
Totally Corre
t Logi
 Program Transformations

Using Well-Founded Annotations

Alberto Pettorossi

1

, Maurizio Proietti

2

(1) DISP, University of Tor Vergata, Roma, Italy. pettorossi�info.uniroma2.it

(2) IASI-CNR, Roma, Italy. proietti�iasi.rm.
nr.it

(Extended Abstra
t)

Program transformation is one of the most prominent methodologies for the

development of de
larative programs and, in parti
ular, fun
tional and logi

programs [2,5,9℄. The main advantage of this methodology is that it allows one

to deal with the issue of program
orre
tness and the issue of program e�
ien
y

in a separated manner. One �rst writes a simple, maybe ine�
ient, program

whose
orre
tness
an easily be proved, and then one derives a more e�
ient

program by applying some given transformation rules whi
h preserve program

orre
tness.

In the
ase of de�nite logi
 programs, whi
h are of our interest here, the
or-

re
tness of the initial program is often very easy to prove be
ause, usually, it is

very
lose to the formal spe
i�
ation of that same program. On the
ontrary, the

proof that the rules preserve program
orre
tness is often more intri
ate (as it

is also the
ase for fun
tional programs). In parti
ular, these
orre
tness proofs

annot be done in isolation, in the sense that the
orre
tness of a single transfor-

mation rule depends, in general, on the other rules one applies for transforming

programs.

The
orre
tness of the rules
an be either partial or total. We say that a rule

whi
h transforms program P

1

into program P

2

is partially
orre
t i� M(P

1

) �

M(P

2

), whereM(P) denotes the least Herbrand model of any given program P .

Analogously, we say that a rule whi
h transforms program P

1

into program P

2

is totally
orre
t i� M(P

1

) = M(P

2

).

Partial
orre
tness is a straightforward
onsequen
e of the fa
t that the trans-

formation rules, and in parti
ular the familiar unfold/fold rules, basi
ally
on-

sist in applying logi
al equivalen
es [9℄. Indeed, whenever we derive a program

P

2

from a program P

1

by repla
ing a formula A by a formula B su
h that

M(P

1

) j= A $ B, we get M(P

1

) � M(P

2

). However, it is well known that

the opposite in
lusion M(P

1

) �M(P

2

) may not hold and, thus, in general, the

unfold/fold transformations are not totally
orre
t as shown by the following

simple example. Let us
onsider the transformation of program P

1

into program

P

2

, where P

1

and P

2

are as follows:

P

1

: p q P

2

: p p

q q

This transformation, whi
h
orresponds to an appli
ation of the folding rule, is

justi�ed by the fa
t that the equivalen
e M(P

1

) j= p $ q holds. However, the

least Herbrand model is not preserved be
ause we have that M(P

1

) = fp; qg �

fqg = M(P

2

).

In the
ase of non-propositional programs it is not easy to
he
k whether

or not the appli
ation of an unfold/fold transformation rule is totally
orre
t

(a
tually, it
an be shown that this is an unde
idable problem). For this reason, in

their landmark paper Tamaki and Sato proposed suitable appli
ability
onditions

whi
h ensure the total
orre
tness of the transformations [9℄. These
onditions

are based on: (i) the form of the
lauses that
an be used in a folding step,

and (ii) annotations of the program
lauses that depend on the transformation

history, that is, on the sequen
e of transformation rules applied during a program

derivation. In parti
ular, they stipulate that: (i) one is allowed to fold a
lause

by using a non-re
ursive
lause whi
h is marked as `foldable', and (ii) a
lause

is marked as `foldable' if it is derived by unfolding. Thus,
onditions (i) and (ii)

express that a
lause
an be folded only if it is derived by unfolding at a previous

transformation step.

Tamaki-Sato's approa
h has been extended in several papers (see, for in-

stan
e, [4,6,8,10℄) by: (i) relaxing the restri
tions on the
lauses that
an be

used in a folding step, and (ii) generalizing the history dependent program an-

notations. The most re
ent of these papers [8℄ presents su�
ient
onditions for

the total
orre
tness of the unfold/fold transformations in the
ase where several,

possibly re
ursive
lauses are used in a folding step. These
onditions are based

on some measures whi
h are in
remented or de
remented when the unfolding or

folding rules are applied.

