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ABSTRACT
We address the problem of proving total orretness of trans-

formation rules for de�nite logi programs. We onsider

a general transformation rule, alled lause replaement,

whih onsists in transforming a program P into a new pro-

gram Q by replaing a set �

1

of lauses ourring in P by a

new set �

2

of lauses, provided that �

1

and �

2

are equivalent

in the least Herbrand model M(P ) of the program P .

We propose a general method for proving that lause re-

plaement is totally orret, that is, M(P ) = M(Q). Our

method onsists in showing that the transformation of P

into Q an be performed by: (i) adding extra arguments

to prediates, thereby onstruting from the given program

P an annotated program �(P ), (ii) applying lause replae-

ments and transforming the annotated program �(P ) into a

terminating annotated program �(Q), and (iii) erasing the

annotations from �(Q), thereby getting Q.

Our method does not require that either P or Q termi-

nates and it is parametri w.r.t. the annotations. By provid-

ing di�erent de�nitions for these annotations, we an easily

prove the total orretness of many versions of the unfolding,

folding, and goal replaement rules proposed in the litera-

ture.

Categories and Subject Descriptors
F.3.1 [Logis and Meaning of Programs℄: Speifying

and Verifying and Reasoning about Programs, Semantis

of Programming Languages; D.1.2 [Programming Teh-

niques℄: Automati Programming|Program Transforma-

tion; D.3.2 [Programming Languages℄: Language Clas-

si�ation|Constraint and Logi Languages.

General Terms
Languages, Theory, Veri�ation.
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Program transformation rules, logi programming, partial
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1. INTRODUCTION
Rules for program transformation an be viewed as ondi-

tional rewritings of programs. Indeed the transformation of

a program P into a programQ an be realized by using rules,

eah of whih rewrites a statement s

1

of the program P into

a new statement s

2

, provided that s

1

and s

2

are equivalent

w.r.t. a suitable semantis (see, for instane, [13℄).

In this paper we onsider de�nite logi programs together

with a general transformation rule, alled lause replae-

ment, whih is a onditional rewriting of programs of the

following form: a set �

1

of lauses of a program P is rewrit-

ten into a new set �

2

of lauses, provided that a suitable

logial equivalene between �

1

and �

2

holds in the least Her-

brand model M(P ) of the program P . Most transformation

rules proposed in the literature, inluding the popular un-

folding and folding rules [5, 18℄, an be viewed as partiular

ases of the lause replaement rule.

We will give the formal de�nition of the lause replae-

ment rule in Setion 2. In this Introdution, we will use the

following partiular instane of the lause replaement rule,

alled goal replaement: a lause H  G

L

^ G

1

^ G

R

of a

program P is replaed by a new lause H  G

L

^G

2

^G

R

,

provided that goals G

1

and G

2

are equivalent in the least

Herbrand model of P , that is, M(P ) j= 8 (G

1

$ G

2

), where

8(') denotes the universal losure of formula '.

Muh work has been devoted to the study of the or-

retness of program transformation rules for de�nite pro-

grams (see, for instane, [3, 8, 10, 11, 16, 18, 19℄). Two

notions of orretness properties of the rules have been on-

sidered: partial orretness and total orretness. A rule

whih transforms a program P into a program Q is said to

be partially orret i� M(P ) � M(Q), and it is said to be

totally orret i� M(P ) =M(Q).

We will show in Setion 2 that the partial orretness of

the lause replaement rule is a straightforward onsequene

of the fat that this rule is based on a logial equivalene.

However, the appliation of logial equivalenes does not

ensure the opposite inlusion, i.e., M(P ) � M(Q). Indeed,

in general, lause replaement is not totally orret. We

show this point in the partiular ase of goal replaement,

by means of the following example.

Example 1. Let us onsider the transformation of pro-

gram P into program Q, where P and Q are as follows:

P : p q Q: p p

q  q  

The transformation of P into Q is an appliation of the goal

replaement rule de�ned above, whih is justi�ed beause



M(P ) j= p $ q holds. This goal replaement is not to-

tally orret, beause we have that M(P ) = fp; qg � fqg =

M(Q). �

Sine the pioneering work by Tamaki and Sato [18℄, var-

ious authors have proposed suitable extra onditions whih

ensure the total orretness of the unfolding, folding, and

goal replaement rules [8, 10, 16, 18, 19℄. However, the

veri�ation of these onditions requires the proof of some

invariants of the transformation of program P into program

Q, and these invariants refer to omplex measures of the

proofs of the atoms whih are in M(P ).

