, the derivation Æ takes the form:

(A

0

; G

0

) 7�!

P

k+1

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k+1

true

By the indu
tive hypothesis, we have that:

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

true

Sin
e the answer substitution for any su

essful disequation is the identity substitution, we have

that:

(D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

true

Thus, by using
lause C 2 P

k

,

(A

0

; G

0

) 7�!

�

P

k

true

Case 3.6: E is derived by applying the equation elimination rule. In this
ase (A

0

; G

0

) 7�!

�

P

k

true is

a
onsequen
e of the indu
tive hypothesis, Point (1) of the operational semanti
s, the fa
t that

P

k

is safe and satis�es M , and Lemma 4.

Case 3.7: E is derived by applying the disequation repla
ement rule. In this
ase (A

0

; G

0

) 7�!

�

P

k

true

is a
onsequen
e of the indu
tive hypothesis, Point (2) of the operational semanti
s, and the

properties of uni�
ation.

2

59

Proposition 5 (Partial Corre
tness) Let P

0

; : : : ; P

n

be a transformation sequen
e
onstru
ted by

using the transformation rules 1{9. Let M be a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is

safe w.r.t. M , (ii) P

0

[Defs

n

satis�es M , and (iii) the appli
ations of the unfolding, folding, head

generalization, and
ase split rules during the
onstru
tion of P

0

; : : : ; P

n

are all safe w.r.t. M .

Then, for k = 0; : : : ; n, for ea
h non-basi
 atom A whi
h satis�es mode M , if A su

eeds in P

k

then

A su

eeds in P

0

[Defs

k

.

Proof : Suppose that a non-basi
 atom A whi
h satis�es M has a su

essful derivation using P

k

. By

Proposition 4, P

k

satis�esM and, therefore, A has a su

essful derivation using P

k

whi
h is
onsistent

with M . Thus, the thesis follows from Lemma 5. 2

A4. Completeness

For the proofs of Propositions 3 (Preservation of Safety), 4 (Preservation of Modes), and 5 (Partial

Corre
tness), we have pro
eeded by indu
tion on the length of the derivations and by
ases on the rule

used to derive program P

k+1

from program P

k

. For the proof of Proposition 6 below (Completeness),

we will pro
eed by indu
tion w.r.t. more sophisti
ated well-founded orderings. This proof te
hnique

is a suitable modi�
ation of the one based on weight
onsistent proof trees [14, 46℄.

The following de�nition introdu
es some well-founded orders and other notions whi
h are needed

for the proofs presented in this se
tion.

De�nition 14 (i) Given a derivation Æ of the form G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

z

, we denote by �(Æ)

the number of goals G

i

in Æ su
h that G

i

is of the form (A;K) where A is a non-basi
 atom.

(ii) We de�ne the following fun
tions � and � whi
h given a program and a goal return either a

non-negative integer or 1 (we assume that, for all non-negative integers n, 1 > n):

�(P;G) =

(

minf�(Æ) j Æ is a su

essful derivation of G in Pg if G su

eeds in P

1 otherwise

�(P;G) =

(

minfn j n is the length of a su

essful derivation of G in Pg if G su

eeds in P

1 otherwise

(iii) Given a program P and two goals G

1

and G

2

, we write G

1

�

P

G

2

i� �(P;G

1

) > �(P;G

2

).

Similarly, we write G

1

�

P

G

2

i� �(P;G

1

) � �(P;G

2

).

(iv) Given two programs P and Q, we say that a derivation G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

z

is quasi-

de
reasing w.r.t. �

Q

i� for i = 0; : : : ; z � 1, either (1) G

i

�

Q

G

i+1

or (2) the leftmost atom of G

i

is a

basi
 atom and G

i

�

Q

G

i+1

.

(v) Let P be a program and G

1

; G

2

be goals. If there exists a derivation Æ from G

1

to G

2

su
h that

�(Æ) = s, then we write G

1

7�!

s

P

G

2

.

For any program P the relation �

P

is a well-founded order and, for all goals G

1

; G

2

; and G

3

, we

have that G

1

�

P

G

2

and G

2

�

P

G

3

implies G

1

�

P

G

3

.

Lemma 6 Let P be a program and G be a goal. If G su

eeds in P then G has a derivation whi
h

is quasi-de
reasing w.r.t. �

P

.

Proof : The derivation Æ from G using P su
h that �(Æ) � �(Æ

0

) for all su

essful derivations Æ

0

from

G, is quasi-de
reasing w.r.t. �

P

. 2

Lemma 7 Let M be a mode for program P , su
h that P is safe w.r.t. M and P satis�es M . Let Eqs

be a
onjun
tion of equations, and G

0

; G

1

; G

2

be goals. Suppose also that no disequation o

urs in

G

1

and all derivations from the goal (G

0

; G

1

) are
onsistent with M . Then:

60

(i) (G

0

; G

1

; Eqs; G

2

) 7�!

�

P

true i� (G

0

; Eqs; G

1

; G

2

) 7�!

�

P

true

(ii) �(P; (G

0

; G

1

; Eqs; G

2

)) = �(P; (G

0

; Eqs ; G

1

; G

2

))

(iii) �(P; (G

0

; G

1

; Eqs ; G

2

)) = �(P; (G

0

; Eqs; G

1

; G

2

))

Proof : By indu
tion on the length of the derivations. 2

Lemma 8 Let M be a mode for program P , su
h that P is safe w.r.t. M and P satis�es M . Let

be a substitution and G

0

; G

1

; G

2

be goals. Suppose also that no disequation o

urs in G

2

and all

derivations from the goal (G

0

; G

2

) are
onsistent with M . Then:

(i) if (G

0

; G

1

; G

2

)# 7�!

�

P

true then (G

0

; G

2

) 7�!

�

P

true

(ii) �(P; (G

0

; G

1

; G

2

)#) � �(P; (G

0

; G

2

))

(iii) �(P; (G

0

; G

1

; G

2

)#) � �(P; (G

0

; G

2

))

Proof : By indu
tion on the length of the derivations. 2

Lemma 9 Let M be a mode for program P , su
h that P is safe w.r.t. M and P satis�es M . Let

Diseqs be a
onjun
tion of disequations and G be a goal. Suppose also that vars(Diseqs)\vars(G) = ;.

Then:

(i) (G; Diseqs) 7�!

�

P

true i� (Diseqs; G) 7�!

