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Abstrat

Program speialization is a program transformation methodology whih improves program eÆieny

by exploiting the information about the input data whih are available at ompile time. We show

that urrent tehniques for program speialization based on partial evaluation do not perform well

on nondeterministi logi programs. We then onsider a set of transformation rules whih extend

the ones used for partial evaluation, and we propose a strategy for guiding the appliation of

these extended rules so to derive very eÆient speialized programs. The eÆieny improvements

whih sometimes are exponential, are due to the redution of nondeterminism and to the fat

that the omputations whih are performed by the initial programs in di�erent branhes of the

omputation trees, are performed by the speialized programs within single branhes. In order to

redue nondeterminism we also make use of mode information for guiding the unfolding proess.

To exemplify our tehnique, we show that we an automatially derive very eÆient mathing

programs and parsers for regular languages. The derivations we have performed ould not have

been done by previously known partial evaluation tehniques.

Keywords: Automati program derivation, program transformation, program speialization, logi

programming, transformation rules and strategies.

1 Introdution

The goal of program speialization [21℄ is the adaptation of a generi program to a spei� ontext of

use. Partial evaluation [7, 21℄ is a well established tehnique for program speialization whih from

a program and its stati input (that is, the portion of the input whih is known at ompile time),

allows us to derive a new, more eÆient program in whih the portion of the output whih depends

�

A preliminary version of this paper appears as: Reduing Nondeterminism while Speializing Logi Programs.

Proeedings of the 24th Annual ACM Symposium on Priniples of Programming Languages, Paris, Frane, January

15{17, 1997, ACM Press, 1997, pp. 414{427.
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on the stati input, has already been omputed. Partial evaluation has been applied in several areas

of omputer siene, and it has been applied also to logi programs [13, 26, 29℄, where it is also

alled partial dedution. In this paper we follow a rule-based approah to the speialization of logi

programs [4, 36, 37, 41℄. In partiular, we onsider de�nite logi programs [28℄ and we propose new

program speialization tehniques based on unfold/fold transformation rules [6, 46℄. In our approah,

the proess of program speialization an be viewed as the onstrution of a sequene, say P

0

; : : : ; P

n

,

of programs, where P

0

is the program to be speialized, P

n

is the derived, speialized program, and

every program of the sequene is obtained from the previous one by applying a transformation rule.

As shown in [36, 41℄, partial dedution an be viewed as a partiular rule-based program trans-

formation tehnique using the de�nition, unfolding, and folding rules [46℄ with the following two

restritions: (i) eah new prediate introdued by the de�nition rule is de�ned by preisely one non-

reursive lause whose body onsists of preisely one atom (in this sense, aording to the terminology

of [16℄, partial dedution is said to be monogeneti), and (ii) the folding rule uses only lauses in-

trodued by the de�nition rule. In what follows the de�nition and folding rules whih omply with

restritions (i) and (ii), are alled atomi de�nition and atomi folding, respetively.

In Setion 3 we will see that the use of these restrited transformation rules makes it easier

to automate the partial dedution proess, but it may limit the program improvements whih an

be ahieved during program speialization. In partiular, when we perform partial dedution of

nondeterministi programs using atomi de�nition, unfolding, and atomi folding, it is impossible to

ombine information present in di�erent branhes of the omputation trees, and as a onsequene, it

is often the ase that we annot redue the nondeterminism of the programs.

This weakness of partial dedution is demonstrated in Setion 3.3 where we revisit the familiar

problem of looking for ourrenes of a pattern in a string. It has been shown in [11, 13, 15℄ that by

partial dedution of a string mathing program, we may derive a deterministi �nite automaton (DFA,

for short), similarly to what is done by the Knuth-Morris-Pratt algorithm [22℄. However, in [11, 13, 15℄

the string mathing program to whih partial dedution is applied, is deterministi. We show that by

applying partial dedution to a nondeterministi version of the mathing program, one annot derive

a speialized program whih is deterministi, and thus, one annot get a program whih orresponds

to a DFA.

Conjuntive partial dedution [8℄ is a program speialization tehnique whih extends partial de-

dution by allowing the speialization of logi programs w.r.t. onjuntions of atoms, instead of a single

atom. Conjuntive partial dedution an be realized by the de�nition, unfolding, and folding rules

where eah new prediate introdued by the de�nition rule is de�ned by preisely one non-reursive

lause whose body is a onjuntion of atoms (in this sense onjuntive partial dedution is said to be

polygeneti).

Conjuntive partial dedution may sometimes redue nondeterminism. In partiular, it may trans-

form generate-and-test programs into programs where the generation phase and the test phase are

interleaved. However, as shown in Setion 3.3, onjuntive partial dedution is not apable to derive

from the nondeterministi version of the mathing program a new program whih orresponds to a

DFA.

In our paper, we propose a speialization tehnique whih enhanes both partial dedution and

onjuntive partial dedution by making use of more powerful transformation rules. In partiular, in

Setion 4 we onsider a version of the de�nition introdution rule so that a new prediate may be

introdued by means of several non-reursive lauses whose bodies onsist of onjuntions of atoms,

and we allow folding steps whih use these prediate de�nitions onsisting of several lauses. We also

onsider the following extra rules: head generalization, ase split, equation elimination, and disequation

replaement. These rules may introdue, replae, and eliminate equations and negated equations

between terms.

Similarly to [14, 46, 40℄, our extended set of program transformation rules preserves the least
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Herbrand model semantis. For the logi language with equations and negated equations onsidered in

this paper, we adopt the usual Prolog operational semantis with the left-to-right seletion rule, where

equations are evaluated by using uni�ation. Unfortunately, the unrestrited use of the extended set

of transformation rules may not preserve the Prolog operational semantis. To overome this problem,

we onsider: (i) the lass of safe programs and (ii) suitably restrited transformation rules, alled safe

transformation rules. Through some examples we show that the lass of safe programs and the safe

transformation rules are general enough to allow signi�ant program speializations.

Our notions of safe programs and transformation rules, and also the notion of determinism are

based on the modes whih are assoiated with prediate alls [32, 49℄. We desribe these notions in

Setion 5, where we also prove that the appliation of safe transformation rules preserve the operational

semantis of safe programs.

Then, in Setion 6, we introdue a strategy, alled Determinization, for applying our safe trans-

formation rules in an automati way, so to speialize programs and redue their nondeterminism.

The new features of our strategy w.r.t. other speialization tehniques are: (i) the use of mode in-

formation for unfolding and produing deterministi programs, (ii) the use of the ase split rule for

deriving mutually exlusive lauses (e.g. from the lause H  Body we may derive the two lauses:

(H  Body)fX=tg and H  X 6= t;Body), and (iii) the use of the enhaned de�nition and folding

rules for replaing many lauses by one lause only, thereby reduing nondeterminism.

Finally, in Setion 7, we show by means of some examples whih refer to parsing and mathing

problems, that our strategy is more powerful than both partial dedution and onjuntive partial

dedution. In partiular, given a nondeterministi version of the mathing program, by using our

strategy one an derive a speialized program whih orresponds to a DFA.

2 Logi Programs with Equations and Disequations between Terms

In this setion we introdue an extension of de�nite logi programs with equations and negated equa-

tions between terms. Negated equations will also be alled disequations. The introdution of equations

and disequations during program speialization allows us to derive mutually exlusive lauses. The

delarative semantis we onsider, is a straightforward extension of the usual least Herbrand model

of de�nite logi programs. The operational semantis essentially is SLD-resolution as implemented

by most Prolog systems: atoms are seleted from left to right, and equations are evaluated by us-

ing uni�ation. This operational semantis is sound w.r.t. the delarative semantis (see Theorem 2

below). However, sine non-ground disequations an be seleted, a goal evaluated aording to our

operational semantis an fail, even if it is true aording to the delarative semantis. In this sense,

the operational semantis is not omplete w.r.t. the delarative semantis.

For the notions of substitution, omposition of substitutions, identity substitution, domain of a

substitution, restrition of a substitution, instane, most general uni�er (abbreviated as mgu), ground

expression, ground substitution, renaming substitution, variant, and for other notions not de�ned here,

we refer to [28℄.

2.1 Syntax

The syntax of our language is de�ned starting from the following in�nite and pairwise disjoint sets:

(i) variables: X;Y;Z;X

1

;X

2

; : : : ;

(ii) funtion symbols (with arity): f; f

1

; f

2

; : : : ; and

(iii) prediate symbols (with arity): true, =, 6=, p; p

1

; p

2

; : : : The prediate symbols true, =, and 6= are

said to be basi, and the other prediate symbols are said to be non-basi. Prediate symbols will also

be alled prediates, for short.
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Now we introdue the following sets: (iv) Terms: t; t

1

; t

2

; : : : ; (v) Basi atoms: B;B

1

; B

2

; : : : ;

(vi) Non-basi atoms: A;A

1

; A

2

; : : : ; and (vii) Goals: G;G

1

; G

2

; : : : Their syntax is as follows:

Terms : t ::= X j f(t

1

; : : : ; t

n

)

Basi Atoms : B ::= true j t

1

= t

2

j t

1

6= t

2

Non-basi Atoms : A ::= p(t

1

; : : : ; t

m

)

Goals : G ::= B j A j G

1

; G

2

Basi and non-basi atoms are olletively alled atoms. Goals made out of basi atoms only are said

to be basi goals. Goals with at least one non-basi atom are said to be non-basi goals. The binary

operator `,' denotes onjuntion and it is assumed to be assoiative with neutral element true. Thus,

a goal G is the same as goal (true ; G), and it is also the same as goal (G; true).

Clauses: C;C

1

; C

2

; : : : have the following syntax:

C ::= A G

Given a lause C of the form: A G, the non-basi atom A is alled the head of C and it is denoted

by hd(C), and the goal G is alled the body of C and it is denoted by bd(C). A lause A G where

G is a basi goal, is alled a unit lause. We write a unit lause of the form: A true also as: A .

We say that C is a lause for a prediate p i� C is a lause of the form p(: : :) G.

Programs: P; P

1

; P

2

; : : : are sets of lauses.

In what follows we will feel free to use di�erent meta-variables to denote our syntati expressions, and

in partiular, we will also denote non-basi atoms by H;H

1

; : : :, and goals by K;K

1

;Body ;Body

1

; : : :

Given a program P , we onsider the relation Æ

P

over pairs of prediates suh that Æ

P

(p; q) holds

i� there exists in P a lause for p whose body ontains an ourrene of q. Let Æ

+

P

be the transitive

losure of Æ

P

. We say that p depends on q in P i� Æ

+

P

(p; q) holds. We say that a prediate p depends

on a lause C in a program P i� either C is a lause for p or C is a lause for a prediate q and p

depends on q in P .

Terms, atoms, goals, lauses, and programs are olletively alled expressions, ranged over by

e; e

1

; e

2

; : : : By vars(e) we denote the set of variables ourring in an expression e. We say that X is

a loal variable of a goal G in a lause C : H  G

1

; G;G

2

i� X 2 vars(G)�vars(H;G

1

; G

2

).

The appliation of a renaming substitution to an expression is also alled a renaming of variables.

A renaming of variables an be applied to a lause whenever needed, beause it preserves the least

Herbrand model semantis whih we de�ne below. Given a lause C, a renamed apart lause C

0

is any

lause obtained from C by a renaming of variables, so that eah variable of C

0

is a fresh new variable.

(For a formal de�nition of this onept, see the de�nition of standardized apart lause in [1, 28℄)

For any two uni�able terms t

1

and t

2

, there exists at least one mgu # whih is relevant (that is, eah

variable ourring in # also ours in vars(t

1

)[vars(t

2

)) and idempotent (that is, ## = #) [1℄. Without

loss of generality, we assume that all mgu's onsidered in this paper are relevant and idempotent.

2.2 Delarative Semantis

In this setion we extend the de�nition of least Herbrand model of de�nite logi programs [28℄ to logi

programs with equations and disequations between terms. We follow the approah usually taken when

de�ning the least D-model of a CLP program (see, for instane, [20℄). Aording to this approah,

we onsider a lass of Herbrand models, alled H-models, where the prediates true, =, and 6= have

a �xed interpretation. In partiular, the prediate = is interpreted as the identity relation over the

Herbrand universe and the prediate 6= is interpreted as the omplement of the identity relation. Then

we de�ne the least Herbrand model of a logi program with equations and disequations between terms

as the least H-model of the program.

The Herbrand base HB is the set of all ground non-basi atoms. An H-interpretation is a subset

of HB. Given an H-interpretation I and a ground goal, or ground lause, or program ', the relation
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I j= ', read as ' is true in I, is indutively de�ned as follows (as usual, by I 6j= ' we indiate that

I j= ' does not hold):

(i) I j= true

(ii) for every ground term t, I j= t= t

(iii) for every pair of distint ground terms t

1

and t

2

, I j= t

1

6= t

2

(iv) for every non-basi ground atom A, I j= A i� A 2 I

(v) for every pair of ground goals G

1

and G

2

, I j= G

1

; G

2

i� I j= G

1

and I j= G

2

(vi) for every ground lause C, I j= C i� either I j= hd(C) or I 6j= bd(C)

(vii) for every program P , I j= P i� for every ground instane C of a lause in P , I j= C.

As a onsequene of the above de�nition, a ground basi goal is true in an H-interpretation i� it is true

in all H-interpretations. We say that a ground basi goal holds i� it is true in all H-interpretations.

An H-interpretation I is said to be an H-model of a program P i� I j= P . Sine the model

intersetion property holds for H-models, similarly to [20, 28℄, we an prove the following important

result.

Theorem 1 For any program P there exists an H-model of P whih is the least (w.r.t. set inlusion)

H-model.

The least Herbrand model of a program P is de�ned as the least H-model of P and is denoted by

M(P ).

2.3 Operational Semantis

We de�ne the operational semantis of our programs by introduing, for eah program P , a relation

G

1

#

7�!

P

G

2

, where G

1

and G

2

are goals and # is a substitution, de�ned as follows:

(1) (t

1

= t

2

; G)

#

7�!

P

G# i� t

1

and t

2

are uni�able via an mgu #

(2) (t

1

6= t

2

; G)

"

7�!

P

G i� t

1

and t

2

are not uni�able and " is the identity substitution

(3) (A;G)

#

7�!

P

(bd(C); G)# i� (i) A is a non-basi atom;

(ii) C is a renamed apart lause in P; and

(iii) A and hd(C) are uni�able via an mgu #:

A sequene G

0

#

1

7�!

P

: : :

#

n

7�!

P

G

n

, with n�0, is alled a derivation using P . If G

n

is true then the

derivation is said to be suessful. If there exists a suessful derivation G

0

#

1

7�!

P

: : :

#

n

7�!

P

true and

# is the substitution obtained by restriting the omposition #

1

: : : #

n

to the variables of G

0

, then we

say that the goal G

0

sueeds in P with answer substitution #.

When denoting derivations, we will feel free to omit their assoiated substitutions. In partiular,

given two goals G

1

andG

2

, we writeG

1

7�!

P

G

2

i� there exists a substitution # suh that G

1

#

7�!

P

G

2

.

We say that G

2

is derived in one step from G

1

(using P ) i� G

1

7�!

P

G

2

holds. In partiular, if G

2

is

derived in one step from G

1

aording to Point (3) of the operational semantis by using a lause C,

then we say that G

2

is derived in one step from G

1

using C. The relation 7�!

�

P

is the reexive and

transitive losure of 7�!

P

. Given two goals G

1

and G

2

suh that G

1

7�!

�

P

G

2

holds, we say that G

2

is

derived from G

1

(using P ). We will feel free to omit the referene to program P when it is understood

from the ontext.

The operational semantis presented above an be viewed as an abstration of the usual Prolog

semantis, beause: (i) given a goal G

1

, in order to derive a goal G

2

suh that G

1

7�!

P

G

2

, we

onsider the leftmost atom in G

1

, (ii) the prediate = is interpreted as uni�ability of terms, and

(iii) the prediate 6= is interpreted as non-uni�ability of terms. Similarly to [28℄, we have the following

relationship between the delarative and the operational semantis.
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Theorem 2 For any program P and ground goal G, if G sueeds in P then M(P ) j= G.

The onverse of Theorem 2 does not hold. Indeed, onsider the program P onsisting of the lause

p(1)  X 6=0 only. We have that M(P ) j= p(1) beause there exists a value for X, namely 1, whih

is syntatially di�erent from 0. However, p(1) does not sueed in P , beause X and 0 are uni�able

terms.

2.4 Deterministi Programs

Various notions of determinism have been proposed for logi programs in the literature (see, for

instane, [10, 18, 31, 43℄). They apture various properties suh as: \the program sueeds at most

one", or \the program sueeds exatly one", or \the program will never baktrak to �nd alternative

solutions".

Let us now present the de�nition of deterministi program used in this paper. This de�nition is

based on the operational semantis desribed in Setion 2.3.

We �rst need the following notation. Given a program P , a lause C 2 P , and two goals (A

0

; G

0

)

and (A

n

; G

n

), where A

0

is a non-basi atom, we write (A

0

; G

0

))

C

(A

n

; G

n

) i� there exists a derivation

(A

0

; G

0

) 7�!

P

: : : 7�!

P

(A

n

; G

n

), suh that: (i) n>0, (ii) (A

1

; G

1

) is derived in one step from (A

0

; G

0

)

using C, (iii) for i = 1; : : : ; n � 1, A

i

is a basi atom, and (iv) either A

n

is a non-basi atom or

(A

n

; G

n

) is the basi atom true. We write G

0

)

�

P

G

n

i� there exist lauses C

1

; : : : ; C

n

in P suh that

G

0

)

C

1

: : :)

C

n

G

n

.

De�nition 1 (Determinism) A program P is deterministi for a non-basi atom A i� for eah goal

G suh that A)

�

P

G, there exists at most one lause C suh that G)

C

G

0

for some goal G

0

.

We say that a program P is nondeterministi for a non-basi atom A i� it is not the ase that P is

deterministi for A, that is, there exists a goal G derivable from A, and there exist at least two goals

G

1

and G

2

, and two distint lauses C

1

and C

2

in P , suh that G)

C

1

G

1

and G)

C

2

G

2

.

Aording to De�nition 1, the following program is deterministi for any atom of the form

non zero(Xs;Ys) where Xs is a ground list.

1. non zero([ ℄; [ ℄) 

2. non zero([0jXs ℄;Ys) non zero(Xs;Ys)

3. non zero([XjXs ℄; [XjYs ℄) X 6=0;non zero(Xs ;Ys)

Notie that the above de�nition of a deterministi program for a non-basi atom A allows some searh

during the onstrution of a derivation starting from A. Indeed, there may be a goal G derived from A

suh that from G we an derive in one step two or more new goals using distint lauses. However, if

the program is deterministi for A, after evaluating the basi atoms ourring at leftmost positions in

these new goals, at most one derivation an be ontinued and at most one suessful derivation an be

onstruted. For instane, from the goal non zero([0; 0; 1℄;Ys ) we an derive in one step two distint

goals: (i) non zero([0; 1℄;Ys) (using lause 2), and (ii) 0 6= 0;non zero([0; 1℄;Ys

0

) (using lause 3).

However, there exists only one lause C (that is, lause 2) suh that non zero([0; 0; 1℄;Ys ))

C

G

0

for

some goal G

0

(that is, non zero([0; 1℄;Ys

0

)).

3 Partial Dedution via Unfold/Fold Transformations

In this setion we reall the rule-based approah to partial dedution. We also point out some limi-

tations of partial dedution [36, 41℄ and onjuntive partial dedution [8℄. These limitations motivate

the introdution of the new, enhaned rules and strategies for program speialization presented in

Setions 4, 5, and 6.
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3.1 Transformation Rules and Strategies for Partial Dedution

In the rule-based approah, partial dedution an be viewed as the onstrution of a sequene P

0

; : : : ; P

n

of programs, alled a transformation sequene, where P

0

is the initial program to be speialized, P

n

is

the �nal, speialized program, and for k = 0; : : : ; n� 1, program P

k+1

is derived from program P

k

by

by applying one of the following transformation rules PD1{PD4.

Rule PD1 (Atomi De�nition Introdution) We introdue a lause D, alled atomi de�nition

lause, of the form

newp(X

1

; : : : ;X

h

) A

where (i) newp is a non-basi prediate symbol not ourring in P

0

; : : : ; P

k

, (ii) A is a non-basi atom

whose prediate ours in program P

0

, and (iii) fX

1

; : : : ;X

h

g = vars(A).

Program P

k+1

is the program P

k

[ fDg.

We denote by Defs

k

the set of atomi de�nition lauses whih have been introdued by the de�-

nition introdution rule during the onstrution of the transformation sequene P

0

; : : : ; P

k

. Thus, in

partiular, we have that Defs

0

= ;.

Rule PD2 (De�nition Elimination). Let p be a prediate symbol. By de�nition elimination w.r.t.

p we derive the program P

k+1

= fC 2 P

k

j p depends on Cg.

Rule PD3 (Unfolding). Let C be a renamed apart lause of P

k

of the form: H  G

1

; A;G

2

, where A

is a non-basi atom. Let C

1

; : : : ; C

m

, with m � 0, be the lauses of P

k

suh that, for i = 1; : : : ;m, A

is uni�able with the head of C

i

via the mgu #

i

. By unfolding C w.r.t. A, for i = 1; : : : ;m, we derive

the lause D

i

: (H  G

1

; bd(C

i

); G

2

)#

i

.

Program P

k+1

is the program (P

k

� fCg) [ fD

1

; : : : ;D

m

g.

Rule PD4 (Atomi Folding). Let C be a renamed apart lause of P

k

of the form: H  G

1

; A#;G

2

,

where: (i) A is a non-basi atom, and (ii) # is a substitution, and let D be an atomi de�nition lause

in Defs

k

of the form: N  A. By folding C w.r.t. A# using D we derive the non-basi atom N# and

we derive the lause E : H  G

1

; N#;G

2

.

Program P

k+1

is the program (P

k

� fCg) [ fEg.

The partial dedution of a program P may be realized by applying the atomi de�nition intro-

dution, de�nition elimination, unfolding, and atomi folding rules, aording to the so alled partial

dedution strategy whih we will desribe below. Our partial dedution strategy uses two subsidiary

strategies: (1) an Unfold strategy, whih derives new sets of lauses by repeatedly applying the unfold-

ing rule, and (2) a De�ne-Fold strategy, whih introdues new atomi de�nition lauses and it folds the

lauses derived by the Unfold strategy. These subsidiary strategies use an unfolding seletion funtion

and a generalization funtion, whih we now de�ne. Let us �rst introdue the following notation:

(i) NBAtoms is the set of all non-basi atoms, (ii) Clauses is the set of all lauses, (iii) Clauses

�

is

the set of all �nite sequenes of lauses, (iv) P(Clauses) is the powerset of Clauses, (v) a sequene of

lauses is denoted by C

1

; : : : ; C

n

, and (vi) the empty sequene of lauses is denoted by ().

An unfolding seletion funtion is a total funtion Selet : Clauses

�

�Clauses ! NBAtoms[fhaltg,

where halt is a symbol not ourring in NBAtoms. We assume that, for C

1

; : : : ; C

n

2 Clauses

�

and

C 2 Clauses , Selet((C

1

; : : : ; C

n

); C) is a non-basi atom in the body of C.

When applying the Unfold strategy the Selet funtion is used as follows. During the unfolding

proess starting from a set Cls of lauses, we onsider a lause, say C, to be unfolded, and the

sequene of its anestor lauses, that is, the sequene C

1

; : : : ; C

n

of lauses suh that: (i) C

1

2 Cls ,

(ii) for k = 1; : : : ; n�1, C

k+1

is derived by unfolding C

k

, and (iii) C is derived by unfolding C

n

. Now,

(i) if Selet((C

1

; : : : ; C

n

); C) = A, where A is a non-basi atom in the body of C, then C is unfolded

w.r.t. A, and (ii) if Selet((C

1

; : : : ; C

n

); C) = halt then C is not unfolded.
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A generalization funtion Gen : P(Clauses) � NBAtoms ! Clauses is de�ned for any set Defs

of atomi de�nition lauses and for any non-basi atom A. Gen(Defs; A) is either a lause in Defs

or a lause of the form g(X

1

; : : : ;X

h

)  GenA, where: (i) fX

1

; : : : ;X

h

g = vars(GenA), (ii) A is an

instane of GenA, and (iii) g is a new prediate, that is, it ours neither in P nor in Defs.

When applying the De�ne-Fold strategy the generalization funtion Gen is used as follows: when

we want to fold a lause C w.r.t. a non-basi atom A in its body, we onsider the set Defs of all

atomi de�nition lauses introdued so far and we apply the folding rule using Gen(Defs; A). This

appliation of the folding rule is indeed possible beause, by onstrution, A is an instane of the body

of Gen(Defs ; A).

Partial Dedution Strategy

Input: A program P and a non-basi atom p(t

1

; : : : ; t

h

) w.r.t. whih we want to speialize P .

Output: A program P

pd

and a non-basi atom p

pd

(X

1

; : : : ;X

r

), suh that: (i) fX

1

; : : : ;X

r

g =

vars(p(t

1

; : : : ; t

h

)), and (ii) for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g,

M(P ) j= p(t

1

; : : : ; t

h

)# i� M(P

pd

) j= p

pd

(X

1

; : : : ;X

r

)#.

Initialize: Let S be the lause p

pd

(X

1

; : : : ;X

r

)  p(t

1

; : : : ; t

h

). Let Anestors(S) be the empty

sequene of lauses.

TransfP := P ; Defs := fSg; Cls := fSg;

while Cls 6= ; do

(1) Unfold :

while there exists a lause C 2 Cls with Selet(Anestors(C); C) 6= halt do

Let Unf (C) = fE j E is derived by unfolding C w.r.t. Selet(Anestors(C); C)g.

Cls := (Cls � fCg) [Unf (C);

for eah E 2 Unf (C) let Anestors(E) be the sequene Anestors(C) followed by C

end-while;

(2) De�ne-Fold :

NewDefs := ;;

while there exists a lause C 2 Cls and there exists a non-basi atom A 2 bd(C) whih has not

been derived by folding do

Let G be the atomi de�nition lause Gen(Defs; A) and F be the lause derived by folding

C w.r.t. A using G.

Cls := (Cls � fCg) [ fFg;

if G 62 Defs then (Defs := Defs [ fGg; NewDefs := NewDefs [ fGg)

end-while;

TransfP := TransfP [ Cls ; Cls := NewDefs

end-while;

We derive the �nal program P

pd

by applying the de�nition elimination rule and keeping only the

lauses of TransfP on whih p

pd

depends.

A given unfolding seletion funtion Selet is said to be progressive i� for the empty sequene ()

of lauses and for any lause C whose body ontains at least one non-basi atom, we have that

Selet((); C) 6= halt .

We have the following orretness result whih is a straightforward orollary of Theorem 5 of

Setion 4.2.
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Theorem 3 (Corretness of Partial Dedution w.r.t. the Delarative Semantis)

Let Selet be a progressive unfolding seletion funtion. Given a program P and a non-basi atom

p(t

1

; : : : ; t

h

), if the partial dedution strategy using Selet terminates with output program P

pd

and

output atom p

pd

(X

1

; : : : ;X

r

), then for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g,

M(P ) j= p(t

1

; : : : ; t

h

)# i� M(P

pd

) j= p

pd

(X

1

; : : : ;X

r

)#.

We say that an unfolding seletion funtion Selet is halting i� for any in�nite sequene C

1

; C

2

; : : :

of lauses, there exists n � 0 suh that Selet((C

1

; C

2

; : : : ; C

n

); C

n+1

) = halt .

Given an in�nite sequene A

1

; A

2

; : : : of non-basi atoms, its image under the generalization fun-

tion Gen, is the sequene of sets of lauses de�ned as follows:

G

1

= fnewp(X

1

; : : : ;X

n

) A

1

g, where fX

1

; : : : ;X

n

g = vars(A

1

)

G

i+1

= G

i

[ fGen(G

i

; A

i+1

)g for i � 1.

We say that Gen is stabilizing i� for any in�nite sequene A

1

; A

2

; : : : of non-basi atoms whose

image under Gen is G

1

; G

2

; : : : ; there exists n > 0 suh that G

k

= G

n

for all k � n.