For instane, Tamaki and Sato proved that the replae-

ment of goal G

1

by goal G

2

is totally orret if, in addition

to the ondition M(P ) j= 8 (G

1

$ G

2

), we have that for

all ground instanes G

1

# and G

2

# of G

1

and G

2

, respe-

tively, if G

1

# has a proof in P then also G

2

# has a proof in

P and this proof of G

2

# has a measure whih is not larger

than the one of G

1

#. The measure of a proof is de�ned in

terms of the number of nodes in the proof tree [18℄. More

sophistiated measures are de�ned in [16, 19℄. However, no

general methodology is given in [16, 18, 19℄ for omparing

proof measures and heking the onditions whih ensure

the total orretness of goal replaements.

The main ontribution of this paper is a method for prov-

ing the total orretness of the lause replaement rule and

its partiular ases onsisting of the unfolding, folding, and

goal replaement rules. By our method we an express the

onditions whih ensure total orretness of lause replae-

ment as �rst order formulas that an be heked by standard

dedutive tehniques.

Let us briey desribe our method in the partiular ase

of the goal replaement rule presented above. In order to

show the partial orretness of the replaement of goal G

1

by goal G

2

thereby program P is transformed into program

Q, that is, to show that M(P ) �M(Q), it suÆes to prove

that M(P ) j= 8 (G

1

 G

2

) (and, thus, M(P ) j= 8 ((H  

G

L

^G

1

^G

R

) ! (H  G

L

^G

2

^G

R

))).

In order to show the total orretness of the replaement

of G

1

by G

2

, we may use the unique �xpoint priniple, whih

an be formulated as follows: if M(P ) j= 8 (G

1

! G

2

) and

the immediate onsequene operator T

Q

assoiated with Q

has a unique �xpoint, then M(P ) � M(Q) [6, 15℄. A suÆ-

ient (but not neessary) ondition ensuring that T

Q

has

a unique �xpoint is that, for all ground goals, Q termi-

nates with suess or failure [2℄. However, this ondition

based on the existene of a unique �xpoint is too restritive

in pratie, beause for many useful non-terminating logi

programs the immediate onsequene operator T

Q

does not

have a unique �xpoint.

We overome this limitation by introduing program an-

notations as we now indiate. For reasons of simpliity, let

us assume that every lause of P is of the form H  A

1

,

where A

1

is an atom. When A

1

is true the lause H  A

1

will also be written as H  . The general ase where the

bodies are onjuntions of n atoms, with n�0, is analogous

and we will onsider it in Setions 3 and 4. An annotation

for program P is a funtion � that assoiates with every

lause : H  A

1

of P an annotated lause �() of the

form:

HhXi  

1

(X;Y ) ^ A

1

hY i

where: (i) X and Y are distint annotation variables rang-

ing over a given set W , and (ii) 

1

(X;Y ) is an annotation

formula, denoting a binary relation on W �W . The an-

notation variables should be onsidered as extra arguments

of the atoms in the lause . For instane, the annotated

atom p(a)hY i should be onsidered idential to the atom

p(a; Y ). Thus, by onsidering the annotation formulas as

onstraints, the annotated program �(P ) is a onstraint

logi program for whih we an de�ne a least model, de-

noted by M(�(P )) [9℄.

Now, let us suppose that we replae A

1

in the body of

lause  by a new atom A

2

, thereby deriving a new pro-

gram Q. Our method for proving M(P ) � M(Q) onsists

in showing the following three properties.

(1) The program annotation � is enhaning, that is, for every

ground atom A 2 M(P ) there exists w 2 W suh that

Ahwi 2M(�(P )).

(2) For some annotation formula 

2

(X;Y ), we have that:

M(�(P )) j= 8X (9Y (

1

(X;Y ) ^A

1

hY i)

! 9Y (

2

(X;Y ) ^A

2

hY i)).

(3) Let �(Q) be the annotated program obtained by repla-

ing 

1

(X;Y ) ^ A

1

hY i by 

2

(X;Y ) ^ A

2

hY i. We have that

� is a well-founded annotation for Q, that is, for every an-

notated lause KhXi  d(X;Y ) ^ BhY i in �(Q), the im-

pliation 8X 8Y (d(X;Y ) ! X � Y ) holds, where � is a

well-founded ordering on W (that is, no in�nite desending

sequene w

1

� : : : � w

n

� : : : exists in W ).

Let us briey explain the reasons why Properties (1){

(3) ensure that M(P ) � M(Q). Let us take A 2 M(P ).

By Property (1) there exists w 2 W suh that Ahwi 2

M(�(P )). In Setion 3 we will prove that if � is a well-

founded annotation for a program P , then T

�(P )

has a unique

�xpoint. Thus, by Properties (2) and (3), and by the unique

�xpoint priniple, we have that M(�(P )) � M(�(Q)) and,

hene, Ahwi 2 M(�(Q)). (To see that Property (2) is an

instane of M(�(P )) j= 8 (G

1

! G

2

), we observe that the

variables ourring in the body of a lause and not our-

ring in the head, an be onsidered as variables whih are

existentially quanti�ed in front of the body.) Finally, sine

for every annotated atom Ahwi, if Ahwi 2 M(�(Q)) then

A 2M(Q), we onlude that A 2M(Q).

