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(Extended Abstra
t)

Program transformation is one of the most prominent methodologies for the

development of de
larative programs and, in parti
ular, fun
tional and logi


programs [2,5,9℄. The main advantage of this methodology is that it allows one

to deal with the issue of program 
orre
tness and the issue of program e�
ien
y

in a separated manner. One �rst writes a simple, maybe ine�
ient, program

whose 
orre
tness 
an easily be proved, and then one derives a more e�
ient

program by applying some given transformation rules whi
h preserve program


orre
tness.

In the 
ase of de�nite logi
 programs, whi
h are of our interest here, the 
or-

re
tness of the initial program is often very easy to prove be
ause, usually, it is

very 
lose to the formal spe
i�
ation of that same program. On the 
ontrary, the

proof that the rules preserve program 
orre
tness is often more intri
ate (as it

is also the 
ase for fun
tional programs). In parti
ular, these 
orre
tness proofs


annot be done in isolation, in the sense that the 
orre
tness of a single transfor-

mation rule depends, in general, on the other rules one applies for transforming

programs.

The 
orre
tness of the rules 
an be either partial or total. We say that a rule

whi
h transforms program P

1

into program P

2

is partially 
orre
t i� M(P

1

) �

M(P

2

), whereM(P ) denotes the least Herbrand model of any given program P .

Analogously, we say that a rule whi
h transforms program P

1

into program P

2

is totally 
orre
t i� M(P

1

) = M(P

2

).

Partial 
orre
tness is a straightforward 
onsequen
e of the fa
t that the trans-

formation rules, and in parti
ular the familiar unfold/fold rules, basi
ally 
on-

sist in applying logi
al equivalen
es [9℄. Indeed, whenever we derive a program

P

2

from a program P

1

by repla
ing a formula A by a formula B su
h that

M(P

1

) j= A $ B, we get M(P

1

) � M(P

2

). However, it is well known that

the opposite in
lusion M(P

1

) �M(P

2

) may not hold and, thus, in general, the

unfold/fold transformations are not totally 
orre
t as shown by the following

simple example. Let us 
onsider the transformation of program P

1

into program

P

2

, where P

1

and P

2

are as follows:

P

1

: p q P

2

: p p

q  q  

This transformation, whi
h 
orresponds to an appli
ation of the folding rule, is

justi�ed by the fa
t that the equivalen
e M(P

1

) j= p $ q holds. However, the



least Herbrand model is not preserved be
ause we have that M(P

1

) = fp; qg �

fqg = M(P

2

).

In the 
ase of non-propositional programs it is not easy to 
he
k whether

or not the appli
ation of an unfold/fold transformation rule is totally 
orre
t

(a
tually, it 
an be shown that this is an unde
idable problem). For this reason, in

their landmark paper Tamaki and Sato proposed suitable appli
ability 
onditions

whi
h ensure the total 
orre
tness of the transformations [9℄. These 
onditions

are based on: (i) the form of the 
lauses that 
an be used in a folding step,

and (ii) annotations of the program 
lauses that depend on the transformation

history, that is, on the sequen
e of transformation rules applied during a program

derivation. In parti
ular, they stipulate that: (i) one is allowed to fold a 
lause

by using a non-re
ursive 
lause whi
h is marked as `foldable', and (ii) a 
lause

is marked as `foldable' if it is derived by unfolding. Thus, 
onditions (i) and (ii)

express that a 
lause 
an be folded only if it is derived by unfolding at a previous

transformation step.

Tamaki-Sato's approa
h has been extended in several papers (see, for in-

stan
e, [4,6,8,10℄) by: (i) relaxing the restri
tions on the 
lauses that 
an be

used in a folding step, and (ii) generalizing the history dependent program an-

notations. The most re
ent of these papers [8℄ presents su�
ient 
onditions for

the total 
orre
tness of the unfold/fold transformations in the 
ase where several,

possibly re
ursive 
lauses are used in a folding step. These 
onditions are based

on some measures whi
h are in
remented or de
remented when the unfolding or

folding rules are applied.

Unfortunately, the proofs of total 
orre
tness of the unfold/fold transforma-

tions presented in [4,6,8,9,10℄, use rather 
omplex, ad ho
 te
hniques, and it is

very di�
ult to understand why they work and how they 
ould be generalized

for dealing with other program transformations or language extensions.

The main 
ontribution of this paper is a logi
al foundation of the theory of

total 
orre
tness of logi
 program transformations (and in parti
ular unfold/fold

transformations). Our theory is based on the notion of well-founded annotations

and the unique �xpoint prin
iple.