We have the following theorem whose proof is similar to the one in [25℄.

Theorem 4 (Termination of Partial Dedution) Let Selet be a halting unfolding seletion fun-

tion and Gen be a stabilizing generalization funtion. Then for any input program P and non-basi

atom p(t

1

; : : : ; t

h

), the partial dedution strategy using Selet and Gen terminates.

The following example shows that the unfolding rule (and thus, the partial dedution strategy) is

not orret w.r.t. the operational semantis.

Example 1 Let us onsider the following program P

1

:

1. p X 6=a; q(X)

2. q(b) 

By unfolding lause 1 w.r.t. q(X) we derive the following program P

2

:

3. p b 6=a

2. q(b) 

We have that the goal p does not sueed in P

1

, while it sueeds in P

2

.

We will address this orretness issue in detail in Setion 5, where we will present a set of trans-

formation rules whih are orret w.r.t. the operational semantis for the lass of safe programs (see

Theorem 6).

3.2 An Example of Partial Dedution: String Mathing

In this setion we illustrate the partial dedution strategy by means of a well-known program speial-

ization example whih onsists in speializing a general string mathing program w.r.t. a given pattern

(see [11, 13, 44℄ for a similar example). Given a program for searhing a pattern in a string, and a

�xed ground pattern p, we want to derive a new, speialized program for searhing the pattern p in a

given string. Now we present a general program, alled Math, for searhing a pattern P in a string

S in fa; bg

�

. Strings in fa; bg

�

are denoted by lists of a's and b's. This program is deterministi for

atoms of the form math(P; S), where P and S are ground lists.

Program Math (initial, deterministi)

1. math(P; S) math1(P; S; P; S)

2. math1([ ℄; S; Y; Z) 

3. math1([CjP ℄; [CjS ℄; Y; Z) math1(P ;S ; Y; Z)

4. math1([ajP ℄; [bjS ℄; Y; [CjZ℄)  math1(Y;Z; Y; Z)

5. math1([bjP ℄; [ajS ℄; Y; [CjZ℄)  math1(Y;Z; Y; Z)

9



Let us assume that we want to speialize this program Math w.r.t. the goal math([a; a; b℄; S), that

is, we want to derive a program whih tells us whether or not the pattern [a; a; b℄ ours in the string

S.

We apply our partial dedution strategy using the following unfolding seletion funtion DetU and

generalization funtion Variant.

(1) The funtion DetU : Clauses

�

�Clauses ! NBAtoms [ fhaltg is de�ned as follows:

(i) DetU ((); C) = A if A is the leftmost non-basi atom in the body of lause C,

(ii) DetU ((C

1

; C

2

; : : : ; C

n

); C) = A if n � 1 and A is the leftmost non-basi atom in the body of C

suh that A is uni�able with at most one lause head in the program to be partially evaluated, and

(iii) DetU ((C

1

; C

2

; : : : ; C

n

); C) = halt if there exists no non-basi atom in the body of C whih is

uni�able with at most one lause head in the program to be partially evaluated.

(2) The funtion Variant : P(Clauses)�NBAtoms ! Clauses is de�ned as follows:

(i) Variant(Defs; A) is a lause C suh that bd(C) is a variant of A, if in Defs there exists any suh

lause C, and

(ii) Variant(Defs ; A) is the lause newp(X

1

; : : : ;X

h

) A, where newp is a new prediate symbol and

fX

1

; : : : ; X

h

g = vars(A), otherwise.

The funtion DetU orresponds to the determinate unfolding rule onsidered in [13℄. We have that

DetU is not halting and Variant is not stabilizing. Nevertheless, in our example, as the reader may

verify, the partial dedution strategy using DetU and Variant terminates and generates the following

speialized program:

Program Math

pd

(speialized by partial dedution, deterministi)

6. math

pd

(S) new1(S)

7. new1([ajS℄) new2(S)

8. new1([bjS℄) new1(S)

9. new2([ajS℄) new3(S)

10. new2([bjS℄) new1(S)

11. new3([bjS℄) 

12. new3([ajS℄) new3(S)

The program Math

pd

is deterministi for atoms of the form math

pd

(S), where S is a ground list, and

it orresponds to a DFA in the sense that: (i) eah prediate orresponds to a state, (ii) eah lause,

exept for lause 6 and 11, orresponds to a transition from the state orresponding to the prediate

of the head to the state orresponding to the prediate of the body, (iii) eah transition is labelled by

the symbol (either a or b) ourring in the head of the orresponding lause, (iv) by lause 6 we have

that new1 is the initial state for goals of the form math

pd

(w), where w is any ground list representing

a word in fa; bg

�

, and (v) lause 11 orresponds to a transition, labeled by b, to an unnamed �nal

state where any remaining portion of the input word is aepted.

Thus, via partial dedution we an derive a DFA from a deterministi string mathing program.

The derived program orresponds to the Knuth-Morris-Pratt string mathing algorithm [22℄.

3.3 Some Limitations of Partial Dedution

The fat that the partial dedution strategy derives a DFA is a onsequene of the fat that the

initial string mathing program Math is rather sophistiated and, indeed, the orretness proof of the

program Math is not straightforward. Atually, the partial dedution strategy does not derive a DFA

if we onsider, instead of the program Math, the following naive initial program for string mathing:
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Program Naive Math (initial, nondeterministi)

1. naive math(P; S)  append (X;R; S); append (L; P;X)

2. append ([ ℄; Y; Y ) 

3. append ([AjX℄; Y; [AjZ℄)  append (X;Y;Z)

This program is nondeterministi for atoms of the form naive math(P; S), where P and S are ground

lists. The orretness of this naive program is straightforward beause for a given pattern P and a

string S, Naive Math tests whether or not P ours in S by looking in a nondeterministi way for

two strings L and R suh that S is the onatenation of L, P , and R in this order.

The reader may verify that the partial dedution strategy does not derive a DFA when starting from

the programNaive Math. Indeed, if we speializeNaive Math w.r.t. the goal naive math([a; a; b℄; S)

by applying the partial dedution strategy using the unfolding seletion funtion DetU and the gen-

eralization funtion Variant, then we derive the following program Naive Math

pd

whih does not

orrespond to a DFA and it is nondeterministi:

Program Naive Math

pd

(speialized by partial dedution, nondeterministi)

4. naive math

pd

(S)  new1(X;R; S); new2(L;X)

5. new1([ ℄; Y; Y ) 

6. new1([AjX℄; Y; [AjZ℄)  new1(X;Y;Z)

7. new2([ ℄; [a; a; b℄)  

8. new2([AjX℄; [AjZ℄)  new2(X;Z)

Indeed, this Naive Math

pd

program looks in a nondeterministi way for two strings L and R suh

that S is the onatenation of L, [a; a; b℄, and R. If the pattern [a; a; b℄ is not found within the string

S at a given position, then the searh for [a; a; b℄ is restarted after a shift of one harater to the right

of that position.

From the program Naive Math we an derive a speialized program whih is muh more eÆient

than Naive Math

pd

by applying onjuntive partial dedution, instead of partial dedution. Conjun-

tive partial dedution, viewed as a sequene of appliations of transformation rules, enhanes partial

dedution beause: (i) one may introdue a de�nition lause whose body is a onjuntion of atoms,

instead of one atom only (see Rule PD1), and (ii) one may fold a lause w.r.t. a onjuntion of atoms

in its body, instead of one atom only (see Rule PD4). By applying onjuntive partial dedution one

may avoid intermediate data strutures, suh as the list X onstruted by using lause 1 of program

Naive Math. Indeed, by using the ECCE system for onjuntive partial dedution [24℄, from the

Naive Math program we derive the following speialized program:

Program Naive Math

pd

(speialized by onjuntive partial dedution, nondeterministi)

9. naive math

pd

([X;Y;ZjS℄)  new1(X;Y;Z; S)

10. new1(a; a; b; S) 

11. new1(X;Y;Z; [CjS℄)  new1(Y;Z;C; S)

This Naive Math

pd

program searhes for the pattern [a; a; b℄ in the input string by looking at the

�rst three elements of that string. If they are a, a, and b, in this order, then the searh sueeds,

otherwise the searh for the pattern ontinues in the tail of the string. Although this Naive Math

pd

program is muh more eÆient than the initial Naive Math program, it does not orrespond to a

DFA beause, when searhing for the pattern [a; a; b℄, it looks at a pre�x of length 3 of the input

string, instead of one symbol only.

The failure of partial dedution and onjuntive partial dedution to derive a DFA when starting

from the Naive Math program, is due to some limitations whih an be overome by using the
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enhaned transformation rules we will present in the next setion. By applying these enhaned rules

we an de�ne a new prediate by introduing several lauses whose bodies are non-atomi goals, while

by applying the rules for partial dedution or onjuntive partial dedution, a new prediate an be

de�ned by introduing one lause only. By folding using de�nition lauses of the enhaned form, we

an derive speialized programs where nondeterminism is redued and intermediate data strutures

are avoided. Among our enhaned rules we also have the so alled ase split rule whih, given a

lause, produes two mutually exlusive instanes of that lause by introduing negated equations.

The appliation of this rule allows subsequent folding steps whih redue nondeterminism.

By applying the enhaned transformation rules aording to the Determinization Strategy we will

present in Setion 6, one an automatially speialize the nondeterministi program Naive Math w.r.t.

the goal naive math([a; a; b℄; S) thereby deriving the following deterministi program (this derivation

is not presented here and it is similar to the one presented in Setion 7.1):

Program Naive Math

s

(speialized by Determinization, deterministi)

12. naive math

s

(S) new1(S)

13. new1([ajS℄) new2(S)

14. new1([CjS℄) C 6=a;new1(S)

15. new2([ajS℄) new3(S)

16. new2([CjS℄) C 6=a;new1(S)

17. new3([bjS℄) new4(S)

18. new3([ajS℄) new3(S)

19. new3([CjS℄) C 6=b; C 6=a;new1(S)

20. new4(S) 

The programNaive Math

s

orresponds in a straightforward way to a DFA. Moreover, sine the lauses

of Naive Math

s

are pairwise mutually exlusive, the disequations in their bodies an be dropped in

favor of uts (or equivalently, if-then-else onstruts) as follows:

Program Naive Math

ut

(speialized, with uts)

21. naive math

s

(S) new1(S)

22. new1([ajS℄) !; new2(S)

23. new1([CjS℄) new1(S)

24. new2([ajS℄) !; new3(S)

25. new2([CjS℄) new1(S)

26. new3([bjS℄) !; new4(S)

27. new3([ajS℄) !; new3(S)

28. new3([CjS℄) new1(S)

29. new4(S) 

Computer experiments on�rm that the �nal Naive Math

ut

program is indeed more eÆient than

the Naive Math, Naive Math

pd

, and Naive Math

pd

programs. In Setion 7 we will present more

experimental results whih demonstrate that the speialized programs derived by our tehnique are

more eÆient than those derived by partial dedution or onjuntive partial dedution.

4 Transformation Rules for Logi Programs with Equations and Dis-

equations between Terms

In this setion we present the program transformation rules whih we use for program speialization.

These rules extend the unfold/fold rules onsidered in [14, 40, 46℄ to logi programs with atoms whih
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denote equations and disequations between terms. The transformation rules we present in this setion

enhane in several respets the rules PD1-PD4 for partial dedution whih we have onsidered in

Setion 3. In partiular, we onsider a de�nition introdution rule (see Rule 1) whih allows the

introdution of new prediates de�ned by several lauses whose bodies are non-atomi goals, while by

Rule PD1 a new prediate an be de�ned by introduing one lause whose body is an atomi goal.

We also onsider a folding rule (see Rule 4) by whih we an fold several lauses at a time, while

by Rule PD4 we an fold one lause only. In addition, we onsider the subsumption rule and the

following transformation rules for introduing and eliminating equations and disequations: (i) head

generalization, (ii) ase split, (iii) equation elimination, and (iv) disequation replaement. Our rules

preserve the least Herbrand model as indiated in Theorem 5 below.

4.1 Transformation Rules

Similarly to Setion 3, the proess of program transformation is viewed as a transformation sequene

onstruted by applying some transformation rules. However, as already mentioned, in this setion we

onsider an enhaned set of transformation rules. A transformation sequene P

0

; : : : ; P

n

is onstruted

from a given initial program P

0

by appliations of the transformation rules 1{9 given below, as follows.

For k = 0; : : : ; n � 1, program P

k+1

is derived from program P

k

by: (i) seleting a (possibly empty)

subset 

1

of lauses of P

k

, (ii) deriving a set 

2

of lauses by applying a transformation rule to 

1

, and

(iii) replaing 

1

by 

2

in P

k

.

Notie that Rules 2 and 3 are in fat equal to Rules PD2 and PD3, respetively. However, we

rewrite them below for the reader's onveniene.

Rule 1 (De�nition Introdution) We introdue m (�1) new lauses, alled de�nition lauses, of

the form:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) Body

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) Body

m

where: (i) newp is a non-basi prediate symbol not ourring in P

0

; : : : ; P

k

, (ii) the variablesX

1

; : : : ;X

h

are all distint and for all i 2 f1; : : : ; hg there exists j 2 f1; : : : ;mg suh that X

i

ours in the goal

Body

j

, (iii) for all j 2 f1; : : : ;mg, every non-basi prediate ourring in Body

j

also ours in P

0

, and

(iv) for all j 2 f1; : : : ;mg, there exists at least one non-basi atom in Body

j

.

Program P

k+1

is the program P

k

[ fD

1

; : : : ;D

m

g.

As in Setion 3, we denote by Defs

k

the set of de�nition lauses introdued by the de�nition

introdution rule during the onstrution of the transformation sequene P

0

; : : : ; P

k

. In partiular, we

have that Defs

0

= ;.

Rule 2 (De�nition Elimination) Let p be a prediate symbol. By de�nition elimination w.r.t. p

we derive the program P

k+1

= fC 2 P

k

j p depends on Cg.

Rule 3 (Unfolding) Let C be a renamed apart lause of P

k

of the form: H  G

1

; A;G

2

, where A

is a non-basi atom. Let C

1

; : : : ; C

m

, with m � 0, be the lauses of P

k

suh that, for i = 1; : : : ;m, A

is uni�able with the head of C

i

via the mgu #

i

. By unfolding C w.r.t. A, for i = 1; : : : ;m, we derive

the lause D

i

: (H  G

1

; bd(C

i

); G

2

)#

i

.

Program P

k+1

is the program (P

k

� fCg) [ fD

1

; : : : ;D

m

g.

Notie that an appliation of the unfolding rule to lause C amounts to the deletion of C i� m=0.

Sometimes in the literature this partiular instane of the unfolding rule is treated as an extra rule.
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Rule 4 (Folding) Let

8

>

<

>

:

C

1

: H  G

1

;Body

1

#;G

2

� � �

C

m

: H  G

1

;Body

m

#;G

2

be renamed lauses of P

k

, for a suitable substitution #, and let

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) Body

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) Body

m

be all lauses in Defs

k

whih have newp as head prediate. Suppose that for i = 1; : : : ;m; the following

ondition holds: for every variable X ourring in the goal Body

i

and not in fX

1

; : : : ;X

h

g, we have

that: (i) X# is a variable whih does not our in (H;G

1

; G

2

), and (ii) X# does not our in Y #, for

any variable Y ourring in Body

i

and di�erent from X. By folding C

1

; : : : ; C

m

using D

1

; : : : ;D

m

we

derive the single lause E: H  G

1

;newp(X

1

; : : : ;X

h

)#;G

2

.

Program P

k+1

is the program (P

k

� fC

1

; : : : ; C

m

g) [ fEg.

For instane, the lauses C

1

: p(X)  q(t(X); Y ); r(Y ) and C

2

: p(X)  s(X); r(Y ) an be folded

(by onsidering the substitution # = fU=X; V=Y g) using the two de�nition lauses D

1

: a(U; V )  

q(t(U); V ) andD

2

: a(U; V ) s(U), and we replae C

1

and C

2

by the lause E: p(X) a(X;Y ); r(Y ).

Rule 5 (Subsumption) (i) Given a substitution #, we say that a lause H  G

1

subsumes a lause

(H  G

1

; G

2

)#.

Program P

k+1

is derived from program P

k

by deleting a lause whih is subsumed by another lause

in P

k

.

Rule 6 (Head Generalization) Let C be a lause of the form: HfX=tg  Body in P

k

, where

fX=tg is a substitution suh that X ours in H and X does not our in C. By head generalization,

we derive the lause GenC : H  X= t;Body .

Program P

k+1

is the program (P

k

� fCg) [ fGenC g.

Rule 6 is a partiular ase of the rule of generalization + equality introdution onsidered, for

instane, in [38℄.

Rule 7 (Case Split) Let C be a lause in P

k

of the form: H  Body . By ase split of C w.r.t. the

binding X=t, where X does not our in t, we derive the following two lauses:

C

1

. (H  Body)fX=tg

C

2

. H  X 6= t;Body .

Program P

k+1

is the program (P

k

� fCg) [ fC

1

; C

2

g.

In this Rule 7 we do not assume that X ours in C. However, in the Determinization Strategy of

Setion 6, we will always apply the ase split rule to a lause C : H  Body w.r.t. a bindingX=t where

X ours in H. This use of the ase split rule will be suÆient to derive mutually exlusive lauses.

Indeed, aording to our operational semantis, if G 7�!

P

k+1

G

1

using lause C

1

and X ours in H,

then no G

2

exists suh that G 7�!

P

k+1

G

2

using lause C

2

. The same holds by interhanging C

1

and

C

2

. We will return to this property in De�nitions 8 (Semideterminism) and 12 (Mutual Exlusion)

below.

Rule 8 (Equation Elimination) Let C

1

be a lause in P

k

of the form:

C

1

. H  G

1

; t

1

= t

2

; G

2

14



If t

1

and t

2

are uni�able via the most general uni�er #, then by equation elimination we derive the

following lause:

C

2

. (H  G

1

; G

2

)#

Program P

k+1

is the program (P

k

� fC

1

g) [ fC

2

g.

If t

1

and t

2

are not uni�able then by equation elimination we derive program P

k+1

whih is P

k

�fC

1

g.

Rule 9 (Disequation Replaement) Let C be a lause in program P

k

. Program P

k+1

is derived

from P

k

by either removing C or replaing C as we now indiate:

9.1 if C is of the form: H  G

1

; t

1

6= t

2

; G

2

and t

1

and t

2

are not uni�able, then C is replaed by

H  G

1

; G

2

9.2 if C is of the form: H  G

1

; f(t

1

; : : : ; t

m

) 6= f(u

1

; : : : ; u

m

); G

2

, then C is replaed by the

following m (� 0) lauses: H  G

1

; t

1

6=u

1

; G

2

, : : : ; H  G

1

; t

m

6=u

m

; G

2

9.3 if C is of the form: H  G

1

;X 6=X;G

2

, then C is removed from P

k

9.4 if C is of the form: H  G

1

; t 6=X;G

2

, then C is replaed by H  G

1

;X 6= t;G

2

9.5 if C is of the form: H  G

1

;X 6= t

1

; G

2

;X 6= t

2

; G

3

and there exists a substitution � whih is

a bijetive mapping from the set of the loal variables of X 6= t

1

in C onto the set of the loal

variables of X 6= t

2

in C suh that t

1

� = t

2

, then C is replaed by H  G

1

;X 6= t

1

; G

2

; G

3

.

In partiular, by Rule 9.5, if a disequation ours twie in the body of a lause, then we an remove

the rightmost ourrene.

4.2 Corretness of the Transformation Rules w.r.t. the Delarative Semantis

In this setion we show that, under suitable hypotheses, our transformation rules preserve the delar-

ative semantis presented in Setion 2.2. In that sense we also say that our transformation rules

are orret w.r.t. the given delarative semantis. The following orretness theorem extends simi-

lar results holding for logi programs [14, 40, 46℄ to the ase of logi programs with equations and

disequations.

Theorem 5 (Corretness of the Rules w.r.t. the Delarative Semantis) Let P

0

; : : : ; P

n

be

a transformation sequene onstruted by using the transformation rules 1{9 and let p be a non-

basi prediate in P

n

. Let us assume that:

1. if the folding rule is applied for the derivation of a lause C in program P

k+1

from lauses

C

1

; : : : ; C

m

in program P

k

using lauses D

1

; : : : ;D

m

in Defs

k

, with 0�k<n,

then for every i 2 f1; : : : ;mg there exists j 2 f1; : : : ; n�1g suh that D

i

ours in P

j

and P

j+1

is derived from P

j

by unfolding D

i

;

2. during the transformation sequene P

0

; : : : ; P

n

the de�nition elimination rule either is never

applied or it is applied w.r.t. prediate p one only, in the last step, that is, when deriving P

n

from P

n�1

.

Then, for every ground atom A with prediate p, we have that M(P

0

[Defs

n

) j= A i� M(P

n

) j= A.

Proof : It is a simple extension of a similar result presented in [14℄ for the ase where we use the

unfolding, folding, and generalization + equality introdution rules. The proof tehnique used in [14℄

an be adapted to prove also the orretness of our extended set of rules. 2
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In Example 1 of Setion 3 we have shown that the unfolding rule may not preserve the operational

semantis. The following examples show that also other transformation rules may not preserve the

operational semantis.

Example 2 Let us onsider the following program P

1

:

1. p(X) q(X); X 6=a

2. q(X) 

3. q(X) X=b

By Rule 5 we may delete lause 3 whih is subsumed by lause 2 and we derive a new program P

2

.

Now, we have that p(X) sueeds in P

1

, while it does not sueed in P

2

.

Example 3 Let us onsider the following program P

3

:

1. p(X) 

By the ase split rule we may replae lause 1 by the two lauses:

2. p(a) 

3. p(X) X 6=a

and we derive a new program P

4

. The goal p(X);X = b sueeds in P

3

, while it does not sueed in

P

4

.

Example 4 Let us onsider the following program P

5

:

1. p X 6=a; X=b

By Rule 8 we may replae lause 1 by:

2. p b 6=a

and we derive a new program P

6

. The goal p does not sueed in P

5

, while it sueeds in P

6

.

Finally, let us onsider the following two operations on the body of a lause: (i) removal of a dupliate

atom, and (ii) reordering of atoms. The following examples show that these two operations, whih

preserve the delarative semantis, may not preserve the operational semantis. Notie, however,

that the removal of a dupliate atom and the reordering of atoms annot be aomplished by the

transformation rules listed in Setion 4, exept for the speial ase onsidered at Point 9.5 of the

disequation replaement rule.

Example 5 Let us onsider the program P

7

:

1. p q(X;Y ); q(X;Y ); X 6=Y

2. q(X; b) 

3. q(a; Y ) 

and the program P

8

obtained from P

7

by replaing lause 1 by the following lause:

4. p q(X;Y ); X 6=Y

The goal p sueeds in P

7

, while it does not sueed in P

8

. Indeed, (i) for program P

7

we have that:

p 7�!

P

7

q(X;Y ); q(X;Y );X 6=Y 7�!

P

7

q(X; b);X 6=b 7�!

P

7

a 6=b 7�!

P

7

true, and (ii) for program

P

8

we have that: either p 7�!

P

8

X 6= b or p 7�!

P

8

a 6=Y . In Case (ii), sine X and Y are uni�able

with b and a, respetively, we have that p 7�!

�

P

8

true does not hold.

Example 6 Let us onsider the program P

9

:

1. p q(X); r(X)

2. q(a) 

3. r(X) X 6=b

16



and the program P

10

obtained from P

9

by replaing lause 1 by the following lause:

4. p r(X); q(X)

The goal p sueeds in P

9

, while it does not sueed in P

10

.

In the next setion we will introdue a lass of programs and a lass of goals for whih our transfor-

mation rules preserve both the delarative semantis and the operational semantis. In order to do

so, we assoiate a mode with every prediate. A mode of a prediate spei�es the input arguments of

that prediate, and we assume that whenever the prediate is alled, its input arguments are bound to

ground terms. We will see that, if some suitable onditions are satis�ed, ompliane to modes guar-

antees the preservation of the operational semantis. This fat is illustrated by the above Examples 2

and 3, and indeed, in eah of them, if we restrit ourselves to alls of the prediate p with ground

arguments, then the initial program and the derived program have the same operational semantis.

Notie, however, that the inorretness of the transformation of Example 4 does not depend on

the modes. Thus, in order to ensure orretness w.r.t. the operational semantis we have to rule out

lauses suh as lause 1 of program P

5

. Indeed, as we will see in the next setion, the lauses we will

onsider satisfy the following ondition: eah variable whih ours in a disequation either ours in

an input argument of the head prediate or it is a loal variable of the disequation.

5 Program Transformations based on Modes

Modes provide information about the diretionality of prediates, by speifying whether an argument

should be used as input or output (see, for instane, [32, 49℄). Mode information is very useful for

speifying and verifying logi programs [2, 10℄ and it is used in existing ompilers, suh as Ciao and

Merury, to generate very eÆient ode [19, 45℄. Mode information has also been used in the ontext

of program transformation to provide suÆient onditions whih ensure that reorderings of atoms in

the body of a lause preserve program termination [5℄.

In this paper we use mode information for: (i) speifying lasses of programs and goals w.r.t. whih

the transformation rules we have presented in Setion 4.1 preserve the operational semantis (see

Setion 2.3), and (ii) designing our strategy for speializing programs and reduing nondeterminism.

5.1 Modes

A mode for a non-basi prediate p of arity h (� 0) is an expression of the form p(m

1

; : : : ;m

h

),

where for i = 1; : : : ; h, m

i

is either + (denoting any ground term) or ? (denoting any term). In

partiular, if h = 0, then p has a unique mode whih is p itself. Given an atom p(t

1

; : : : ; t

h

) and a

mode p(m

1

; : : : ;m

h

),

(1) for i = 1; : : : ; h, the term t

i

is said to be an input argument of p i� m

i

is +, and

(2) a variable of p(t

1

; : : : ; t

h

) with an ourrene in an input argument of p, is said to be an input

variable of p(t

1

; : : : ; t

h

).

A mode for a program P is a set of modes for non-basi prediates ontaining exatly one mode

for every distint, non-basi prediate p ourring in P .

Notie that a mode for a program P may or may not ontain modes for non-basi prediates whih

do not our in P . Thus, if M is a mode for a program P

1

and, by applying a transformation rule,

from P

1

we derive a new program P

2

where all ourrenes of a prediate have been eliminated, then

M is a mode also for P

2

. The following rules may eliminate ourrenes of prediates: de�nition

elimination, unfolding, folding, subsumption, disequation replaement (ase 9.5). Clearly, if from P

1

we derive P

2

by applying the de�nition introdution rule, then in order to obtain a mode for P

2

we

should add to M a mode for the newly introdued prediate (unless it is already in M).
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Example 7 Given the program P :

p(0; 1) 

p(0; Y ) q(Y )

the set M

1

= fp(+; ?); q(?)g is a mode for P . M

2

= fp(+; ?); q(+); r(+)g is a di�erent mode for P .

De�nition 2 Let M be a mode for a program P and p a non-basi prediate. We say that an atom

p(t

1

; : : : ; t

h

) satis�es the mode M i� (1) a mode for p belongs to M and (2) for i = 1; : : : ; h, if the

argument t

i

is an input argument of p aording to M , then t

i

is a ground term. In partiular, when

h=0, we have that p satis�es M i� p 2M .

The program P satis�es the mode M i� for eah non-basi atom A

0

whih satis�es M , and for eah

non-basi atom A and goal G suh that A

0

7�!

�

P

(A;G), we have that A satis�es M .

With referene to Example 7 above, program P satis�es mode M

1

, but it does not satisfy mode M

2

.

In general, the property that a program satis�es a mode is undeidable. Two approahes are

usually followed for verifying this property: (i) the �rst one uses abstrat interpretation methods (see,

for instane, [9, 32℄) whih always terminate, but may return a don't know answer, and (ii) the seond

one heks suitable syntati properties of the program at hand, suh as well-modedness [2℄, whih

imply that the mode is satis�ed.

Our tehnique is independent of any spei� method used for verifying that a program satis�es

a mode. However, as the reader may verify, all programs presented in the examples of Setion 7 are

well-moded and, thus, they satisfy the given modes.