In pratie, in order to prove Property (3), that is, the

well-foundedness of �, we usually start from an annota-

tion � for P whih is well-founded, and then we prove that

the goal replaement preserves well-foundedness. Then, to

prove that goal replaement preserves well-foundedness it is

enough to show that the following impliation holds:

(3*) 8X 8Y (

2

(X;Y )! X�Y )

Thus, starting from an annotated program �(P ) where �

is enhaning and well-founded, at every transformation step

we only need to prove that Properties (2) and (3*) hold, and

these proofs, as already mentioned, an be made by using

standard dedutive tehniques. In partiular, many power-

ful well-founded orderings an be axiomatized as �rst order

theories, and their properties an be proved by using teh-

niques developed in the �eld of term rewriting systems [7℄.

Notie also that the property that � is an enhaning, well-

founded annotation for P is, in fat, independent of the

program P and an be proved in advane for many program

annotations. We will give examples of these annotations in

Setion 3.

Finally, we would like to stress the fat that, when ap-

plying our method for proving the total orretness of the



transformation of program P into program Q, neither P nor

Q is required to terminate.

Now we present a simple example whih shows that our

method an be applied also for proving the total orretness

of transformations realized by appliations of the unfolding

and folding rules.

Example 2. Let us onsider the following program P :

1. q(a) 

2. q(A) q(A)

3. p q(f(B))

In order to onstrut a totally orret transformation, we

�rst onsider the following annotated program �(P ):

1a. q(a)hXi  

2a. q(A)hXi  X>Y ^ q(A)hY i

3a. phXi  X>Y ^ q(f(B))hY i

where X and Y range over natural numbers and > is the

usual `greater than' ordering on natural numbers. Then

we apply the unfolding and folding transformation rules to

the annotated program �(P ). By unfolding lause 3a w.r.t.

q(f(B))hY i we derive:

4a. phXi  X>Y ^ Y >Z ^ q(f(B))hZi

By folding lause 4a w.r.t. Y >Z ^ q(f(B))hZi we derive:

5a. phXi  X>Y ^ phY i

The annotated program derived by the above appliations of

the unfolding and folding rules is �(Q) = f1a, 2a, 5ag. Let

us onsider the program obtained by erasing the annotations

from �(Q), that is, Q = f1, 2, 5g, where lause 5 is:

5. p p

The partial orretness of the transformation of P intoQ fol-

lows from the partial orretness of the usual unfolding and

folding transformations for non-annotated programs. In-

deed, P an be transformed into Q by applying the usual

unfolding and folding rules, in the same way as �(P ) has

been transformed into �(Q). Thus, M(P ) �M(Q).

The total orretness of the transformation of P into Q

an be proved by our method based on well-founded annota-

tions similarly to the ase of goal replaement. In partiular,

� is enhaning (and well-founded) and � is well-founded, be-

ause in every lause of �(Q) the annotation of the head is

greater than the annotation of eah atom in the body (for in-

stane, in lause 5a, we have X>Y ). Thus, M(P ) �M(Q)

and the transformation of the given program P into the �nal

program Q is totally orret, that is, M(P ) =M(Q). �

Sine our method is sound (see Setion 3), it annot be

used to prove the total orretness of the transformation of

Example 1 whih, indeed, is not totally orret. Below we

show why this proof fails.

Example 3. Let us onsider the following program �(P ),

whih is an annotated version of the program P presented

in Example 1:

1a. phXi  X>Y ^ qhY i

2a. qhXi  

The annotation � is enhaning and well-founded.

By lause 1a we have that:

M(�(P )) j= 8X (9Y (X>Y ^qhY i)! (9Y X=Y ^phY i))

Thus, Property (2) of our method for the total orret-

ness of goal replaement is satis�ed. However, if we replae

X >Y ^ qhY i by X =Y ^ phY i in lause 1a, we get a new

annotated program whose annotation is not well-founded,

beause X=Y does not imply that X � Y for any well-

founded ordering �, and thus, Property (3) of our method

is not satis�ed. �

The paper is strutured as follows. In Setion 2 we intro-

due the lause replaement transformation rule, whih gen-

eralizes the unfolding, folding, and goal replaement trans-

formations. We prove the partial orretness of lause re-

plaement, as well as other relevant properties. In Se-

tion 3 we introdue program annotations and, in partiular,

well-founded annotations. Then we prove a suÆient ondi-

tion for ensuring the total orretness of lause replaement

based on well-founded annotations. In Setion 4 we present

variants of the unfolding, folding, and goal replaement rules

for annotated programs and we use the results of Setion 3

for showing that these rules are totally orret. In Setion 5

we present an extended example of appliation of the unfold-

ing, folding, and goal replaement rules. Finally, in Setion 6

we ompare our method to related tehniques for proving

total orretness of program transformations. In partiu-

lar, we argue that by our method we an easily prove total

orretness of the various versions of the unfolding/folding

rules proposed in the literature (see, for instane, [8, 10, 16,

18, 19℄).