�

P

true

(ii) �(P; (G; Diseqs)) = �(P; (Diseqs ; G))

(iii) �(P; (G; Diseqs)) = �(P; (Diseqs ; G))

Proof : The proof pro
eeds by indu
tion on the length of the derivations. 2

Let us
onsider a transformation sequen
e P

0

; : : : ; P

n

onstru
ted by using the transformation

rules 1{9 a

ording to the hypothesis of Theorem 6. For reasons of simpli
ity we assume that ea
h

de�nition
lause is used for folding, and thus, by Condition 1 of Theorem 6, it is unfolded during the

onstru
tion of P

0

; : : : ; P

n

. We
an rearrange the sequen
e P

0

; : : : ; P

n

into a new sequen
e P

0

; : : : ; P

0

[

Defs

n

; : : : ; P

j

; : : : ; P

l

; : : : ; P

n

su
h that: (1) P

0

; : : : ; P

0

[Defs

n

is
onstru
ted by appli
ations of the

de�nition introdu
tion rule, (2) P

0

[Defs

n

; : : : ; P

j

is
onstru
ted by unfolding every
lause in Defs

n

,

(3) P

j

; : : : ; P

l

is
onstru
ted by appli
ations of Rules 3{9, and (4) either (4.1) l = n, or (4.2) l = n� 1

and P

n

is derived from P

n�1

by an appli
ation of the de�nition elimination rule w.r.t. predi
ate p.

Throughout the rest of this se
tion we will refer to the transformation sequen
e P

0

; : : : ; P

0

[

Defs

n

; : : : ; P

j

; : : : ; P

n

onstru
ted as indi
ated above. We also assume that M is a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es M , and (iii) the appli
ations of the

unfolding, folding, head generalization, and
ase split rules during the
onstru
tion of P

0

; : : : ; P

n

are

all safe w.r.t. M .

Thus, by Propositions 3 and 4, for k = 0; : : : ; n, program P

k

is safe and satis�es M .

Lemma 10 Let us
onsider the transformation sequen
e P

0

; : : : ; P

0

[Defs

n

; : : : ; P

j

onstru
ted as

indi
ated above. Then the following properties hold.

(i) For all
lauses newp(X

1

; : : : ;X

h

) Body in Defs

n

, for all substitutions #, and for all goals G

1

; G

2

,

su
h that all derivations from (G

1

; Body#; G

2

) using P

j

are
onsistent with M , we have that:

(i.1) (G

1

; Body #; G

2

) �

P

j

(G

1

; newp(X

1

; : : : ;X

h

)#; G

2

);

(i.2) all derivations starting from (G

1

;newp(X

1

; : : : ;X

h

)#; G

2

) using P

j

are
onsistent with M ;

(ii) for all non-basi
 atoms A satisfying M , if A su

eeds in P

0

[Defs

n

then A su

eeds in P

j

.

61

Noti
e that, by Point (i.1), if (G

1

; Body #; G

2

) su

eeds in P

j

then (G

1

; newp(X

1

; : : : ;X

h

)#; G

2

)

su

eeds in P

j

.

Proof : By indu
tion on the length of the derivations. 2

For the proof of the following Lemma 12 we will use the following property.

Lemma 11 Let us
onsider the transformation sequen
e P

j

; : : : ; P

l

and the mode M for P

0

[Defs

n

as indi
ated above. For k = j; : : : ; l and for all goals G

1

and G

2

su
h that there exists a derivation

G

1

7�!

P

k

: : : 7�!

P

k

G

2

, if all derivations from G

1

using P

j

are
onsistent with M then all derivations

from G

2

using P

j

are
onsistent with M .

Proof : The proof pro
eeds by indu
tion on k and on the length of the derivation G

1

7�!

P

k

: : : 7�!

P

k

G

2

. We omit the details. 2

Lemma 12 Let us
onsider the transformation sequen
e P

j

; : : : ; P

l

and the mode M for P

0

[Defs

n

as indi
ated above. Let G be a goal su
h that (i) no disequation o

urs in G and (ii) all derivations

from G using P

j

are
onsistent with M . For k = j; : : : ; l, if G has a su

essful derivation in P

j

, then

G has a su

essful derivation in P

k

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Proof : Let us
onsider the following ordering on goals:

G

1

�G

2

i� either G

1

�

P

j

G

2

or (G

1

�

P

j

G

2

and �(P

j

; G

1

) > �(P

j

; G

2

)).

� is a well-founded order.

The proof pro
eeds by indu
tion on k.

Base Case. The
ase k = j follows from Lemma 6.

Step Case. For k � j we assume the following:

Indu
tive Hypothesis (I1). For ea
h goal G

0

su
h that no disequation o

urs in G

0

and all derivations

from G

0

using P

j

are
onsistent withM , if G

0

has a su

essful derivation in P

j

, then G

0

has a su

essful

derivation in P

k

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Let us now
onsider a goal G of the form (A

0

; G

0

) su
h that no disequation o

urs in (A

0

; G

0

) and all

derivations from (A

0

; G

0

) using P

j

are
onsistent withM . Let us assume that there exists a derivation

of the form:

Æ : (A

0

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

We wish to show that there exists a derivation of the form:

Æ

0

: (A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. We prove the existen
e of su
h a derivation Æ

0

by indu
tion on

the well-founded order �.

We assume the following:

Indu
tive Hypothesis (I2). For ea
h goal

^

G su
h that no disequation o

urs in

^

G and all derivations

from

^

G using P

j

are
onsistent with M and (A

0

; G

0

)�

^

G, if there exists a derivation of the form:

^

G 7�!

P

k

: : : 7�!

P

k

true

whi
h is quasi-de
reasing w.r.t. �

P

j

, then there exists a derivation of the form:

^

G 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Now we pro
eed by
ases.

62

Case 1: A

0

is the equation t

1

= t

2

. By Point (1) of the operational semanti
s of Se
tion 2.3, the

derivation Æ is of the form:

(t

1

= t

2

; G

0

) 7�!

P

k

G

0

mgu(t

1

; t

2

) 7�!

P

k

: : : 7�!

P

k

true

Let us
onsider the derivation:

G

0

mgu(t

1

; t

2

) 7�!

P

k

: : : 7�!

P

k

true

By Proposition 5, we have that both (t

1

= t

2

; G

0

) and G

0

mgu(t

1

; t

2

) su

eed in P

j

. Moreover, by Point

(1) of the operational semanti
s �(P

j

; (t

1

= t

2

; G

0

)) > �(P

j

; G

0

mgu(t

1

; t

2

)). Thus, (t

1

= t

2

; G

0

) �

G

0

mgu(t

1

; t

2

) and, by the Indu
tive Hypothesis (I2), there exists a su

essful derivation of the form:

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. Sin
e (t

1

= t

2

; G

0

) �

P

j

G

0

mgu(t

1

; t

2

), the following derivation:

(t

1

= t

2

; G

0

) 7�!