5.2 Corretness of the Transformation Rules w.r.t. the Operational Semantis

Now we introdue a lass of programs, alled safe programs, and we prove that if the transformation

rules are applied to a safe program and suitable restritions hold, then the given program and the

derived program are equivalent w.r.t. the operational semantis.

De�nition 3 (Safe Programs) Let M be a mode for a program P . We say that a lause C in P

is safe w.r.t. M i� for eah disequation t

1

6= t

2

in the body of C, we have that: for eah variable X

ourring in t

1

6= t

2

either X is an input variable of hd(C) or X is a loal variable of t

1

6= t

2

in C.

Program P is safe w.r.t. M i� all its lauses are safe w.r.t. M .

For instane, let us onsider the mode M = fp(+); q(?)g. Clause p(X)  X 6= f(Y ) is safe w.r.t. M

and lause p(X) X 6=f(Y ); q(Y ) is not safe w.r.t. M beause Y ours both in f(Y ) and in q(Y ).

When mentioning the safety property w.r.t. a given mode M , we feel free to omit the referene to

M , if it is irrelevant or understood from the ontext.

In order to get our desired orretness result (see Theorem 6 below), we need to restrit the use of

our transformation rules as indiated in De�nitions 4-7 below. In partiular, these restritions ensure

that, by applying the transformation rules, program safety and mode satisfation are preserved (see

Propositions 3 and 4 in Appendix A).

De�nition 4 (Safe Unfolding) Let P

k

be a program and M be a mode for P

k

. Let us onsider an

appliation of the unfolding rule (see Rule 3 in Setion 4.1) whereby from the following lause of P

k

:

H  G

1

; A;G

2

we derive the lauses:

8

>

<

>

:

D

1

: (H  G

1

; bd(C

1

); G

2

)#

1

� � �

D

m

: (H  G

1

; bd(C

m

); G

2

)#

m
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where C

1

; : : : ; C

m

are the lauses in P

k

suh that, for i 2 f1; : : : ;mg, A is uni�able with the head of

C

i

via the mgu #

i

.

We say that this appliation of the unfolding rule is safe w.r.t. mode M i� for all i = 1; : : : ;m, for all

disequations d in bd(C

i

), and for all variables X ourring in d#

i

, we have that either X is an input

variable of H#

i

or X is a loal variable of d in C

i

.

To see that unrestrited appliations of the unfolding rule may not preserve safety, let us onsider

the following program:

1. p q(X); r(X)

2. q(1) 

3. r(X) X 6=0

and the mode M = fp; q(?); r(+)g for it. By unfolding lause 1 w.r.t. the atom r(X) we derive the

lause:

4. p q(X); X 6=0

This lause is not safe w.r.t. M beause X does not our in its head.

De�nition 5 (Safe Folding) Let us onsider a program P

k

and a mode M for P

k

. Let us also

onsider an appliation of the folding rule (see Rule 4 in Setion 4.1) whereby from the following

lauses in P

k

:

8

>

<

>

:

C

1

: H  G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H  G

1

; (A

m

;K

m

)#;G

2

and the following de�nition lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

we derive the new lause:

H  G

1

;newp(X

1

; : : : ;X

h

)#;G

2

We say that this appliation of the folding rule is safe w.r.t. mode M i� the following Property �

holds:

(Property �) Eah input variable of newp(X

1

; : : : ;X

h

)# is also an input variable of at least one of

the non-basi atoms ourring in (H;G

1

; A

1

#; : : : ; A

m

#).

Unrestrited appliations of the folding rule may not preserve modes. Indeed, let us onsider the

following initial program:

1. p q(X)

2. q(1) 

Suppose that �rst we introdue the de�nition lause:

3. new(X) q(X)

and then we apply the lause split rule, thereby deriving:

4. new(0) q(0)

5. new(X) X 6=0; q(X)

The program made out of lauses 1, 2, 4, and 5 satis�es the mode M = fp; q(?); new(+)g. By folding

lause 1 using lause 3 we derive:
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6. p new(X)

This appliation of the folding rule is not safe and the program we have derived, onsisting of lauses

2, 4, 5, and 6, does not satisfy M .

De�nition 6 (Safe Head Generalization) Let us onsider a program P

k

and a mode M for P

k

.

We say that an appliation of the head generalization rule (see Rule 6 in Setion 4.1) to a lause of

P

k

is safe i� X is not an input variable w.r.t. M .

The restritions onsidered in De�nition 6 are needed to preserve safety. For instane, the lause

p(t(X)) X 6=0 is safe w.r.t. the mode M = fp(+)g, while p(Y ) Y = t(X);X 6=0 is not.

De�nition 7 (Safe Case Split) Let us onsider a program P

k

and a modeM for P

k

. Let us onsider

also an appliation of the ase split rule (see Rule 7 in Setion 4.1) whereby from a lause C in P

k

of

the form: H  Body we derive the following two lauses:

C

1

. (H  Body)fX=tg

C

2

. H  X 6= t;Body .

We say that this appliation of the ase split rule is safe w.r.t. mode M i� X is an input variable of

H, X does not our in t, and for all variables Y 2 vars(t), either Y is an input variable of H or Y

does not our in C.

When applying the safe ase split rule, X ours in H and thus, given a goal G, it is not the ase

that for some goals G

1

and G

2

, we have both G 7�! G

1

using lause C

1

and G 7�! G

2

using lause

C

2

. In De�nition 12 below, we will formalize this property by saying that the lauses C

1

and C

2

are

mutually exlusive.

Similarly to the unfolding and head generalization rules, the unrestrited use of the ase split

rule may not preserve safety. For instane, from the lause p(X)  whih is safe w.r.t. the mode

M = fp(?)g, we may derive the two lauses p(0) and p(X) X 6=0, and this last lause is not safe

w.r.t. M .

We have shown in Setion 4.1 (see Example 6), that the reordering of atoms in the body of a

lause may not preserve the operational semantis. Now we prove that a partiular reordering of

atoms, alled disequation promotion, whih onsists in moving to the left the disequations ourring in

the body of a safe lause, preserves the operational semantis. Disequation promotion (not inluded,

for reason of simpliity, among the transformation rules) allows us to rewrite the body of a safe lause

so that every disequation ours to the left of every atom di�erent from a disequation thereby deriving

the normal form of that lause (see Setion 6). The use of normal forms will simplify the proof of

Theorem 6 below and the presentation of the Determinization Strategy in Setion 6.

Proposition 1 (Corretness of Disequation Promotion) Let M be a mode for a program P

1

.

Let us assume that P

1

is safe w.r.t. M and P

1

satis�es M . Let C

1

: H  G

1

; G

2

; t

1

6= t

2

; G

3

be a lause in P

1

. Let P

2

be the program derived from P

1

by replaing lause C

1

by lause C

2

:

H  G

1

; t

1

6= t

2

; G

2

; G

3

. Then: (i) P

2

is safe w.r.t. M , (ii) P

2

satis�es M , and (iii) for eah

non-basi atom A whih satis�es mode M , A sueeds in P

1

i� A sueeds in P

2

.

Proof : Point (i) follows from the fat that safety does not depend on the position of the disequation in

a lause. Moreover, the evaluation of goal G

2

in program P

1

aording to our operational semantis,

does not bind any variable in t

1

6= t

2

, and thus, we get Point (ii). Point (iii) is a onsequene of

Points (i) and (ii) and the fat that the evaluation of t

1

6= t

2

does not bind any variable in the goals

G

2

and G

3

. 2
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The above proposition does not hold if we interhange lause C

1

and C

2

. Consider, in fat, the

following lause whih is safe w.r.t. mode M = fp(+); q(+)g:

C

3

. p(X) X 6=Y; q(Z)

This lause satis�es M beause for all derivations starting from a ground instane p(t) of p(X) the

atom t 6=Y does not sueed. In ontrast, if we use the lause C

4

: p(X) q(Z);X 6=Y , we have that

in the derivation starting from p(t), the variable Z is not bound to a ground term and thus, lause C

4

does not satisfy the mode M whih has the element q(+).

In Theorem 6 below we will show that if we apply our transformation rules and their safe versions

in a restrited way, then a program P whih satis�es a mode M and is safe w.r.t. M , is transformed

into a new program, say Q, whih satis�es M and is safe w.r.t. M . Moreover, the programs P and Q

have the same operational semantis.

Theorem 6 (Corretness of the Rules w.r.t. the Operational Semantis) Let P

0

; : : : ; P

n

be

a transformation sequene onstruted by using the transformation rules 1{9 and let p be a non-basi

prediate in P

n

. LetM be a mode for P

0

[Defs

n

suh that: (i) P

0

[Defs

n

is safe w.r.t.M , (ii) P

0

[Defs

n

satis�esM , and (iii) the appliations of the unfolding, folding, head generalization, and ase split rules

during the onstrution of P

0

; : : : ; P

n

are all safe w.r.t. M . Suppose also that Conditions 1 and 2 of

Theorem 5 hold. Then: (i) P

n

is safe w.r.t. M , (ii) P

n

satis�es M , and (iii) for eah atom A whih

has prediate p and satis�es mode M , A sueeds in P

0

[Defs

n

i� A sueeds in P

n

.

Proof : See Appendix A. 2

5.3 Semideterministi Programs

In this setion we introdue the onept of semideterminism whih haraterizes the lass of programs

whih an be obtained by using the Determinization Strategy of Setion 6. (The reader should not

onfuse the notion of semideterminism presented here with the one onsidered in [18℄.)

We have already notied that if a program P is deterministi for an atom A aording to De�ni-

tion 1, then there is at most one suessful derivation starting from A, and A sueeds in P with at

most one answer substitution. Thus, if an atom sueeds in a program with more than one answer

substitution, and none of these substitutions is more general than another, then there is no hane to

transform that program into a new program whih is deterministi for that atom.

For instane, let us onsider the following generalization of the problem of Setions 3.2 and 3.3:

Given a pattern P and a string S we want to ompute the position, say N , of an ourrene of P in

S, that is, we want to �nd two strings L and R suh that: (i) S is the onatenation of L, P , and R,

and (ii) the length of L is N . The following program Math Pos omputes N for any given P and S:

Program Math Pos (initial, nondeterministi)

1. math pos(P; S;N)  append (Y;R; S); append (L; P; Y ); length(L; N)

2. length([ ℄; 0) 

3. length([HjT ℄; s(N)) length(T;N)

4. append ([ ℄; Y; Y ) 

5. append ([AjX℄; Y; [AjZ℄)  append (X;Y;Z)

The Math Pos program is nondeterministi for atoms of the form math pos(P; S;N) where P and

S are ground lists, and it omputes one answer substitution for eah ourrene of P in S.

Suppose that we want to speialize Math Pos w.r.t. the atom math pos([a; a; b℄; S;N). Thus,

we want to derive a new, speialized program Math Pos

s

and a new binary prediate math pos

s

.

This new program should be able to ompute multiple answer substitutions for a goal. For instane,
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for the atom math pos

s

([a; a; b; a; a; b℄; N) the program Math Pos

s

should ompute the two sub-

stitutions fN=0g and fN=s(s(s(0)))g and, thus, Math Pos

s

annot be deterministi for the atom

math pos

s

([a; a; b; a; a; b℄; N).

Now, in order to deal with programs whih may return multiple answer substitutions, we introdue

the notion of semideterminism, whih is weaker than that of determinism. Informally, we may say

that a semideterministi program has the minimum amount of nondeterminism whih is needed to

ompute multiple answer substitutions. In Setion 6 we will prove that the Determinization Strategy,

if it terminates, derives a semideterministi program.

De�nition 8 (Semideterminism) A program P is semideterministi for a non-basi atom A i� for

eah goal G suh that A )

�

P

G, there exists at most one lause C suh that G )

C

G

0

for some goal

G

0

di�erent from true.

Given a modeM for a program P , we say that P is semideterministi w.r.t.M i� P is semideterministi

for eah non-basi atom whih satis�es M .

We will show in Setion 7.1 that by applying the Determinization Strategy, from Math Pos

s

we

derive the following speialized program Math Pos

s

whih is semideterministi for atoms of the form

math pos

s

(S;N), where S is a ground list.

Program Math Pos

s

(speialized, semideterministi)

9. math pos

s

(S;N) new1(S;N)

20. new1([ajS℄;M) new2(S;M)

21. new1([CjS℄; s(N)) C 6=a; new1(S;N)

32. new2([ajS℄;M) new3(S;M)

33. new2([CjS℄; s(s(N))) C 6=a; new1(S;N)

46. new3([ajS℄; s(M))  new3(R;S)

47. new3([bjS℄;M) new4(R;S)

48. new3([CjS℄; s(s(s(N))))  C 6=a; C 6=b; new1(S;N)

49. new4(S; 0) 

55. new4([ajS℄; s(s(s(M))))  new2(S;M)

56. new4([CjS℄; s(s(s(s(N)))))  C 6=a; new1(S;N)

Now we give a simple suÆient ondition whih ensures semideterminism. It is based on the onept

of mutually exlusive lauses whih we introdue below. We need some preliminary de�nitions.

De�nition 9 (Satis�ability of Disequations w.r.t. a Set of Variables) Given a set V of vari-

ables, we say that a onjuntion D of disequations, is satis�able w.r.t. V i� there exists a ground

substitution � with domain V , suh that every ground instane of D� holds (see Setion 2.2). In

partiular, D is satis�able w.r.t. ; i� every ground instane of D holds.

The satis�ability of a onjuntionD of disequations w.r.t. a given set V of variables, an be heked

by using the following algorithm de�ned by strutural indution:

(1) true, i.e., the empty onjuntion of disequations, is satis�able w.r.t. V ,

(2) (D

1

; D

2

) is satis�able w.r.t. V i� both D

1

and D

2

are satis�able w.r.t. V ,

(3) X 6= t is satis�able w.r.t. V i� X ours in V and t is either a non-variable term or a variable

ourring in V distint from X,

(4) t 6= X is satis�able w.r.t. V i� X 6= t is satis�able w.r.t. V ,

(5) f(: : :) 6= g(: : :), where f and g are distint funtion symbols, is satis�able w.r.t. V , and
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(6) f(t

1

; : : : ; t

m

) 6= f(u

1

; : : : ; u

m

) is satis�able w.r.t. V i� at least one disequation among t

1

6=u

1

; : : : ;

t

m

6=u

m

is satis�able w.r.t. V .

The orretness of this algorithm relies on the fat that the set of funtion symbols is in�nite (see

Setion 2.1).

De�nition 10 (Linearity) A program P is said to be linear i� every lause of P has at most one

non-basi atom in its body.

De�nition 11 (Guard of a Clause) The guard of a lause C, denoted grd(C), is bd(C) if all atoms

in bd (C) are disequations, otherwise grd(C) is the (possibly empty) onjuntion of the disequations

ourring in bd(C) to the left of the leftmost atom whih is not a disequation.

De�nition 12 (Mutually Exlusive Clauses) Let us onsider a mode M for the following two,

renamed apart lauses:

C

1

. p(t

1

; u

1

) G

1

C

2

. p(t

2

; u

2

) G

2

where: (i) p is a prediate of arity k (�0) whose �rst h arguments, with 0�h�k, are input arguments

aording to M , (ii) t

1

and t

2

are h-tuples of terms denoting the input arguments of p, and (iii) u

1

and u

2

are (k�h)-tuples of terms.

We say that C

1

and C

2

are mutually exlusive w.r.t. mode M i� either (i) t

1

is not uni�able with t

2

or

(ii) t

1

and t

2

are uni�able via an mgu # and (grd (C

1

); grd (C

2

))# is not satis�able w.r.t. vars(t

1

; t

2

).

If h= 0 we stipulate that the empty tuples t

1

and t

2

are uni�able via an mgu whih is the identity

substitution.

The following proposition is useful for proving that a program is semideterministi.

Proposition 2 (SuÆient Condition for Semideterminism) If (i) P is a linear program, (ii) P

is safe w.r.t. a given mode M , (iii) P satis�es M , and (iv) the non-unit lauses of P are pairwise

mutually exlusive w.r.t. M , then P is semideterministi w.r.t. M .

Proof : See Appendix B. 2

In Setion 6, we will present a strategy for deriving speialized programs whih satis�es the hy-

potheses (i){(iv) of the above Proposition 2, and thus, these derived programs are semideterministi.

The following examples show that in Proposition 2 no hypothesis on program P an be disarded.

Example 8 Consider the following program P and the mode M = fp; qg for P :

1. p q; q

2. q  

3. q  q

P is not linear, but P is safe w.r.t. M and P satis�es M . The non-unit lauses of P whih are

the lauses 1 and 3, are pairwise mutually exlusive. However, P is not semideterministi w.r.t. M ,

beause p 7�!

�

P

(q; q), and there exist two non-basi goals, namely q and (q; q), suh that (q; q))

P

q

and (q; q))

P

(q; q).

Example 9 Consider the following program Q and the mode M = fp(?); q

1

; q

2

g for Q:

1. p(X) X 6=0; q

1

2. p(1) q

2

Q is linear and it satis�esM , butQ is not safe w.r.t.M beauseX is not an input variable of p. Clauses

1 and 2 are mutually exlusive w.r.t. M , beause the set of input variables in p(X) is empty and X 6=0

is not satis�able w.r.t. ;. However, Q is not semideterministi w.r.t. M , beause p(1) 7�!

�

Q

p(1), and

there exist two non-basi goals, namely q

1

and q

2

, suh that p(1))

Q

q

1

and p(1))

Q

q

2

.
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Example 10 Consider the following program R and the mode M = fp; r(+); r

1

; r

2

g for R:

1. p r(X)

2. r(1) r

1

3. r(2) r

2

R is linear and safe w.r.t. M , but R does not satisfy M , beause p 7�!

R

r(X) and X is not a ground

term. Clauses 1, 2, and 3 are pairwise mutually exlusive. However, R is not semideterministi w.r.t.

M , beause p 7�!

�

R

r(X) and there exist two non-basi goals, namely r

1

and r

2

, suh that r(X))

R

r

1

and r(X))

R

r

2

.

Example 11 Consider the following program S and the mode M = fp; r

1

; r

2

g for S:

1. p r

1

2. p r

2

S is linear and safe w.r.t. M , and S satis�es M . Clauses 1 and 2 are not pairwise mutually exlusive.

S is not semideterministi w.r.t. M , beause p 7�!

�

S

p, and there exist two non-basi goals, namely r

1

and r

2

, suh that p)

S

r

1

and p)

S

r

2

.

We onlude this setion by observing that when a program onsists of mutually exlusive lauses

and, thus, it is semideterministi, it may be exeuted very eÆiently on standard Prolog systems by

inserting uts in a suitable way. We will return to this point in Setion 8 when we disuss the speedups

obtained by our speialization tehnique.

6 A Transformation Strategy for Speializing Programs and Redu-

ing Nondeterminism

In this setion we present a strategy, alled Determinization, for guiding the appliation of the trans-

formation rules presented in Setion 4.1. Our strategy pursues the following objetives. (1) The

speialization of a program w.r.t. a partiular goal. This is similar to what partial dedution does.

(2) The elimination of multiple or intermediate data strutures. This is similar to what the strategies

for eliminating unneessary variables [38℄ and onjuntive partial dedution do. (3) The redution

of nondeterminism. This is aomplished by deriving programs whose non-unit lauses are mutually

exlusive w.r.t. a given mode, that is, by Proposition 2, semideterministi programs.

The Determinization Strategy is based upon three subsidiary strategies: (i) the Unfold-Simplify

subsidiary strategy, whih uses the safe unfolding, equation elimination, disequation replaement,

and subsumption rules, (ii) the Partition subsidiary strategy, whih uses the safe ase split, equation

elimination, disequation replaement, subsumption, and safe head generalization rules, and (iii) the

De�ne-Fold subsidiary strategy whih uses the de�nition introdution and safe folding rules. For rea-

sons of larity, during the presentation of the Determinization Strategy we use high-level desriptions

of the subsidiary strategies. These desriptions are used to establish the orretness of Determinization

(see Theorem 7). Full details of the subsidiary strategies will be given in Setions 6.2, 6.3, and 6.4,

respetively.

6.1 The Determinization Strategy

Given an initial program P , a mode M for P , and an atom p(t

1

; : : : ; t

h

) w.r.t. whih we want to

speialize P , we introdue by the de�nition introdution rule, the lause

S: p

s

(X

1

; : : : ; X

r

) p(t

1

; : : : ; t

h

)

where X

1

; : : : ; X

r

are the distint variables ourring in p(t

1

; : : : ; t

h

).
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We also de�ne a mode p

s

(m

1

; : : : ; m

r

) for the prediate p

s

by stipulating that, for any j = 1; : : : ; r;

m

j

is + i� X

j

is an input variable of p(t

1

; : : : ; t

h

) aording to the mode M . We assume that the

program P is safe w.r.t. M . Thus, also program P [fSg is safe w.r.t. M [fp

s

(m

1

; : : : ; m

r

)g. We also

assume that P satis�es mode M and thus, program P [ fSg satis�es mode M [ fp

s

(m

1

; : : : ;m

r

)g.

Our Determinization Strategy is presented below as an iterative proedure that, at eah iteration,

manipulates the following three sets of lauses: (1) TransfP, whih is the set of lauses from whih

we will onstrut the speialized program, (2) Defs, whih is the set of lauses introdued by the

de�nition introdution rule, and (3) Cls, whih is the set of lauses to be transformed during the

urrent iteration. Initially, Cls onsists of the single lause S: p

s

(X

1

; : : : ;X

r

) p(t

1

; : : : ; t

h

) whih is

onstruted as we have indiated above.

The Determinization Strategy starts o� eah iteration by applying the Unfold-Simplify subsidiary

strategy to the set Cls, thereby deriving a new set of lauses alled UnfoldedCls. The Unfold-Simplify

strategy �rst unfolds the lauses in Cls, and then it simpli�es the derived set of lauses by applying

the equation elimination, disequation replaement, and subsumption rules.

Then the set UnfoldedCls is divided into two sets: (i) UnitCls, whih is the set of unit lauses,

and (ii) NonunitCls, whih is the set of non-unit lauses. The Determinization Strategy proeeds by

applying the Partition subsidiary strategy to NonunitCls, thereby deriving a new set of lauses alled

PartitionedCls. The Partition strategy onsists of suitable appliations of the ase split, equation

elimination, disequation replaement, and head generalization rules suh that the set PartitionedCls

has the following property: it an be partitioned into sets of lauses, alled pakets, suh that two

lauses taken from di�erent pakets are mutually exlusive (w.r.t. a suitable mode).

The Determinization Strategy ontinues by applying the De�ne-Fold subsidiary strategy to the

lauses in PartitionedCls, thereby deriving a new, semideterministi set of lauses alled FoldedCls.

The De�ne-Fold subsidiary strategy introdues a (possibly empty) set NewDefs of de�nition lauses

suh that eah paket an be folded into a single lause by using a set of de�nition lauses in Defs [

NewDefs. We have that lauses derived by folding di�erent pakets are mutually exlusive and, thus,

UnitCls [ FoldedCls is semideterministi.

At the end of eah iteration, UnitCls [ FoldedCls is added to TransfP, NewDefs is added to Defs,

and the value of the set Cls is updated to NewDefs.

The Determinization Strategy terminates when Cls = ;, that is, no new prediate is introdued

during the urrent iteration.

Determinization Strategy

Input: A program P , an atom p(t

1

; : : : ; t

h

) w.r.t. whih we want to speialize P , and a mode M for

P suh that P is safe w.r.t. M and P satis�es M .

Output: A speialized program P

s

, and an atom p

s

(X

1

;: : : ;X

r

), with fX

1

;: : : ;X

r

g=vars(p(t

1

;: : : ; t

h

))

suh that: (i) for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g, M(P ) j= p(t

1

; : : : ; t

h

)# i�

M(P

s

) j= p

s

(X

1

; : : : ;X

r

)#, and (ii) for every substitution � = fX

1

=v

1

; : : : ;X

r

=v

r

g suh that the atom

p(t

1

; : : : ; t

h

)� satis�es mode M , we have that: (ii.1) p(t

1

; : : : ; t

h

)� sueeds in P i� p

s

(X

1

; : : : ;X

r

)�

sueeds in P

s

, and (ii.2) P

s

is semideterministi for p

s

(X

1

; : : : ;X

r

)�.

Initialize: Let S be the lause p

s

(X

1

; : : : ;X

r

) p(t

1

; : : : ; t

h

).

TransfP := P ; Defs := fSg; Cls := fSg; M

s

:= M [ fp

s

(m

1

; : : : ;m

r

)g, where for any j = 1; : : : ; r;

m

j

= + i� X

j

is an input variable of p(t

1

; : : : ; t

h

) aording to the mode M ;

while Cls 6= ; do

(1) Unfold-Simplify:

We apply the safe unfolding, equation elimination, disequation replaement, and subsumption
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rules aording to the Unfold-Simplify Strategy given in Setion 6.2 below, and from Cls we

derive a new set of lauses UnfoldedCls .

(2) Partition:

Let UnitCls be the unit lauses ourring in UnfoldedCls , and NonunitCls be the set of non-unit

lauses in UnfoldedCls .

We apply the safe ase split, equation elimination, disequation replaement, and safe head

generalization rules aording to the Partition Strategy given in Setion 6.3 below, and from

NonunitCls we derive a set PartitionedCls of lauses whih is the union of disjoint subsets of

lauses. Eah subset is alled a paket. The pakets of PartitionedCls enjoy the following prop-

erties:

(2a) eah paket is a set of lauses of the form (modulo renaming of variables):

8

>

<

>

:

H  Diseqs; G

1

� � �

H  Diseqs; G

m

where Diseqs is a onjuntion of disequations and for k = 1; : : : ;m, no disequation ours in G

k

,

and

(2b) for any two lauses C

1

and C

2

, if the paket of C

1

is di�erent from the paket of C

2

, then

C

1

and C

2

are mutually exlusive w.r.t. mode M

s

.

(3) De�ne-Fold:

We apply the de�nition introdution and the safe folding rules aording to the De�ne-Fold

subsidiary strategy given in Setion 6.4 below. Aording to that strategy, we introdue a

(possibly empty) set NewDefs of new de�nition lauses and a set M

new

of modes suh that:

(3a) in M

new

there exists exatly one mode for eah distint head prediate in NewDefs, and

(3b) from eah paket in PartitionedCls we derive a single lause of the form:

H  Diseqs;newp(: : :)

by an appliation of the folding rule, whih is safe w.r.t. M

new

, using the lauses in Defs [

NewDefs.

Let FoldedCls be the set of lauses derived by folding the pakets in PartitionedCls .

(4) TransfP := TransfP [UnitCls [ FoldedCls ; Defs := Defs [NewDefs; Cls := NewDefs;

M

s

:=M

s

[M

new

end-while

We derive the speialized program P

s

by applying the de�nition elimination rule and keeping only the

lauses of TransfP on whih p

s

depends.

The Determinization Strategy may fail to terminate for two reasons: (i) the Unfold-Simplify subsidiary

strategy may not terminate, beause it may perform in�nitely many unfolding steps, and (ii) the

ondition Cls 6= ; for exiting the while-do loop may always be false, beause at eah iteration the

De�ne-Fold subsidiary strategy may introdue new de�nition lauses. We will disuss these issues in

more detail in Setion 9.

Now we show that, if the Determinization Strategy terminates, then the least Herbrand model and

the operational semantis are preserved. Moreover, the derived speialized program P

s

is semideter-

ministi for p

s

(X

1

; : : : ;X

r

)� as indiated by the following theorem.
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Theorem 7 (Corretness of the Determinization Strategy) Let us onsider a program P , a

non-basi atom p(t

1

; : : : ; t

h

), and a mode M for P suh that: (1) P is safe w.r.t. M and (2) P

satis�es M . If the Determinization Strategy terminates with output program P

s

and output atom

p

s

(X

1

; : : : ;X

r

) where fX

1

; : : : ;X

r

g = vars(p(t

1

; : : : ; t

h

)), then

(i) for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g,

M(P ) j= p(t

1

; : : : ; t

h

)# i� M(P

s

) j= p

s

(X

1

; : : : ;X

r

)# and

(ii) for every substitution � = fX

1

=v

1

; : : : ;X

r

=v

r

g suh that the atom p(t

1

; : : : ; t

h

)� satis�es mode

M ,

(ii.1) p(t

1

; : : : ; t

h

)� sueeds in P i� p

s

(X

1

; : : : ;X

r

)� sueeds in P

s

, and

(ii.2) P

s

is semideterministi for p

s

(X

1

; : : : ;X

r

)�.