2. CLAUSE REPLACEMENT
In this setion we introdue the lause replaement trans-

formation rule. All usual program transformation rules,

suh as unfolding, folding, and goal replaement, are in-

stanes of this lause replaement rule. Indeed, we prove

that lause replaement is the most general program trans-

formation rule, in the sense that, any totally orret pro-

gram transformation an be obtained by applying this rule

(see Theorem 1). Then we study the partial and total or-

retness of lause replaement (see Theorems 2 and 3). In

partiular, we give a suÆient ondition for the total orret-

ness of lause replaement, whih is based on the uniqueness

of the �xpoint of the immediate onsequene operator of the

annotated transformed program (see Corollary 1).

In order to de�ne the lause replaement rule we introdue

the following impliations and equivalenes between sets of

lauses

1

.

De�nition 1. Let I be a Herbrand interpretation and let

�

1

;�

2

be two sets of lauses. We write I j= �

1

) �

2

i�

for every ground instane H  G

2

of a lause in �

2

suh

that I j= G

2

there exists a ground instane H  G

1

of a

lause in �

1

suh that I j= G

1

. We write I j= �

1

( �

2

i�

I j= �

2

) �

1

and we write I j= �

1

, �

2

i� I j= �

1

) �

2

and I j= �

1

( �

2

.

For every Herbrand interpretation I and sets of lauses

�;�

1

;�

2

;�

3

the following properties hold:

Reexivity : I j= �) �

Transitivity : if I j= �

1

) �

2

and I j= �

2

) �

3

then I j= �

1

) �

3

1

The notions we introdue in the following De�nitions 1

and 2 are symmetri w.r.t. those introdued in [15℄. The

reason is that here we deal with impliations between sets

of lauses, while in [15℄ we deal with impliations between

sets of bodies of lauses.



Monotoniity : if I j= �

1

) �

2

then I j= �

1

[�) �

2

[�.

De�nition 2. A lause replaement is a pair (P;Q) of pro-

grams, denoted P 7!Q, suh that, for some sets �

1

and �

2

of lauses with �

1

� P , we have: Q = (P � �

1

) [ �

2

.

Program Q is also denoted P [�

1

=�

2

℄. A lause replae-

ment P 7! P [�

1

=�

2

℄ is said to be: (i) impliation-based i�

M(P ) j= �

1

) �

2

, (ii) reverse-impliation-based i�M(P ) j=

�

1

( �

2

, and (iii) equivalene-based i� M(P ) j= �

1

, �

2

.

A lause replaement P 7! Q is said to be: (iv) partially

orret i�M(P ) �M(Q), (v) inreasing i�M(P ) �M(Q),

and (vi) totally orret i� M(P ) =M(Q).

By monotoniity, we have the following property whih will

be useful in the proofs of (partial and total) orretness of

lause replaement.

Lemma 1. Let P 7! Q be a lause replaement.

(i) P 7! Q is impliation-based i� M(P ) j= P)Q.

(ii) P 7! Q is reverse-impliation-based i� M(P ) j= P(Q.

The following theorem, whose proof is left to the reader,

shows that equivalene-based lause replaement is a om-

plete transformation rule for the derivation of equivalent

programs, in the sense that, for any two programs P and

Q suh that M(P ) = M(Q), there exists an equivalene-

based lause replaement P 7! Q.

Theorem 1. (Completeness of Equivalene-Based Clause

Replaement) Given two programs P and Q, if M(P ) =

M(Q) then M(P ) j= P , Q.

Now we present some suÆient onditions for ensuring that a

lause replaement is partially orret and inreasing. Given

a program P , we denote its assoiated immediate onse-

quene operator by T

P

[1℄. We denote the least and greatest

�xpoint of T

P

by lfp(T

P

) and gfp(T

P

), respetively. Reall

that M(P ) = lfp(T

P

).

First we show that every impliation-based lause replae-

ment is partially orret.

Theorem 2. (Partial Corretness) Given two programs

P and Q, if P 7! Q is an impliation-based lause replae-

ment then M(P ) �M(Q).

Proof. We �rst show that M(P ) is a pre�xpoint of T

Q

,

that is, T

Q

(M(P )) � M(P ). Let A be a ground atom in

T

Q

(M(P )). By de�nition of T

Q

there exists a ground in-

stane A  G

2

of a lause in Q suh that M(P ) j= G

2

.