P

k+1

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true

is quasi-de
reasing w.r.t. �

P

j

.

Case 2: A

0

is a non-basi
 atom whi
h satis�es M (otherwise there is no derivation starting from

(A

0

; G

0

) whi
h is
onsistent with M). By Point (3) of the operational semanti
s, in P

k

there exists a

renamed apart
lause C, su
h that the derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(bd(C); G

0

)mgu(A

0

; hd(C)) 7�!

P

k

: : : 7�!

P

k

true

By Proposition 1 we may assume that
lause C is of the form H Diseqs; B, where Diseqs is a
on-

jun
tion of disequations and B is a goal without o

urren
es of disequations. Thus, Diseqs mgu(A

0

;H)

su

eeds and Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(Diseqs ; B;G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

(B;G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

If C 2 P

k+1

then (A

0

; G

0

) 7�!

P

k+1

(Diseqs ; B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

(B;G

0

)mgu(A

0

;H)

and the thesis follows from the Indu
tive Hypothesis (I2), be
ause (A

0

; G

0

) �

P

j

(B;G

0

)mgu(A

0

;H)

(re
all that Æ is quasi-de
reasing w.r.t. �

P

j

).

Otherwise, if C 2 (P

k

�P

k+1

), we
onstru
t the derivation Æ

0

by
onsidering the following
ases, whi
h

orrespond to the rules applied for deriving P

k+1

from P

k

.

Case 2.1: P

k+1

is derived by unfolding
lause C in P

k

w.r.t. a non-basi
 atom, say A. Thus,
lause C

is of the formH Diseqs; G

1

; A;G

2

. Let C

1

; : : : ; C

m

, withm � 0, be the
lauses of P

k

su
h that,

for i = 1; : : : ;m, A is uni�able with the head of C

i

. Thus, P

k+1

= (P

k

� fCg) [fD

1

; : : : ;D

m

g,

where for i = 1; : : : ;m, D

i

is the
lause (H Diseqs; G

1

; bd(C

i

); G

2

)mgu(A; hd(C

i

)). For

reasons of simpli
ity we assume that for i = 1; : : : ;m, no disequation o

urs in bd(C

i

). In the

general
ase where, for some i 2 f1; : : : ;mg, bd(C

i

) has o

urren
es of disequations, the proof

pro
eeds in a very similar way, by using Proposition 1, Lemma 9, and the hypothesis that all

appli
ations of the unfolding rule are safe (see De�nition 4).

The derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; A;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

From the fa
t that Æ is quasi-de
reasing w.r.t. �

P

j

, from Point (1) of the operational semanti
s,

and from the de�nition of �

P

j

, we have that:

(A

0

; G

0

) �

P

j

(A

0

=H;Diseqs ; G

1

; A;G

2

; G

0

)

and the derivation

(A

0

=H;Diseqs ; G

1

; A;G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

is quasi-de
reasing w.r.t. �

P

j

.

Thus, by Points (1) and (3) of the operational semanti
s, there exists a
lause in P

k

, say C

i

,

su
h that the derivation

63

(A

0

=H;Diseqs ; G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

is quasi-de
reasing w.r.t. �

P

j

. Moreover, we have that:

(A

0

; G

0

) �

P

j

(A

0

=H;Diseqs ; G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

).

Sin
e all derivations from (A

0

; G

0

) using P

j

are
onsistent with M , we have that all derivations

from (A

0

= H;Diseqs; G

1

) using P

j

are
onsistent with M , and therefore, by Lemma 3, all

derivations from (A

0

= H;G

1

) using P

k

are
onsistent with M . Then, sin
e no disequation

o

urs in G

1

, by Lemma 7, there exists a derivation

(A

0

=H;Diseqs ; A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. Moreover, we have that:

(A

0

; G

0

) �

P

j

(A

0

=H;Diseqs ; A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

).

Now, sin
e by Lemma 3 all
lauses in P

k

are safe, we have that:

vars(Diseqs mgu(A

0

;H)) \ vars((A=hd(C

i

))mgu(A

0

;H)) = ;

and therefore, by using properties of mgu's, there exists a derivation

(A=hd(C

i

); A

0

=H;Diseqs ; G

1

; bd(C

i

); G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. Let #

i

be mgu(A; hd(C

i

)) and �

i

be mgu(A

0

;H #

i

)). By

Points (1) and (2) of the operational semanti
s, we have that Diseqs #

i

�

i

su

eeds and there

exists a derivation of the form

((G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

7�!

P

k

: : : 7�!

P

k

true

Moreover, we have that:

Property (*): (A

0

; G

0

) �

P

j

((G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

holds and thus, by the Indu
tive Hypothesis (I2), there exists a derivation of the form

((G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Sin
e Diseqs #

i

�

i

su

eeds, by using
lause D

i

in P

k+1

for the �rst step, we
an
onstru
t the

following derivation:

(A

0

; G

0

) 7�!

P

k+1

((Diseqs ; G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h, by Property (*), is quasi-de
reasing w.r.t. �

P

j

.

Case 2.2: P

k+1

is derived from P

k

by a safe appli
ation of the folding rule (see De�nition 5). In

parti
ular, suppose that
lause C is one of the following
lauses o

urring in P

k

:

8

>

<

>

:

C

1

: H Diseqs; G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H Diseqs ; G

1

; (A

m

;K

m

)#;G

2

where Diseqs is a
onjun
tion of disequations and no disequation o

urs in (G

1

; G

2

). We also

suppose that the following de�nition
lauses o

ur in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

64

and we have derived a
lause E of the form:

E: H Diseqs ; G

1

;newp(X

1

; : : : ;X

h

)#;G

2

where Property � of De�nition 5 holds, that is, ea
h input variable of newp(X

1

; : : : ;X

h

)#, is

also an input variable of at least one of the non-basi
 atoms o

urring in (H;G

1

; A

1

#; : : : ; A

m

#).

Thus, P

k+1

= (P

k

� fC

1

; : : : ; C

m

g) [fEg.

We may assume, without loss of generality, that
lause C is C

1

, and the derivation Æ is of the

form:

(A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

Thus, Diseqs mgu(A

0

;H) su

eeds and, sin
e Æ is
onsistent with M , by Lemma 5, we have that

(G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) su

eeds in P

j

.

Moreover, by Lemma 11, all derivations from (G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) using P

j

are

onsistent with M .

Thus, by Lemmata 6 and 10, all derivations from (G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H)

using P

j

are
onsistent with M and there exists a derivation of the form:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

j

: : : 7�!