Proof : Let Defs and P

s

be the set of de�nition lauses and the speialized program obtained at the

end of the Determinization Strategy.

(i) Sine p

s

(X

1

; : : : ;X

r

)  p(t

1

; : : : ; t

h

) is the only lause for p

s

in P [ Defs and fX

1

; : : : ;X

r

g =

vars(p(t

1

; : : : ; t

h

)), for every ground substitution # = fX

1

=u

1

; : : : ;X

r

=u

r

g we have that M(P ) j=

p(t

1

; : : : ; t

h

)# i� M(P [ Defs) j= p

s

(X

1

; : : : ;X

r

)#. By the orretness of the transformation rules

w.r.t. the least Herbrand model (see Theorem 5), we have that M(P [ Defs) j= p

s

(X

1

; : : : ;X

r

)# i�

M(P

s

) j= p

s

(X

1

; : : : ;X

r

)#.

Point (ii.1) follows from Theorem 6 beause during the Determinization Strategy, eah appliation of

the unfolding, folding, head generalization, and ase split rule is safe.

(ii.2) We �rst observe that, by onstrution, for every substitution �, the atom p(t

1

; : : : ; t

h

)� satis�es

mode M i� p

s

(X

1

; : : : ;X

r

)� satis�es mode M

s

, where M

s

is the mode obtained from M at the end of

the Determinization Strategy. Thus, Point (ii.2) an be shown by proving that P

s

is semideterministi

w.r.t. M

s

. In order to prove this fat, it is enough to prove that TransfP

w

�P is semideterministi

w.r.t. M

s

, where TransfP

w

is the set of lauses whih is the value of the variable TransfP at the end of

the while-do statement of the Determinization Strategy. Indeed, P

s

is equal to TransfP

w

�P beause,

by onstrution, p

s

does not depend on any lause of P , and thus, by the �nal appliation of the

de�nition elimination rule, all lauses of P are removed from TransfP

w

.

By Proposition 2, it is enough to prove that: (a) TransfP

w

�P is linear, (b) TransfP

w

�P is safe

w.r.t. M

s

, () TransfP

w

�P satis�es M

s

, and (d) the non-unit lauses of TransfP

w

�P are pairwise

mutually exlusive w.r.t. M

s

.

Property (a) holds beause aording to the Determinization Strategy, after every appliation of

the safe folding rule we get a lause of the form: H  Diseqs ;newp(: : :), where a single non-basi

atom ours in the body. All other lauses in TransfP

w

�P are unit lauses.

Properties (b) and () follow from Theorem 6 realling that the appliation of the unfolding,

folding, head generalization, and ase split rules are all safe.

Property (d) an be proved by showing that, during the exeution of the Determinization Strat-

egy, the following Property (I) holds: all the non-unit lauses of TransfP�P are pairwise mutually

exlusive w.r.t. M

s

. Indeed, initially TransfP�P is empty and thus, Property (I) holds. Furthermore,

Property (I) is an invariant of the while-do loop. Indeed, at the end of eah exeution of the body of

the while-do (see Point (4) of the strategy), the non-unit lauses whih are added to the urrent value

of TransfP are the elements of the set FoldedCls and those non-unit lauses are derived by applying

the Partition and De�ne-Fold subsidiary strategies at Points (3) and (4), respetively. By onstru-

tion, the lauses in FoldedCls are pairwise mutually exlusive w.r.t. M

new

, and their head prediates

do not our in TransfP . Thus, the lauses of TransfP [ UnitCls [ FoldedCls are pairwise mutually

exlusive w.r.t.M

s

[M

new

. As a onsequene, after the two assignments (see Point (4) of the strategy)

TransfP := TransfP [UnitCls [FoldedCls and M

s

:= M

s

[M

new

, we have that Property (I) holds. 2
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Now we desribe the three subsidiary strategies for realizing the Unfold-Simplify, Partition, and

De�ne-Fold transformations as spei�ed by the Determinization Strategy. We will see these subsidiary

strategies in ation in the examples of Setion 7.

During the appliation of our subsidiary strategies it will be onvenient to rewrite every safe lause

into its normal form. The normal formN of a safe lause an be onstruted by performing disequation

replaements and disequation promotions, so that the following Properties N1{N5 hold:

(N1) every disequation is of the form: X 6= t, with t di�erent from X and uni�able with X,

(N2) every disequation ours in bd(N) to the left of every atom di�erent from a disequation,

(N3) if X 6= Y ours in bd(N) and both X and Y are input variables of hd(N), then in hd(N) the

leftmost ourrene of X is to the left of the leftmost ourrene of Y ,

(N4) for every disequation of the form X 6=Y where Y is an input variable, we have that also X is an

input variable, and

(N5) for any pair of disequations d

1

and d

2

in bd(N), it does not exist a substitution � whih is a

bijetive mapping from the set of the loal variables of d

1

in N onto the set of the loal variables of

d

2

in N suh that d

1

� = d

2

.

We have that: (i) the normal form of a safe lause is unique, modulo renaming of variables and

disequation promotion, (ii) no two equal disequations our in the normal form of a safe lause, and

(iii) given a program P and a mode M for P suh that P is safe w.r.t. M and P satis�es M , if we

rewrite a lause of P into its normal form, then the least Herbrand model semantis and the operational

semantis are preserved (this fat is a onsequene of Theorem 5, Theorem 6, and Proposition 1).

A safe lause for whih Properties N1{N5 hold, is said to be in normal form. If a lause C is in

normal form, then by Property N2, every disequation in bd(C) ours also in grd(C).

6.2 The Unfold-Simplify Subsidiary Strategy

The Unfold-Simplify strategy �rst unfolds the lauses in Cls w.r.t. the leftmost atom in their body,

and then it keeps unfolding the derived lauses as long as input variables are not instantiated. Now, in

order to give the formal de�nition of the Unfold-Simplify strategy we introdue the following onept.

De�nition 13 (Consumer Atom) Let P be a program and M a mode for P . A non-basi atom

q(t

1

; : : : ; t

k

) is said to be a onsumer atom i� for every non-unit lause in P whose head uni�es with

that non-basi atom via an mgu #, we have that for i = 1; : : : ; k, if t

i

is an input argument of q then

t

i

# is a variant of t

i

.

The Unfold-Simplify strategy is realized by the following Unfold-Simplify proedure, where the

expression Simplify(S ) denotes the set of lauses derived from a given set S of lauses by: (1) �rst,

applying whenever possible the equation elimination rule to the lauses in S, (2) then, rewriting the

derived lauses into their normal form, and (3) �nally, applying as long as possible the subsumption

rule.

Proedure Unfold-Simplify(Cls ;UnfoldedCls).

Input: A set Cls of lauses in a program P and a mode M

s

for P . P is safe w.r.t. M

s

and for eah

C 2 Cls , the input variables of the leftmost non-basi atom in the body of C are input variables of

the head of C.

Output: A new set UnfoldedCls of lauses whih are derived from Cls by applying the safe unfolding,

equation elimination, disequation replaement, and subsumption rules. The lauses in UnfoldedCls

are safe w.r.t. M

s

.

(1) Unfold w.r.t. Leftmost Non-basi Atom:
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UnfoldedCls := fE j there exists a lause C 2 Cls and lause E is derived by unfolding C w.r.t.

the leftmost non-basi atom in its bodyg;

UnfoldedCls := Simplify(UnfoldedCls)

(2) Unfold w.r.t. Leftmost Consumer Atom:

while there exists a lause C 2 UnfoldedCls whose body has a leftmost onsumer atom, say A,

suh that the unfolding of C w.r.t. A is safe do

UnfoldedCls := (UnfoldedCls � fCg) [ fE j E is derived by unfolding C w.r.t. Ag;

UnfoldedCls := Simplify(UnfoldedCls)

end-while

Notie that our assumptions on the input program P and lauses Cls ensure that the �rst unfolding

step performed by the Unfold-Simplify proedure is safe.

Notie also that our Unfold-Simplify strategy may fail to terminate. We will briey return to this

issue in Setion 9.

Our Unfold-Simplify strategy di�ers from usual unfolding strategies for (onjuntive) partial de-

dution (see, for instane, [8, 13, 36, 41℄), beause mode information is used. We have found this

strategy very e�etive on several examples as shown in the following Setion 7.

6.3 The Partition Subsidiary Strategy

The Partition strategy is realized by the following proedure, where we will write p(t; u) to denote an

atom with non-basi prediate p of arity k (� 0), suh that: (i) t is an h-tuple of terms, with 0�h�k,

denoting the h input arguments of p, and (ii) u is a (k�h)-tuple of terms denoting the arguments of

p whih are not input arguments.

Proedure Partition(NonunitCls ;PartitionedCls).

Input: A set NonunitCls of non-unit lauses in normal form and without variables in ommon. A

mode M

s

for NonunitCls. The lauses in NonunitCls are safe w.r.t. M

s

.

Output: A set PartitionedCls of lauses whih is the union of disjoint pakets of lauses suh that:

(2a) eah paket is a set of lauses of the form (modulo renaming of variables):

8

>

<

>

:

H  Diseqs; G

1

� � �

H  Diseqs; G

m

where Diseqs is a onjuntion of disequations and for k = 1; : : : ;m, no disequation ours in G

k

, and

(2b) for any two lauses C

1

and C

2

, if the paket of C

1

is di�erent from the paket of C

2

, then C

1

and

C

2

are mutually exlusive w.r.t. mode M

s

.

The lauses in PartitionedCls are in normal form and they are safe w.r.t. M

s

.

while there exist in NonunitCls two lauses of the form:

C

1

. p(t

1

; u

1

) Body

1

C

2

. p(t

2

; u

2

) Body

2

suh that: (i) C

1

and C

2

are not mutually exlusive w.r.t. mode M

s

, and either

(ii.1) t

1

is not a variant of t

2

or

(ii.2) t

1

is a variant of t

2

via an mgu # suh that t

1

#= t

2

, and for any substitution � whih is a bijetive

mapping from the set of loal variables of grd(C

1

#) in C

1

# onto the set of loal variables of grd(C

2

)

in C

2

, grd(C

1

#�) annot be made syntatially equal to grd(C

2

) by applying disequation promotion

do
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We take a binding X=r as follows.

(Case 1) Suppose that t

1

is not a variant of t

2

. In this ase, sine C

1

and C

2

are not mutually

exlusive, we have that t

1

and t

2

are uni�able and, for some i; j 2 f1; 2g, with i 6=j, there exists

an mgu # of t

i

and t

j

and a binding Y=t

a

in # suh that t

j

fY=t

a

g is not a variant of t

j

. Without

loss of generality we may assume that i=1 and j=2. Then we take the binding X=r to be Y=t

a

.

(Case 2) Suppose that t

1

is a variant of t

2

via an mgu #. Now every safe lause whose normal

form has a disequation of the form X 6= t, where X is a loal variable of that disequation in

that lause, is mutually exlusive w.r.t. any other safe lause. This is the ase beause, for any

substitution � whih does not bind X, t� is uni�able with X and, thus, X 6= t� is not satis�able.

Thus, for some i; j 2 f1; 2g, with i 6= j, there exists a disequation (Y 6= t

a

)# in grd(C

i

#) where

Y # is an input variable of hd(C

i

#), suh that for any substitution � whih is a bijetive mapping

from the set of loal variables of grd(C

i

#) in C

i

# onto the set of loal variables of grd(C

j

#) in

C

j

# and for every disequation (Z 6= t

b

)# in grd (C

j

#), we have that (Y 6= t

a

)#� is di�erent from

(Z 6= t

b

)#. We also have that Y # is an input variable of hd (C

j

#). Without loss of generality

we may assume that i=1, j=2, t

1

#= t

2

, and C

2

#=C

2

. Then we take the binding X=r to be

(Y=t

a

)#.

We apply the ase split rule to lause C

2

w.r.t. X=r, that is, we derive the two lauses:

C

21

. (p(t

2

; u

2

) Body

2

)fX=rg

C

22

. p(t

2

; u

2

) X 6=r;Body

2

We update the value of NonunitCls as follows:

NonunitCls := (NonunitCls � fC

2

g) [ fC

21

; C

22

g

NonunitCls := Simplify(NonunitCls).

end-while

Now the set NonunitCls is partitioned into subsets of lauses and after suitable renaming of variables

and disequation promotion, eah subset is of the form:

8

>

<

>

:

p(t; u

1

) Diseqs;Goal

1

� � �

p(t; u

m

) Diseqs;Goal

m

where Diseqs is a onjuntion of disequations and for k = 1; : : : ;m, no disequation ours in Goal

k

,

and any two lauses in di�erent subsets are mutually exlusive w.r.t. mode M

s

.

Then we proess every subset of lauses we have derived, by applying the safe head generalization

rule so to replae the non-input arguments in the heads of the lauses belonging to the same subset

by their most spei� ommon generalization. Thus, every subset of lauses will eventually take the

form:

8

>

<

>

:

p(t; u) Eqs

1

;Diseqs ;Goal

1

� � �

p(t; u) Eqs

m

;Diseqs ;Goal

m

where u is the most spei� ommon generalization of the terms u

1

; : : : ; u

m

and, for k = 1; : : : ;m, the

goal Eqs

k

is a onjuntion of the equations V

1

=v

1

; : : : ; V

r

=v

r

suh that ufV

1

=v

1

; : : : ; V

r

=v

r

g = u

k

.

Finally, we move all disequations to the leftmost positions of the body of every lause, thereby getting

the set PartitionedCls.

Notie that in the above proedure the appliation of the ase split rule to lause C

2

w.r.t. X=r is safe

beause: (i) lauses C

1

and C

2

are safe w.r.t. M

s

, (ii) X is an input variable of hd(C

22

) (reall that
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our hoie of X=r in Case 2 ensures that X is an input variable of hd (C

2

)), and (iii) eah variable in

r is either an input variable of hd (C

22

) or a loal variable of X 6=r in C

22

. Thus, lauses C

21

and C

22

are safe w.r.t. mode M

s

and they are also mutually exlusive w.r.t. M

s

.

The following property is partiularly important for the mehanization of our Determinization

Strategy.

Theorem 8 The Partition proedure terminates.

Proof : See Appendix C. 2

When the Partition proedure terminates, it returns a set PartitionedCls of lauses whih is the

union of pakets of lauses enjoying Properties (2a) and (2b) indiated in the Output spei�ation of

that proedure. These properties are a straightforward onsequene of the termination ondition of

the while-do statement of that same proedure.

6.4 The De�ne-Fold Subsidiary Strategy

The De�ne-Fold strategy is realized by the following proedure.

Proedure De�ne-Fold(PartitionedCls ;Defs;NewDefs;FoldedCls ).

Input: (i) A mode M

s

, (ii) a set PartitionedCls of lauses whih are safe w.r.t. M

s

, and (iii) a set

Defs of de�nition lauses. PartitionedCls is the union of the disjoint pakets of lauses omputed by

the Partition subsidiary strategy.

Output: (i) A (possibly empty) set NewDefs of de�nition lauses, together with a mode M

new

on-

sisting of exatly one mode for eah distint head prediate in NewDefs. For eah C 2 NewDefs, the

input variables of the leftmost non-basi atom in the body of C are input variables of the head of C.

(ii) A set FoldedCls of folded lauses.

NewDefs := ;; M

new

:= ;; FoldedCls := ;;

while there exists in PartitionedCls a paket Q of the form:

8

>

<

>

:

H  Diseqs; G

1

� � �

H  Diseqs; G

m

where Diseqs is a onjuntion of disequations and for k = 1; : : : ;m, no disequation ours in G

k

,

do PartitionedCls := PartitionedCls �Q and apply the de�nition and safe folding rules as follows.

Case (�) Let us suppose that the set Defs of the available de�nition lauses ontains a subset of

lauses of the form:

8

>

<

>

:

newq(X

1

; : : : ;X

h

)  G

1

� � �

newq(X

1

; : : : ;X

h

)  G

m

suh that: (i) they are all the lauses in Defs for prediate newq, (ii) X

1

; : : : ;X

h

inlude every

variable whih ours in one of the goals G

1

; : : : ; G

m

and also ours in one of the goals H;Diseqs

(this property is needed for the orretness of folding, see Setion 4.1), and (iii) for i = 1; : : : ; h, if

X

i

is an input argument of newq then X

i

is either an input variable of H (aording to the given

mode M

s

) or an input variable of the leftmost non-basi atom of one of the goals G

1

; : : : ; G

m

.

Then we fold the given paket and we get:

FoldedCls := FoldedCls [ fH  Diseqs;newq(X

1

; : : : ;X

h

)g
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Case (�) If in Defs there is no set of de�nition lauses satisfying the onditions desribed in Case (�),

then we add to NewDefs the following lauses for a new prediate newr :

8

>

<

>

:

newr(X

1

; : : : ;X

h

)  G

1

� � �

newr(X

1

; : : : ;X

h

)  G

m

where, for i = 1; : : : ; h, either (i) X

i

ours in one of the goals G

1

; : : : ; G

m

and also ours in one

of the goals H;Diseqs, or (ii) X

i

is an input variable of the leftmost non-basi atom of one of

the goals G

1

; : : : ; G

m

. We add to M

new

the mode newr (m

1

; : : : ; m

h

) suh that for i = 1; : : : ; h,

m

i

=+ i� X

i

is either an input variable of H or an input variable of the leftmost non-basi atom

of one of the goals G

1

; : : : ; G

m

. We then fold the paket under onsideration and we get:

FoldedCls := FoldedCls [ fH  Diseqs;newr (X

1

; : : : ;X

h

)g

end-while

Notie that the post-onditions on the set NewDefs whih is derived by the De�ne-Fold proedure (see

Point (i) of the Output of the proedure), ensure the satisfation of the pre-onditions on the set Cls

whih is an input of the Unfold-Simplify proedure. Indeed, reall that the set Cls is onstruted during

the Determinization Strategy by the assignment Cls := NewDefs. Reall also that these pre-onditions

are needed to ensure that the �rst unfolding step performed by the Unfold-Simplify proedure is safe.

Notie also that eah appliation of the folding rule is safe (see De�nition 5). This fat is implied

in Case (�) by Condition (iii), and in Case (�) by the de�nition of the mode for newr .

Finally, notie that the De�ne-Fold proedure terminates. However, this proedure does not guar-

antee the termination of the speialization proess, beause at eah iteration of the while-do loop of the

Determinization Strategy, the De�ne-Fold proedure may introdue a nonempty set of new de�nition

lauses. We will briey disuss this issue in Setion 9.

7 Examples of Appliation of the Determinization Strategy

In this setion we will present some examples of program speialization where we will see in ation

our Determinization Strategy together with the Unfold-Simplify, Partition, and De�ne-Fold subsidiary

strategies.

7.1 A Complete Derivation: Computing the Ourrenes of a Pattern in a String

We onsider again the program Math Pos of Setion 5.3. The modeM for the program Math Pos is

fmath pos(+;+; ?), append (?; ?;+), length(+; ?)g. We leave it to the reader to verify thatMath Pos

satis�es M .

The derivation we will perform using the Determinization Strategy is more hallenging than the

ones presented in the literature (see, for instane, [11, 12, 13, 15, 44℄) beause an ourrene of the

pattern P in the string S is spei�ed in the initial program (see lause 1) in a nondeterministi way

by stipulating the existene of two substrings L and R suh that S is the onatenation of L, P , and

R.

We want to speialize the Math Pos program w.r.t. the atom math pos([a; a; b℄; S;N). Thus, we

�rst introdue the de�nition lause:

6. math pos

s

(S;N) math pos([a; a; b℄; S;N)

The mode of the new prediate is math pos

s

(+; ?) beause S is an input argument of math pos and

N is not an input argument. Our transformation strategy starts o� with the following initial values:

Defs = Cls = f6g, TransfP = Math Pos , and M

s

=M [ fmath pos

s

(+; ?)g.
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First iteration

Unfold-Simplify. By unfolding lause 6 w.r.t. the leftmost atom in its body we derive:

7. math pos

s

(S;N) append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

The body of lause 7 has no onsumer atoms (notie that, for instane, the mgu of append (Y;R; S) and

the head of lause 5 has the binding S=[AjZ℄ where S is an input variable). Thus, the Unfold-Simplify

subsidiary strategy terminates. We have: UnfoldedCls = f7g.

Partition. NonunitCls is made out of lause 7 only, and thus, the Partition subsidiary strategy

immediately terminates and produes a set PartitionedCls whih onsists of a single paket made out

of lause 7.

De�ne-Fold. In order to fold lause 7 in PartitionedCls, the De�ne-Fold subsidiary strategy introdues

the following de�nition lause:

8. new1(S;N) append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

The mode of new1 is new1(+; ?). By folding lause 7 using lause 8 we derive:

9. math pos

s

(S;N) new1(S;N)

Thus, the �rst iteration of the Determinization Strategy terminates with Defs = f6; 8g, Cls = f8g,

TransfP = Math Pos [ f9g, and M

s

=M [ fmath pos

s

(+; ?); new1(+; ?)g.

Seond iteration

Unfold-Simplify. We follow the subsidiary strategy desribed in Setion 6.2 and we �rst unfold lause

8 in Cls w.r.t. the leftmost atom in its body. We get:

10. new1(S;N) append (L; [a; a; b℄; [ ℄); length(L;N)

11. new1([CjS℄; N) append (Y;R; S); append (L; [a; a; b℄; [CjY ℄); length(L;N)

Now we unfold lauses 10 and 11 w.r.t. the leftmost onsumer atom of their bodies (see the underlined

atoms). The unfolding of lause 10 amounts to its deletion beause the atom append (L; [a; a; b℄; [ ℄) is

not uni�able with any head in program Math Pos. The unfolding of lause 11 yields two new lauses

that are further unfolded aording to the Unfold-Simplify subsidiary strategy. After some unfolding

steps, we derive the following lauses:

12. new1([ajS℄; 0)  append ([a; b℄; R; S)

13. new1([CjS℄; s(N))  append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

Partition. We apply the safe ase split rule to lause 13 w.r.t. to the binding C=a, beause the input

argument in the head of this lause is uni�able with the input argument in the head of lause 12 via

the mgu fC=ag. We derive the following two lauses:

14. new1([ajS℄; s(N))  append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

15. new1([CjS℄; s(N))  C 6=a; append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

Now, the set of lauses derived so far by the Partition subsidiary strategy an be partitioned into two

pakets: the �rst one is made out of lauses 12 and 14, where the input argument of the head prediate

is of the form [ajS℄, and the seond one is made out of lause 15 only, where the input argument of

the head prediate is of the form [CjS℄ with C 6=a.

The Partition subsidiary strategy terminates by applying the safe head generalization rule to

lauses 12 and 14, so to replae the seond arguments in their heads by the most spei� ommon

generalization of those arguments, that is, a variable. We get the paket:

16. new1([ajS℄;M)  M=0; append ([a; b℄; R; S)

17. new1([ajS℄;M)  M=s(N); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)
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For the paket made out of lause 15 only, no appliation of the safe head generalization rule is

performed. Thus, we have derived the set of lauses PartitionCls whih is the union of the two pakets

f16; 17g and f15g.

De�ne-Fold. Sine there is no set of de�nition lauses in Defs whih an be used to fold the paket

f16; 17g, we are in Case (�) of the De�ne-Fold subsidiary strategy. Thus, we introdue a new prediate

new2 as follows:

18. new2(S;M) M=0; append ([a; b℄; R; S)

19. new2(S;M)  M=s(N); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

The mode of new2 is new2(+; ?) beause S is an input variable of the head of eah lause of the

orresponding paket. By folding lauses 16 and 17 using lauses 18 and 19 we derive the following

lause:

20. new1([ajS℄;M)  new2(S;M)

We then onsider the paket made out of lause 15 only. This paket an be folded using lause 8 in

Defs. Thus, we are in Case (�) of the De�ne-Fold subsidiary strategy. By folding lause 15 we derive

the following lause:

21. new1([CjS℄; s(N)) C 6=a; new1(S;N)

Thus, FoldedCls is the set f20; 21g.

After these folding steps we onlude the seond iteration of the Determinization Strategy with

the following assignments: Defs := Defs [ f18; 19g; Cls := f18; 19g; TransfP := TransfP [ f20; 21g;

M

s

:=M

s

[ fnew2(+; ?)g.

Third iteration

Unfold-Simplify. From Cls, that is, lauses 18 and 19, we derive the set UnfoldedCls made out of the

following lauses:

22. new2([ajS℄; 0)  append ([b℄; R; S)

23. new2([ajS℄; s(0))  append ([a; b℄; R; S)

24. new2([CjS℄; s(s(N)))  append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

Partition. The set NonunitCls is idential to UnfoldedCls. From NonunitCls we derive the set Parti-

tionedCls whih is the union of two pakets. The �rst paket onsists of the following lauses:

25. new2([ajS℄;M)  M=0; append ([b℄; R; S)

26. new2([ajS℄;M)  M=s(0); append ([a; b℄; R; S)

27. new2([ajS℄;M)  M=s(s(N)); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

The seond paket onsists of the following lause only:

28. new2([CjS℄; s(s(N)))  C 6=a; append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

De�ne-Fold. We introdue the following de�nition lauses:

29. new3(S;M) M=0; append ([b℄; R; S)

30. new3(S;M) M=s(0); append ([a; b℄; R; S)

31. new3(S;M) M=s(s(N)); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

where the mode for new3 is new3(+; ?). By folding, from PartitionedCls we derive the following two

lauses:

32. new2([ajS℄;M)  new3(S;M)

33. new2([CjS℄; s(s(N)))  C 6=a; new1(S;N)

whih onstitute the set FoldedCls.
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The third iteration of the Determinization Strategy terminates with the following assignments:

Defs := Defs [ f29; 30; 31g; Cls := f29; 30; 31g; TransfP := TransfP [ f32; 33g; M

s

:= M

s

[

fnew3(+; ?)g.

Fourth iteration

Unfold-Simplify. From Cls we derive the new set UnfoldedCls made out of the following lauses:

34. new3([bjS℄; 0)  append ([ ℄; R; S)

35. new3([ajS℄; s(0))  append ([b℄; R; S)

36. new3([ajS℄; s(s(0)))  append ([a; b℄; R; S)

37. new3([CjS℄; s(s(s(N))))  append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

Partition. The set NonunitCls is idential to UnfoldedCls. From NonunitCls we derive the new set

PartitionedCls made out of the following lauses:

38. new3([ajS℄; s(M))  M=0; append ([b℄; R; S)

39. new3([ajS℄; s(M))  M=s(0); append ([a; b℄; R; S)

40. new3([ajS℄; s(M))  M=s(s(N)); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

41. new3([bjS℄;M)  M=0; append ([ ℄; R; S)

42. new3([bjS℄;M)  M=s(s(s(N))); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

43. new3([CjS℄; s(s(s(N)))) C 6=a;C 6=b; append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

PartitionedCls onsists of three pakets: f38; 39; 40g, f41; 42g, and f43g.

De�ne-Fold. We introdue two new prediates by means of the following de�nition lauses:

44. new4(S;M) M=0; append ([ ℄; R; S)

45. new4(S;M) M=s(s(s(N))); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

We now fold the lauses in PartitionedCls and we derive the set FoldedCls made out of the following

lauses:

46. new3([ajS℄; s(M))  new3(R;S)

47. new3([bjS℄;M)  new4(R;S)

48. new3([CjS℄; s(s(s(N))))  C 6=a; C 6=b; new1(S;N)

The fourth iteration terminates with the following assignments: Defs := Defs [ f44; 45g; Cls :=

f44; 45g; TransfP := TransfP [ f46; 47; 48g; M

s

:=M

s

[ fnew4(+; ?)g.