Sine P 7! Q is an impliation-based lause replaement,

by Lemma 1 M(P ) j= P ) Q. Thus, by De�nition 1,

there exists a ground instane A  G

1

of a lause in P

suh that M(P ) j= G

1

. Hene, by de�nition of T

P

, A 2

T

P

(M(P )). Sine M(P ) is a pre�xpoint of T

P

, we have

that T

P

(M(P )) � M(P ) and, therefore, A 2 M(P ). Thus,

we have proved that M(P ) is a pre�xpoint of T

Q

. Sine

M(Q) = lfp(T

Q

) and lfp(T

Q

) is the least pre�xpoint of T

Q

(see, for instane, [1℄), we have that M(P ) �M(Q).

Sine every equivalene-based lause replaement is an

impliation-based lause replaement, Theorem 2 proves also

that equivalene-based lause replaements are partially or-

ret.

In order to prove that a lause replaement is inreasing

we propose a method based on the unique �xpoint prini-

ple [6, 15℄.

A program P is said to be univoal i� T

P

has a unique

�xpoint, that is, lfp(T

P

) = gfp(T

P

). A suÆient ondition

for a program to be univoal is that it is terminating [2℄.

Theorem 3. (Inreasingness) Given two programs P and

Q, if P 7! Q is a reverse-impliation-based lause replae-

ment and Q is univoal then M(P ) �M(Q).

Proof. We �rst show thatM(P ) is a post�xpoint of T

Q

,

that is, T

Q

(M(P )) � M(P ). Let A be a ground atom in

M(P ). SineM(P ) is a �xpoint of T

P

, that is, T

P

(M(P )) =

M(P ), we have that there exists a ground instane A G

1

of a lause in P suh that M(P ) j= G

1

. By Lemma 1,

M(P ) j= P ( Q and, therefore, by De�nition 1, there

exists a ground instane A  G

2

of a lause in Q suh

that M(P ) j= G

2

. By de�nition of T

Q

, we have that A 2

T

Q

(M(P )). Thus, we have proved that M(P ) is a post�x-

point of T

Q

. Sine gfp(T

Q

) is the greatest post�xpoint of

T

Q

(see, for instane, [1℄), we have that M(P ) � gfp(T

Q

).

Finally, by the hypothesis that Q is univoal, we get that

M(P ) �M(Q).

As a onsequene of Theorems 2 and 3 we have the fol-

lowing result.

Corollary 1. (Total Corretness via Unique Fixpoint)

Given two programs P and Q, if P 7! Q is an equivalene-

based lause replaement and Q is univoal then M(P ) =

M(Q).

Corollary 1 gives us a useful method for proving the total

orretness of lause replaements. However, from a pra-

tial point of view, this method has the following two lim-

itations: (1) the property that a program is univoal is,

in general, undeidable, and (2) the method annot be ap-

plied when the program derived by lause replaement, is

not univoal. In the next setion we will present a method

that partly overomes these limitations.

3. WELL-FOUNDED ANNOTATIONS
In this setion we present our method based on the notion

of program annotation for proving the total orretness of

lause replaements. In partiular, we will introdue the so

alled well-founded annotations, that is, annotations whih

generate terminating (and, thus, univoal) annotated pro-

grams. First, we present the syntax and the semantis of

annotated programs and then we introdue the notion of

lause replaement for the lass of annotated programs. Fi-

nally, we prove the main result of this paper, that is, a suf-

�ient ondition for ensuring the total orretness of lause

replaements (see Theorem 6 below).

The syntax of annotated programs is de�ned as follows.

We onsider a �rst order language L

A

for writing annota-

tions. We assume that L

A

is disjoint from the �rst order

language L

P

for writing programs. We also assume that

in the set of prediate symbols of L

A

there is the symbol

�, whih is interpreted as a well-founded ordering relation

on a suitable domain. Variables, terms, and formulas of

L

A

are alled annotation variables, annotation terms, and

annotation formulas, respetively. For reasons of simpli-

ity, we assume that annotation formulas do not have bound

variables. An annotated atom is of the form Ahwi, where A

is an atom of L

P

and w is an annotation term of L

A

. An

annotated lause is of the form:



Hhwi   ^A

1

hw

1

i ^ : : : ^A

n

hw

n

i

where (i) w;w

1

; : : : ; w

n

are annotation terms, (ii)  is an

annotation formula, and (iii) Hhwi; A

1

hw

1

i; : : : ;A

n

hw

n

i are

annotated atoms. An annotated program is a set of anno-

tated lauses. Annotated atoms, onjuntions of annotated

atoms, and annotated programs are denoted by overlined

metavariables, suh as A, G, and P .

The de�nition of the semantis of annotated programs is

similar to the one of onstraint logi programs [9℄ and it is

given as follows. We �x an interpretation W for L

A

, whose

arrier is a set W . We assume that the prediate symbol

� is interpreted as a well-founded ordering relation on W

whih, by abuse of language, we will also denote by �. For

any annotation formula , the satisfation relation W j=  is

de�ned as usual in �rst order logi. The interpretation W

will also be referred to as the well-founded ordering (W;�).