P

j

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

No disequation o

urs in (G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H), and thus, by the Indu
-

tive Hypothesis (I1), there exists a derivation of the form:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Sin
e Æ is quasi-de
reasing w.r.t. �

P

j

, by Lemma 10, we also have that:

(A

0

; G

0

)� (G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H)

Thus, by the Indu
tive Hypothesis (I2), there exists a derivation

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi de
reasing w.r.t. �

P

j

.

Sin
e Diseqs mgu(A

0

;H) su

eeds, by using
lause E 2 P

k+1

, we
an
onstru
t the following

derivation

(A

0

; G

0

) 7�!

P

k+1

(Diseqs ; G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H)

7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

be
ause:

(A

0

; G

0

) �

P

j

(Diseqs; G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) (be
ause Æ is quasi-de
reasing)

�

P

j

(Diseqs; G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) (by Lemma 10)

Case 2.3: P

k+1

is derived by deleting
lause C from P

k

by applying the subsumption rule. Thus,

lause C is of the form (H Diseqs ; G

1

; G

2

)# and there exists a
lause D in P

k

of the form

H Diseqs; G

1

. By Proposition 1 we may assume that no disequation o

urs in G

1

.

Thus, the derivation (Æ) is of the form:

(A

0

; G

0

) 7�!

P

k

((Diseqs ; G

1

; G

2

)#;G

0

)mgu(A

0

;H#) 7�!

P

k

: : : 7�!

P

k

true

Sin
e all derivations starting from (A

0

; G

0

) using P

k

are
onsistent with M and, by using

lause D, (A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; G

0

)mgu(A

0

;H), we have that all derivations starting from

65

(Diseqs; G

1

; G

0

)mgu(A

0

;H) using P

k

are
onsistent with M . Moreover, no disequation o

urs

in G

0

and therefore, by Lemma 8, there exists a derivation

(A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. Thus, (Diseqs mgu(A

0

;H)) su

eeds and there exists a

derivation

(G

1

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. Sin
e (A

0

; G

0

) � (G

1

; G

0

)mgu(A

0

;H), by the Indu
tive

Hypothesis (I2), there exists a derivation

(G

1

; G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. Sin
eD belongs to P

k+1

and (Diseqs mgu(A

0

;H)) su

eeds,

there exists a derivation

(A

0

; G

0

) 7�!

P

k+1

(Diseqs; G

1

; G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Case 2.4: P

k+1

is derived from P

k

by applying the head generalization rule to
lause C. Thus, C is

of the form HfX=tg Body and P

k+1

= (P

k

� fCg) [fGenC g, where
lause GenC is of the

form H X= t;Body .

In this
ase we
an show that we
an
onstru
t the derivation Æ

0

whi
h is quasi-de
reasing w.r.t.

�

P

j

, by using (i) Point (1) of the operational semanti
s, (ii) the Indu
tive Hypothesis (I2) and

(iii) the fa
t that, for all goals of the form (t

1

= t

2

; G), where t

1

and t

2

are uni�able terms, and

for all programs P , �(P; (t

1

= t

2

; G))=�(P; Gmgu(t

1

; t

2

)).

Case 2.5: P

k+1

is derived from P

k

by applying the safe
ase split rule (see De�nition 7) to
lause C.

By Proposition 1, we may assume that C is a
lause of the form H Diseqs ; B, where Diseqs

is a
onjun
tion of disequations and B is a goal without o

urren
es of disequations. We also

assume that from C we have derived two
lauses of the form:

C

1

. (H Diseqs; B)fX=tg

C

2

. H X 6= t;Diseqs; B

where X is an input variable of H, X does not o

ur in t, and for all variables Y 2 vars(t),

either Y is an input variable of H or Y does not o

ur in C.

We have that P

k+1

= (P

k

� fCg) [fC

1

; C

2

g. The derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(Diseqs; B;G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

Thus, (Diseqs mgu(A

0

;H)) su

eeds and, sin
e Æ is quasi-de
reasing, we have that (A

0

; G

0

) �

(B;G

0

)mgu(A

0

;H). The goal (B;G

0

)mgu(A

0

;H) has no o

urren
es of disequations and, by

the Indu
tive Hypothesis (I2), there exists a derivation

(B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

. Sin
e (Diseqs mgu(A

0

;H)) su

eeds, there exists a deriva-

tion

(Diseqs ; B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Sin
e X is an input variable of H, there exists a bindingX=u in mgu(A

0

;H) where u is a ground

term. We
onsider the following two
ases.

66

Case A: t and u are uni�able, and thus, u is an instan
e of t. In this
ase A

0

and HfX=tg are

uni�able and, by the hypotheses on X=t, we have that:

(Diseqs ; B;G

0

)mgu(A

0

;H) = ((Diseqs ; B)fX=tg; G

0

)mgu(A

0

;HfX=tg)

Thus, we
an
onstru
t a derivation of the form:

(A

0

; G

0

) 7�!

P

k+1

((Diseqs ; B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

.

Case B: t and u are not uni�able. Thus, (X 6= t)mgu(A

0

;H) su

eeds and the following derivation

is quasi-de
reasing w.r.t. �

P

j

.

(A

0

; G

0

) 7�!

P

k+1

(X 6= t;Diseqs; B;G

0

)mgu(A

0

;H)

7�!

P

k+1

(Diseqs; B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

Case 2.6: P

k+1

is derived from P

k

by applying the equation elimination rule to
lause C. In this
ase

the existen
e of a derivation

(A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

,
an be proved by using (i) the Indu
tive Hypothesis (I2),

(ii) Point (1) of the operational semanti
s, (iii) the fa
t that P

k

is safe and satis�es M , and (iv)

Lemma 7.

Case 2.7: P

k+1

is derived from P

k

by applying the disequation repla
ement rule to
lause C. In this

ase the existen
e of a derivation

(A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whi
h is quasi-de
reasing w.r.t. �

P

j

,
an be proved by using (i) the Indu
tive Hypothesis (I2),

(ii) Point (2) of the operational semanti
s, and (iii) the properties of uni�
ation.

2

Lemma 13 Let us
onsider the transformation sequen
e P

j

; : : : ; P

l

and the mode M for P

0

[Defs

n

as indi
ated above. For k = j; : : : ; l, for ea
h non-basi
 atom A whi
h satis�es mode M , if A su

eeds

in P

j

then A su

eeds in P

k

.

Proof : It follows from Lemma 12, be
ause if an atom A satis�es M and su

eeds in P

j

, then A has

a su

essful derivation in P

j

whi
h is
onsistent with M and quasi-de
reasing w.r.t. �

P

j

. Indeed, by

Proposition 4, P

j

satis�es M , and thus, all derivations starting from A are
onsistent with M . 2

Lemma 14 If program P

n

is derived from program P

n�1

by an appli
ation of the de�nition elimination

rule w.r.t. a non-basi
 predi
ate p, then for ea
h atom A whi
h has predi
ate p, if A su

eeds in

P

0

[Defs

n

then A su

eeds in P

n

.