Unfortunately, the proofs of total
orre
tness of the unfold/fold transforma-

tions presented in [4,6,8,9,10℄, use rather
omplex, ad ho
 te
hniques, and it is

very di�
ult to understand why they work and how they
ould be generalized

for dealing with other program transformations or language extensions.

The main
ontribution of this paper is a logi
al foundation of the theory of

total
orre
tness of logi
 program transformations (and in parti
ular unfold/fold

transformations). Our theory is based on the notion of well-founded annotations

and the unique �xpoint prin
iple.

A well-founded annotation is a mapping � that asso
iates with every
lause

H A

1

^ : : : ^ A

k

of a program P an annotated
lause of the form:

HfNg
(N;N

1

; : : : ; N

k

) ^ A

1

fN

1

g ^ : : : ^ A

k

fN

k

g

where: (i) the annotation variables N;N

1

; : : : ; N

k

range over a setW and should

be
onsidered as extra arguments of the atoms o

urring in the
lause, and

(ii) for i = 1; : : : ; k, the relation
(N;N

1

; : : : ; N

k

) implies N >N

i

, where > is

a well-founded ordering on W . By applying the well-founded annotation � to

every
lause in P , we get an annotated program �(P) that, by
onstru
tion,

enjoys the following two properties: (1) for every ground atom A, A 2 M(P)

i� there exists n 2 W su
h that Afng 2 M(�(P)), and (2) for every ground

annotated atom Afng, �(P) [f Afngg has a �nite SLD tree, that is, �(P) is

terminating. By Property (2), the least Herbrand model of �(P) is the unique

�xpoint of the immediate
onsequen
e operator T

�(P)

[1℄.

2

Based on well-founded annotations, we propose a method for totally
or-

re
t transformations of de�nite logi
 programs. Given a program P

1

our method

allows us to derive a program P

2

by the following steps: (i) we
hoose a well-

founded annotation �

1

so that from program P

1

we produ
e an annotated pro-

gram �

1

(P

1

), (ii) we apply suitable variants of the unfold/fold rules for trans-

forming annotated programs so that from �

1

(P

1

) we derive a new terminat-

ing annotated program �

2

(P

2

), with �

2

possibly di�erent from �

1

, and �nally,

(iii) from �

2

(P

2

) we get program P

2

by erasing the annotations. The fa
t that

�

2

(P

2

) is terminating is enfor
ed by the transformation rules be
ause they pre-

serve the well-founded ordering >, in the sense that, for every
lause derived

by applying the rules, the annotation of the head is greater (w.r.t. >) than the

annotation of every atom in the body.

The total
orre
tness of the transformation, that is, M(P

1

) = M(P

2

), is

proved as follows. On one hand, the transformation rules a
t on non-annotated

lauses like the usual unfold/fold rules and, as already mentioned, they ensure

partial
orre
tness, that is, M(P

1

) � M(P

2

). On the other hand, sin
e �

2

(P

2

)

is terminating, by the unique �xpoint prin
iple [3,7℄ we have that M(�

1

(P

1

)) �

M(�

2

(P

2

)) and, thus, by Property (1) of well-founded annotations, M(P

1

) �

M(P

2

).

Noti
e that in our method neither P

1

nor P

2

is required to be terminating.

Moreover, our method is parametri
 w.r.t. the well-founded annotations and, in

parti
ular, w.r.t. the well-founded ordering > used for the derivation of P

2

from

P

1

. By suitable
hoi
es of this ordering we
an prove the total
orre
tness of the

various variants of the unfold/fold rules proposed in the literature [4,6,8,9,10℄.