A W-interpretation is a subset of

B

W

= fAhwi jA is a ground atom and

w is a ground annotation termg

Given a W-interpretation I, a ground annotation formula

, and a ground onjuntion A

1

^ : : : ^ A

n

of annotated

atoms, the satisfation relation I j=  ^A

1

^ : : : ^A

n

holds

i� W j=  and, for i = 1; : : : ; n, A

i

2 I. A ground annotated

lause H   ^ G, where G is a onjuntion of annotated

atoms, is true in a W-interpretation I i� I j=  ^G implies

H 2 I. An annotated lause is true in a W-interpretation

I i� all its ground instanes are true in I. A W-model of

an annotated program P is a W-interpretation suh that

all annotated lauses in P are true. It an be shown that

every annotated program P has a least W-model whih is

denoted by M(P ) (this is the same notation whih is used

for the least Herbrand model of de�nite logi programs).

Similarly to the ase of de�nite logi programs, the least

W-model of an annotated program an be omputed as the

least �xpoint of a partiular operator overW-interpretations.

With every annotated program P we assoiate an immedi-

ate onsequene operator T

P

from P(B

W

) to P(B

W

), where

P(B

W

) denotes the powerset of B

W

, suh that for every

I 2 P(B

W

),

T

P

(I) = fH j there exists a ground instane H   ^G

of an annotated lause in P suh that

I j=  ^Gg

Similarly to the ase of de�nite logi programs (see, for in-

stane, [1℄), we have the following result.

Theorem 4. For every annotated program P , T

P

is a

ontinuous funtion from P(B

W

) to P(B

W

) and lfp(T

P

) =

M(P ).

In the next de�nition we introdue the main notion of

this paper. In this de�nition we onsider the following four

sets: Clauses , AClauses , Programs , and APrograms , whih

onsist of all lauses, annotated lauses, programs, and an-

notated programs, respetively. We will also use the follow-

ing notations. Given two annotated atoms A

1

= A

1

hw

1

i

and A

2

= A

2

hw

2

i, the formula w

1

� w

2

is also written as

A

1

�A

2

. Moreover, given an annotated atom H and an an-

notated goal A

1

^ : : :^A

n

, the formula H�A

1

^ : : :^H�A

n

is also written as H�A

1

^ : : : ^ A

n

.

De�nition 3. An annotation over W is a funtion � :

Clauses ! AClauses suh that, for every lause  of the

form H  A

1

^ : : : ^ A

n

, the annotated lause �() is

of the form HhXi   ^ A

1

hX

1

i ^ : : : ^ A

n

hX

n

i, where

X;X

1

; : : : ; X

n

are annotation variables. An annotation � :

Clauses ! AClauses an be extended to a funtion, also

denoted by �, from Programs to APrograms , by stipulat-

ing that, for every program f

1

; : : : ; 

n

g, �(f

1

; : : : ; 

n

g) is

f�(

1

); : : : ; �(

n

)g. Let P be a program in Programs .

(i) An annotation � is said to be well-founded (for P ) i� for

every annotated lause �(): H  ^A

1

^ : : :^A

n

of �(P ),

we have that:

W j= 8 (! (H�A

1

^ : : : ^ A

n

)).

(ii) An annotation � is said to be enhaning (for P ) i� for

every A 2 M(P ) there exists a ground annotation term w

suh that Ahwi 2M(�(P )).

Now we give some examples of annotations.

Example 4. Let N be the well-founded ordering (Nat ; >),

where Nat is the set of the natural numbers and > is the

usual `greater than' ordering on Nat .

(i) The annotation �

1

over N is de�ned as follows: for every

lause : H  A

1

^ : : :^A

n

, the annotated lause �

1

() is

HhXi  X>X

1

^ : : :^X>X

n

^A

1

hX

1

i ^ : : :^A

n

hX

n

i

(ii) The annotation �

2

over N is de�ned as follows: for every

lause : H  A

1

^ : : :^A

n

, the annotated lause �

2

() is

HhXi  X>X

1

+ : : : +X

n

^A

1

hX

1

i ^ : : : ^A

n

hX

n

i

where + is interpreted in N as the addition of natural num-

bers. The annotations �

1

and �

2

are enhaning and well-

founded. In partiular, we have that:

N j= 8X 8X

1

: : : 8X

n

(X>X

1

+ : : :+X

n

! X>X

1

^ : : : ^X>X

n

). �

In the following example we present a well-founded annota-

tion whih is not enhaning.

