
Totally Corret Logi Program Transformations

Using Well-Founded Annotations

Alberto Pettorossi

1

, Maurizio Proietti

2

(1) DISP, University of Tor Vergata, Roma, Italy. pettorossi�info.uniroma2.it

(2) IASI-CNR, Roma, Italy. proietti�iasi.rm.nr.it

(Extended Abstrat)

Program transformation is one of the most prominent methodologies for the

development of delarative programs and, in partiular, funtional and logi

programs [2,5,9℄. The main advantage of this methodology is that it allows one

to deal with the issue of program orretness and the issue of program e�ieny

in a separated manner. One �rst writes a simple, maybe ine�ient, program

whose orretness an easily be proved, and then one derives a more e�ient

program by applying some given transformation rules whih preserve program

orretness.

In the ase of de�nite logi programs, whih are of our interest here, the or-

retness of the initial program is often very easy to prove beause, usually, it is

very lose to the formal spei�ation of that same program. On the ontrary, the

proof that the rules preserve program orretness is often more intriate (as it

is also the ase for funtional programs). In partiular, these orretness proofs

annot be done in isolation, in the sense that the orretness of a single transfor-

mation rule depends, in general, on the other rules one applies for transforming

programs.

The orretness of the rules an be either partial or total. We say that a rule

whih transforms program P

1

into program P

2

is partially orret i� M(P

1

) �

M(P

2

), whereM(P) denotes the least Herbrand model of any given program P .

Analogously, we say that a rule whih transforms program P

1

into program P

2

is totally orret i� M(P

1

) = M(P

2

).

Partial orretness is a straightforward onsequene of the fat that the trans-

formation rules, and in partiular the familiar unfold/fold rules, basially on-

sist in applying logial equivalenes [9℄. Indeed, whenever we derive a program

P

2

from a program P

1

by replaing a formula A by a formula B suh that

M(P

1

) j= A $ B, we get M(P

1

) � M(P

2

). However, it is well known that

the opposite inlusion M(P

1

) �M(P

2

) may not hold and, thus, in general, the

unfold/fold transformations are not totally orret as shown by the following

simple example. Let us onsider the transformation of program P

1

into program

P

2

, where P

1

and P

2

are as follows:

P

1

: p q P

2

: p p

q q

This transformation, whih orresponds to an appliation of the folding rule, is

justi�ed by the fat that the equivalene M(P

1

) j= p $ q holds. However, the

least Herbrand model is not preserved beause we have that M(P

1

) = fp; qg �

fqg = M(P

2

).

In the ase of non-propositional programs it is not easy to hek whether

or not the appliation of an unfold/fold transformation rule is totally orret

(atually, it an be shown that this is an undeidable problem). For this reason, in

their landmark paper Tamaki and Sato proposed suitable appliability onditions

whih ensure the total orretness of the transformations [9℄. These onditions

are based on: (i) the form of the lauses that an be used in a folding step,

and (ii) annotations of the program lauses that depend on the transformation

history, that is, on the sequene of transformation rules applied during a program

derivation. In partiular, they stipulate that: (i) one is allowed to fold a lause

by using a non-reursive lause whih is marked as `foldable', and (ii) a lause

is marked as `foldable' if it is derived by unfolding. Thus, onditions (i) and (ii)

express that a lause an be folded only if it is derived by unfolding at a previous

transformation step.

Tamaki-Sato's approah has been extended in several papers (see, for in-

stane, [4,6,8,10℄) by: (i) relaxing the restritions on the lauses that an be

used in a folding step, and (ii) generalizing the history dependent program an-

notations. The most reent of these papers [8℄ presents su�ient onditions for

the total orretness of the unfold/fold transformations in the ase where several,

possibly reursive lauses are used in a folding step. These onditions are based

on some measures whih are inremented or deremented when the unfolding or

folding rules are applied.

Unfortunately, the proofs of total orretness of the unfold/fold transforma-

tions presented in [4,6,8,9,10℄, use rather omplex, ad ho tehniques, and it is

very di�ult to understand why they work and how they ould be generalized

for dealing with other program transformations or language extensions.

The main ontribution of this paper is a logial foundation of the theory of

total orretness of logi program transformations (and in partiular unfold/fold

transformations). Our theory is based on the notion of well-founded annotations

and the unique �xpoint priniple.

A well-founded annotation is a mapping � that assoiates with every lause

H A

1

^ : : : ^ A

k

of a program P an annotated lause of the form:

HfNg (N;N

1

; : : : ; N

k

) ^ A

1

fN

1

g ^ : : : ^ A

k

fN

k

g

where: (i) the annotation variables N;N

1

; : : : ; N

k

range over a setW and should

be onsidered as extra arguments of the atoms ourring in the lause, and

(ii) for i = 1; : : : ; k, the relation (N;N

1

; : : : ; N

k

) implies N >N

i

, where > is

a well-founded ordering on W . By applying the well-founded annotation � to

every lause in P , we get an annotated program �(P) that, by onstrution,

enjoys the following two properties: (1) for every ground atom A, A 2 M(P)

i� there exists n 2 W suh that Afng 2 M(�(P)), and (2) for every ground

annotated atom Afng, �(P) [f Afngg has a �nite SLD tree, that is, �(P) is

terminating. By Property (2), the least Herbrand model of �(P) is the unique

�xpoint of the immediate onsequene operator T

�(P)

[1℄.