Fifth iteration

Unfold-Simplify. From Cls we derive the new set UnfoldedCls made out of the following lauses:

49. new4(S; 0) 

50. new4([ajS℄; s(s(s(0))))  append ([a; b℄; R; S)

51. new4([CjS℄; s(s(s(s(N)))))  append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

Partition. The set NonunitCls is made out of lauses 50 and 51. From NonunitCls we derive the new

set PartitionedCls made out of the following lauses:

52. new4([ajS℄; s(s(s(M))))  M=0; append ([a; b℄; R; S)

53. new4([ajS℄; s(s(s(M))))  M=s(N); append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

54. new4([CjS℄; s(s(s(s(N)))))  C 6=a; append (Y;R; S); append (L; [a; a; b℄; Y ); length(L;N)

PartitionedCls onsists of two pakets: f52; 53g and f54g.

De�ne-Fold. We are able to perform all required folding steps without introduing new de�nition

lauses (see Case (�) of the De�ne-Fold proedure). In partiular, (i) we fold lauses 52 and 53 using

lauses 18 and 19, and (ii) we fold lause 54 using lause 8. Sine no new de�nition is introdued,
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N :=0

new1 new2 new3 new4 true

=a, N :=N+1

= a, N :=N+3

any harater

return N

6=a, N :=N+4

6=a, N :=N+1

=a =a =b

6= a, N :=N+2

6=a and 6=b, N :=N+3

Figure 1: The �nite automaton with the ounter N whih orresponds to Math Pos

s

.

the set Cls is empty and the transformation strategy terminates. Our �nal speialized program is the

program Math Pos

s

shown in Setion 5.3.

The Math Pos

s

program is semideterministi and it orresponds to the �nite automaton with

one ounter depited in Fig. 1. The prediates orrespond to the states of the automaton and the

lauses orrespond to the transitions. The prediate new1 orresponds to the initial state, beause the

program is intended to be used for goals of the form math pos

s

(S;N), where S is bound to a list of

haraters, and by lause 1 math pos

s

(S;N) alls new1(S;N). Notie that this �nite automaton is

deterministi exept for the state orresponding to the prediate new4, where the automaton an either

(i) aept the input string by returning the value of N and moving to the �nal state true, even if the

input string has not been ompletely sanned (see lause 49), or (ii) move to the state orresponding

to new2, if the symbol of the input string whih is sanned is a (see lause 55), or (iii) move to the

state orresponding to new1, if the symbol of the input string whih is sanned is di�erent from a (see

lause 56).

7.2 Multiple Pattern Mathing

Given a list Ps of patterns and a string S we want to ompute the position, say N , of any ourrene

in S of a pattern whih is a member of the list Ps. For any given Ps and S the following program

omputes N in a nondeterministi way:

Program Mmath (initial, nondeterministi)

1. mmath([P jPs ℄; S;N) math pos(P; S;N)

2. mmath([P jPs ℄; S;N) mmath(Ps; S;N)

The atom mmath(Ps ; S;N) holds i� there exists a pattern in the list Ps of patterns whih ours

in the string S at position N . The prediate math pos is de�ned as in program Math Pos of

Setion 7.1, and its lauses are not listed here. We onsider the following mode for the program

Mmath: fmmath(+;+; ?); math pos(+;+; ?), append (?; ?;+), length(+; ?)g.

We want to speialize this multi-pattern mathing program w.r.t. the list [[a; a; a℄; [a; a; b℄℄ of

patterns. Thus, we introdue the following de�nition lause:

36



3. mmath

s

(S;N) mmath([[a; a; a℄; [a; a; b℄℄; S;N)

The mode of the new prediate is mmath

s

(+; ?) beause S is an input argument of mmath and N is

not an input argument. Thus, our Determinization Strategy starts o� with the following initial values:

Defs = Cls = f3g, TransfP = Mmath , and M

s

=M [ fmmath

s

(+; ?)g.

The output of the Determinization Strategy is the following program Mmath

s

:

Program Mmath

s

(speialized, semideterministi)

4. mmath

s

(S;N) new1(S;N)

5. new1([ajS℄;M) new2(S;M)

6. new1([CjS℄; s(N)) C 6=a; new1(S;N)

7. new2([ajS℄;M) new3(S;M)

8. new2([CjS℄; s(s(N))) C 6=a; new1(S;N)

9. new3([ajS℄;M) new4(S;M)

10. new3([bjS℄;M) new5(S;M)

11. new3([CjS℄; s(s(s(N))))  C 6=a; C 6=b; new1(S;N)

12. new4(S; 0) 

13. new4([ajS℄; s(N))  new4(S;N)

14. new4([bjS℄; s(N)) new5(S;N)

15. new4([CjS℄; s(s(s(s(N)))))  C 6=a; C 6=b; new1(S;N)

16. new5(S; 0) 

17. new5([ajS℄; s(s(s(N))))  new2(S;N)

18. new5([CjS℄; s(s(s(s(N)))))  C 6=a; new1(S;N)

Similarly to the single-pattern string mathing example of the previous Setion 7.1, this speialized,

semideterministi program orresponds to a �nite automaton with ounters. This �nite automaton

is deterministi, exept for the states orresponding to the prediates new4 and new5 where any

remaining portion of the input word is aepted. A similar derivation annot be performed by usual

partial dedution tehniques without a prior transformation into failure ontinuation passing style [44℄.

7.3 From Regular Expressions to Finite Automata

In this example we show the derivation of a deterministi �nite automaton by speializing a general

parser for regular expressions w.r.t. a given regular expression. The initial program Reg Expr for

testing whether or not a string belongs to the language denoted by a regular expression over the

alphabet fa; bg, is the one given below.
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Program Reg Expr (initial, nondeterministi)

1. in language(E;S) string(S); aepts(E;S)

2. string([ ℄) 

3. string([ajS℄) string(S)

4. string([bjS℄) string(S)

5. aepts(E; [E℄)  symbol (E)

6. aepts(E

1

E

2

; S) append (S

1

; S

2

; S); aepts(E

1

; S

1

); aepts(E

2

; S

2

)

7. aepts(E

1

+E

2

; S) aepts(E

1

; S)

8. aepts(E

1

+E

2

; S) aepts(E

2

; S)

9. aepts(E

�

; [ ℄)

10. aepts(E

�

; S) ne append (S

1

; S

2

; S); aepts(E;S

1

); aepts(E

�

; S

2

)

11. symbol(a) 

12. symbol(b) 

13. ne append ([A℄; Y; [AjY ℄) 

14. ne append ([AjX℄; Y; [AjZ℄)  ne append (X;Y;Z)

We have that in language(E;S) holds i� S is a string in fa; bg

�

and S belongs to the language denoted

by the regular expressionE. In this Reg Expr program we have used the prediate ne append (S

1

; S

2

; S)

whih holds i� the non-empty string S is the onatenation of the nonempty string S

1

and the string

S

2

. The use of the atom ne append (S

1

; S

2

; S) in lause 10 ensures that we have a terminating program,

that is, a program for whih we annot have an in�nite derivation when starting from a ground goal.

Indeed, if in lause 10 we replae ne append (S

1

; S

2

; S) by append (S

1

; S

2

; S), then we may onstrut

an in�nite derivation beause from a goal of the form aepts(E

�

; S) we an derive a new goal of the

form (aepts(E; [ ℄); aepts(E

�

; S)).

We onsider the following mode for the program Reg Expr :

fin language(+;+); string(+); aepts(+;+); symbol(+); ne append (?; ?;+); append (?; ?;+)g.

We use our Determinization Strategy to speialize the program Reg Expr w.r.t. the atom

in language((aa

�

(b+bb))

�

; S). Thus, we begin by introduing the de�nition lause:

15. in language

s

(S) in language((aa

�

(b+bb))

�

; S)

The mode for this new prediate is in language

s

(+) beause S is an input argument of in language.

The output of the Determinization Strategy is the following speialized program Reg Expr

s

:

Program Reg Expr

s

(speialized, semideterministi)

16. in language

s

(S) new1(S)

17. new1([ ℄) 

18. new1([ajS℄) new2(S)

19. new2([ajS℄) new3(S)

20. new2([bjS℄) new4(S)

21. new3([ajS℄) new3(S)

22. new3([bjS℄) new4(S)

23. new4([ ℄) 

24. new4([ajS℄) new2(S)

25. new4([bjS℄) new1(S)

This speialized program orresponds to a deterministi �nite automaton.
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7.4 Mathing Regular Expressions

The following nondeterministi program de�nes a relation re math(E;S), where E is a regular ex-

pression and S is a string, whih holds i� there exists a substring P of S suh that P belongs to the

language denoted by E:

Program Reg Expr Math (initial, nondeterministi)

1. re math(E;S) append (Y;R; S); append (L; P; Y ); aepts(E;P )

The prediates append and aepts are de�ned as in the programs Naive Math (see Setion 3.3) and

Reg Expr (see Setion 7.3), respetively, and their lauses are not listed here. We onsider the following

mode for the program Reg Expr Math: fappend (?; ?;+); aepts(+;+); re math(+;+)g.

We want to speialize the program Reg Expr Math w.r.t. the regular expression aa

�

b. Thus, we

introdue the following de�nition lause:

2. re math

s

(S) re math(aa

�

b; S)

The mode of this new prediate is re math

s

(+) beause S is an input argument of re math . The

output of the Determinization Strategy is the following program:

Program Reg Expr Math

s

(speialized, semideterministi)

3. re math

s

(S) new1(S)

4. new1([ajS℄) new2(S)

5. new1([CjS℄) C 6=a; new1(S)

6. new2([ajS℄) new3(S)

7. new2([CjS℄) C 6=a; new1(S)

8. new3([ajS℄) new4(S)

9. new3([bjS℄) new3(S)

10. new3([CjS℄) C 6=a; C 6=b; new1(S)

11. new4(S) 

Similarly to the single-pattern string mathing example of Setion 3.3, this speialized, semidetermin-

isti program orresponds to a deterministi �nite automaton.

7.5 Speializing Context-free Parsers to Regular Grammars

Let us onsider the following program for parsing ontext-free languages:

Program CF Parser (initial, nondeterministi)

1. string parse(G;A;W ) string(W ); parse(G;A;W )

2. string([ ℄) 

3. string([0jW ℄) string(W )

4. string([1jW ℄) string(W )

5. parse(G ; [ ℄; [ ℄) 

6. parse(G ; [AjX℄; [AjY ℄) terminal (A); parse(G;X; Y )

7. parse(G; [AjX℄; Y )  nonterminal (A); member(A! B;G);

append (B;X;Z); parse(G;Z; Y )

8. member(A; [AjX℄)  

9. member(A; [BjX℄) member(A;X)

together with the lauses for the prediate append de�ned as in program Math Pos (see Setion 7.1),

and the unit lauses stating that 0 and 1 are terminals and s; u; v; and w are nonterminals. The �rst
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argument of parse is a ontext-free grammar, the seond argument is a list of terminal and nonterminal

symbols, and the third argument is a word represented as a list of terminal symbols. We assume that a

ontext-free grammar is represented as a list of produtions of the form x! y, where x is a nonterminal

symbol and y is a list of terminal and nonterminal symbols. We have that parse(G; [s℄;W ) holds i� from

the symbol s we an derive the wordW using the grammar G. We onsider the following mode for the

program CF Parser : fstring parse(+;+;+); string(+); parse(+;+;+); terminal (+);nonterminal (+);

member (?;+); append (+;+; ?)g.

We want to speialize our parsing program w.r.t. the following regular grammar:

s! 0u s! 0 v s! 0w

u! 0 u! 0u u! 0 v

v ! 0 v ! 0 v v ! 0u

w ! 1 w ! 0w

To this aim we apply our Determinization Strategy starting from the following de�nition lause:

10. string parse

s

(W ) parse([ s! [0; u℄, s! [0; v℄, s! [0; w℄,

u! [0℄, u! [0; u℄, u! [0; v℄,

v ! [0℄, v ! [0; v℄, v ! [0; u℄,

w ! [1℄, w ! [0; w℄ ℄; [s℄; W )

The mode for this new prediate is string parse

s

(+). The output of the Determinization Strategy is

the following speialized program CF Parser

s

:

Program CF Parser

s

(speialized, semideterministi)

11. string parse

s

(W ) new1(W )

12. new1([0jW ℄) new2(W )

13. new2([0jW ℄) new3(W )

14. new2([1jW ℄) new4(W )

15. new3([ ℄) 

16. new3([0jW ℄) new5(W )

17. new3([1jW ℄) new4(W )

18. new4([ ℄) 

19. new5([ ℄) 

20. new5([0jW ℄) new3(W )

21. new5([1jW ℄) new4(W )

This program orresponds to a deterministi �nite automaton.

Now, we would like to disuss the improvements we ahieved in this example by applying our

Determinization Strategy. Let us onsider the derivation tree T

1

(see Fig. 2) generated by the initial

program CF Parser starting from the goal string parse(g; [s℄; [0

n

1℄), where g denotes the grammar

w.r.t. whih we have speialized the CF Parser program and [0

n

1℄ denotes the list [0; : : : ; 0; 1℄ with n

ourrenes of 0. The nodes of T

1

are labeled by the goals derived from string parse(g; [s℄; [0

n

1℄). In

partiular, the root of the derivation tree is labeled by string parse(g; [s℄; [0

n

1℄) and a node labeled by

a goal G has k hildren labeled by the goals G

1

; : : : ; G

k

whih are derived from G (see Setion 2.3). The

tree T

1

has a number of nodes whih is O(2

n

). Thus, by using the initial program CF Parser it takes

O(2

n

) number of steps to searh for a derivation from the root goal string parse(g; [s℄; [0

n

1℄) to the

goal true. (Indeed, this is the ase if one uses a Prolog ompiler.) In ontrast, by using the speialized

program CF Parser

s

, it takes O(n) steps to searh for a derivation from the goal string parse

s

([0

n

1℄)

to true, beause the derivation tree T

2

has a number of nodes whih is O(n) (see Fig. 3).

The improvement of performane is due to the fat that our Determinization Strategy is able to

avoid repeated derivations by introduing new de�nition lauses whose bodies have goals from whih
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string([0

n

1℄); parse(g; [s℄; [0

n

1℄)

string parse(g; [s℄; [0

n

1℄)

parse(g; [w℄; [0

n�1

1℄)

parse(g; [w℄; [0

n�2

1℄)

true

parse(g; [u℄; [0

n�2

1℄)

parse(g; [s℄; [0

n

1℄)

(n�2)

parse(g; [u℄; [0

n�2

1℄)

parse(g; [u℄; [0

n�1

1℄) parse(g; [v℄; [0

n�1

1℄)

parse(g; [v℄; [0

n�2

1℄)parse(g; [v℄; [0

n�2

1℄)

no suesses

Figure 2: Derivation tree T

1

for string parse(g; [s℄; [0

n

1℄).

(n�2)string parse

s

(g; [s℄; [0

n

1℄)

new1([0

n

1℄)

new2([0

n�1

1℄)

new3([0

n�2

1℄)

true

Figure 3: Derivation tree T

2

for string parse

s

([0

n

1℄).

ommon subgoals are derived. Thus, after performing folding steps whih use these de�nition lauses,

we redue the searh spae during program exeution.

For instane, our strategy introdues the prediate new2 de�ned by the following lauses:

new2(W ) string(W ); parse(g; [u℄;W )

new2(W ) string(W ); parse(g; [v℄;W )

new2(W ) string(W ); parse(g; [w℄;W )

whose bodies are goals from whih ommon subgoals are derived forW =[0

n�1

1℄ and n�2. Indeed, for

instane, parse(g; [u℄; [0

n�2

1℄) an be derived from both parse(g; [u℄; [0

n�1

1℄) and parse(g; [v℄; [0

n�1

1℄)

(see Fig. 2). The reader may verify that by using the speialized program CF Parser

s

no repeated

goal is derived from string parse

s

(g; [s℄; [0

n

1℄).

The ability of our Determinization Strategy of putting together the omputations performed by

the initial program in di�erent branhes of the omputation tree, so that ommon repeated subom-

putations are avoided, is based on the ideas whih motivate the tupling strategy [34℄, �rst proposed

as a transformation tehnique for funtional languages.
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8 Experimental Evaluation

The Determinization Strategy has been implemented in the MAP program transformation system [39℄.

All program speialization examples presented in Setions 3.3, 5.3, and 7 have been worked out in

a fully automati way by the MAP system. We have ompared the speialization times and the

speedups obtained by the MAP system with those obtained by ECCE, a system for (onjuntive)

partial dedution [24℄. All experimental results reported in this setion have been obtained by using

SICStus Prolog 3.8.5 running on a Pentium II under Linux.

In Table 1 we onsider the examples of Setions 3.3, 5.3, and 7, and we show the times taken

(i) for performing partial dedution by using the ECCE system, (ii) for performing onjuntive partial

dedution by using the ECCE system, and (iii) for applying the Determinization Strategy by using

the MAP system. The stati input shown in Column 2 of Table 1 is the goal w.r.t. whih we have

speialized the programs of Column 1. For running the ECCE system suitable hoies among the

available unfolding strategies and generalization strategies should be made. We have used the hoies

suggested by the system itself for partial dedution and onjuntive partial dedution, and we made

some hanges only when speialization was not performed within a reasonable amount of time. For

running the MAP system the only information to be provided by the user is the mode for the program

to be speialized. The system assumes that the program satis�es this mode and no mode analysis is

performed.

Program Stati Input ECCE ECCE MAP

(PD) (CPD) (Det)

Naive Math naive math([aab℄; S) 360 370 70

Naive Math naive math([aaaaaaaaab℄; S) 420 2120 480

Math Pos math pos([aab℄; S;N) 540 360 100

Math Pos math pos([aaaaaaaaab℄; S;N) 650 910 500

Mmath mmath([[aaa℄; [aab℄℄; S;N) 1150 1400 280

Mmath mmath([[aa℄; [aaa℄; [aab℄℄; S;N) 1740 2040 220

Reg Expr in language((aa

�

(b+bb))

�

; S) 6260 138900 420

Reg Expr in language(a

�

(b+bb+bbb); S) 3460 5430 230

Reg Expr Math re math(aa

�

b; S) 970 5290 210

Reg Expr Math re math(a

�

(b+ bb); S) 1970 11200 300

CF Parser string parse(g; [s℄;W ) 23400 32700 1620

CF Parser string parse(g

1

; [s℄;W ) 31200 31800 2000

Table 1: Speialization Times (in milliseonds).

The experimental results of Table 1 show that the MAP implementation of the Determinization

Strategy is muh faster than the ECCE implementation of both partial dedution and onjuntive

partial dedution. We believe that, essentially, this is due to the fat that ECCE employs very sophis-

tiated tehniques, suh as those based on homeomorphi embeddings, for ontrolling the unfolding

and the generalization steps, and ensuring the termination of the speialization proess. For a fair

omparison, however, we should reall that Determinization may not terminate on examples di�erent

from those onsidered in this paper.

We have already mentioned in Setion 3.3 that the performane of the programs derived by the

Determinization Strategy may be further improved by applying post-proessing transformations whih

exploit the semideterminism of the programs. In partiular, we may: (i) reorder the lauses so that unit
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lauses appear before non-unit lauses, and (ii) remove disequations by introduing uts instead. The

reader may verify that these transformations preserve the operational semantis. For a systemati

treatment of ut introdution, the reader may refer to [10, 43℄. As an example we now show the

program obtained from Math Pos

s

(see Setion 5.3) after the above post-proessing transformations

have been performed.

Program Math Pos

ut

(speialized, with uts)

math pos

s

(S;N) new1(S;N)

new1([ajS℄;M) !; new2(S;M)

new1([CjS℄; s(N)) new1(S;N)

new2([ajS℄;M) !; new3(S;M)

new2([CjS℄; s(s(N))) new1(S;N)

new3([ajS℄; s(M))  !; new3(R;S)

new3([bjS℄;M) !; new4(R;S)

new3([CjS℄; s(s(s(N))))  new1(S;N)

new4(S; 0) 

new4([ajS℄; s(s(s(M))))  !; new2(S;M)

new4([CjS℄; s(s(s(s(N)))))  new1(S;N)

In Table 2 below we report the speedups obtained by partial dedution, onjuntive partial dedution,

Determinization, and Determinization followed by disequation removal and ut introdution. Every

speedup is omputed as the ratio between the timing of the initial program and the timing of the

speialized program. These timings were obtained by running the various programs several times (up

to 10,000) on signi�antly large input lists (up to 4,000 items).

Program Stati Input Speedup Speedup Speedup Speedup

(PD) (CPD) (Det) (Det &Cut)

Naive Math naive math([aab℄; S) 3.1 5:8�10

3

3:0�10

3

6:8�10

3

Naive Math naive math([aaaaaaaaab℄; S) 3.3 6:9�10

3

5:8�10

3

12:4�10

3

Math Pos math pos([aab℄; S;N) 1.6 3:6�10

3

1:8�10

3

4:0�10

3

Math Pos math pos([aaaaaaaaab℄; S;N) 2.1 5:3�10

3

2:9�10

3

8:1�10

3

Mmath mmath([[aaa℄; [aab℄℄; S;N) 1.7 4:5�10

3

3:5�10

3

6:2�10

3

Mmath mmath([[aa℄; [aaa℄; [aab℄℄; S;N) 1.6 2:5�10

3

3:9�10

3

5:4�10

3

Reg Expr in language((aa

�

(b+bb))

�

; S) 29.8 6:2�10

3

2:3�10

5

3:9�10

5

Reg Expr in language(a

�

(b+bb+bbb); S) 1:3�10

4

3:3�10

4

4:6�10

4

5:7�10

4

Reg Expr Math re math(aa

�

b; S) 5:7�10

2

2:7�10

4

1:5�10

6

3:0�10

6

Reg Expr Math re math(a

�

(b+ bb); S) 2:1�10

2

3:4�10

3

2:5�10

5

4:1�10

5

CF Parser string parse(g; [s℄;W ) 1.5 1.5 87.1 87.1

CF Parser string parse(g

1

; [s℄;W ) 1.1 1.1 61.3 61.3

Table 2: Speedups.

To larify the ontent of Table 2 let us remark that:

Column 1 shows the names of the initial programs with referene to Setions 3.3, 5.3, and 7.

Column 2 shows the stati input. The argument [aab℄ denotes the list [a; a; b℄. Similar notation

has been used for the other stati input arguments. The argument g of the �rst string parse atom

denotes the regular grammar onsidered in Example 7.5. The argument g

1

of the last string parse

43



atom denotes the regular grammar:

fs! 0u, s! 1 v, u! 0, u! 0 v, u! 0w, v ! 1, v ! 0 v, v ! 1u, w! 1, w ! 1wg.

Column 3, alled Speedup (PD), shows the speedups we have obtained after the appliation of partial

dedution.

Column 4, alled Speedup (CPD), shows the speedups we have obtained after the appliation of

onjuntive partial dedution.

Column 5, alled Speedup (Det), shows the speedups we have obtained after the appliation of the

Determinization Strategy.

Column 6, alled Speedup (Det & Cut), shows the speedups we have obtained after the appliation of

the Determinization Strategy followed by the removal of disequations and the introdution of uts.

Let us now disuss our experimental results of Table 2. In all examples the best speedups are those

obtained after the appliation of the Determinization Strategy followed by the removal of disequations

and the introdution of uts (see olumn Det & Cut).

As expeted, onjuntive partial dedution gives higher speedups than partial dedution.

In some ases, onjuntive partial dedution gives better results than Determinization (see the �rst

5 rows of olumns CPD and Det). This happens in examples where most nondeterminism is avoided by

eliminating intermediate lists (see, for instane, the example of Setion 3.3). In those examples, in fat,

the Determinization Strategy may be less advantageous than onjuntive partial dedution beause it

introdues disequations whih may be ostly to hek at runtime. However, as already mentioned, all

disequations may be eliminated by introduing uts (or, equivalently, if-then-else onstruts) and the

programs derived after disequation removal and ut introdution are indeed more eÆient than those

derived by onjuntive partial dedution (see olumn Det & Cut).

For some programs (see, for instane, the entries for Reg Expr and CF Parser) the speedups of

the (Det) olumn are equal to the speedups of the (Det & Cut) olumn. The reason for this fat is the

absene of disequations in the speialized program, so that the introdution of uts does not improve

eÆieny.

We would like to notie that further post-proessing tehniques are appliable. For instane, sim-

ilarly to the familiar ase of �nite automata, we may eliminate lauses orresponding to "-transitions

where no input symbols are onsumed (suh as lause 9 in program Math Pos

s

), and we may also

minimize the number of prediate symbols (this orresponds to the minimization of the number of

states). We do not present here these post-proessing tehniques beause they are outside the sope

of the paper.

In summary, the experimental results of Table 2 on�rm that in the examples we have onsidered,

the Determinization Strategy followed by the removal of disequations in favour of uts, ahieves

greater speedups than (onjuntive) partial dedution. However, it should be notied that, as already

mentioned, Determinization does not guarantee termination, while (onjuntive) partial dedution

does, and in order to terminate in all ases, (onjuntive) partial dedution employs generalization

tehniques that may redue speedups. In the next setion we further disuss the issue of devising a

generalization tehnique that ensures the termination of the Determinization Strategy.

9 Conluding Remarks and Related Work

We have proposed a speialization tehnique for logi programs based on an automati strategy, alled

Determinization Strategy, whih makes use of the following transformation rules: (1) de�nition intro-

dution, (2) de�nition elimination, (3) unfolding, (4) folding, (5) subsumption, (6) head generalization,

(7) ase split, (8) equation elimination, and (9) disequation replaement. (Atually, we make use of

the safe versions of Rules 4, 6, 7, and 8.) We have also shown that our strategy may redue the
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amount of nondeterminism in the speialized programs and it may ahieve exponential gains in time

omplexity.

To get these results, we allow new prediates to be introdued by one or more non-reursive

de�nition lauses whose bodies may ontain more than one atom. We also allow folding steps using

these de�nition lauses. By a folding step several lauses are replaed by a single lause, thereby

reduing nondeterminism.

The use of the subsumption rule is motivated by the desire of inreasing eÆieny by avoiding

redundant omputations. Head generalizations are used for deriving lauses with equal heads and

thus, they allow us to perform folding steps. The ase split rule is very important for reduing

nondeterminism beause it replaes a lause, say C, by several lauses whih orrespond to exhaustive

and mutually exlusive instantiations of the head of C. To get exhaustiveness and mutual exlusion,

we allow the introdution of disequalities. To further inrease program eÆieny, in a post-proessing

phase these disequalities may be removed in favour of uts.

We assume that the initial program to be speialized is assoiated with a mode of use for its

prediates. Our Determinization Strategy makes use of this mode information for direting the various

transformation steps, and in partiular, the appliations of the unfolding and ase split rules. Moreover,

if our strategy terminates, it derives speialized programs whih are semideterministi w.r.t. the given

mode. This notion has been formally de�ned in Setion 5.3. Although semideterminism is not in

itself a guarantee for eÆieny improvement, it is often the ase that eÆieny is inreased beause

nondeterminism is redued and redundant omputations are avoided.

We have shown that the transformation rules we use for program speialization, are orret w.r.t.

the delarative semantis of logi programs based on the least Herbrand model. The proof of this

orretness result is similar to the proofs of the orretness results whih are presented in [14, 40, 46℄.

We have also onsidered an operational semantis for our logi language where a disequation t

1

6= t

2

holds i� t

1

and t

2

are not uni�able. This operational semantis is sound, but not omplete w.r.t. the

delarative semantis. Indeed, if a goal operationally sueeds in a program, then it is true in the

least Herbrand model of the program, but not vie versa. Thus, the proof of orretness of our

transformation rules w.r.t. the operational semantis annot be based on previous results and it is

muh more elaborate. Indeed, it requires some restritions, related to the modes of the prediates,

both on the programs to be speialized and on the appliability of the transformation rules.

In Setion 3 we have extensively disussed the fat that our speialization tehnique is more

powerful than partial dedution [21, 29℄. The main reason of the greater power of our tehnique is

that it uses more powerful transformation rules. In partiular, partial dedution orresponds to the

use the de�nition introdution, de�nition elimination, unfolding, and folding transformation rules,

with the restrition that we may only fold a single atom at a time in the body of a lause.