An Example

We revisit an example of program transformation taken from [8℄ where the total

orre
tness proof is rather intri
ate. We show that, on the
ontrary, the total

orre
tness of this transformation
an easily be established by our well-founded

annotation method. Let us
onsider the following program P

1

:

1. thm(X) gen(X) ^ test(X)

2. gen([℄)

3. gen([0jX ℄) gen(X)

4. test(X)
anon(X)

5. test(X) trans(X;Y) ^ test(Y)

6.
anon([℄)

7.
anon([1jX ℄)
anon(X)

8. trans([0jX ℄; [1jX ℄)

9. trans([1jX ℄; [1jY ℄) trans(X;Y)

where thm(X) holds i� X is a string of 0's that
an be transformed into a string

of 1's by repeated appli
ations of trans(X;Y). Given the string X , the predi
ate

trans(X;Y) generates the string Y by repla
ing the leftmost 0 in X by 1. Let

us
onsider the well-founded annotation �

1

that asso
iates with every
lause:

H A

1

^ : : : ^A

k

3

the annotated
lause:

HfNg N�N

1

+: : :+N

k

+1 ^ A

1

fN

1

g ^ : : : ^A

k

fN

k

g

where the annotation variables N;N

1

; : : : ; N

k

range over non-negative integers

and � is the usual `greater or equal' ordering over integers. Thus, the annotated

program �

1

(P

1

) is the following one:

1a. thm(X)fNg N�N

1

+N

2

+1 ^ gen(X)fN

1

g ^ test(X)fN

2

g

2a. gen([℄)f0g

3a. gen([0jX ℄)fNg N�N

1

+1 ^ gen(X)fN

1

g

4a. test(X)fNg N�N

1

+1 ^
anon(X)fN

1

g

5a. test(X)fNg N�N

1

+N

2

+1 ^ trans(X;Y)fN

1

g ^ test(Y)fN

2

g

6a.
anon([℄)f0g

7a.
anon([1jX ℄)fNg N�N

1

+1 ^
anon(X)fN

1

g

8a. trans([0jX ℄; [1jX ℄)f0g

9a. trans([1jX ℄; [1jY ℄)fNg N�N

1

+1 ^ trans(X;Y)fN

1

g

As already mentioned, the annotated program �

1

(P

1

)
an be
onsidered as a

logi
 program where the annotation variables are taken as extra arguments.

The annotated program �

1

(P

1

) is terminating be
ause N � N

1

+ : : :+N

k

+1

implies that, for i = 1; : : : ; k, N > N

i

. (Also P

1

is terminating, but we need

not use this property.) Now, let us
onstru
t a totally
orre
t transformation by

using unfold/fold transformation rules for annotated programs. The unfolding

and folding rules for annotated programs work exa
tly like the rules for non-

annotated programs, by
onsidering the annotation variables as extra arguments.

By applying several times the unfolding rule, from
lause 1a we derive:

10a. thm([℄)fNg N�2

11a. thm([0jX ℄)fNg N�N

1

+N

2

+5 ^ gen(X)fN

1

g ^
anon(X)fN

2

g

12a. thm([0jX ℄)fNg N�N

1

+N

2

+N

3

+5 ^ gen(X)fN

1

g^

trans(X;Y)fN

2

g ^ test([1jY ℄)fN

3

g

Now we apply the goal repla
ement rule and we repla
e the annotated atom

test([1jY ℄)fN

3

g by N

3

� N

4

^ test(Y)fN

4

g. This repla
ement is justi�ed by

the following two properties: (1) M(P

1

) j= 8Y (test([1jY ℄) $ test(Y)) and

(2) M(�

1

(P

1

)) j= 8Y 8N

3

(test([1jY ℄)fN

3

g ! 9N

4

(N

3

� N

4

^ test(Y)fN

4

g)).

