Totally Correct Logic Program Transformations
Using Well-Founded Annotations

Alberto Pettorossi', Maurizio Proietti?

(1) DISP, University of Tor Vergata, Roma, Italy. pettorossi@info.uniroma2.it
(2) TIASI-CNR, Roma, Italy. proietti@iasi.rm.cnr.it

(Extended Abstract)

Program transformation is one of the most prominent methodologies for the
development of declarative programs and, in particular, functional and logic
programs [2,5,9]. The main advantage of this methodology is that it allows one
to deal with the issue of program correctness and the issue of program efficiency
in a separated manner. One first writes a simple, maybe inefficient, program
whose correctness can easily be proved, and then one derives a more efficient
program by applying some given transformation rules which preserve program
correctness.

In the case of definite logic programs, which are of our interest here, the cor-
rectness of the initial program is often very easy to prove because, usually, it is
very close to the formal specification of that same program. On the contrary, the
proof that the rules preserve program correctness is often more intricate (as it
is also the case for functional programs). In particular, these correctness proofs
cannot be done in isolation, in the sense that the correctness of a single transfor-
mation rule depends, in general, on the other rules one applies for transforming
programs.

The correctness of the rules can be either partial or total. We say that a rule
which transforms program P; into program P, is partially correct ifft M (P;) D
M (Py), where M (P) denotes the least Herbrand model of any given program P.
Analogously, we say that a rule which transforms program P; into program P
is totally correct iff M (P) = M(P,).

Partial correctness is a straightforward consequence of the fact that the trans-
formation rules, and in particular the familiar unfold/fold rules, basically con-
sist in applying logical equivalences [9]. Indeed, whenever we derive a program
P, from a program P; by replacing a formula A by a formula B such that
M(P) = A & B, we get M(P,) DO M(P,). However, it is well known that
the opposite inclusion M (P;) C M (P,) may not hold and, thus, in general, the
unfold /fold transformations are not totally correct as shown by the following
simple example. Let us consider the transformation of program P; into program
P,, where P; and P, are as follows:

P p+gq Py: pep
q < q <
This transformation, which corresponds to an application of the folding rule, is
justified by the fact that the equivalence M (P;) = p ¢ ¢ holds. However, the

least Herbrand model is not preserved because we have that M (Py) = {p,q} D
{a} = M(P»).

In the case of non-propositional programs it is not easy to check whether
or not the application of an unfold/fold transformation rule is totally correct
(actually, it can be shown that this is an undecidable problem). For this reason, in
their landmark paper Tamaki and Sato proposed suitable applicability conditions
which ensure the total correctness of the transformations [9]. These conditions
are based on: (i) the form of the clauses that can be used in a folding step,
and (ii) annotations of the program clauses that depend on the transformation
history, that is, on the sequence of transformation rules applied during a program
derivation. In particular, they stipulate that: (i) one is allowed to fold a clause
by using a non-recursive clause which is marked as ‘foldable’, and (ii) a clause
is marked as ‘foldable’ if it is derived by unfolding. Thus, conditions (i) and (ii)
express that a clause can be folded only if it is derived by unfolding at a previous
transformation step.

Tamaki-Sato’s approach has been extended in several papers (see, for in-
stance, [4,6,8,10]) by: (i) relaxing the restrictions on the clauses that can be
used in a folding step, and (ii) generalizing the history dependent program an-
notations. The most recent of these papers [8] presents sufficient conditions for
the total correctness of the unfold/fold transformations in the case where several,
possibly recursive clauses are used in a folding step. These conditions are based
on some measures which are incremented or decremented when the unfolding or
folding rules are applied.

Unfortunately, the proofs of total correctness of the unfold/fold transforma-
tions presented in [4,6,8,9,10], use rather complex, ad hoc techniques, and it is
very difficult to understand why they work and how they could be generalized
for dealing with other program transformations or language extensions.

The main contribution of this paper is a logical foundation of the theory of
total correctness of logic program transformations (and in particular unfold/fold
transformations). Our theory is based on the notion of well-founded annotations
and the unique fixpoint principle.