Our extended rules allow us to introdue and transform new prediates de�ned in terms of dis-

juntions of onjuntions of atoms (reall that a set of lauses with the same head is equivalent to

a single lause whose premise is the disjuntion of the bodies of the lauses in the given set). In

this respet, our tehnique improves over onjuntive partial dedution [8℄, whih is a speialization

tehnique where new prediates are de�ned in terms of onjuntions of atoms.

We have implemented the Determinization Strategy in the MAP transformation system [39℄ and we

have tested this implementation by performing several speializations of string mathing and parsing

programs. We have also ompared the results obtained by using the MAP system with those obtained

by using the ECCE system for (onjuntive) partial dedution [24℄. Our omputer experiments on-

�rm that the Determinization Strategy pays o� w.r.t. both partial dedution and onjuntive partial

dedution.

Our transformation tehnique works for programs where the only negative literals whih are allowed

in the body of a lause, are disequations between terms. The extension of the Determinization Strategy

to normal logi programs would require an extension of the transformation rules and, in partiular,
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it would be neessary to use a negative unfolding rule, that is, a rule for unfolding a lause w.r.t.

a (possibly nonground) negative literal di�erent from a disequation. The orretness of unfold/fold

transformation systems whih use the negative unfolding rule has been studied in ontexts rather

di�erent from the one onsidered here (see, for instane, the work on transformation of �rst order

programs [42℄) and its use within the Determinization Strategy requires further work.

The Determinization Strategy may fail to terminate for two reasons: (i) the Unfold-Simplify sub-

sidiary strategy may apply the unfolding rule in�nitely often, and (ii) the while-do loop of the Deter-

minization Strategy may not terminate, beause at eah iteration the De�ne-Fold subsidiary strategy

may introdue new prediates.

The termination of the Unfold-Simplify strategy an be guaranteed by applying the tehniques for

�nite unfolding already developed for (onjuntive) partial dedution (see, for instane, [8, 23, 30℄).

Indeed, the unfolding rule used in this paper is similar to the unfolding rule used in partial dedution.

The introdution of an in�nite number of new prediates an be avoided by extending various

methods based on generalization, suh as those used in (onjuntive) partial dedution [8, 13, 25,

37℄. Reall that in onjuntive partial dedution we may generalize a prediate de�nition essentially

by means of two tehniques: (i) the replaement of a term by a variable, whih is then taken as

an argument of a new prediate de�nition, and (ii) the splitting of a onjuntion of literals into

subonjuntions (together with the introdution of a new prediate for eah subonjuntion). It has

been shown that the use of (i) and (ii) in a suitably ontrolled way, allows onjuntive partial dedution

to terminate in all ases. However, termination is guaranteed at the expense of a possibly inomplete

speialization or a possibly inomplete elimination of the intermediate data strutures.

In order to avoid the introdution of an in�nite number of new prediate de�nitions while applying

the Determinization Strategy, we may follow an approah similar to the one used in the ase of

onjuntive partial dedution. However, besides the generalization tehniques (i) and (ii) mentioned

above, we may also need (iii) the splitting of the set of lauses de�ning a prediate into subsets (together

with the introdution of a new prediate for eah subset). Similarly to the ase of onjuntive partial

dedution, it an be shown that suitably ontrolled appliations of the generalization tehniques (i),

(ii), and (iii) guarantee the termination of the Determinization Strategy at the expense of deriving

programs whih may fail to be semideterministi.

We leave it for further researh the issue of ontrolling generalization, so that we ahieve the

termination of the speialization proess and at the same time we maximize the redution of nonde-

terminism.

In the string mathing examples we have worked out, our strategy is able to automatially derive

programs whih behave like Knuth-Morris-Pratt algorithm, in the sense that they generate a �nite

automaton from any given pattern and a general pattern mather. This was done also in the ase of

programs for mathing sets of patterns and programs for mathing regular expressions.

In these examples the improvement over similar derivations performed by partial dedution teh-

niques [11, 13, 44℄ onsists in the fat that we have started from naive, nondeterministi initial pro-

grams, while the orresponding derivations by partial dedution desribed in the literature, use initial

programs whih are deterministi. Our derivations also improve over the derivations performed by

using superompilation with perfet driving [15, 47℄ and generalized partial omputation [12℄, whih

start from initial funtional programs whih already inorporate some ingenuity.

A formal derivation of the Knuth-Morris-Pratt algorithm for pattern mathing has also been pre-

sented in [3℄. This derivation follows the alulational approah whih onsists in applying equivalenes

of higher order funtions. On the one hand the alulational derivation is more general than ours,

beause it takes into onsideration a generi pattern, not a �xed one (the string [a; a; b℄ in our Exam-

ple 3.3), on the other hand the alulational derivation is more spei� than ours, beause it deals with

single-pattern string mathing only, whereas our strategy is able to automatially derive programs in

a muh larger lass whih also inludes multi-pattern mathing, mathing with regular expressions,

46



and parsing.

The use of the ase split rule is a form of reasoning by ases, whih is a very well-known tehnique

in mehanial theorem proving (see, for instane, the Edinburgh LCF theorem prover [17℄). Forms of

reasoning by ases have been inorporated in program speialization tehniques suh as the already

mentioned superompilation with perfet driving [15, 47℄ and generalized partial omputation [12℄.

However, the strategy presented in this paper is the �rst fully automati transformation tehnique

whih uses ase reasoning to redue nondeterminism of logi programs.

Besides speializing programs and reduing nondeterminism, our strategy is able to eliminate

intermediate data strutures. Indeed, the initial programs of our examples in Setion 7 all have

intermediate lists, while the speialized programs do not have them. Thus, our strategy an be

regarded as an extension of the transformation strategies for the elimination of intermediate data

strutures (see the deforestation tehnique [48℄ for the ase of funtional programs and the strategy

for eliminating unneessary variables [38℄ for the ase of logi programs). Moreover, our strategy

derives speialized programs whih avoid repeated subomputations (see the Context-free Parsing

example of Setion 7.5). In this respet our strategy is similar to the tupling strategy for funtional

programs [34℄.

Finally, our speialization strategy is related to the program derivation tehniques alled �nite

di�erening [33℄ and inrementalization [27℄. These tehniques use program invariants to avoid ostly,

repeated alulations of funtion alls. Our speialization strategy impliitly disovers and exploits

program invariants when using the folding rule. It should be notied, however, that it is diÆult to

establish in a rigorous way the formal onnetion between the basi ideas underlying our speialization

strategy and the above mentioned program derivation methods based on program invariants. These

methods, in fat, are presented in a very di�erent framework.

This paper is an improved version of [35℄.
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Appendix A. Proof of Theorem 6

For the reader's onveniene, we rewrite the statement of Theorem 6.

Theorem 6 (Corretness of the Rules w.r.t. the Operational Semantis) Let P

0

; : : : ; P

n

be

a transformation sequene onstruted by using the transformation rules 1{9 and let p be a non-basi

prediate in P

n

. Let M be a mode for P

0

[ Defs

n

suh that: (i) P

0

[ Defs

n

is safe w.r.t. M , (ii)

P

0

[ Defs

n

satis�es M , and (iii) the appliations of the unfolding, folding, head generalization, and

ase split rules during the onstrution of P

0

; : : : ; P

n

are all safe w.r.t. M . Suppose also that:

1. if the folding rule is applied for the derivation of a lause C in program P

k+1

from lauses

C

1

; : : : ; C

m

in program P

k

using lauses D

1

; : : : ;D

m

in Defs

k

, with 0�k<n,

then for every i 2 f1; : : : ;mg there exists j 2 f1; : : : ; n�1g suh that D

i

ours in P

j

and P

j+1

is derived from P

j

by unfolding D

i

.

2. during the transformation sequene P

0

; : : : ; P

n

the de�nition elimination rule either is never

applied or it is applied w.r.t. prediate p one only, when deriving P

n

from P

n�1

.

Then: (i) P

n

is safe w.r.t. M , (ii) P

n

satis�es M , and (iii) for eah atom A whih has prediate p and

satis�es mode M , A sueeds in P

0

[Defs

n

i� A sueeds in P

n

.

The proof of Theorem 6 will be divided in four parts, orresponding to Propositions 3, 4, 5, and 6

presented below.

Proposition 3 (Preservation of Safety) shows that the program P

n

derived aording to the hy-

potheses of Theorem 6, is safe w.r.t. modeM (that is, Point (i) of the thesis of Theorem 6). Proposition

4 (Preservation of Modes) shows that P

n

satis�es M (that is, Point (ii) of the thesis of Theorem 6).

Propositions 5 (Partial Corretness) and 6 (Completeness) show the if part and the only-if part, re-

spetively, of Point (iii) of the thesis of Theorem 6. For proving these propositions we will use various

notions and lemmata whih we introdue below.

A1. Preservation of Safety

In this setion we prove that, if the transformation rules are applied aording to the restritions

indiated in Theorem 6, then from a program whih is safe w.r.t. a given mode we derive a program

whih is safe w.r.t. the same mode.

Proposition 3 (Preservation of Safety) Let P

0

; : : : ; P

n

be a transformation sequene onstruted

by using the transformation rules 1{9. Let M be a mode for P

0

[ Defs

n

suh that: (i) P

0

[ Defs

n

is safe w.r.t. M and (ii) the appliations of the unfolding, head generalization, and ase split rules

during the onstrution of P

0

; : : : ; P

n

are safe w.r.t. M . Then, for k = 0; : : : ; n, the program P

k

is

safe w.r.t. M .

Proof : The proof proeeds by indution on k. During the proof we will omit the referene to mode

M . In partiular, we will simply say that a program (or a lause) is safe, instead of saying that a

program (or a lause) is safe w.r.t. M .

For k = 0 the thesis follows diretly from the hypothesis that P

0

[ Defs

n

is safe and thus, P

0

is

safe. Let us now assume that, for k < n, program P

k

is safe. We will show that also P

k+1

is safe. We

onsider the following ases, orresponding to the rule whih is applied to derive P

k+1

from P

k

.

Case 1: P

k+1

is derived by applying the de�nition introdution rule. P

k+1

is safe beause P

k

is safe

and, by hypothesis, every de�nition lause in Defs

n

is safe.
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Case 2: P

k+1

is derived by applying the de�nition elimination rule. Then P

k+1

is safe beause P

k

is

safe and P

k+1

� P

k

.

Case 3: P

k+1

is derived by a safe appliation of the unfolding rule (see De�nition 4). Let us onsider

a lause D

i

in P

k+1

whih has been derived by unfolding a lause C in P

k

of the form: H  

G

1

; A;G

2

w.r.t. the atom A. Then there exists a lause C

i

in P

k

suh that (i) A is uni�able with

hd(C

i

) via the mgu #

i

, and (ii) lause D

i

in P

k+1

is of the form (H  G

1

; bd (C

i

); G

2

)#

i

.

Let us now show that D

i

is safe. We take a variable X ourring in a disequation t

1

6= t

2

in

the body of D

i

, and we prove that X is either an input variable of hd(D

i

) or a loal variable

of t

1

6= t

2

in D

i

. We have that t

1

6= t

2

is of the form (u

1

6=u

2

)#

i

, where u

1

6=u

2

is a disequation

ourring in G

1

; bd(C

i

); G

2

. We onsider two ases:

Case A: u

1

6= u

2

ours in G

1

or G

2

. Sine t

1

6= t

2

is of the form (u

1

6= u

2

)#

i

, there exists a

variable Y 2 vars(u

1

6=u

2

) suh that X 2 vars(Y #). By the indutive hypothesis, C is safe and

thus, Y is either an input variable of hd(C) or a loal variable of u

1

6=u

2

in C. We have that:

(i) if Y is an input variable of hd(C) then X is an input variable of hd(D

i

), and (ii) if Y is a

loal variable of u

1

6=u

2

in C then X = Y = Y #

i

and X is a loal variable of t

1

6= t

2

in D

i

.

Case B: u

1

6=u

2

ours in bd(C

i

). From the de�nition of safe unfolding we have that X is either:

(B.1) an input variable of H#

i

or (B.2) a loal variable of u

1

6=u

2

in C

i

. In ase (B.1) X is an

input variable of hd(D

i

), whih is equal to H#

i

. In ase (B.2) X does not our in #

i

and, sine

vars(C) \ vars(C

i

) = ;, X is a loal variable of (u

1

6=u

2

)#

i

, whih is equal to t

1

6= t

2

, in D

i

.

Case 4: P

k+1

is derived by applying the folding rule. Let us onsider a lause P

k+1

of the form:

C. H  G

1

;newp(X

1

; : : : ;X

h

)#;G

2

whih has been derived by folding the following lauses in P

k

:

8

>

<

>

:

C

1

: H  G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H  G

1

; (A

m

;K

m

)#;G

2

using the following de�nition lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

Now we take a variable X ourring in a disequation t

1

6= t

2

in the body of C, and we prove that

X is either an input variable of H or a loal variable of t

1

6= t

2

in C.

The disequation t

1

6= t

2

ours in G

1

or G

2

and, by the hypothesis that P

k

is safe, either X is an

input variable of H or, for i = 1; : : : ;m, X is a loal variable of t

1

6= t

2

in C

i

. If for i = 1; : : : ;m,

X is a loal variable of t

1

6= t

2

in C

i

, then X is a loal variable of t

1

6= t

2

in C, beause by the

de�nition of the folding rule (see Rule 4) X does not our in newp(X

1

; : : : ;X

h

)#.

Case 5: P

k+1

is derived by applying the subsumption rule. P

k+1

is safe beause P

k+1

� P

k

.

Case 6: P

k+1

is derived by a safe appliation of the head generalization rule (see De�nition 6). Let

GenC be a lause in P

k+1

of the form:

H  Y = t;Body

derived from a lause C in P

k

of the form:
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HfY=tg  Body

where fY=tg is a substitution suh that Y ours in H and Y does not our in C.

Let us now prove that GenC is safe. Let X be a variable ourring in a disequation t

1

6= t

2

in

Body. By indutive hypothesis C is safe and thus, X is either an input variable of HfY=tg or a

loal variable of t

1

6= t

2

in C. If X is an input variable of HfY=tg, then it is also an input variable

of H, beause from the de�nition of safe head generalization it follows that H and HfY=tg have

the same input variables. If X is a loal variable of t

1

6= t

2

in C, then X is a loal variable of

t

1

6= t

2

in GenC , beause X does not our in Y = t.

Case 7: P

k+1

is derived by a safe appliation of the ase split rule (see De�nition 7) to a lause C in

P

k

. Let us onsider the following two lauses in P

k+1

:

C

1

. (H  Body)fX=tg

C

2

. H  X 6= t;Body .

derived by safe ase split from C. Let us now show that C

1

and C

2

are safe. Let us onsider

lause C

1

and let Y be a variable ourring in a disequation t

1

6= t

2

in BodyfX=tg. t

1

6= t

2

is of

the form (u

1

6=u

2

)fX=tg where u

1

6=u

2

ours in Body. We onsider two ases.

Case A: Y 2 vars(t). By the de�nition of safe ase split, either Y is an input variable of H or

Y does not our in C. If Y is an input variable of H, then Y is an input variable of HfX=tg,

and if Y does not our in C, then Y is a loal variable of (u

1

6=u

2

)fX=tg in C

1

.

Case B: Y 62 vars(t). We have that Y ours in u

1

6=u

2

, and thus, from the indutive hypothesis

that C is safe, it follows that Y is either an input variable of H or a loal variable of u

1

6= u

2

in C. If Y is an input variable of H, then Y is an input variable of HfX=tg, and if Y a loal

variable of u

1

6=u

2

in C, then it is a loal variable of (u

1

6=u

2

)fX=tg in C

1

.

Thus, C

1

is a safe lause.

Let us now onsider lause C

2

and let Y be a variable ourring in a disequation t

1

6= t

2

in

X 6= t;Body . If t

1

6= t

2

ours in Body then from the indutive hypothesis that C is safe, it

follows that Y is either an input variable of H or a loal variable of t

1

6= t

2

in C

2

. If t

1

6= t

2

is X 6= t, then by the de�nition of safe ase split (i) X is an input variable of H, and (ii) for

every variable Y 2 vars(t), either (ii.1) Y is an input variable of H or (ii.2) Y does not our in

(H;Body), and thus, Y is a loal variable of X 6= t in C

2

.

Thus, C

2

is a safe lause.

Case 8: P

k+1

is derived by applying the equation elimination rule to a lause C

1

in P

k

of the form:

H  G

1

; t

1

= t

2

; G

2

. We onsider two ases:

Case A: t

1

and t

2

are uni�able via the most general uni�er #. We derive the lause: C

2

: (H  

G

1

; G

2

)#. We an show that lause C

2

is safe similarly to Case 3 (A).

Case B: t

1

and t

2

are not uni�able. In this ase P

k+1

is safe beause P

k+1

is P

k

� fC

1

g and, by

indutive hypothesis, all lauses in P

k

are safe.

Case 9: P

k+1

is derived by applying the disequation replaement rule to lause C in P

k

. Let us

onsider the ases 9.1{9.5 of Rule 9. Cases 9.1 and 9.3{9.5 are straightforward, beause they

onsist in the deletion of a disequation in bd(C) or in the deletion of lause C. Thus, in these

ases the safety of program P

k+1

derives diretly from the safety of P

k

.

Let us now onsider ase 9.2. Suppose that lause C is of the form: H  G

1

; f(t

1

; : : : ; t

m

) 6=

f(u

1

; : : : ; u

m

); G

2

, and it is replaed by the following m (� 0) lauses:
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C

1

. H  G

1

; t

1

6=u

1

; G

2

: : :

C

m

. H  G

1

; t

m

6=u

m

; G

2

We now prove that, for j = 0; : : : ;m, C

j

is safe. Indeed, for j = 0; : : : ;m, if we onsider a variable

X ourring in t

j

6=u

j

then, by the indutive hypothesis, either (i) X is an input variable of H

or (ii) X is a loal variable of f(t

1

; : : : ; t

m

) 6=f(u

1

; : : : ; u

m

) in C, and thus, X is a loal variable

of t

j

6=u

j

in C

j

.

In the ase where X ours in a disequation in G

1

or G

2

, it follows diretly from the indutive

hypothesis that X is either an input variable of H or a loal variable of that disequation in C

j

.

Thus, C

j

is safe.

2

A2. Preservation of Modes

Here we show that, if the program P

0

[ Defs

n

satis�es a mode M and we apply our transformation

rules aording to the restritions indiated in Theorem 6, then the derived program P

n

satis�es M .

In this setion and in the rest of the paper, we will use the following notation and terminology. Let

us onsider two non-basi atoms A

1

and A

2

of the form p(t

1

; : : : ; t

m

) and p(u

1

; : : : ; u

m

), respetively.

By A

1

=A

2

we denote the onjuntion of equations: t

1

=u

1

; : : : ; t

m

=u

m

. By mgu(A

1

; A

2

) we denote a

relevant mgu of two uni�able non-basi atoms A

1

and A

2

. Similarly, bymgu(t

1

; t

2

) we denote a relevant

mgu of two uni�able terms t

1

and t

2

. The length of the derivation G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

n

is

n. Given a program P and a mode M for P , we say that a derivation G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

n

is onsistent with M i� for i = 0; : : : ; n� 1, if the leftmost atom of G

i

is a non-basi atom A then A

satis�es M .

The following properties of the operational semantis an be proved by indution on the length of

the derivations.

Lemma 1 Let P be a program and G

1

a goal. If G

1

sueeds in P with answer substitution #, then

for all goals G

2

, (G

1

; G

2

) 7�!

�

P

G

2

#:

Lemma 2 Let P be a safe program w.r.t. mode M , let Eqs be a onjuntion of equations, and let

G

1

be a goal without ourrenes of disequations. For all goals G

2

, if there exists a goal (A

0

; G

0

) suh

that A

0

is a non-basi atom whih does not satisfy M and

(Eqs; G

1

; G

2

) 7�!

�

P

(A

0

; G

0

)

then there exists a goal (A

00

; G

00

) suh that A

00

is a non-basi atom whih does not satisfy M and

(G

1

; Eqs ; G

2

) 7�!

�

P

(A

00

; G

00

):

Lemma 3 Let P

0

; : : : ; P

n

be a transformation sequene onstruted by using the transformation rules

1{9. Let M be a mode for P

0

[Defs

n

suh that: (i) P

0

;[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es

M , and (iii) the appliations of the unfolding, folding, head generalization, and ase split rules during

the onstrution of P

0

; : : : ; P

n

are safe w.r.t.M . Then, for k = 0; : : : ; n, for all goals G, if all derivations

from G using P

0

[ Defs

n

are onsistent with M , then all derivations from G using P

k

are onsistent

with M .

Proof : By Proposition 3 we have that, for k = 0; : : : ; n, the program P

k

is safe w.r.t. M .

The proof proeeds by indution on k.

The base ase (k = 0) follows from the fat that all derivations from G using P

0

are also derivations

using P

0

[Defs

n

.
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In order to prove the step ase, we prove the following ounterpositive statement:

for all goals (A

0

; G

0

), if there exists a goal (A

s

; G

s

) suh that (A

0

; G

0

) 7�!

�

P

k+1

(A

s

; G

s

) and (A

s

; G

s

)

does not satisfy M , then there exists a goal (A

t

; G

t

) suh that (A

0

; G

0

) 7�!

�

P

k

(A

t

; G

t

) and A

t

does

not satisfy M .

We proeed by indution on the length s of the derivation of (A

s

; G

s

) from (A

0

; G

0

) using P

k+1

. As

an indutive hypothesis we assume that, for all r < s and for all goals

^

G, if there exists a derivation

^

G 7�!

P

k+1

: : : 7�!

P

k+1

(A

r

; G

r

) of length r, suh that A

r

does not satisfy M , then there exists (A

0

; G

0

)

suh that

^

G 7�!

�

P

k

(A

0

; G

0

) and A

0

does not satisfy M .

Let us onsider the derivation (A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

) of length s, suh that A

s

does

not satisfy M .

If s=0 then G is (A

s

; G

s

) and (A

0

; G

0

) 7�!

�

P

k

(A

s

; G

s

) where A

s

does not satisfy M .

If s > 0 then we may assume A

0

6= true, and we have the following ases.

Case 1: A

0

is the equation t

1

= t

2

. Thus, by Point (1) of the operational semantis of Setion 2.3, the

derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

)

By the indutive hypothesis there exists (A

0

; G

0

) suh that G

0

mgu(t

1

; t

2

) 7�!

�

P

k

(A

0

; G

0

) and A

0

does

not satisfy M . Thus, (A

0

; G

0

) 7�!

�

P

k

(A

0

; G

0

).

Case 2: A

0

is the disequation t

1

6= t

2

. The proof proeeds as in Case 1, by using Point (2) of the

operational semantis and the indutive hypothesis.

Case 3: A

0

is a non-basi atom whih satis�esM . (The ase where A

0

does not satisfyM is subsumed

by the ase s=0.) By Point (3) of the operational semantis, the derivation from (A

0

; G

0

) to (A

s

; G

s

)

using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

(bd(E); G

0

)mgu(A

0

; hd(E)) 7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

)

where E is a renamed apart lause in P

k+1

.

If E 2 P

k

then (A

0

; G

0

) 7�!

P

k

(bd(E); G

0

)mgu(A

0

; hd(E)) and the thesis follows diretly from the

indutive hypothesis.

Otherwise, if E 2 (P

k+1

� P

k

), we prove the following:

Property (y): there exists a goal (A

t

; G

t

) suh that (A

0

; G

0

) 7�!

�

P

k

(A

t

; G

t

) and A

t

does not satisfy M .

The proof is done by onsidering the following ases, orresponding to the rule whih is applied to

derive E.

Case 3.1: E is derived by applying the de�nition introdution rule. Thus, E 2 Defs

n

and Property (y)

follows from the indutive hypothesis and the hypothesis that P

0

[Defs

n

satis�es M .

Case 3.2: E is derived by unfolding a lause C in P

k

of the form H  D;G

1

; A;G

2

, where D is a

onjuntion of disequations, w.r.t. the non-basi atom A. By Proposition 1 we may assume that

no disequation ours in G

1

; A;G

2

. Let C

1

; : : : ; C

m

, with m � 0, be the lauses of P

k

suh that,

for all i 2 f1; : : : ;mg, A is uni�able with the head of C

i

via the mgu #

i

.

Thus, E is of the form (H  D;G

1

; bd(C

i

); G

2

)#

i

, for some i 2 f1; : : : ;mg, and the derivation

from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

P

k+1

: : : 7�!

P

k+1

(A

s

; G

s

)

where �

i

is an mgu of A

0

and H#

i

. By the indutive hypothesis there exists (A

0

; G

0

) suh that

A

0

does not satisfy M and:

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

�

P

k

(A

0

; G

0

)

Sine #

i

is mgu(A; hd(C

i

)), #

i

is relevant, and vars(G

0

) \ vars((A; hd(C

i

))) = ;, we have that:
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(D;G

1

; bd(C

i

); G

2

; G

0

)#

i

�

i

7�!

�

P

k

(A

0

; G

0

)

and thus, by the de�nition of the operational semantis (Point 1), we have that:

(A=hd(C

i

); A

0

=H;D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Then, by properties of mgu's, we have that:

(A

0

=H;A=hd(C

i

);D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Sine A

0

satis�es M , C is safe, and C

i

is renamed apart, we have that vars(Dmgu(A

0

;H)) \

vars(A; hd(C

i

)) = ;. Thus, (D mgu(A

0

;H) mgu(A mgu(A

0

;H); hd(C

i

))) = (D mgu(A

0

;H))

and we have that:

(A

0

=H;D;A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Now, by Lemma 2, there exists a goal (A

00

; G

00

) suh that:

(A

0

=H;D;G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

) 7�!

�

P

k

(A

00

; G

00

)

where A

00

is a non-basi atom whih does not satisfy M . There are two ases:

Case A. (A

0

= H;D;G

1

) 7�!

�

P

k

(A

00

; G

000

) for some goal G

000

. In this ase, by using lause

C 2 P

k

, we have that:

(A

0

; G

0

) 7�!

P

k

(D;G

1

; A;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

00

; G

0000

)

for some goal G

0000

.

Case B. There is no (A

000

; G

000

) suh that (A

0

= H;D;G

1

) 7�!

�

P

k

(A

000

; G

000

) and A

000

does not

satisfy M . In this ase (A

0

=H;D;G

1

; A= hd(C

i

)) sueeds in P

k

. It follows that, for some

substitution #,

(A

0

=H;D;G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

)

7�!

�

P

k

(A=hd(C

i

); bd(C

i

); G

2

; G

0

)# (by Lemma 1)

7�!

P

k

(bd(C

i

); G

2

; G

0

)# mgu(A#; hd(C

i

))

(beause mgu's are relevant and C

i

is renamed apart)

7�!

�

P

k

(A

00

; G

0000

)

for some goal G

0000

. Thus,

(A

0

=H;D;G

1

; A;G

2

; G

0

)

7�!

�

P

k

(A;G

2

; G

0

)#

7�!

P

k

(bd(C

i

); G

2

; G

0

)# mgu(A#; hd(C

i

))

7�!

�

P

k

(A

00

; G

0000

)

and therefore, by using lause C 2 P

k

,

(A

0

; G

0

) 7�!

�

P

k

(A

00

; G

0000

)

where A

00

is a non-basi atom whih does not satisfy M . Thus, Property (y) holds.

Case 3.3: E is derived by a safe appliation of the folding rule (see De�nition 5). In partiular,

suppose that from the following lauses in P

k

:

8

>

<

>

:

C

1

: H  G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H  G

1

; (A

m

;K

m

)#;G

2
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and the following de�nition lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

we have derived the lause E of the form:

E: H  G

1

;newp(X

1

; : : : ;X

h

)#;G

2

where Property � of De�nition 5 holds, that is, eah input variable of newp(X

1

; : : : ;X

h

)#, is

also an input variable of at least one of the non-basi atoms ourring in (H;G

1

; A

1

#; : : : ; A

m

#).

Thus, the derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

is of the form:

(A

0

; G

0

) 7�!

P

k+1

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k+1

(A

s

; G

s

)

By the indutive hypothesis, there exists a goal (A

0

; G

0

) suh that A

0

does not satisfy M and the

following holds:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

There are two ases:

Case A: G

1

mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

00

) for some goal G

00

. In this ase we have that, for some

i 2 f1; : : : ;mg, and for some goal G

000

,

(A

0

; G

0

) 7�!