Example 5. Let us onsider the following program P :

p q

q  

Let us also onsider the annotation �

3

overN that assoiates

with P the following annotated program:

ph1i  qh0i

qh1i  

We have that M(P ) = fp; qg, while M(�

3

(P )) = fqh1ig

and, thus, �

3

is not enhaning. �

In order to erase annotations from annotated lauses we

use the projetion funtion � : AClauses ! Clauses suh

that, for every lause  and annotation �, we have �(�()) =

. The funtion � : AClauses ! Clauses an be extended to

a funtion, also denoted by �, from APrograms to Programs ,

by stipulating that, for every program P and annotation �,

we have �(�(P )) = P .

We have the following straightforward property of the pro-

jetion funtion.

Proposition 1. For every annotated program P and

ground annotated atom Ahwi, if Ahwi 2 M(P ) then

A 2M(�(P )).

Similarly to programs whih are not annotated, we have the

following de�nition of the ) relation.



De�nition 4. Let I be a W-interpretation and let �

1

;�

2

be sets of annotated lauses. We write I j= �

1

) �

2

i�

for every ground instane H  

2

^ G

2

of an annotated

lause in �

2

suh that I j= 

2

^ G

2

there exists a ground

instane H  

1

^ G

1

of an annotated lause in �

1

suh

that I j= 

1

^ G

1

. We write I j= �

1

( �

2

i� I j= �

2

) �

1

and we also write I j= �

1

, �

2

i� I j= �

1

) �

2

and

I j= �

1

( �

2

.

The notion of lause replaement for annotated programs

an be introdued by a de�nition similar to De�nition 2

of Setion 2, where one onsiders `annotated programs', in-

stead of `programs'. Analogously, one an also introdue the

notions of: (i) impliation-based, (ii) reverse-impliation-

based, (iii) equivalene-based, (iv) partially orret, (v) in-

reasing, and (vi) totally orret lause replaement for an-

notated programs. We have that the properties stated by

Theorems 1, 2, 3, and Corollary 1 of Setion 2, hold for

annotated programs as well.

Theorem 5. Let � be a well-founded annotation over W.

Then, for every program P , the annotated program �(P ) is

univoal, that is, lfp(T

�(P )

) = gfp(T

�(P )

), and M(�(P )) is

the unique �xpoint of T

�(P )

.

Proof. Let W be the well-founded ordering (W;�). As-

sume that I and J are �xpoints of T

�(P )

. By well-founded

indution on � we prove that: for every ground annotated

atom A, A 2 I i� A 2 J . The indutive hypothesis is:

for every ground annotated atom B, if W j= A � B then

A 2 I i� A 2 J . Assume that A 2 I. Sine I = T

�(P )

(I),

we have that there exists a lause, say , of the form A  

 ^ A

1

^ : : : ^ A

n

in �(P ) suh that W j=  and, for i =

1; : : : ; n, A

i

2 I. Sine � is well-founded, we have that, for

i = 1; : : : ; n, W j= A � A

i

. Therefore, by the indutive

hypothesis, for i = 1; : : : ; n, we have that A

i

2 J . Sine J

is a �xpoint of T

�(P )

and W j= , we get that A 2 J . Thus,

we have proved that if A 2 I then A 2 J . Similarly, we an

prove that if A 2 J then A 2 I.

We are now able to show the main result of this paper.

Theorem 6. (Total Corretness via Well-Founded Anno-

tations) Let P;Q be programs whih are not annotated. Let

P 7! Q be a lause replaement, and �; � be annotations

suh that:

(i) P 7! Q is impliation-based, that is, M(P ) j= P ) Q,

(ii) �(P ) 7! �(Q) is a reverse-impliation-based lause re-

plaement, that is, M(�(P )) j= �(P )( �(Q),

(iii) � is enhaning, and

(iv) � is well-founded.

Then P 7! Q is totally orret, that is, M(P ) =M(Q).

Proof. By Hypothesis (i) and Theorem 2, P 7! Q is

partially orret, that is, M(P ) �M(Q). Let us now prove

that P 7! Q is inreasing, that is, M(P ) � M(Q). Let

A be a ground atom in M(P ). Sine � is enhaning (see

Hypothesis (iii)), there exists a ground annotation term w

suh that Ahwi belongs toM(�(P )). Sine � is well-founded

(see Hypothesis (iv)), by Theorem 5 �(Q) is univoal and,

sine �(P ) 7! �(Q) is a reverse-impliation-based lause re-

plaement (see Hypothesis (ii)), by Theorem 3, M(�(P )) �

M(�(Q)). Thus, Ahwi belongs to M(�(Q)) and, by Propo-

sition 1, A belongs to M(Q).

-

-

?

6

P Q

��

�(Q)�(P )

Figure 1: Program Transformation via Well-

Founded Annotations.

Notie that the annotation � is required to be enhaning,

but not well-founded, while � is required to be well-founded,

but not enhaning. In pratie, however, it is often useful to

start from an enhaning, well-founded annotation � and ap-

ply lause replaements that preserve the well-foundedness

of annotations, so that the annotation � is well-founded by

onstrution.