A well-founded annotation is a mapping « that associates with every clause
H «+ Ay A ...\ Ag of a program P an annotated clause of the form:

H{NY} + ¢(N,Ny,...,No) AA N AL A A N}

where: (i) the annotation variables N, Ny, ..., Nj range over a set W and should
be considered as extra arguments of the atoms occurring in the clause, and
(i) for ¢ = 1,...,k, the relation ¢(N, Ny,...,Ni) implies N > N;, where > is
a well-founded ordering on W. By applying the well-founded annotation « to
every clause in P, we get an annotated program «(P) that, by construction,
enjoys the following two properties: (1) for every ground atom A, A € M(P)
iff there exists n € W such that A{n} € M(a(P)), and (2) for every ground
annotated atom A{n}, a(P)U {< A{n}} has a finite SLD tree, that is, a(P) is
terminating. By Property (2), the least Herbrand model of a(P) is the unique
fizpoint of the immediate consequence operator T, (p) [1].

Based on well-founded annotations, we propose a method for totally cor-
rect transformations of definite logic programs. Given a program P; our method
allows us to derive a program P, by the following steps: (i) we choose a well-
founded annotation a; so that from program P; we produce an annotated pro-
gram a3 (P;), (ii) we apply suitable variants of the unfold/fold rules for trans-
forming annotated programs so that from «q(P;) we derive a new terminat-
ing annotated program as(P:), with ay possibly different from «;, and finally,
(iii) from as(P2) we get program P, by erasing the annotations. The fact that
as(Py) is terminating is enforced by the transformation rules because they pre-
serve the well-founded ordering >, in the sense that, for every clause derived
by applying the rules, the annotation of the head is greater (w.r.t. >) than the
annotation of every atom in the body.

The total correctness of the transformation, that is, M (P;) = M(P), is
proved as follows. On one hand, the transformation rules act on non-annotated
clauses like the usual unfold/fold rules and, as already mentioned, they ensure
partial correctness, that is, M (P;) DO M(P;). On the other hand, since az(P;)
is terminating, by the unique fixpoint principle [3,7] we have that M (ay(P1)) C
M (as(Py)) and, thus, by Property (1) of well-founded annotations, M (P;) C
M(Py).

Notice that in our method neither P, nor P» is required to be terminating.
Moreover, our method is parametric w.r.t. the well-founded annotations and, in
particular, w.r.t. the well-founded ordering > used for the derivation of P, from
P, . By suitable choices of this ordering we can prove the total correctness of the
various variants of the unfold/fold rules proposed in the literature [4,6,8,9,10].

An Example

We revisit an example of program transformation taken from [8] where the total
correctness proof is rather intricate. We show that, on the contrary, the total
correctness of this transformation can easily be established by our well-founded
annotation method. Let us consider the following program P;:

1. thm(X) < gen(X) A test(X)
gen([])
gen([0]X]) + gen(X)
test(X) < canon(X)
test(X) « trans(X,Y) Atest(Y)
canon([]) <
canon([1|X]) + canon(X)
trans([0)X], [1|X]) +

9. trans([1|X],[1|Y]) « trans(X,Y)
where thm(X) holds iff X is a string of 0’s that can be transformed into a string
of 1’s by repeated applications of trans(X,Y"). Given the string X, the predicate
trans(X,Y’) generates the string Y by replacing the leftmost 0 in X by 1. Let
us consider the well-founded annotation a; that associates with every clause:

H+— A AN...NA,

® NSOk W

the annotated clause:

H{N} —~ N>Ni+...+N+1A Al{Nl} A A Ak{Nk}
where the annotation variables N, Ny,..., N} range over non-negative integers
and > is the usual ‘greater or equal’ ordering over integers. Thus, the annotated
program ay (Py) is the following one:

la. thm(X){N} + N>Ni+No+1A gen(X){N1} A test(X){N2}

2a. gen([]){0}

3a. gen([0|X]){N} + N>Ni+1Agen(X){N:}

4a. test(X){N} + N>Ni+1A canon(X){N,}

5a. test(X){N} + N>Ni+No+1Atrans(X,Y){N:} Atest(Y){N-}

6a. canon([]){0} «+

7a. canon([1|X]){N} < N>N;+1A canon(X){N1}

8a. trans([0|X], [1|X]){0} <

9a. trans([1|X],[1]Y]D{N} « N>N,+1Atrans(X,Y){N,}
As already mentioned, the annotated program a;(P;) can be considered as a
logic program where the annotation variables are taken as extra arguments.
The annotated program «;(P;) is terminating because N > Ny +...+ N +1
implies that, for ¢ = 1,...,k, N > N;. (Also P; is terminating, but we need
not use this property.) Now, let us construct a totally correct transformation by
using unfold/fold transformation rules for annotated programs. The unfolding
and folding rules for annotated programs work exactly like the rules for non-
annotated programs, by considering the annotation variables as extra arguments.
By applying several times the unfolding rule, from clause la we derive:

10a. thm([]){N} « N>2

11a. thm([0|X]){N} < N> N1+ N>+5A gen(X){N:1} A canon(X){N>}

12a. thm([0|X]){N} <~ N> N1+ N2+ N3+5 A gen(X){N:}A

trans(X,Y){Na} A test([1|Y]){ N3}

Now we apply the goal replacement rule and we replace the annotated atom
test([L|Y]){Ns} by N3 > Ny A test(Y){Ns}. This replacement is justified by
the following two properties: (1) M(P;) E VY (test([1|Y]) « test(Y)) and
(2) M(a1(P)) = VYVNg (test([1Y]){Ns} — INy(Ns > Ny A test(Y){N})).
By applying the goal replacement rule, clause 12a is replaced by the following
clause:

13a. thm([0|X]){N} <~ N> N1+ Na+Ns+5 A gen(X){N:}A

trans(X,Y){ N2} Atest(Y){Ns}

By folding clauses 11a and 13a using clauses 4a and 5a we get:

1da. thm([0|X]){N} ¢+ N>Ni+N5+4 A gen(X){N1} A test(X){Ns}
Finally, by folding clause 14a using clause 1a, we derive:

15a. thm([0|X]){N} + N> Ng+3 A thm(X){Ns}
The final annotated program is as(Ps) = (a1 (P1) — {la}) U {10a, 15a}. Notice
that in clause 15a the annotation of the head is greater than the annotation of
the body atom (because N > Ng+3 implies N > Ng). Thus, ax(P2) is termi-
nating and M (az(P)) is the unique fixpoint of Ty, (p,). By the unique fixpoint
principle [3,7], we deduce that M (a1 (P1)) C M (az(Ps)).

Now, let us consider the program P, obtained by dropping the annotations
from a2(Py), that is, P, = (P, — {1}) U{10, 15}, where clauses 10 and 15 are the
following:

10. thm([]) «
15. thm([0|X]) « thm(X)

Notice that, for every ground atom A, we have that A € M (P;) iff there exists a
non-negative integer n such that A{n} € M(ay(P1)), and similarly, A € M(P,)
iff there exists a non-negative integer n such that A{n} € M (ax(P2)). There-
fore, from M(ay(P1)) C M(ax(P2)) it follows that M (P;) C M(Pz). Since, as
already mentioned, the transformation rules act on non-annotated programs like
the usual unfold /fold transformations, and these transformations are partially
correct, we also have M (P;) D M(P,). Thus, the transformation of P; into P,
is totally correct.

References

1. M. Bezem. Characterizing termination of logic programs with level mappings. In
E.L. Lusk and R.A. Overbeek, editors, Proceedings of the North American Con-
ference on Logic Programming, Cleveland, Ohio (USA), pages 69-80. MIT Press,
1989.

2. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, January 1977.

3. B. Courcelle. Infinite trees in normal form and recursive equations having a unique
solution. Mathematical Systems Theory, 13:131-180, 1979.

4. M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite clause
programs. In M. Hermenegildo and J. Penjam, editors, Proceedings Sizth Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming (PLILP ’94), Lecture Notes in Computer Science 844, pages 340-354.
Springer-Verlag, 1994.

5. C. J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372-392,
1981.

6. T. Kanamori and H. Fujita. Unfold/fold transformation of logic programs with
counters. Technical Report 179, ICOT, Tokyo, Japan, 1986.

7. M. Proietti and A. Pettorossi. Transforming inductive definitions. In D. De Schreye,
editor, Proceedings of the 1999 International Conference on Logic Programming,
pages 486-499. MIT Press, 1999.

8. A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrish-
nan. An unfold/fold tranformation framework for definite logic programs. ACM
Transactions on Programming Languages and Systems, 26:264-509, 2004.

9. H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-
A. Térnlund, editor, Proceedings of the Second International Conference on Logic
Programming, pages 127-138, Uppsala, Sweden, 1984. Uppsala University.

10. H. Tamaki and T. Sato. A generalized correctness proof of the unfold/fold logic
program transformation. Technical Report 86-4, Ibaraki University, Japan, 1986.