Proof : If A has predi
ate p then p depends on all
lauses whi
h are used for any derivation starting

from A. Thus, every derivation from A using P

0

[Defs

n

is also a derivation using P

n

. 2

Proposition 6 (Completeness) Let P

0

; : : : ; P

n

be a transformation sequen
e
onstru
ted by using

the transformation rules 1{9 and let p be a non-basi
 predi
ate in P

n

. Let M be a mode for P

0

[Defs

n

su
h that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es M , and (iii) the appli
ations of the

unfolding, folding, head generalization, and
ase split rules during the
onstru
tion of P

0

; : : : ; P

n

are

all safe w.r.t. M . Suppose also that:

1. if the folding rule is applied for the derivation of a
lause C in program P

k+1

from
lauses

C

1

; : : : ; C

m

in program P

k

using
lauses D

1

; : : : ;D

m

in Defs

k

, with 0�k<n,

then for every i 2 f1; : : : ;mg there exists j 2 f1; : : : ; n�1g su
h that D

i

o

urs in P

j

and P

j+1

is derived from P

j

by unfolding D

i

;

67

2. during the transformation sequen
e P

0

; : : : ; P

n

the de�nition elimination rule either is never

applied or it is applied w.r.t. predi
ate p on
e only, when deriving P

n

from P

n�1

.

Then for ea
h atom A whi
h has predi
ate p and satis�es mode M , if A su

eeds in P

0

[Defs

n

then

A su

eeds in P

n

.

Proof : Let us
onsider a transformation sequen
e P

0

; : : : ; P

n

onstru
ted by using the transformation

rules 1{9 a

ording to
onditions 1 and 2.

As already mentioned, we
an rearrange the sequen
e P

0

; : : : ; P

n

into a new sequen
e P

0

; : : : ; P

0

[

Defs

n

; : : : ; P

j

; : : : ; P

l

; : : : ; P

n

su
h that: (1) P

0

; : : : ; P

0

[Defs

n

is
onstru
ted by appli
ations of the

de�nition introdu
tion rule, (2) P

0

[Defs

n

; : : : ; P

j

is
onstru
ted by unfolding every
lause in Defs

n

,

(3) P

j

; : : : ; P

l

is
onstru
ted by appli
ations of Rules 3{9, and (4) either (4.1) l = n, or (4.2) l = n� 1

and P

n

is derived from P

n�1

by an appli
ation of the de�nition elimination rule w.r.t. predi
ate p.

Thus, Proposition 6 follows from Lemmata 10, 13, and 14. 2

Appendix B. Proof of Proposition 2

For the proof of Proposition 2 we need the following two lemmata.

Lemma 15 Let us
onsider a program P and a
onjun
tion D of disequations. D su

eeds in P i�

every ground instan
e of D holds.

Proof : Let us
onsider the
onjun
tion (r

1

6= s

1

; : : : ; r

k

6= s

k

) of disequations. Every ground instan
e

of (r

1

6=s

1

; : : : ; r

k

6=s

k

) holds i� for i = 1; : : : ; k, and for every ground substitution �, r

i

� 6=s

i

� holds

i� for i = 1; : : : ; k, and for every ground substitution �, r

i

� is a ground term di�erent from s

i

� i� for

i = 1; : : : ; k, it does not exist a ground substitution � su
h that r

i

� and s

i

� are the same ground term

i� for i = 1; : : : ; k, r

i

and s

i

are not uni�able i� (r

1

6=s

1

; : : : ; r

k

6=s

k

) su

eeds in P . 2

Lemma 16 Let P be a program whi
h is safe w.r.t. mode M and satis�es mode M . Let the non-unit

lauses of P be pairwise mutually ex
lusive w.r.t. mode M . Given any non-basi
 atom A

0

whi
h

satis�es M , and any basi
 goal G

0

, there exists at most one goal (A

1

; G

1

) su
h that A

1

is a non-basi

atom and (A

0

; G

0

))

P

(A

1

; G

1

).

Proof : By the de�nition of the)

P

relation (see Se
tion 2.4), we need to prove that for any non-basi

atom A

0

whi
h satis�es M , and any basi
 goal G

0

, there exists at most one goal (A

1

; G

1

) where A

1

is

a non-basi
 atom, su
h that: (i) (A

0

; G

0

) 7�!

�

P

(A

1

; G

1

), and (ii) the relation 7�!

�

P

is
onstru
ted by

�rst applying exa
tly on
e Point (3) of our operational semanti
s, and then applying to the resulting

goal Points (1) and (2) of our operational semanti
s, as many times as required to evaluate the leftmost

basi
 atoms, if any.

Sin
e the non-unit
lauses of P are pairwise mutually ex
lusive w.r.t. M , for any given non-basi

atom A

0

whi
h satis�es M , there exists at most one non-unit
lause, say C, of P su
h that A

0

uni�es

with hd (C) via an mgu, say �, and grd(C)� su

eeds in P . In fa
t, suppose to the
ontrary, that

there were two su
h non-unit
lauses, say C

1

and C

2

. Suppose that, for j=1; 2,
lause C

j

is renamed

apart and it is of the form:

C

j

. p(t

j

; u

j

) grd

j

; K

j

,

where: (i) t

j

is a tuple of terms denoting the input arguments of p and (ii) the goal grd

j

is the guard

of C

j

, that is, a
onjun
tion of disequations su
h that the leftmost atom of the goal K

j

is not a

disequation.

Suppose that for j=1; 2, hd(C

j

) uni�es with A

0

via the mgu #

j

. Sin
e A

0

satis�es M , for j=1; 2,

the input variables of hd(C

j

) are bound by #

j

to ground terms. Sin
e t

1

and t

2

have a
ommon ground

68

instan
e, namely t

1

#

1

(= t

2

#

2

), they have a relevant mgu # whose domain is a subset of vars(t

1

; t

2

),

and there exists a ground substitution � with domain vars(t

1

; t

2

) su
h that t

1

#

1

= t

1

#�(= t

2

#

2

= t

2

#�).

Moreover, sin
e the
lauses C

1

and C

2

are renamed apart, we have that:

Property (�): for j=1; 2, if we restri
t #� to vars(t

j

) then #

j

=#�.

By hypothesis, both grd

1

#

1

and grd

2

#

2

su

eed in P . Thus, by Lemma 15, every ground instan
e of

grd

1

#

1

and grd

2

#

2

holds. (Re
all that the goals grd

1

#

1

and grd

2

#

2

are ground goals, ex
ept for the

lo
al variables of ea
h disequation o

urring in them.)