P

k

(G

1

; (A

i

;K

i

)#;G

2

; G

0

)mgu(A

0

;H) (by using lause C

i

in P

k

)

7�!

�

P

k

(A

0

; G

000

)

Thus, Property (y) holds.

Case B: There is no (A

00

; G

00

) suh that G

1

mgu(A

0

;H) 7�!

�

P

k

(A

00

; G

00

) and A

00

does not satisfy

M . In this ase G

1

mgu(A

0

;H) sueeds in P

k

, and thus, for some substitution �,

(A

0

; G

0

) 7�!

�

P

k

(newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)� 7�!

�

P

k

(A

0

; G

0

)

By Property �, we have that newp(X

1

; : : : ;X

h

)#� satis�es M .

It an be shown the following fat. Let us onsider the set of all de�nition lauses with head

prediate newp in Defs

k

, for any k 2 f0; : : : ; ng:

8

>

<

>

:

newp(X

1

; : : : ;X

h

) Body

1

� � �

newp(X

1

; : : : ;X

h

) Body

m

If for a substitution � and a goal G, the atom newp(X

1

; : : : ;X

h

)� satis�es M and

(newp(X

1

; : : : ;X

h

)�;G) 7�!

�

P

k

(A

0

; G

0

), where A

0

is a non-basi atom whih does not sat-

isfy M , then for some i 2 f1; : : : ;mg we have that there exists a goal (A

t

; G

t

) suh that

(Body

i

�;G) 7�!

�

P

k

(A

t

; G

t

), where A

t

is a non-basi atom whih does not satisfy M .

By using this fat, we have that, for some i 2 f1; : : : ;mg,

(A

0

; G

0

) 7�!

�

P

k

((A

i

;K

i

)#;G

2

; G

0

)� 7�!

�

P

k+1

(A

t

; G

t

)

where A

t

is a non-basi atom whih does not satisfy M and thus, Property (y) holds.

Case 3.4: E is derived by applying the head generalization rule. In this ase Property (y) follows

from the indutive hypothesis and from the de�nition of the operational semantis (Point 1).
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Case 3.5: E is derived by safe ase split (see De�nition 7) from a lause C in P

k

. By Proposition 1,

we may assume that C is of the form: H  D;B, where D is a onjuntion of disequations and

in B there are no ourrenes of disequations. Thus, E is of one of the following two forms:

C

1

. (H  D;B)fX=tg

C

2

. H  X 6= t;D;B

where X is an input variable of H, X does not our in t, and for all variables Y 2 vars(t),

either Y is an input variable of H or Y does not our in C.

Case A: E is C

1

. Thus, the derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

takes the form:

(A

0

; G

0

) 7�!

P

k+1

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k+1

(A

s

; G

s

)

By the indutive hypothesis, there exists a goal (A

0

; G

0

) suh that A

0

does not satisfy M and the

following holds:

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k

(A

0

; G

0

)

By properties of mgu's and Point (1) of the operational semantis, we have that:

(A

0

=H; X= t; D; B; G

0

) 7�!

�

P

k

(A

0

; G

0

)

By the onditions for safe ase split, we have that:

vars((X= t)mgu(A

0

;H)) \ vars((D; B; G

0

)mgu(A

0

;H)) = ;

and therefore:

(A

0

=H; D; B; G

0

) 7�!

�

P

k

(A

0

; G

0

)

Thus, by using lause C 2 P

k

,

(A

0

; G

0

) 7�!

P

k

(D; B; G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

and Property (y) holds.

Case B: E is C

2

. Thus, the derivation from (A

0

; G

0

) to (A

s

; G

s

) using P

k+1

takes the form:

(A

0

; G

0

) 7�!

P

k+1

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k+1

(A

s

; G

s

)

By the indutive hypothesis, there exists a goal (A

0

; G

0

) suh that A

0

does not satisfy M and:

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

Sine the answer substitution for any suessful disequation is the identity substitution, we have

that:

(D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

(A

0

; G

0

)

Thus, by using lause C 2 P

k

, we have that

(A

0

; G

0

) 7�!

�

P

k

(A

0

; G

0

)

and Property (y) holds.

Case 3.6: E is derived by applying the equation elimination rule. In this ase Property (y) is a

onsequene of the indutive hypothesis, Point (1) of the operational semantis, the safety of

P

k

, and Lemma 2.

Case 3.7: E is derived by applying the disequation replaement rule. In this ase Property (y)

is a onsequene of the indutive hypothesis, Point (2) of the operational semantis, and the

properties of uni�ation.

2

From Lemma 3 and De�nition 2 we have the following proposition.
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Proposition 4 (Preservation of Modes) Let P

0

; : : : ; P

n

be a transformation sequene onstruted

by using the transformation rules 1{9. Let M be a mode for P

0

[ Defs

n

suh that: (i) P

0

[ Defs

n

is safe w.r.t. M , (ii) P

0

[ Defs

n

satis�es M , and (iii) the appliations of the unfolding, folding, head

generalization, and ase split rules during the onstrution of P

0

; : : : ; P

n

are safe w.r.t. M . Then, for

k = 0; : : : ; n, the program P

k

satis�es M .

A3. Partial Corretness

For proving the partial orretness of the transformation rules w.r.t. the operational semantis (that

is, Proposition 5), we will use the following two lemmata.

Lemma 4 Let P be a safe program w.r.t. mode M , let Eqs be a onjuntion of equations, and let G

1

be a goal without ourrenes of disequations. For all goals G

2

, if

(Eqs; G

1

; G

2

) 7�!

�

P

G

2

#

then either

(G

1

; Eqs ; G

2

) 7�!

�

P

G

2

#

or there exists a goal (A

0

; G

0

) suh that A

0

is a non-basi atom whih does not satisfy M and

G

1

7�!

�

P

(A

0

; G

0

):

Lemma 5 Let P

0

; : : : ; P

n

be a transformation sequene onstruted by using the transformation rules

1{9. Let M be a mode for P

0

[Defs

n

suh that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es

M , and (iii) the appliations of the unfolding, folding, head generalization, and ase split rules during

the onstrution of P

0

; : : : ; P

n

are all safe w.r.t. M .

Then, for k = 0; : : : ; n � 1, for eah goal G, if there exists a derivation G 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is onsistent with M , then G 7�!

�

P

k

[Defs

n

true, that is, G sueeds in P

k

[Defs

n

.

Proof : By hypotheses (i{iii), and Propositions 3 and 4, for k = 0; : : : ; n, program P

k

is safe and

satis�es M . Let G be a goal of the form (A

0

; G

0

), suh that there exists a derivation

Æ : (A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is onsistent with M . We will prove that:

(A

0

; G

0

) 7�!

�

P

k

[Defs

n

true

The proof proeeds by indution on the length s of the derivation Æ.

Base Case. For s = 0, the goal (A

0

; G

0

) is true and the thesis follows from the fat that true sueeds

in all programs.

Step Case. Let us now assume the following

Indutive Hypothesis: for all r < s and for all goals G, if there exists a derivationG 7�!

P

k+1

: : : 7�!

P

k+1

true of length r whih is onsistent with M , then G 7�!

�

P

k

[Defs

n

true.

There are the following three ases.

Case 1: A

0

is the equation t

1

= t

2

. By Point (1) of the operational semantis of Setion 2.3, the

derivation Æ is of the form:

(t

1

= t

2

; G

0

) 7�!

P

k+1

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true

Thus, the derivation G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true has length s � 1 and it is onsistent

with M . By the indutive hypothesis there exists a derivation G

0

mgu(t

1

; t

2

) 7�!

�

P

k

true. Thus,

(A

0

; G

0

) 7�!

�

P

k

true and (A

0

; G

0

) sueeds in P

k

[Defs

n

.

Case 2: A

0

is the disequation t

1

6= t

2

. The proof proeeds as in Case 1, by using Point (2) of the

operational semantis and the indutive hypothesis.
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Case 3: A

0

is a non-basi atom whih satis�es M (otherwise there is no derivation starting from

(A

0

; G

0

) whih is onsistent with M). By Point (3) of the operational semantis, the derivation Æ is

of the form:

(A

0

; G

0

) 7�!

P

k+1

(bd(E); G

0

)mgu(A

0

; hd(E)) 7�!

P

k+1

: : : 7�!

P

k+1

true

where E is a renamed apart lause in P

k+1

.

If E 2 P

k

then (A

0

; G

0

) 7�!

P

k

(bd(E); G

0

)mgu(A

0

; hd(E)) and the thesis follows diretly from the

indutive hypothesis.

Otherwise, if E 2 (P

k+1

� P

k

), we prove that (A

0

; G

0

) sueeds in P

k

[ Defs

n

by onsidering the

following ases, whih orrespond to the rules applied for deriving E.

Case 3.1: E is derived by applying the de�nition introdution rule. Thus, E is a lause in Defs

n

of

the form: newp(X

1

; : : : ;X

h

) B and the derivation Æ is of the form:

(newp(t

1

; : : : ; t

h

); G

0

) 7�!

Defs

n

(BfX

1

=t

1

; : : : ;X

h

=t

h

g; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

By the indutive hypothesis, we have that:

(BfX

1

=t

1

; : : : ;X

h

=t

h

g; G

0

) 7�!

�

P

k

true

and thus,

(newp(t

1

; : : : ; t

h

); G

0

) 7�!

�

P

k

[Defs

n

true

Case 3.2: E is derived by unfolding a lause C in P

k

of the form H  D;G

1

; A;G

2

, where D is a

onjuntion of disequations, w.r.t. the non-basi atom A. By Proposition 1 we may assume that

no disequation ours in (G

1

; A;G

2

). Let C

1

; : : : ; C

m

, with m � 0, be the lauses of P

k

suh

that, for all i 2 f1; : : : ;mg A is uni�able with the head of C

i

via the mgu #

i

.

Thus, E is of the form (H  D;G

1

; bd(C

i

); G

2

)#

i

, for some i 2 f1; : : : ;mg, and the derivation

Æ is of the form:

(A

0

; G

0

) 7�!

P

k+1

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

P

k+1

: : : 7�!

P

k+1

true

where �

i

is an mgu of A

0

and H#

i

. By the indutive hypothesis we have that:

((D;G

1

; bd(C

i

); G

2

)#

i

; G

0

)�

i

7�!

�

P

k

true

Sine #

i

is mgu(A; hd(C

i

)), #

i

is relevant, and vars(G

0

) \ vars((A; hd(C

i

))) = ;, we have that:

(D;G

1

; bd(C

i

); G

2

; G

0

)#

i

�

i

7�!

�

P

k

true

and thus, by the de�nition of the operational semantis (Point 1), we have that:

(A=hd(C

i

); A

0

=H;D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

Then, by properties of mgu's, we have that:

(A

0

=H;A=hd(C

i

);D;G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

Sine A

0

satis�es M , C is safe, and C

i

is renamed apart, we have that vars(Dmgu(A

0

;H)) \

vars(A; hd(C

i

)) = ;. Thus, (D mgu(A

0

;H) mgu(A mgu(A

0

;H); hd(C

i

))) = (D mgu(A

0

;H))

and we have that:

(A

0

=H;D;A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

Now, by Lemma 4, there are the following two ases.

Case A. (A

0

=H;D;G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

) 7�!

�

P

k

true

In this ase, by Points (1) and (3) of the operational semantis we have that:
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(A

0

=H;D;G

1

; A;G

2

; G

0

) 7�!

�

P

k

true

and thus, by using lause C in P

k

,

(A

0

; G

0

) 7�!

�

P

k

true

Case B. There exists a goal (A

0

; G

0

) suh that:

(A

0

=H;D;G

1

) 7�!

�

P

k

(A

0

; G

0

)

where A

0

is a non-basi atom whih does not satisfy the mode M . In this ase we have that, for

some goal G

00

,

A

0

7�!

�

P

k

(A

0

; G

00

)

whih is impossible beause A

0

and P

k

satisfy M .

Case 3.3: E is derived by a safe appliation of the folding rule (see De�nition 5). In partiular,

suppose that from the following lauses in P

k

:

8

>

<

>

:

C

1

: H  G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H  G

1

; (A

m

;K

m

)#;G

2

and the following de�nition lauses in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m

we have derived the lause E of the form:

E: H  G

1

;newp(X

1

; : : : ;X

h

)#;G

2

where Property � of De�nition 5 holds, that is, eah input variable of newp(X

1

; : : : ;X

h

)#, is

also an input variable of at least one of the non-basi atoms ourring in (H;G

1

; A

1

#; : : : ; A

m

#).

Thus, the derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k+1

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k+1

true

By the indutive hypothesis, the following holds:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

�

P

k

true

and therefore, for some substitution �,

(A

0

; G

0

) 7�!

�

P

k

(newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)� 7�!

�

P

k

true

By Property �, we have that newp(X

1

; : : : ;X

h

)#� satis�es M .

It an be shown the following fat. Let us onsider the set of all de�nition lauses with head

prediate newp in Defs

k

, for any k 2 f0; : : : ; ng:

8

>

<

>

:

newp(X

1

; : : : ;X

h

) Body

1

� � �

newp(X

1

; : : : ;X

h

) Body

m

If for a substitution � and for a goal G, the atom newp(X

1

; : : : ;X

h

)� satis�es M and we

have that (newp(X

1

; : : : ;X

h

)�;G) 7�!

�

P

k

true, then for some i 2 f1; : : : ;mg we have that

(Body

i

�;G) 7�!

�

P

k

true.

By using this fat, we have that, for some i 2 f1; : : : ;mg,

(A

0

; G

0

) 7�!

�

P

k

((A

i

;K

i

)#;G

2

; G

0

)� 7�!

�

P

k

true
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Case 3.4: E is derived by applying the head generalization rule. In this ase (A

0

; G

0

) 7�!

�

P

k

true

follows from the indutive hypothesis and from the de�nition of the operational semantis (Point

1).

Case 3.5: E is derived by safe ase split (see De�nition 7) from a lause C in P

k

. By Proposition 1,

we may assume that C is of the form: H  D;B, where D is a onjuntion of disequations and

in B there are no ourrenes of disequations. Thus, E is of one of the following two forms:

C

1

. (H  D;B)fX=tg

C

2

. H  X 6= t;D;B

where X is an input variable of H, X does not our in t, and for all variables Y 2 vars(t),

either Y is an input variable of H or Y does not our in C.

Case A: E is C

1

. Thus, the derivation Æ takes the form:

(A

0

; G

0

) 7�!

P

k+1

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k+1

true

By the indutive hypothesis, we have that:

((D;B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

�

P

k

true

By properties of mgu's and Point (1) of the operational semantis, we have that:

(A

0

=H; X= t; D; B; G

0

) 7�!

�

P

k

true

By the onditions for safe ase split, we have that:

vars((X= t)mgu(A

0

;H)) \ vars((D; B; G

0

)mgu(A

0

;H)) = ;

and therefore:

(A

0

=H; D; B; G

0

) 7�!

�

P

k

true

Thus, by using lause C 2 P

k

,

(A

0

; G

0

) 7�!

P

k

(D; B; G

0

)mgu(A

0

;H) 7�!

�

P

k

true

Case B: E is C

2

. Thus, the derivation Æ takes the form:

(A

0

; G

0

) 7�!

P

k+1

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k+1

true

By the indutive hypothesis, we have that:

(X 6= t;D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

true

Sine the answer substitution for any suessful disequation is the identity substitution, we have

that:

(D;B;G

0

)mgu(A

0

;H) 7�!

�

P

k

true

Thus, by using lause C 2 P

k

,

(A

0

; G

0

) 7�!

�

P

k

true

Case 3.6: E is derived by applying the equation elimination rule. In this ase (A

0

; G

0

) 7�!

�

P

k

true is

a onsequene of the indutive hypothesis, Point (1) of the operational semantis, the fat that

P

k

is safe and satis�es M , and Lemma 4.

Case 3.7: E is derived by applying the disequation replaement rule. In this ase (A

0

; G

0

) 7�!

�

P

k

true

is a onsequene of the indutive hypothesis, Point (2) of the operational semantis, and the

properties of uni�ation.

2
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Proposition 5 (Partial Corretness) Let P

0

; : : : ; P

n

be a transformation sequene onstruted by

using the transformation rules 1{9. Let M be a mode for P

0

[ Defs

n

suh that: (i) P

0

[ Defs

n

is

safe w.r.t. M , (ii) P

0

[ Defs

n

satis�es M , and (iii) the appliations of the unfolding, folding, head

generalization, and ase split rules during the onstrution of P

0

; : : : ; P

n

are all safe w.r.t. M .

Then, for k = 0; : : : ; n, for eah non-basi atom A whih satis�es mode M , if A sueeds in P

k

then

A sueeds in P

0

[Defs

k

.

Proof : Suppose that a non-basi atom A whih satis�es M has a suessful derivation using P

k

. By

Proposition 4, P

k

satis�esM and, therefore, A has a suessful derivation using P

k

whih is onsistent

with M . Thus, the thesis follows from Lemma 5. 2

A4. Completeness

For the proofs of Propositions 3 (Preservation of Safety), 4 (Preservation of Modes), and 5 (Partial

Corretness), we have proeeded by indution on the length of the derivations and by ases on the rule

used to derive program P

k+1

from program P

k

. For the proof of Proposition 6 below (Completeness),

we will proeed by indution w.r.t. more sophistiated well-founded orderings. This proof tehnique

is a suitable modi�ation of the one based on weight onsistent proof trees [14, 46℄.

The following de�nition introdues some well-founded orders and other notions whih are needed

for the proofs presented in this setion.

De�nition 14 (i) Given a derivation Æ of the form G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

z

, we denote by �(Æ)

the number of goals G

i

in Æ suh that G

i

is of the form (A;K) where A is a non-basi atom.

(ii) We de�ne the following funtions � and � whih given a program and a goal return either a

non-negative integer or 1 (we assume that, for all non-negative integers n, 1 > n):

�(P;G) =

(

minf�(Æ) j Æ is a suessful derivation of G in Pg if G sueeds in P

1 otherwise

�(P;G) =

(

minfn j n is the length of a suessful derivation of G in Pg if G sueeds in P

1 otherwise

(iii) Given a program P and two goals G

1

and G

2

, we write G

1

�

P

G

2

i� �(P;G

1

) > �(P;G

2

).

Similarly, we write G

1

�

P

G

2

i� �(P;G

1

) � �(P;G

2

).

(iv) Given two programs P and Q, we say that a derivation G

0

7�!

P

G

1

7�!

P

: : : 7�!

P

G

z

is quasi-

dereasing w.r.t. �

Q

i� for i = 0; : : : ; z � 1, either (1) G

i

�

Q

G

i+1

or (2) the leftmost atom of G

i

is a

basi atom and G

i

�

Q

G

i+1

.

(v) Let P be a program and G

1

; G

2

be goals. If there exists a derivation Æ from G

1

to G

2

suh that

�(Æ) = s, then we write G

1

7�!

s

P

G

2

.

For any program P the relation �

P

is a well-founded order and, for all goals G

1

; G

2

; and G

3

, we

have that G

1

�

P

G

2

and G

2

�

P

G

3

implies G

1

�

P

G

3

.

Lemma 6 Let P be a program and G be a goal. If G sueeds in P then G has a derivation whih

is quasi-dereasing w.r.t. �

P

.

Proof : The derivation Æ from G using P suh that �(Æ) � �(Æ

0

) for all suessful derivations Æ

0

from

G, is quasi-dereasing w.r.t. �

P

. 2

Lemma 7 Let M be a mode for program P , suh that P is safe w.r.t. M and P satis�es M . Let Eqs

be a onjuntion of equations, and G

0

; G

1

; G

2

be goals. Suppose also that no disequation ours in

G

1

and all derivations from the goal (G

0

; G

1

) are onsistent with M . Then:
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(i) (G

0

; G

1

; Eqs; G

2

) 7�!

�

P

true i� (G

0

; Eqs; G

1

; G

2

) 7�!

�

P

true

(ii) �(P; (G

0

; G

1

; Eqs; G

2

)) = �(P; (G

0

; Eqs ; G

1

; G

2

))

(iii) �(P; (G

0

; G

1

; Eqs ; G

2

)) = �(P; (G

0

; Eqs; G

1

; G

2

))

Proof : By indution on the length of the derivations. 2

Lemma 8 Let M be a mode for program P , suh that P is safe w.r.t. M and P satis�es M . Let

# be a substitution and G

0

; G

1

; G

2

be goals. Suppose also that no disequation ours in G

2

and all

derivations from the goal (G

0

; G

2

) are onsistent with M . Then:

(i) if (G

0

; G

1

; G

2

)# 7�!

�

P

true then (G

0

; G

2

) 7�!

�

P

true

(ii) �(P; (G

0

; G

1

; G

2

)#) � �(P; (G

0

; G

2

))

(iii) �(P; (G

0

; G

1

; G

2

)#) � �(P; (G

0

; G

2

))

Proof : By indution on the length of the derivations. 2

Lemma 9 Let M be a mode for program P , suh that P is safe w.r.t. M and P satis�es M . Let

Diseqs be a onjuntion of disequations and G be a goal. Suppose also that vars(Diseqs)\vars(G) = ;.

Then:

(i) (G; Diseqs) 7�!

�

P

true i� (Diseqs; G) 7�!

�

P

true

(ii) �(P; (G; Diseqs)) = �(P; (Diseqs ; G))

(iii) �(P; (G; Diseqs)) = �(P; (Diseqs ; G))

Proof : The proof proeeds by indution on the length of the derivations. 2

Let us onsider a transformation sequene P

0

; : : : ; P

n

onstruted by using the transformation

rules 1{9 aording to the hypothesis of Theorem 6. For reasons of simpliity we assume that eah

de�nition lause is used for folding, and thus, by Condition 1 of Theorem 6, it is unfolded during the

onstrution of P

0

; : : : ; P

n

. We an rearrange the sequene P

0

; : : : ; P

n

into a new sequene P

0

; : : : ; P

0

[

Defs

n

; : : : ; P

j

; : : : ; P

l

; : : : ; P

n

suh that: (1) P

0

; : : : ; P

0

[ Defs

n

is onstruted by appliations of the

de�nition introdution rule, (2) P

0

[Defs

n

; : : : ; P

j

is onstruted by unfolding every lause in Defs

n

,

(3) P

j

; : : : ; P

l

is onstruted by appliations of Rules 3{9, and (4) either (4.1) l = n, or (4.2) l = n� 1

and P

n

is derived from P

n�1

by an appliation of the de�nition elimination rule w.r.t. prediate p.

Throughout the rest of this setion we will refer to the transformation sequene P

0

; : : : ; P

0

[

Defs

n

; : : : ; P

j

; : : : ; P

n

onstruted as indiated above. We also assume that M is a mode for P

0

[Defs

n

suh that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es M , and (iii) the appliations of the

unfolding, folding, head generalization, and ase split rules during the onstrution of P

0

; : : : ; P

n

are

all safe w.r.t. M .

Thus, by Propositions 3 and 4, for k = 0; : : : ; n, program P

k

is safe and satis�es M .

Lemma 10 Let us onsider the transformation sequene P

0

; : : : ; P

0

[ Defs

n

; : : : ; P

j

onstruted as

indiated above. Then the following properties hold.

(i) For all lauses newp(X

1

; : : : ;X

h

) Body in Defs

n

, for all substitutions #, and for all goals G

1

; G

2

,

suh that all derivations from (G

1

; Body#; G

2

) using P

j

are onsistent with M , we have that:

(i.1) (G

1

; Body #; G

2

) �

P

j

(G

1

; newp(X

1

; : : : ;X

h

)#; G

2

);

(i.2) all derivations starting from (G

1

;newp(X

1

; : : : ;X

h

)#; G

2

) using P

j

are onsistent with M ;

(ii) for all non-basi atoms A satisfying M , if A sueeds in P

0

[Defs

n

then A sueeds in P

j

.
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Notie that, by Point (i.1), if (G

1

; Body #; G

2

) sueeds in P

j

then (G

1

; newp(X

1

; : : : ;X

h

)#; G

2

)

sueeds in P

j

.

Proof : By indution on the length of the derivations. 2

For the proof of the following Lemma 12 we will use the following property.

Lemma 11 Let us onsider the transformation sequene P

j

; : : : ; P

l

and the mode M for P

0

[ Defs

n

as indiated above. For k = j; : : : ; l and for all goals G

1

and G

2

suh that there exists a derivation

G

1

7�!

P

k

: : : 7�!

P

k

G

2

, if all derivations from G

1

using P

j

are onsistent with M then all derivations

from G

2

using P

j

are onsistent with M .

Proof : The proof proeeds by indution on k and on the length of the derivation G

1

7�!

P

k

: : : 7�!

P

k

G

2

. We omit the details. 2

Lemma 12 Let us onsider the transformation sequene P

j

; : : : ; P

l

and the mode M for P

0

[ Defs

n

as indiated above. Let G be a goal suh that (i) no disequation ours in G and (ii) all derivations

from G using P

j

are onsistent with M . For k = j; : : : ; l, if G has a suessful derivation in P

j

, then

G has a suessful derivation in P

k

whih is quasi-dereasing w.r.t. �

P

j

.

Proof : Let us onsider the following ordering on goals:

G

1

�G

2

i� either G

1

�

P

j

G

2

or (G

1

�

P

j

G

2

and �(P

j

; G

1

) > �(P

j

; G

2

)).

� is a well-founded order.

The proof proeeds by indution on k.

Base Case. The ase k = j follows from Lemma 6.

Step Case. For k � j we assume the following:

Indutive Hypothesis (I1). For eah goal G

0

suh that no disequation ours in G

0

and all derivations

from G

0

using P

j

are onsistent withM , if G

0

has a suessful derivation in P

j

, then G

0

has a suessful

derivation in P

k

whih is quasi-dereasing w.r.t. �

P

j

.

Let us now onsider a goal G of the form (A

0

; G

0

) suh that no disequation ours in (A

0

; G

0

) and all

derivations from (A

0

; G

0

) using P

j

are onsistent withM . Let us assume that there exists a derivation

of the form:

Æ : (A

0

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

whih is quasi-dereasing w.r.t. �

P

j

.

We wish to show that there exists a derivation of the form:

Æ

0

: (A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

. We prove the existene of suh a derivation Æ

0

by indution on

the well-founded order �.

We assume the following:

Indutive Hypothesis (I2). For eah goal

^

G suh that no disequation ours in

^

G and all derivations

from

^

G using P

j

are onsistent with M and (A

0

; G

0

)�

^

G, if there exists a derivation of the form:

^

G 7�!

P

k

: : : 7�!

P

k

true

whih is quasi-dereasing w.r.t. �

P

j

, then there exists a derivation of the form:

^

G 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

.

Now we proeed by ases.
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Case 1: A

0

is the equation t

1

= t

2

. By Point (1) of the operational semantis of Setion 2.3, the

derivation Æ is of the form:

(t

1

= t

2

; G

0

) 7�!

P

k

G

0

mgu(t

1

; t

2

) 7�!

P

k

: : : 7�!

P

k

true

Let us onsider the derivation:

G

0

mgu(t

1

; t

2

) 7�!

P

k

: : : 7�!

P

k

true

By Proposition 5, we have that both (t

1

= t

2

; G

0

) and G

0

mgu(t

1

; t

2

) sueed in P

j

. Moreover, by Point

(1) of the operational semantis �(P

j

; (t

1

= t

2

; G

0

)) > �(P

j

; G

0

mgu(t

1

; t

2

)). Thus, (t

1

= t

2

; G

0

) �

G

0

mgu(t

1

; t

2

) and, by the Indutive Hypothesis (I2), there exists a suessful derivation of the form:

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

. Sine (t

1

= t

2

; G

0

) �

P

j

G

0

mgu(t

1

; t

2

), the following derivation:

(t

1

= t

2

; G

0

) 7�!

P

k+1

G

0

mgu(t

1

; t

2

) 7�!

P

k+1

: : : 7�!

P

k+1

true

is quasi-dereasing w.r.t. �

P

j

.