2

Based on well-founded annotations, we propose a method for totally or-

ret transformations of de�nite logi programs. Given a program P

1

our method

allows us to derive a program P

2

by the following steps: (i) we hoose a well-

founded annotation �

1

so that from program P

1

we produe an annotated pro-

gram �

1

(P

1

), (ii) we apply suitable variants of the unfold/fold rules for trans-

forming annotated programs so that from �

1

(P

1

) we derive a new terminat-

ing annotated program �

2

(P

2

), with �

2

possibly di�erent from �

1

, and �nally,

(iii) from �

2

(P

2

) we get program P

2

by erasing the annotations. The fat that

�

2

(P

2

) is terminating is enfored by the transformation rules beause they pre-

serve the well-founded ordering >, in the sense that, for every lause derived

by applying the rules, the annotation of the head is greater (w.r.t. >) than the

annotation of every atom in the body.

The total orretness of the transformation, that is, M(P

1

) = M(P

2

), is

proved as follows. On one hand, the transformation rules at on non-annotated

lauses like the usual unfold/fold rules and, as already mentioned, they ensure

partial orretness, that is, M(P

1

) � M(P

2

). On the other hand, sine �

2

(P

2

)

is terminating, by the unique �xpoint priniple [3,7℄ we have that M(�

1

(P

1

)) �

M(�

2

(P

2

)) and, thus, by Property (1) of well-founded annotations, M(P

1

) �

M(P

2

).

Notie that in our method neither P

1

nor P

2

is required to be terminating.

Moreover, our method is parametri w.r.t. the well-founded annotations and, in

partiular, w.r.t. the well-founded ordering > used for the derivation of P

2

from

P

1

. By suitable hoies of this ordering we an prove the total orretness of the

various variants of the unfold/fold rules proposed in the literature [4,6,8,9,10℄.

An Example

We revisit an example of program transformation taken from [8℄ where the total

orretness proof is rather intriate. We show that, on the ontrary, the total

orretness of this transformation an easily be established by our well-founded

annotation method. Let us onsider the following program P

1

:

1. thm(X) gen(X) ^ test(X)

2. gen([℄)

3. gen([0jX ℄) gen(X)

4. test(X) anon(X)

5. test(X) trans(X;Y) ^ test(Y)

6. anon([℄)

7. anon([1jX ℄) anon(X)

8. trans([0jX ℄; [1jX ℄)

9. trans([1jX ℄; [1jY ℄) trans(X;Y)

where thm(X) holds i� X is a string of 0's that an be transformed into a string

of 1's by repeated appliations of trans(X;Y). Given the string X , the prediate

trans(X;Y) generates the string Y by replaing the leftmost 0 in X by 1. Let

us onsider the well-founded annotation �

1

that assoiates with every lause:

H A

1

^ : : : ^A

k

3

the annotated lause:

HfNg N�N

1

+: : :+N

k

+1 ^ A

1

fN

1

g ^ : : : ^A

k

fN

k

g

where the annotation variables N;N

1

; : : : ; N

k

range over non-negative integers

and � is the usual `greater or equal' ordering over integers. Thus, the annotated

program �

1

(P

1

) is the following one:

1a. thm(X)fNg N�N

1

+N

2

+1 ^ gen(X)fN

1

g ^ test(X)fN

2

g

2a. gen([℄)f0g

3a. gen([0jX ℄)fNg N�N

1

+1 ^ gen(X)fN

1

g

4a. test(X)fNg N�N

1

+1 ^ anon(X)fN

1

g

5a. test(X)fNg N�N

1

+N

2

+1 ^ trans(X;Y)fN

1

g ^ test(Y)fN

2

g

6a. anon([℄)f0g

7a. anon([1jX ℄)fNg N�N

1

+1 ^ anon(X)fN

1

g

8a. trans([0jX ℄; [1jX ℄)f0g

9a. trans([1jX ℄; [1jY ℄)fNg N�N

1

+1 ^ trans(X;Y)fN

1

g

As already mentioned, the annotated program �

1

(P

1

) an be onsidered as a

logi program where the annotation variables are taken as extra arguments.

The annotated program �

1

(P

1

) is terminating beause N � N

1

+ : : :+N

k

+1

implies that, for i = 1; : : : ; k, N > N

i

. (Also P

1

is terminating, but we need

not use this property.) Now, let us onstrut a totally orret transformation by

using unfold/fold transformation rules for annotated programs. The unfolding

and folding rules for annotated programs work exatly like the rules for non-

annotated programs, by onsidering the annotation variables as extra arguments.