By applying the goal repla
ement rule,
lause 12a is repla
ed by the following

lause:

13a. thm([0jX ℄)fNg N�N

1

+N

2

+N

4

+5 ^ gen(X)fN

1

g^

trans(X;Y)fN

2

g ^ test(Y)fN

4

g

By folding
lauses 11a and 13a using
lauses 4a and 5a we get:

14a. thm([0jX ℄)fNg N�N

1

+N

5

+4 ^ gen(X)fN

1

g ^ test(X)fN

5

g

Finally, by folding
lause 14a using
lause 1a, we derive:

15a. thm([0jX ℄)fNg N�N

6

+3 ^ thm(X)fN

6

g

The �nal annotated program is �

2

(P

2

) = (�

1

(P

1

) � f1ag) [f10a; 15ag. Noti
e

that in
lause 15a the annotation of the head is greater than the annotation of

the body atom (be
ause N � N

6

+3 implies N > N

6

). Thus, �

2

(P

2

) is termi-

nating and M(�

2

(P

2

)) is the unique �xpoint of T

�

2

(P

2

)

. By the unique �xpoint

prin
iple [3,7℄, we dedu
e that M(�

1

(P

1

)) �M(�

2

(P

2

)).

4

Now, let us
onsider the program P

2

obtained by dropping the annotations

from �

2

(P

2

), that is, P

2

= (P

1

�f1g)[f10; 15g, where
lauses 10 and 15 are the

following:

10. thm([℄)

15. thm([0jX ℄) thm(X)

Noti
e that, for every ground atom A, we have that A 2M(P

1

) i� there exists a

non-negative integer n su
h that Afng 2M(�

1

(P

1

)), and similarly, A 2M(P

2

)

i� there exists a non-negative integer n su
h that Afng 2 M(�

2

(P

2

)). There-

fore, from M(�

1

(P

1

)) � M(�

2

(P

2

)) it follows that M(P

1

) � M(P

2

). Sin
e, as

already mentioned, the transformation rules a
t on non-annotated programs like

the usual unfold/fold transformations, and these transformations are partially

orre
t, we also have M(P

1

) � M(P

2

). Thus, the transformation of P

1

into P

2

is totally
orre
t.

Referen
es

1. M. Bezem. Chara
terizing termination of logi
 programs with level mappings. In

E.L. Lusk and R.A. Overbeek, editors, Pro
eedings of the North Ameri
an Con-

feren
e on Logi
 Programming, Cleveland, Ohio (USA), pages 69�80. MIT Press,

1989.

2. R. M. Burstall and J. Darlington. A transformation system for developing re
ursive

programs. Journal of the ACM, 24(1):44�67, January 1977.

3. B. Cour
elle. In�nite trees in normal form and re
ursive equations having a unique

solution. Mathemati
al Systems Theory, 13:131�180, 1979.

4. M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for de�nite
lause

programs. In M. Hermenegildo and J. Penjam, editors, Pro
eedings Sixth Inter-

national Symposium on Programming Language Implementation and Logi
 Pro-

gramming (PLILP '94), Le
ture Notes in Computer S
ien
e 844, pages 340�354.

Springer-Verlag, 1994.

5. C. J. Hogger. Derivation of logi
 programs. Journal of the ACM, 28(2):372�392,

1981.

6. T. Kanamori and H. Fujita. Unfold/fold transformation of logi
 programs with

ounters. Te
hni
al Report 179, ICOT, Tokyo, Japan, 1986.

7. M. Proietti and A. Pettorossi. Transforming indu
tive de�nitions. In D. De S
hreye,

editor, Pro
eedings of the 1999 International Conferen
e on Logi
 Programming,

pages 486�499. MIT Press, 1999.

8. A. Roy
houdhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrish-

nan. An unfold/fold tranformation framework for de�nite logi
 programs. ACM

Transa
tions on Programming Languages and Systems, 26:264�509, 2004.

9. H. Tamaki and T. Sato. Unfold/fold transformation of logi
 programs. In S.-

Å. Tärnlund, editor, Pro
eedings of the Se
ond International Conferen
e on Logi

Programming, pages 127�138, Uppsala, Sweden, 1984. Uppsala University.

10. H. Tamaki and T. Sato. A generalized
orre
tness proof of the unfold/fold logi

program transformation. Te
hni
al Report 86-4, Ibaraki University, Japan, 1986.

5