Case 2: A

0

is a non-basi atom whih satis�es M (otherwise there is no derivation starting from

(A

0

; G

0

) whih is onsistent with M). By Point (3) of the operational semantis, in P

k

there exists a

renamed apart lause C, suh that the derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(bd(C); G

0

)mgu(A

0

; hd(C)) 7�!

P

k

: : : 7�!

P

k

true

By Proposition 1 we may assume that lause C is of the form H  Diseqs; B, where Diseqs is a on-

juntion of disequations and B is a goal without ourrenes of disequations. Thus, Diseqs mgu(A

0

;H)

sueeds and Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(Diseqs ; B;G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

(B;G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

If C 2 P

k+1

then (A

0

; G

0

) 7�!

P

k+1

(Diseqs ; B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

(B;G

0

)mgu(A

0

;H)

and the thesis follows from the Indutive Hypothesis (I2), beause (A

0

; G

0

) �

P

j

(B;G

0

)mgu(A

0

;H)

(reall that Æ is quasi-dereasing w.r.t. �

P

j

).

Otherwise, if C 2 (P

k

�P

k+1

), we onstrut the derivation Æ

0

by onsidering the following ases, whih

orrespond to the rules applied for deriving P

k+1

from P

k

.

Case 2.1: P

k+1

is derived by unfolding lause C in P

k

w.r.t. a non-basi atom, say A. Thus, lause C

is of the formH  Diseqs; G

1

; A;G

2

. Let C

1

; : : : ; C

m

, withm � 0, be the lauses of P

k

suh that,

for i = 1; : : : ;m, A is uni�able with the head of C

i

. Thus, P

k+1

= (P

k

� fCg) [ fD

1

; : : : ;D

m

g,

where for i = 1; : : : ;m, D

i

is the lause (H  Diseqs; G

1

; bd(C

i

); G

2

)mgu(A; hd(C

i

)). For

reasons of simpliity we assume that for i = 1; : : : ;m, no disequation ours in bd(C

i

). In the

general ase where, for some i 2 f1; : : : ;mg, bd(C

i

) has ourrenes of disequations, the proof

proeeds in a very similar way, by using Proposition 1, Lemma 9, and the hypothesis that all

appliations of the unfolding rule are safe (see De�nition 4).

The derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; A;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

From the fat that Æ is quasi-dereasing w.r.t. �

P

j

, from Point (1) of the operational semantis,

and from the de�nition of �

P

j

, we have that:

(A

0

; G

0

) �

P

j

(A

0

=H;Diseqs ; G

1

; A;G

2

; G

0

)

and the derivation

(A

0

=H;Diseqs ; G

1

; A;G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

is quasi-dereasing w.r.t. �

P

j

.

Thus, by Points (1) and (3) of the operational semantis, there exists a lause in P

k

, say C

i

,

suh that the derivation
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(A

0

=H;Diseqs ; G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

is quasi-dereasing w.r.t. �

P

j

. Moreover, we have that:

(A

0

; G

0

) �

P

j

(A

0

=H;Diseqs ; G

1

; A=hd(C

i

); bd(C

i

); G

2

; G

0

).

Sine all derivations from (A

0

; G

0

) using P

j

are onsistent with M , we have that all derivations

from (A

0

= H;Diseqs; G

1

) using P

j

are onsistent with M , and therefore, by Lemma 3, all

derivations from (A

0

= H;G

1

) using P

k

are onsistent with M . Then, sine no disequation

ours in G

1

, by Lemma 7, there exists a derivation

(A

0

=H;Diseqs ; A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

whih is quasi-dereasing w.r.t. �

P

j

. Moreover, we have that:

(A

0

; G

0

) �

P

j

(A

0

=H;Diseqs ; A=hd(C

i

); G

1

; bd(C

i

); G

2

; G

0

).

Now, sine by Lemma 3 all lauses in P

k

are safe, we have that:

vars(Diseqs mgu(A

0

;H)) \ vars((A=hd(C

i

))mgu(A

0

;H)) = ;

and therefore, by using properties of mgu's, there exists a derivation

(A=hd(C

i

); A

0

=H;Diseqs ; G

1

; bd(C

i

); G

2

; G

0

) 7�!

P

k

: : : 7�!

P

k

true

whih is quasi-dereasing w.r.t. �

P

j

. Let #

i

be mgu(A; hd(C

i

)) and �

i

be mgu(A

0

;H #

i

)). By

Points (1) and (2) of the operational semantis, we have that Diseqs #

i

�

i

sueeds and there

exists a derivation of the form

((G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

7�!

P

k

: : : 7�!

P

k

true

Moreover, we have that:

Property (*): (A

0

; G

0

) �

P

j

((G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

holds and thus, by the Indutive Hypothesis (I2), there exists a derivation of the form

((G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

.

Sine Diseqs #

i

�

i

sueeds, by using lause D

i

in P

k+1

for the �rst step, we an onstrut the

following derivation:

(A

0

; G

0

) 7�!

P

k+1

((Diseqs ; G

1

; bd(C

i

); G

2

)#

i

; G

0

) �

i

7�!

P

k+1

: : : 7�!

P

k+1

true

whih, by Property (*), is quasi-dereasing w.r.t. �

P

j

.

Case 2.2: P

k+1

is derived from P

k

by a safe appliation of the folding rule (see De�nition 5). In

partiular, suppose that lause C is one of the following lauses ourring in P

k

:

8

>

<

>

:

C

1

: H  Diseqs; G

1

; (A

1

;K

1

)#;G

2

� � �

C

m

: H  Diseqs ; G

1

; (A

m

;K

m

)#;G

2

where Diseqs is a onjuntion of disequations and no disequation ours in (G

1

; G

2

). We also

suppose that the following de�nition lauses our in Defs

k

:

8

>

<

>

:

D

1

: newp(X

1

; : : : ;X

h

) A

1

;K

1

� � �

D

m

: newp(X

1

; : : : ;X

h

) A

m

;K

m
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and we have derived a lause E of the form:

E: H  Diseqs ; G

1

;newp(X

1

; : : : ;X

h

)#;G

2

where Property � of De�nition 5 holds, that is, eah input variable of newp(X

1

; : : : ;X

h

)#, is

also an input variable of at least one of the non-basi atoms ourring in (H;G

1

; A

1

#; : : : ; A

m

#).

Thus, P

k+1

= (P

k

� fC

1

; : : : ; C

m

g) [ fEg.

We may assume, without loss of generality, that lause C is C

1

, and the derivation Æ is of the

form:

(A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

Thus, Diseqs mgu(A

0

;H) sueeds and, sine Æ is onsistent with M , by Lemma 5, we have that

(G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) sueeds in P

j

.

Moreover, by Lemma 11, all derivations from (G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) using P

j

are

onsistent with M .

Thus, by Lemmata 6 and 10, all derivations from (G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H)

using P

j

are onsistent with M and there exists a derivation of the form:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

j

: : : 7�!

P

j

true

whih is quasi-dereasing w.r.t. �

P

j

.

No disequation ours in (G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H), and thus, by the Indu-

tive Hypothesis (I1), there exists a derivation of the form:

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

whih is quasi-dereasing w.r.t. �

P

j

.

Sine Æ is quasi-dereasing w.r.t. �

P

j

, by Lemma 10, we also have that:

(A

0

; G

0

)� (G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H)

Thus, by the Indutive Hypothesis (I2), there exists a derivation

(G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi dereasing w.r.t. �

P

j

.

Sine Diseqs mgu(A

0

;H) sueeds, by using lause E 2 P

k+1

, we an onstrut the following

derivation

(A

0

; G

0

) 7�!

P

k+1

(Diseqs ; G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H)

7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

beause:

(A

0

; G

0

) �

P

j

(Diseqs; G

1

; (A

1

;K

1

)#;G

2

; G

0

)mgu(A

0

;H) (beause Æ is quasi-dereasing)

�

P

j

(Diseqs; G

1

;newp(X

1

; : : : ;X

h

)#;G

2

; G

0

)mgu(A

0

;H) (by Lemma 10)

Case 2.3: P

k+1

is derived by deleting lause C from P

k

by applying the subsumption rule. Thus,

lause C is of the form (H  Diseqs ; G

1

; G

2

)# and there exists a lause D in P

k

of the form

H  Diseqs; G

1

. By Proposition 1 we may assume that no disequation ours in G

1

.

Thus, the derivation (Æ) is of the form:

(A

0

; G

0

) 7�!

P

k

((Diseqs ; G

1

; G

2

)#;G

0

)mgu(A

0

;H#) 7�!

P

k

: : : 7�!

P

k

true

Sine all derivations starting from (A

0

; G

0

) using P

k

are onsistent with M and, by using

lause D, (A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; G

0

)mgu(A

0

;H), we have that all derivations starting from
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(Diseqs; G

1

; G

0

)mgu(A

0

;H) using P

k

are onsistent with M . Moreover, no disequation ours

in G

0

and therefore, by Lemma 8, there exists a derivation

(A

0

; G

0

) 7�!

P

k

(Diseqs; G

1

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

whih is quasi-dereasing w.r.t. �

P

j

. Thus, (Diseqs mgu(A

0

;H)) sueeds and there exists a

derivation

(G

1

; G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

whih is quasi-dereasing w.r.t. �

P

j

. Sine (A

0

; G

0

) � (G

1

; G

0

)mgu(A

0

;H), by the Indutive

Hypothesis (I2), there exists a derivation

(G

1

; G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

. SineD belongs to P

k+1

and (Diseqs mgu(A

0

;H)) sueeds,

there exists a derivation

(A

0

; G

0

) 7�!

P

k+1

(Diseqs; G

1

; G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

.

Case 2.4: P

k+1

is derived from P

k

by applying the head generalization rule to lause C. Thus, C is

of the form HfX=tg  Body and P

k+1

= (P

k

� fCg) [ fGenC g, where lause GenC is of the

form H  X= t;Body .

In this ase we an show that we an onstrut the derivation Æ

0

whih is quasi-dereasing w.r.t.

�

P

j

, by using (i) Point (1) of the operational semantis, (ii) the Indutive Hypothesis (I2) and

(iii) the fat that, for all goals of the form (t

1

= t

2

; G), where t

1

and t

2

are uni�able terms, and

for all programs P , �(P; (t

1

= t

2

; G))=�(P; Gmgu(t

1

; t

2

)).

Case 2.5: P

k+1

is derived from P

k

by applying the safe ase split rule (see De�nition 7) to lause C.

By Proposition 1, we may assume that C is a lause of the form H  Diseqs ; B, where Diseqs

is a onjuntion of disequations and B is a goal without ourrenes of disequations. We also

assume that from C we have derived two lauses of the form:

C

1

. (H  Diseqs; B)fX=tg

C

2

. H  X 6= t;Diseqs; B

where X is an input variable of H, X does not our in t, and for all variables Y 2 vars(t),

either Y is an input variable of H or Y does not our in C.

We have that P

k+1

= (P

k

� fCg) [ fC

1

; C

2

g. The derivation Æ is of the form:

(A

0

; G

0

) 7�!

P

k

(Diseqs; B;G

0

)mgu(A

0

;H) 7�!

P

k

: : : 7�!

P

k

true

Thus, (Diseqs mgu(A

0

;H)) sueeds and, sine Æ is quasi-dereasing, we have that (A

0

; G

0

) �

(B;G

0

)mgu(A

0

;H). The goal (B;G

0

)mgu(A

0

;H) has no ourrenes of disequations and, by

the Indutive Hypothesis (I2), there exists a derivation

(B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

. Sine (Diseqs mgu(A

0

;H)) sueeds, there exists a deriva-

tion

(Diseqs ; B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

.

Sine X is an input variable of H, there exists a bindingX=u in mgu(A

0

;H) where u is a ground

term. We onsider the following two ases.
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Case A: t and u are uni�able, and thus, u is an instane of t. In this ase A

0

and HfX=tg are

uni�able and, by the hypotheses on X=t, we have that:

(Diseqs ; B;G

0

)mgu(A

0

;H) = ((Diseqs ; B)fX=tg; G

0

)mgu(A

0

;HfX=tg)

Thus, we an onstrut a derivation of the form:

(A

0

; G

0

) 7�!

P

k+1

((Diseqs ; B)fX=tg; G

0

)mgu(A

0

;HfX=tg) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

.

Case B: t and u are not uni�able. Thus, (X 6= t)mgu(A

0

;H) sueeds and the following derivation

is quasi-dereasing w.r.t. �

P

j

.

(A

0

; G

0

) 7�!

P

k+1

(X 6= t;Diseqs; B;G

0

)mgu(A

0

;H)

7�!

P

k+1

(Diseqs; B;G

0

)mgu(A

0

;H) 7�!

P

k+1

: : : 7�!

P

k+1

true

Case 2.6: P

k+1

is derived from P

k

by applying the equation elimination rule to lause C. In this ase

the existene of a derivation

(A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

, an be proved by using (i) the Indutive Hypothesis (I2),

(ii) Point (1) of the operational semantis, (iii) the fat that P

k

is safe and satis�es M , and (iv)

Lemma 7.

Case 2.7: P

k+1

is derived from P

k

by applying the disequation replaement rule to lause C. In this

ase the existene of a derivation

(A

0

; G

0

) 7�!

P

k+1

: : : 7�!

P

k+1

true

whih is quasi-dereasing w.r.t. �

P

j

, an be proved by using (i) the Indutive Hypothesis (I2),

(ii) Point (2) of the operational semantis, and (iii) the properties of uni�ation.

2

Lemma 13 Let us onsider the transformation sequene P

j

; : : : ; P

l

and the mode M for P

0

[ Defs

n

as indiated above. For k = j; : : : ; l, for eah non-basi atom A whih satis�es mode M , if A sueeds

in P

j

then A sueeds in P

k

.

Proof : It follows from Lemma 12, beause if an atom A satis�es M and sueeds in P

j

, then A has

a suessful derivation in P

j

whih is onsistent with M and quasi-dereasing w.r.t. �

P

j

. Indeed, by

Proposition 4, P

j

satis�es M , and thus, all derivations starting from A are onsistent with M . 2

Lemma 14 If program P

n

is derived from program P

n�1

by an appliation of the de�nition elimination

rule w.r.t. a non-basi prediate p, then for eah atom A whih has prediate p, if A sueeds in

P

0

[Defs

n

then A sueeds in P

n

.

Proof : If A has prediate p then p depends on all lauses whih are used for any derivation starting

from A. Thus, every derivation from A using P

0

[Defs

n

is also a derivation using P

n

. 2

Proposition 6 (Completeness) Let P

0

; : : : ; P

n

be a transformation sequene onstruted by using

the transformation rules 1{9 and let p be a non-basi prediate in P

n

. Let M be a mode for P

0

[Defs

n

suh that: (i) P

0

[Defs

n

is safe w.r.t. M , (ii) P

0

[Defs

n

satis�es M , and (iii) the appliations of the

unfolding, folding, head generalization, and ase split rules during the onstrution of P

0

; : : : ; P

n

are

all safe w.r.t. M . Suppose also that:

1. if the folding rule is applied for the derivation of a lause C in program P

k+1

from lauses

C

1

; : : : ; C

m

in program P

k

using lauses D

1

; : : : ;D

m

in Defs

k

, with 0�k<n,

then for every i 2 f1; : : : ;mg there exists j 2 f1; : : : ; n�1g suh that D

i

ours in P

j

and P

j+1

is derived from P

j

by unfolding D

i

;
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2. during the transformation sequene P

0

; : : : ; P

n

the de�nition elimination rule either is never

applied or it is applied w.r.t. prediate p one only, when deriving P

n

from P

n�1

.

Then for eah atom A whih has prediate p and satis�es mode M , if A sueeds in P

0

[Defs

n

then

A sueeds in P

n

.

Proof : Let us onsider a transformation sequene P

0

; : : : ; P

n

onstruted by using the transformation

rules 1{9 aording to onditions 1 and 2.

As already mentioned, we an rearrange the sequene P

0

; : : : ; P

n

into a new sequene P

0

; : : : ; P

0

[

Defs

n

; : : : ; P

j

; : : : ; P

l

; : : : ; P

n

suh that: (1) P

0

; : : : ; P

0

[ Defs

n

is onstruted by appliations of the

de�nition introdution rule, (2) P

0

[Defs

n

; : : : ; P

j

is onstruted by unfolding every lause in Defs

n

,

(3) P

j

; : : : ; P

l

is onstruted by appliations of Rules 3{9, and (4) either (4.1) l = n, or (4.2) l = n� 1

and P

n

is derived from P

n�1

by an appliation of the de�nition elimination rule w.r.t. prediate p.

Thus, Proposition 6 follows from Lemmata 10, 13, and 14. 2

Appendix B. Proof of Proposition 2

For the proof of Proposition 2 we need the following two lemmata.

Lemma 15 Let us onsider a program P and a onjuntion D of disequations. D sueeds in P i�

every ground instane of D holds.

Proof : Let us onsider the onjuntion (r

1

6= s

1

; : : : ; r

k

6= s

k

) of disequations. Every ground instane

of (r

1

6=s

1

; : : : ; r

k

6=s

k

) holds i� for i = 1; : : : ; k, and for every ground substitution �, r

i

� 6=s

i

� holds

i� for i = 1; : : : ; k, and for every ground substitution �, r

i

� is a ground term di�erent from s

i

� i� for

i = 1; : : : ; k, it does not exist a ground substitution � suh that r

i

� and s

i

� are the same ground term

i� for i = 1; : : : ; k, r

i

and s

i

are not uni�able i� (r

1

6=s

1

; : : : ; r

k

6=s

k

) sueeds in P . 2

Lemma 16 Let P be a program whih is safe w.r.t. mode M and satis�es mode M . Let the non-unit

lauses of P be pairwise mutually exlusive w.r.t. mode M . Given any non-basi atom A

0

whih

satis�es M , and any basi goal G

0

, there exists at most one goal (A

1

; G

1

) suh that A

1

is a non-basi

atom and (A

0

; G

0

))

P

(A

1

; G

1

).

Proof : By the de�nition of the )

P

relation (see Setion 2.4), we need to prove that for any non-basi

atom A

0

whih satis�es M , and any basi goal G

0

, there exists at most one goal (A

1

; G

1

) where A

1

is

a non-basi atom, suh that: (i) (A

0

; G

0

) 7�!

�

P

(A

1

; G

1

), and (ii) the relation 7�!

�

P

is onstruted by

�rst applying exatly one Point (3) of our operational semantis, and then applying to the resulting

goal Points (1) and (2) of our operational semantis, as many times as required to evaluate the leftmost

basi atoms, if any.

Sine the non-unit lauses of P are pairwise mutually exlusive w.r.t. M , for any given non-basi

atom A

0

whih satis�es M , there exists at most one non-unit lause, say C, of P suh that A

0

uni�es

with hd (C) via an mgu, say �, and grd(C)� sueeds in P . In fat, suppose to the ontrary, that

there were two suh non-unit lauses, say C

1

and C

2

. Suppose that, for j=1; 2, lause C

j

is renamed

apart and it is of the form:

C

j

. p(t

j

; u

j

) grd

j

; K

j

,

where: (i) t

j

is a tuple of terms denoting the input arguments of p and (ii) the goal grd

j

is the guard

of C

j

, that is, a onjuntion of disequations suh that the leftmost atom of the goal K

j

is not a

disequation.

Suppose that for j=1; 2, hd(C

j

) uni�es with A

0

via the mgu #

j

. Sine A

0

satis�es M , for j=1; 2,

the input variables of hd(C

j

) are bound by #

j

to ground terms. Sine t

1

and t

2

have a ommon ground
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instane, namely t

1

#

1

(= t

2

#

2

), they have a relevant mgu # whose domain is a subset of vars(t

1

; t

2

),

and there exists a ground substitution � with domain vars(t

1

; t

2

) suh that t

1

#

1

= t

1

#�(= t

2

#

2

= t

2

#�).

Moreover, sine the lauses C

1

and C

2

are renamed apart, we have that:

Property (�): for j=1; 2, if we restrit #� to vars(t

j

) then #

j

=#�.

By hypothesis, both grd

1

#

1

and grd

2

#

2

sueed in P . Thus, by Lemma 15, every ground instane of

grd

1

#

1

and grd

2

#

2

holds. (Reall that the goals grd

1

#

1

and grd

2

#

2

are ground goals, exept for the

loal variables of eah disequation ourring in them.)

Sine P is safe w.r.t. M , for j=1; 2, every variable ourring in a disequation of grd

j

either ours

in t

j

or it is a loal variable of that disequation in C

j

. Thus, by Property (�), grd

1

#

1

= grd

1

#� and

grd

2

#

2

=grd

2

#�. Sine every ground instane of grd

1

#

1

and grd

2

#

2

holds, we have that every ground

instane of (grd

1

#�; grd

2

#�) holds. In other words, there exists a ground substitution � whose domain

is vars(t

1

; t

2

), suh that every ground instane of (grd

1

; grd

2

)#� holds. By de�nition, this means that

(grd

1

; grd

2

)# is satis�able w.r.t. vars(t

1

; t

2

). This ontradits the fat that the non-unit lauses of P

are mutually exlusive w.r.t. M .

We onlude that for any given non-basi atom A

0

whih satis�es M , A

0

uni�es via an mgu, say

�, with the head of at most one non-unit lause, say C, of P suh that grd(C)� sueeds in P .

Now there are two ases: (Case i) A

0

uni�es with the head of the lauses in fC;D

1

; : : : ;D

n

g, where

n�0, C is a non-unit lause, and lauses D

1

; : : : ;D

n

are all unit lauses, and (Case ii) A

0

uni�es with

the head of the lauses in fD

1

; : : : ;D

n

g, where n�0 and these lauses are all unit lauses.

Let us onsider Case (i). Let lause C be of the form: H  K for some non-basi goal K. For any

basi goal G

0

, by applying one Point (3) of our operational semantis, we have that: (A

0

; G

0

) 7�!

P

(K;G

0

)�. Thus, (K;G

0

)� is of the form (Bs ; G

2

) where Bs is a onjuntion of basi atoms and the

leftmost atom of G

2

is non-basi. Sine for any basi atom B and goal G

3

, there exists at most one

goal G

4

suh that (B;G

3

) 7�!

P

G

4

, by using Points (1) and (2) of our operational semantis, we have

that there exists at most one goal (A

1

; G

1

) suh that (Bs ; G

2

) 7�!

�

P

(A

1

; G

1

), where the atom A

1

is

non-basi.

Every other derivation starting from (A

0

; G

0

) by applying Point (3) of our operational semantis

using a lause in fD

1

; : : : ;D

n

g, is suh that if for some goal G

5

we have that (A

0

; G

0

) 7�!

�

P

G

5

, then

G

5

is a basi goal, beause from a basi goal we annot derive a non-basi one. This onludes the

proof of the lemma in Case (i).

The proof in Case (ii) is analogous to that of the last part of Case (i). 2

Now we give the proof of Proposition 2.

Proof : Take a non-basi atom A whih satis�es M . Every non-basi atom A

0

suh that A 7�!

�

P

(A

0

; G

0

) for some goal G

0

, satis�es M beause P satis�es M . Sine P is linear, G

0

is a basi goal. By

Lemma 16 there exists at most one goal (A

1

; G

1

) where A

1

is a non-basi atom, suh that (A

0

; G

0

))

P

(A

1

; G

1

). Thus, there exists at most one non-unit lause C in P suh that (A

0

; G

0

) )

C

(A

1

; G

1

).

This means that P is semideterministi w.r.t. M . 2

Appendix C. Proof of Proposition 8

Proof : It is enough to show that the while-do statement in the Partition proedure terminates. To

see this, let us �rst onsider the set NonunitCls

in

whih is the value of the set NonunitCls at the

beginning of the exeution of the while-do statement. NonunitCls

in

an be partitioned into maximal

sets of lauses suh that: (i) two lauses whih belong to two distint sets, are mutually exlusive, and

(ii) if two lauses, say C

0

and C

n+1

, belong to the same set, then there exists a sequene of lauses

C

0

; C

1

; : : : ; C

n+1

, with n�0, suh that for i = 0; : : : ; n, lauses C

i

and C

i+1

are not mutually exlusive.
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For our termination proof it is enough to show the termination of the Partition proedure when

starting from exatly one maximal set, say K, of the partition of NonunitCls

in

. This is the ase

beause during the exeution of the Partition proedure, the replaement of a lause, say C

2

, by the

lauses, say C

21

and C

22

, satis�es the following property: if lauses C

2

and D are mutually exlusive

then C

21

and D are mutually exlusive and also C

22

and D are mutually exlusive.

Let every lause of K be renamed apart and written in a form, alled equational form, where the

input arguments are generalized to new variables and these new variables are bound by equations in

the body. The equational form of a lause C will be denoted by C

eq

. For instane, given the lause C:

p(f(X); r(Y; Y ); r(X;U))  Body , with mode p(+;+; ?) for p, we have that C

eq

is: p(V;W; r(X))  

V =f(X);W =r(Y; Y );Body .

Let K

eq

be the set fC

eq

j C 2 Kg. Thus, K

eq

has the following form:

8

>

<

>

:

p(v

1

; u

1

) Eqs

1

;Diseqs

1

;Body

1

� � �

p(v

n

; u

n

) Eqs

n

;Diseqs

n

;Body

n

where, for i = 0; : : : ; n: (1) v

i

denotes a tuple of variables whih are the input arguments of p, (2) u

i

denotes a tuple of arguments of p whih are not input arguments, (3) Eqs

i

denotes a onjuntion

of equations of the form X = t, whih bind the variables in v

i

, (4) Diseqs

i

denotes a onjuntion

of disequations, and (5) Body

i

denotes a onjuntion of atoms whih are di�erent from disequations

(reall that the lauses in NonunitCls

in

are in normal form). Equations may our also in Body

i

, but

they do not bind any input variable of p(v

i

; u

i

).

Let us now introdue the following set T = ft j t is a term or a subterm ourring in Eqs

i

or

Diseqs

i

for some i = 1; : : : ; ng.

Every exeution of the body of the while-do statement of the Partition proedure works by replaing

a safe lause, say C

2

, by two new safe lauses, say C

21

and C

22

. We will prove the termination of the

Partition proedure by: (i) mapping the replaements it performs, onto the orresponding replaements

of the lauses written in equational form in the set K

eq

, and (ii) showing that the set K

eq

annot

undergo an in�nite number of suh replaements.

Let us then onsider the equational forms C

eq

2

, C

eq

21

, and C

eq

22

of the lauses C

2

, C

21

, and C

22

,

respetively. We have that: (i) bd(C

eq

21

) has one more equation of the form X=r w.r.t. bd(C

eq

2

), and

(ii) bd(C

eq

22

) has one more disequation of the form X 6=r w.r.t. bd(C

eq

2

). We also have that there exists

only a �nite number of pairs hX; ri, beause X is a variable symbol ourring in K

eq

and r is a term

ourring in the �nite set T [ ft j t is a term or a subterm ourring in an mgu of a �nite number of

elements of Tg. (We have onsidered mgu's of a �nite number of elements of T , rather than mgu's of

two elements only, beause a �nite number of lause heads inK may have the same ommon instane.)

Thus, in order to onlude the proof, it remains to show that before the replaement of C

2

by C

21

and C

22

, neither X= r nor X 6= r ours in bd(C

eq

2

). Here and in the rest of the proof, the notion of

ourrene of an equation or a disequation is modulo renaming of the loal variables. Indeed,

� in Case (1): (1.1) X 6=r does not our in bd(C

eq

2

) beause X=r is a binding of an mgu of the input

arguments of hd(C

1

) and hd(C

2

), and lauses C

1

and C

2

are not mutually exlusive, and thus, X 6=r

does not our in bd(C

2

), and (1.2) X=r does not our in bd(C

eq

2

) beause X=r is, by onstrution,

a binding of an mgu between the input arguments of the heads of the lauses C

1

and C

2

and these

lauses are obtained as a result of the Simplify funtion whih eliminates every ourrene of the

variable X from C

2

, and

� in Case (2): (2.1) X=r does not our in bd(C

eq

2

) beause, by hypothesis, a variant of X 6=r ours

in bd(C

1

) and lauses C

1

and C

2

are not mutually exlusive, and (2.2) X 6=r does not our in bd(C

eq

2

)

beause X 6=r does not our in bd(C

2

) (indeed, we hoose X 6=r preisely to satisfy this ondition).2
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