By applying several times the unfolding rule, from lause 1a we derive:

10a. thm([℄)fNg N�2

11a. thm([0jX ℄)fNg N�N

1

+N

2

+5 ^ gen(X)fN

1

g ^ anon(X)fN

2

g

12a. thm([0jX ℄)fNg N�N

1

+N

2

+N

3

+5 ^ gen(X)fN

1

g^

trans(X;Y)fN

2

g ^ test([1jY ℄)fN

3

g

Now we apply the goal replaement rule and we replae the annotated atom

test([1jY ℄)fN

3

g by N

3

� N

4

^ test(Y)fN

4

g. This replaement is justi�ed by

the following two properties: (1) M(P

1

) j= 8Y (test([1jY ℄) $ test(Y)) and

(2) M(�

1

(P

1

)) j= 8Y 8N

3

(test([1jY ℄)fN

3

g ! 9N

4

(N

3

� N

4

^ test(Y)fN

4

g)).

By applying the goal replaement rule, lause 12a is replaed by the following

lause:

13a. thm([0jX ℄)fNg N�N

1

+N

2

+N

4

+5 ^ gen(X)fN

1

g^

trans(X;Y)fN

2

g ^ test(Y)fN

4

g

By folding lauses 11a and 13a using lauses 4a and 5a we get:

14a. thm([0jX ℄)fNg N�N

1

+N

5

+4 ^ gen(X)fN

1

g ^ test(X)fN

5

g

Finally, by folding lause 14a using lause 1a, we derive:

15a. thm([0jX ℄)fNg N�N

6

+3 ^ thm(X)fN

6

g

The �nal annotated program is �

2

(P

2

) = (�

1

(P

1

) � f1ag) [f10a; 15ag. Notie

that in lause 15a the annotation of the head is greater than the annotation of

the body atom (beause N � N

6

+3 implies N > N

6

). Thus, �

2

(P

2

) is termi-

nating and M(�

2

(P

2

)) is the unique �xpoint of T

�

2

(P

2

)

. By the unique �xpoint

priniple [3,7℄, we dedue that M(�

1

(P

1

)) �M(�

2

(P

2

)).

4

Now, let us onsider the program P

2

obtained by dropping the annotations

from �

2

(P

2

), that is, P

2

= (P

1

�f1g)[f10; 15g, where lauses 10 and 15 are the

following:

10. thm([℄)

15. thm([0jX ℄) thm(X)

Notie that, for every ground atom A, we have that A 2M(P

1

) i� there exists a

non-negative integer n suh that Afng 2M(�

1

(P

1

)), and similarly, A 2M(P

2

)

i� there exists a non-negative integer n suh that Afng 2 M(�

2

(P

2

)). There-

fore, from M(�

1

(P

1

)) � M(�

2

(P

2

)) it follows that M(P

1

) � M(P

2

). Sine, as

already mentioned, the transformation rules at on non-annotated programs like

the usual unfold/fold transformations, and these transformations are partially

orret, we also have M(P

1

) � M(P

2

). Thus, the transformation of P

1

into P

2

is totally orret.

Referenes

1. M. Bezem. Charaterizing termination of logi programs with level mappings. In

E.L. Lusk and R.A. Overbeek, editors, Proeedings of the North Amerian Con-

ferene on Logi Programming, Cleveland, Ohio (USA), pages 69�80. MIT Press,

1989.

2. R. M. Burstall and J. Darlington. A transformation system for developing reursive

programs. Journal of the ACM, 24(1):44�67, January 1977.

3. B. Courelle. In�nite trees in normal form and reursive equations having a unique

solution. Mathematial Systems Theory, 13:131�180, 1979.

4. M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for de�nite lause

programs. In M. Hermenegildo and J. Penjam, editors, Proeedings Sixth Inter-

national Symposium on Programming Language Implementation and Logi Pro-

gramming (PLILP '94), Leture Notes in Computer Siene 844, pages 340�354.

Springer-Verlag, 1994.

5. C. J. Hogger. Derivation of logi programs. Journal of the ACM, 28(2):372�392,

1981.

6. T. Kanamori and H. Fujita. Unfold/fold transformation of logi programs with

ounters. Tehnial Report 179, ICOT, Tokyo, Japan, 1986.

7. M. Proietti and A. Pettorossi. Transforming indutive de�nitions. In D. De Shreye,

editor, Proeedings of the 1999 International Conferene on Logi Programming,

pages 486�499. MIT Press, 1999.

8. A. Royhoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrish-

nan. An unfold/fold tranformation framework for de�nite logi programs. ACM

Transations on Programming Languages and Systems, 26:264�509, 2004.

9. H. Tamaki and T. Sato. Unfold/fold transformation of logi programs. In S.-

Å. Tärnlund, editor, Proeedings of the Seond International Conferene on Logi

Programming, pages 127�138, Uppsala, Sweden, 1984. Uppsala University.

10. H. Tamaki and T. Sato. A generalized orretness proof of the unfold/fold logi

program transformation. Tehnial Report 86-4, Ibaraki University, Japan, 1986.

5