Sin
e P is safe w.r.t. M , for j=1; 2, every variable o

urring in a disequation of grd

j

either o

urs

in t

j

or it is a lo
al variable of that disequation in C

j

. Thus, by Property (�), grd

1

#

1

= grd

1

#� and

grd

2

#

2

=grd

2

#�. Sin
e every ground instan
e of grd

1

#

1

and grd

2

#

2

holds, we have that every ground

instan
e of (grd

1

#�; grd

2

#�) holds. In other words, there exists a ground substitution � whose domain

is vars(t

1

; t

2

), su
h that every ground instan
e of (grd

1

; grd

2

)#� holds. By de�nition, this means that

(grd

1

; grd

2

)# is satis�able w.r.t. vars(t

1

; t

2

). This
ontradi
ts the fa
t that the non-unit
lauses of P

are mutually ex
lusive w.r.t. M .

We
on
lude that for any given non-basi
 atom A

0

whi
h satis�es M , A

0

uni�es via an mgu, say

�, with the head of at most one non-unit
lause, say C, of P su
h that grd(C)� su

eeds in P .

Now there are two
ases: (Case i) A

0

uni�es with the head of the
lauses in fC;D

1

; : : : ;D

n

g, where

n�0, C is a non-unit
lause, and
lauses D

1

; : : : ;D

n

are all unit
lauses, and (Case ii) A

0

uni�es with

the head of the
lauses in fD

1

; : : : ;D

n

g, where n�0 and these
lauses are all unit
lauses.

Let us
onsider Case (i). Let
lause C be of the form: H K for some non-basi
 goal K. For any

basi
 goal G

0

, by applying on
e Point (3) of our operational semanti
s, we have that: (A

0

; G

0

) 7�!

P

(K;G

0

)�. Thus, (K;G

0

)� is of the form (Bs ; G

2

) where Bs is a
onjun
tion of basi
 atoms and the

leftmost atom of G

2

is non-basi
. Sin
e for any basi
 atom B and goal G

3

, there exists at most one

goal G

4

su
h that (B;G

3

) 7�!

P

G

4

, by using Points (1) and (2) of our operational semanti
s, we have

that there exists at most one goal (A

1

; G

1

) su
h that (Bs ; G

2

) 7�!

�

P

(A

1

; G

1

), where the atom A

1

is

non-basi
.

Every other derivation starting from (A

0

; G

0

) by applying Point (3) of our operational semanti
s

using a
lause in fD

1

; : : : ;D

n

g, is su
h that if for some goal G

5

we have that (A

0

; G

0

) 7�!

�

P

G

5

, then

G

5

is a basi
 goal, be
ause from a basi
 goal we
annot derive a non-basi
 one. This
on
ludes the

proof of the lemma in Case (i).

The proof in Case (ii) is analogous to that of the last part of Case (i). 2

Now we give the proof of Proposition 2.

Proof : Take a non-basi
 atom A whi
h satis�es M . Every non-basi
 atom A

0

su
h that A 7�!

�

P

(A

0

; G

0

) for some goal G

0

, satis�es M be
ause P satis�es M . Sin
e P is linear, G

0

is a basi
 goal. By

Lemma 16 there exists at most one goal (A

1

; G

1

) where A

1

is a non-basi
 atom, su
h that (A

0

; G

0

))

P

(A

1

; G

1

). Thus, there exists at most one non-unit
lause C in P su
h that (A

0

; G

0

))

C

(A

1

; G

1

).

This means that P is semideterministi
 w.r.t. M . 2

Appendix C. Proof of Proposition 8

Proof : It is enough to show that the while-do statement in the Partition pro
edure terminates. To

see this, let us �rst
onsider the set NonunitCls

in

whi
h is the value of the set NonunitCls at the

beginning of the exe
ution of the while-do statement. NonunitCls

in

an be partitioned into maximal

sets of
lauses su
h that: (i) two
lauses whi
h belong to two distin
t sets, are mutually ex
lusive, and

(ii) if two
lauses, say C

0

and C

n+1

, belong to the same set, then there exists a sequen
e of
lauses

C

0

; C

1

; : : : ; C

n+1

, with n�0, su
h that for i = 0; : : : ; n,
lauses C

i

and C

i+1

are not mutually ex
lusive.

69

For our termination proof it is enough to show the termination of the Partition pro
edure when

starting from exa
tly one maximal set, say K, of the partition of NonunitCls

in

. This is the
ase

be
ause during the exe
ution of the Partition pro
edure, the repla
ement of a
lause, say C

2

, by the

lauses, say C

21

and C

22

, satis�es the following property: if
lauses C

2

and D are mutually ex
lusive

then C

21

and D are mutually ex
lusive and also C

22

and D are mutually ex
lusive.

Let every
lause of K be renamed apart and written in a form,
alled equational form, where the

input arguments are generalized to new variables and these new variables are bound by equations in

the body. The equational form of a
lause C will be denoted by C

eq

. For instan
e, given the
lause C:

p(f(X); r(Y; Y); r(X;U)) Body , with mode p(+;+; ?) for p, we have that C

eq

is: p(V;W; r(X))

V =f(X);W =r(Y; Y);Body .

Let K

eq

be the set fC

eq

j C 2 Kg. Thus, K

eq

has the following form:

8

>

<

>

:

p(v

1

; u

1

) Eqs

1

;Diseqs

1

;Body

1

� � �

p(v

n

; u

n

) Eqs

n

;Diseqs

n

;Body

n

where, for i = 0; : : : ; n: (1) v

i

denotes a tuple of variables whi
h are the input arguments of p, (2) u

i

denotes a tuple of arguments of p whi
h are not input arguments, (3) Eqs

i

denotes a
onjun
tion

of equations of the form X = t, whi
h bind the variables in v

i

, (4) Diseqs

i

denotes a
onjun
tion

of disequations, and (5) Body

i

denotes a
onjun
tion of atoms whi
h are di�erent from disequations

(re
all that the
lauses in NonunitCls

in

are in normal form). Equations may o

ur also in Body

i

, but

they do not bind any input variable of p(v

i

; u

i

).

Let us now introdu
e the following set T = ft j t is a term or a subterm o

urring in Eqs

i

or

Diseqs

i

for some i = 1; : : : ; ng.

Every exe
ution of the body of the while-do statement of the Partition pro
edure works by repla
ing

a safe
lause, say C

2

, by two new safe
lauses, say C

21

and C

22

. We will prove the termination of the

Partition pro
edure by: (i) mapping the repla
ements it performs, onto the
orresponding repla
ements

of the
lauses written in equational form in the set K

eq

, and (ii) showing that the set K

eq

annot

undergo an in�nite number of su
h repla
ements.