A well-founded annotation is a mapping � that asso
iates with every 
lause

H  A

1

^ : : : ^ A

k

of a program P an annotated 
lause of the form:

HfNg  
(N;N

1

; : : : ; N

k

) ^ A

1

fN

1

g ^ : : : ^ A

k

fN

k

g

where: (i) the annotation variables N;N

1

; : : : ; N

k

range over a setW and should

be 
onsidered as extra arguments of the atoms o

urring in the 
lause, and

(ii) for i = 1; : : : ; k, the relation 
(N;N

1

; : : : ; N

k

) implies N >N

i

, where > is

a well-founded ordering on W . By applying the well-founded annotation � to

every 
lause in P , we get an annotated program �(P ) that, by 
onstru
tion,

enjoys the following two properties: (1) for every ground atom A, A 2 M(P )

i� there exists n 2 W su
h that Afng 2 M(�(P )), and (2) for every ground

annotated atom Afng, �(P ) [ f Afngg has a �nite SLD tree, that is, �(P ) is

terminating. By Property (2), the least Herbrand model of �(P ) is the unique

�xpoint of the immediate 
onsequen
e operator T

�(P )

[1℄.

2



Based on well-founded annotations, we propose a method for totally 
or-

re
t transformations of de�nite logi
 programs. Given a program P

1

our method

allows us to derive a program P

2

by the following steps: (i) we 
hoose a well-

founded annotation �

1

so that from program P

1

we produ
e an annotated pro-

gram �

1

(P

1

), (ii) we apply suitable variants of the unfold/fold rules for trans-

forming annotated programs so that from �

1

(P

1

) we derive a new terminat-

ing annotated program �

2

(P

2

), with �

2

possibly di�erent from �

1

, and �nally,

(iii) from �

2

(P

2

) we get program P

2

by erasing the annotations. The fa
t that

�

2

(P

2

) is terminating is enfor
ed by the transformation rules be
ause they pre-

serve the well-founded ordering >, in the sense that, for every 
lause derived

by applying the rules, the annotation of the head is greater (w.r.t. >) than the

annotation of every atom in the body.

The total 
orre
tness of the transformation, that is, M(P

1

) = M(P

2

), is

proved as follows. On one hand, the transformation rules a
t on non-annotated


lauses like the usual unfold/fold rules and, as already mentioned, they ensure

partial 
orre
tness, that is, M(P

1

) � M(P

2

). On the other hand, sin
e �

2

(P

2

)

is terminating, by the unique �xpoint prin
iple [3,7℄ we have that M(�

1

(P

1

)) �

M(�

2

(P

2

)) and, thus, by Property (1) of well-founded annotations, M(P

1

) �

M(P

2

).

Noti
e that in our method neither P

1

nor P

2

is required to be terminating.

Moreover, our method is parametri
 w.r.t. the well-founded annotations and, in

parti
ular, w.r.t. the well-founded ordering > used for the derivation of P

2

from

P

1

. By suitable 
hoi
es of this ordering we 
an prove the total 
orre
tness of the

various variants of the unfold/fold rules proposed in the literature [4,6,8,9,10℄.

An Example

We revisit an example of program transformation taken from [8℄ where the total


orre
tness proof is rather intri
ate. We show that, on the 
ontrary, the total


orre
tness of this transformation 
an easily be established by our well-founded

annotation method. Let us 
onsider the following program P

1

:

1. thm(X) gen(X) ^ test(X)

2. gen([ ℄) 

3. gen([0jX ℄) gen(X)

4. test(X) 
anon(X)

5. test(X) trans(X;Y ) ^ test(Y )

6. 
anon([ ℄) 

7. 
anon([1jX ℄) 
anon(X)

8. trans([0jX ℄; [1jX ℄) 

9. trans([1jX ℄; [1jY ℄) trans(X;Y )

where thm(X) holds i� X is a string of 0's that 
an be transformed into a string

of 1's by repeated appli
ations of trans(X;Y ). Given the string X , the predi
ate

trans(X;Y ) generates the string Y by repla
ing the leftmost 0 in X by 1. Let

us 
onsider the well-founded annotation �

1

that asso
iates with every 
lause:

H  A

1

^ : : : ^A

k

3



the annotated 
lause:

HfNg  N�N

1

+: : :+N

k

+1 ^ A

1

fN

1

g ^ : : : ^A

k

fN

k

g

where the annotation variables N;N

1

; : : : ; N

k

range over non-negative integers

and � is the usual `greater or equal' ordering over integers. Thus, the annotated

program �

1

(P

1

) is the following one:

1a. thm(X)fNg  N�N

1

+N

2

+1 ^ gen(X)fN

1

g ^ test(X)fN

2

g

2a. gen([ ℄)f0g  

3a. gen([0jX ℄)fNg  N�N

1

+1 ^ gen(X)fN

1

g

4a. test(X)fNg  N�N

1

+1 ^ 
anon(X)fN

1

g

5a. test(X)fNg  N�N

1

+N

2

+1 ^ trans(X;Y )fN

1

g ^ test(Y )fN

2

g

6a. 
anon([ ℄)f0g  

7a. 
anon([1jX ℄)fNg  N�N

1

+1 ^ 
anon(X)fN

1

g

8a. trans([0jX ℄; [1jX ℄)f0g  

9a. trans([1jX ℄; [1jY ℄)fNg  N�N

1

+1 ^ trans(X;Y )fN

1

g

As already mentioned, the annotated program �

1

(P

1

) 
an be 
onsidered as a

logi
 program where the annotation variables are taken as extra arguments.

The annotated program �

1

(P

1

) is terminating be
ause N � N

1

+ : : :+N

k

+1

implies that, for i = 1; : : : ; k, N > N

i

. (Also P

1

is terminating, but we need

not use this property.) Now, let us 
onstru
t a totally 
orre
t transformation by

using unfold/fold transformation rules for annotated programs. The unfolding

and folding rules for annotated programs work exa
tly like the rules for non-

annotated programs, by 
onsidering the annotation variables as extra arguments.

By applying several times the unfolding rule, from 
lause 1a we derive:

10a. thm([ ℄)fNg  N�2

11a. thm([0jX ℄)fNg  N�N

1

+N

2

+5 ^ gen(X)fN

1

g ^ 
anon(X)fN

2

g

12a. thm([0jX ℄)fNg  N�N

1

+N

2

+N

3

+5 ^ gen(X)fN

1

g^

trans(X;Y )fN

2

g ^ test([1jY ℄)fN

3

g

Now we apply the goal repla
ement rule and we repla
e the annotated atom

test([1jY ℄)fN

3

g by N

3

� N

4

^ test(Y )fN

4

g. This repla
ement is justi�ed by

the following two properties: (1) M(P

1

) j= 8Y (test([1jY ℄) $ test(Y )) and

(2) M(�

1

(P

1

)) j= 8Y 8N

3

(test([1jY ℄)fN

3

g ! 9N

4

(N

3

� N

4

^ test(Y )fN

4

g)).

By applying the goal repla
ement rule, 
lause 12a is repla
ed by the following


lause:

13a. thm([0jX ℄)fNg  N�N

1

+N

2

+N

4

+5 ^ gen(X)fN

1

g^

trans(X;Y )fN

2

g ^ test(Y )fN

4

g

By folding 
lauses 11a and 13a using 
lauses 4a and 5a we get:

14a. thm([0jX ℄)fNg  N�N

1

+N

5

+4 ^ gen(X)fN

1

g ^ test(X)fN

5

g

Finally, by folding 
lause 14a using 
lause 1a, we derive:

15a. thm([0jX ℄)fNg  N�N

6

+3 ^ thm(X)fN

6

g

The �nal annotated program is �

2

(P

2

) = (�

1

(P

1

) � f1ag) [ f10a; 15ag. Noti
e

that in 
lause 15a the annotation of the head is greater than the annotation of

the body atom (be
ause N � N

6

+3 implies N > N

6

). Thus, �

2

(P

2

) is termi-

nating and M(�

2

(P

2

)) is the unique �xpoint of T

�

2

(P

2

)

. By the unique �xpoint

prin
iple [3,7℄, we dedu
e that M(�

1

(P

1

)) �M(�

2

(P

2

)).

4



Now, let us 
onsider the program P

2

obtained by dropping the annotations

from �

2

(P

2

), that is, P

2

= (P

1

�f1g)[f10; 15g, where 
lauses 10 and 15 are the

following:

10. thm([ ℄) 

15. thm([0jX ℄) thm(X)

Noti
e that, for every ground atom A, we have that A 2M(P

1

) i� there exists a

non-negative integer n su
h that Afng 2M(�

1

(P

1

)), and similarly, A 2M(P

2

)

i� there exists a non-negative integer n su
h that Afng 2 M(�

2

(P

2

)). There-

fore, from M(�

1

(P

1

)) � M(�

2

(P

2

)) it follows that M(P

1

) � M(P

2

). Sin
e, as

already mentioned, the transformation rules a
t on non-annotated programs like

the usual unfold/fold transformations, and these transformations are partially


orre
t, we also have M(P

1

) � M(P

2

). Thus, the transformation of P

1

into P

2

is totally 
orre
t.
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