Let us then
onsider the equational forms C

eq

2

, C

eq

21

, and C

eq

22

of the
lauses C

2

, C

21

, and C

22

,

respe
tively. We have that: (i) bd(C

eq

21

) has one more equation of the form X=r w.r.t. bd(C

eq

2

), and

(ii) bd(C

eq

22

) has one more disequation of the form X 6=r w.r.t. bd(C

eq

2

). We also have that there exists

only a �nite number of pairs hX; ri, be
ause X is a variable symbol o

urring in K

eq

and r is a term

o

urring in the �nite set T [ft j t is a term or a subterm o

urring in an mgu of a �nite number of

elements of Tg. (We have
onsidered mgu's of a �nite number of elements of T , rather than mgu's of

two elements only, be
ause a �nite number of
lause heads inK may have the same
ommon instan
e.)

Thus, in order to
on
lude the proof, it remains to show that before the repla
ement of C

2

by C

21

and C

22

, neither X= r nor X 6= r o

urs in bd(C

eq

2

). Here and in the rest of the proof, the notion of

o

urren
e of an equation or a disequation is modulo renaming of the lo
al variables. Indeed,

� in Case (1): (1.1) X 6=r does not o

ur in bd(C

eq

2

) be
ause X=r is a binding of an mgu of the input

arguments of hd(C

1

) and hd(C

2

), and
lauses C

1

and C

2

are not mutually ex
lusive, and thus, X 6=r

does not o

ur in bd(C

2

), and (1.2) X=r does not o

ur in bd(C

eq

2

) be
ause X=r is, by
onstru
tion,

a binding of an mgu between the input arguments of the heads of the
lauses C

1

and C

2

and these

lauses are obtained as a result of the Simplify fun
tion whi
h eliminates every o

urren
e of the

variable X from C

2

, and

� in Case (2): (2.1) X=r does not o

ur in bd(C

eq

2

) be
ause, by hypothesis, a variant of X 6=r o

urs

in bd(C

1

) and
lauses C

1

and C

2

are not mutually ex
lusive, and (2.2) X 6=r does not o

ur in bd(C

eq

2

)

be
ause X 6=r does not o

ur in bd(C

2

) (indeed, we
hoose X 6=r pre
isely to satisfy this
ondition).2

70

A
knowledgments

We would like to thank D. De S
hreye, S. Etalle, J. Gallagher, R. Gl�u
k, N. D. Jones, M. Leus
hel, B.

Martens, and M. H. S�rensen for stimulating dis
ussions about partial dedu
tion and logi
 program

spe
ialization. We also a
knowledge very
onstru
tive and useful
omments by the anonymous referees.

This work has been partially supported by the EC under the HCM Proje
t `Logi
 Program Synthesis

and Transformation' and the Italian Ministry for Edu
ation, University, and Resear
h.

Referen
es

[1℄ K. R. Apt. Introdu
tion to logi
 programming. In J. van Leeuwen, editor, Handbook of Theoreti
al

Computer S
ien
e, pages 493{576. Elsevier, 1990.

[2℄ K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.

[3℄ R. S. Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern mat
hing algorithm. S
ien
e

of Computer Programming, 12:93{104, 1989.

[4℄ A. Bossi, N. Co

o, and S. Dulli. A method for spe
ializing logi
 programs. ACM Transa
tions

on Programming Languages and Systems, 12(2):253{302, April 1990.

[5℄ A. Bossi, N. Co

o, and S. Etalle. Transforming left-terminating programs. In A. Bossi, editor,

Pro
eedings of the Ninth International Workshop on Logi
-based Program Synthesis, LOPSTR'99,

Venezia, Italy, September 22-24, 1999, Le
ture Notes in Computer S
ien
e 1817, pages 156{175.

Springer, 2000.

[6℄ R. M. Burstall and J. Darlington. A transformation system for developing re
ursive programs.

Journal of the ACM, 24(1):44{67, January 1977.

[7℄ O. Danvy, R. Gl�u
k, and P. Thiemann, editors. Partial Evaluation. International Seminar,

Dagstuhl Castle, Germany, February 1996, volume 1110 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, 1996.

[8℄ D. De S
hreye, R. Gl�u
k, J. J�rgensen, M. Leus
hel, B. Martens, and M. H. S�rensen. Con-

jun
tive partial dedu
tion: Foundations,
ontrol, algorithms, and experiments. Journal of Logi

Programming, 41(2{3):231{277, 1999.

[9℄ S. K. Debray and D. S. Warren. Automati
 mode inferen
e for logi
 programs. Journal of Logi

Programming, 5:207{229, 1988.

[10℄ Y. Deville. Logi
 Programming: Systemati
 Program Development. Addison-Wesley, 1990.

[11℄ H. Fujita. An algorithm for partial evaluation with
onstraints. Te
hni
al Memorandum TM-0367,

ICOT, Tokyo, Japan, 1987.

[12℄ Y. Futamura, K. Nogi, and A. Takano. Essen
e of generalized partial
omputation. Theoreti
al

Computer S
ien
e, 90:61{79, 1991.

[13℄ J. P. Gallagher. Tutorial on spe
ialisation of logi
 programs. In Pro
eedings of ACM SIG-

PLAN Symposium on Partial Evaluation and Semanti
s Based Program Manipulation, PEPM

'93, Copenhagen, Denmark, pages 88{98. ACM Press, 1993.

71

[14℄ M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for de�nite
lause programs. In

M. Hermenegildo and J. Penjam, editors, Pro
eedings Sixth International Symposium on Pro-

gramming Language Implementation and Logi
 Programming (PLILP '94), Le
ture Notes in

Computer S
ien
e 844, pages 340{354. Springer-Verlag, 1994.

[15℄ R. Gl�u
k and A.V. Klimov. O

am's razor in meta
omputation: the notion of a perfe
t pro
ess

tree. In P. Cousot, M. Falas
hi, G. Fil�e, and A. Rauzy, editors, 3rd International Workshop on

Stati
 Analysis, Padova, Italy, September 1993, Le
ture Notes in Computer S
ien
e 724, pages

112{123. Springer-Verlag, 1993.

[16℄ R. Gl�u
k and M. H. S�rensen. A roadmap to meta
omputation by super
ompilation. In O. Danvy,

R. Gl�u
k, and P. Thiemann, editors, Partial Evaluation, Le
ture Notes in Computer S
ien
e 1110,

pages 137{160. Springer, 1996.

[17℄ M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF. Le
ture Notes in Computer

S
ien
e 78. Springer-Verlag, 1979.

[18℄ F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the Mer
ury
ompiler. In

Pro
eedings of the Australian Computer S
ien
e Conferen
e, Melbourne, Australia, pages 337{346,

1996.

[19℄ M. V. Hermenegildo, F. Bueno, G. Puebla, and P. L�opez. Program analysis, debugging, and

optimization using the CIAO system prepro
essor. In D. De S
hreye, editor, Pro
eedings of the

1999 International Conferen
e on Logi
 Programming, Las Cru
es, NM, USA, Nov. 29 -De
. 4,

1999, pages 52{66. MIT Press, 1999.

[20℄ J. Ja�ar, M. Maher, K. Marriott, and P. Stu
key. The semanti
s of
onstraint logi
 programming.

Journal of Logi
 Programming, 37:1{46, 1998.

[21℄ N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automati
 Program Genera-

tion. Prenti
e Hall, 1993.

[22℄ D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern mat
hing in strings. SIAM Journal on

Computing, 6(2):323{350, 1977.

[23℄ M. Leus
hel. On the power of homeomorphi
 embedding for online termination. In G. Levi,

editor, Pro
eedings of the Fifth Stati
 Analysis Symposium, SAS '98, Pisa, Italy, Le
ture Notes

in Computer S
ien
e 1503, pages 230{245. Springer-Verlag, 1998.

[24℄ M. Leus
hel. The ECCE partial dedu
tion system and the DPPD library of ben
hmarks, Release

3, Nov. 2000. A

essible via http://www.e
s.soton.a
.uk/~mal.

[25℄ M. Leus
hel, B. Martens, and D. De S
hreye. Controlling generalization and polyvarian
e in

partial dedu
tion of normal logi
 programs. ACM Transa
tions on Programming Languages and

Systems, 20(1):208{258, 1998.

[26℄ M. Leus
hel, B. Martens, and D. de S
hreye. Some a
hievements and prospe
ts in partial dedu
-

tion. ACM Computing Surveys, 30 (Ele
troni
 Se
tion)(3es):4, 1998.

[27℄ Y. A. Liu. EÆ
ien
y by in
rementalization: An introdu
tion. Higher-Order and Symboli
 Com-

putation, 13(4):289{313, 2000.

[28℄ J. W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, Berlin, 1987. Se
ond Edition.

72

[29℄ J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logi
 programming. Journal of Logi

Programming, 11:217{242, 1991.

[30℄ B. Martens, D. De S
hreye, and T. Horv�ath. Sound and
omplete partial dedu
tion with unfolding

based on well-founded measures. Theoreti
al Computer S
ien
e, 122:97{117, 1994.

[31℄ C. S. Mellish. Some global optimizations for a Prolog
ompiler. Journal of Logi
 Programming,

2(1):43{66, 1985.

[32℄ C. S. Mellish. Abstra
t interpretation of Prolog programs. In S. Abramsky and C. Hankin, editors,

Abstra
t Interpretation of De
larati
e Languages, Chapter 8, pages 181{198. Ellis Horwood, 1987.

[33℄ R. Paige and S. Koenig. Finite di�eren
ing of
omputable expressions. ACM Transa
tions on

Programming Languages and Systems, 4(3):402{454, 1982.

[34℄ A. Pettorossi. Transformation of programs and use of tupling strategy. In Pro
eedings Informati
a

77, Bled, Yugoslavia, pages 1{6, 1977.

[35℄ A. Pettorossi, M. Proietti, and S. Renault. Redu
ing nondeterminism while spe
ializing logi

programs. In Pro
. 24-th ACM Symposium on Prin
iples of Programming Languages, Paris,

Fran
e, pages 414{427. ACM Press, 1997.

[36℄ S. Prestwi
h. Online partial dedu
tion of large programs. In ACM Sigplan Symposium on Par-

tial Evaluation and Semanti
s-Based Program Manipulation, PEPM '93, Copenhagen, Denmark,

pages 111{118. ACM Press, 1993.

[37℄ M. Proietti and A. Pettorossi. The loop absorption and the generalization strategies for the

development of logi
 programs and partial dedu
tion. Journal of Logi
 Programming, 16(1{

2):123{161, 1993.

[38℄ M. Proietti and A. Pettorossi. Unfolding-de�nition-folding, in this order, for avoiding unne
essary

variables in logi
 programs. Theoreti
al Computer S
ien
e, 142(1):89{124, 1995.

[39℄ S. Renault. A system for transforming logi
 programs. R 97{04, Department of Computer S
ien
e,

University of Rome Tor Vergata, Rome, Italy, 1997.

[40℄ A. Roy
houdhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan. A pa-

rameterized unfold/fold transformation framework for de�nite logi
 programs. In Pro
eedings of

Prin
iples and Pra
ti
e of De
larative Programming (PPDP), Le
ture Notes in Computer S
ien
e

1702, pages 396{413. Springer-Verlag, 1999.

[41℄ D. Sahlin. Mixtus: An automati
 partial evaluator for full Prolog. New Generation Computing,

12:7{51, 1993.

[42℄ T. Sato. An equivalen
e preserving �rst order unfold/fold transformation system. Theoreti
al

Computer S
ien
e, 105:57{84, 1992.

[43℄ H. Sawamura and T. Takeshima. Re
ursive unsolvability of determina
y, solvable
ases of determi-

na
y and their appli
ation to Prolog optimization. In Pro
eedings of the International Symposium

on Logi
 Programming, Boston, pages 200{207. IEEE Computer So
iety Press, 1985.

[44℄ D. A. Smith. Partial evaluation of pattern mat
hing in
onstraint logi
 programming languages. In

Pro
eedings ACM Symposium on Partial Evaluation and Semanti
s Based Program Manipulation,

PEPM '91, New Haven, CT, USA, SIGPLAN Noti
es, 26, 9, pages 62{71. ACM Press, 1991.

73

[45℄ Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury: an eÆ
ient

purely de
larative logi
 programming language. Journal of Logi
 Programming, 29(1{3):17{64,

1996.

[46℄ H. Tamaki and T. Sato. Unfold/fold transformation of logi
 programs. In S.-

�

A. T�arnlund, editor,

Pro
eedings of the Se
ond International Conferen
e on Logi
 Programming, Uppsala, Sweden,

pages 127{138. Uppsala University, 1984.

[47℄ V. F. Tur
hin. The
on
ept of a super
ompiler. ACM TOPLAS, 8(3):292{325, 1986.

[48℄ P. L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoreti
al Computer

S
ien
e, 73:231{248, 1990.

[49℄ D. H. D. Warren. Implementing Prolog { Compiling predi
ate logi
 programs. Resear
h Report

39 & 40, Department of Arti�
ial Intelligen
e, University of Edinburgh, 1977.

74