Thus, Theorem 6 supports a methodology for program

transformation whih onsists of the following steps (see also

Figure 1). Given an initial program P , in order to onstrut

a totally orret transformation starting from P :

(1) �rst, we hoose an annotation � whih is enhaning and

well-founded;

(2) then, we apply to �(P ) a lause replaement

�(P ) 7!�(Q) suh that:

(i) M(P ) j= P ) Q,

(ii) M(�(P )) j= �(P )( �(Q), and

(iii) � is well-founded; and

(3) �nally, we apply the projetion � and we erase the an-

notations from �(Q).

Notie that neither P nor Q is required to be univoal (and

in partiular, they are not required to be terminating).

4. UNFOLD/FOLD TRANSFORMATION
RULES WITH ANNOTATIONS

Step 2 of the methodology presented at the end of the

previous setion, whereby we derive the annotated program

�(Q) from the annotated program �(P ), may be realized by

a sequene of appliations of transformation rules. These

rules, whih we will present below, transform annotated pro-

grams rather than programs, and are variants of the usual

unfolding, folding, and goal replaement rules for de�nite

logi programs. Given the program P and the annotation

�, by n appliations of these rules we onstrut a sequene

�

0

(P

0

); : : : ; �

n

(P

n

) of annotated programs suh that �

0

=�,

P

0

=P , �

n

= �, and P

n

=Q. We assume that �

0

is an en-

haning, well-founded annotation. Moreover, we will show

that the appliability onditions of the transformation rules

ensure that if �

0

is a well-founded annotation, then �

n

is a

well-founded annotation. The total orretness of the trans-

formation of the program P

0

into program P

n

follows from

Theorem 6 beause, for k = 0; : : : ; n � 1, we have that:

(i) M(P

0

) j= P

k

) P

k+1

and (ii) M(�

0

(P

0

)) j= �

k

(P

k

) (

�

k+1

(P

k+1

). Thus, by transitivity of ) and (, the se-

quene of appliations of the unfolding, folding, and goal

replaement rules an be viewed as a single lause replae-

ment �

0

(P

0

) 7! �

n

(P

n

) suh that: (i) M(P

0

) j= P

0

) P

n

,



and (ii) M(�

0

(P

0

)) j= �

0

(P

0

)( �

n

(P

n

).

The rules presented in this setion are parametri w.r.t. the

annotation �

0

hosen for the initial program P

0

.

An annotated transformation sequene P

0

; : : : ; P

n

is a se-

quene of annotated programs onstruted as follows. Sup-

pose that we have onstruted the transformation sequene

P

0

; : : : ; P

k

. Then, for 0 � k � n�1, program P

k+1

is de-

rived from program P

k

by the appliation of one of the

three transformation rules R1, R2, and R3 de�ned below.

Notie that among the transformation rules here we do not

inlude the de�nition introdution rule [18℄. This rule is use-

ful in pratie, but its absene is not a limitation when we

study the orretness of program transformations. Indeed,

we may assume that the de�nitions of the prediates whih

are needed during a transformation sequene, are introdued

at the beginning of its onstrution and, thus, they an be

onsidered to be already present in the initial program P

0

.

This simplifying assumption is also made in [8, 16, 19℄.

R1. Unfolding. Let  : H  ^G

L

^A^G

R

be a lause

in the annotated program P

k

and let P

0

0

be a variant of P

0

without ommon variables with P

k

. Let



1

: H

1

 

1

^G

1

: : :



m

: H

m

 

m

^G

m

with m � 0, be all lauses of program P

0

0

suh that, for

i = 1; : : : ;m, A is uni�able with H

i

via a most general

uni�er #

i

. By unfolding lause  w.r.t. the atom A we derive

the lauses

�

1

: (H   ^ 

1

^G

L

^G

1

^G

R

)#

1

: : :

�

m

: (H   ^ 

m

^G

L

^G

m

^G

R

)#

m

and from program P

k

we derive the program P

k+1

= (P

k

�

fg) [ f�

1

; : : : ; �

m

g.

Basially, the unfolding rule for annotated programs is

like the usual unfolding rule for de�nite logi programs. No-

tie, however, that we annot unfold an annotated program

w.r.t. an annotation formula, but only w.r.t. an annotated

atom. In the following rules the set of variables ourring in

an expression e is denoted by vars(e).

R2. Folding. Let P

0

0

be a variant of P

0

without ommon

variables with P

k

. Let

Æ

1

: K  d

1

^G

1

: : :

Æ

m

: K  d

m

^G

m

with m�1, be lauses in P

0

0

and, for a substitution #, let



1

: H  

1

^G

L

^G

1

# ^ G

R

: : :



m

: H  

m

^G

L

^G

m

# ^G

R

be lauses in P

k

. Suppose that the following onditions

hold:

1. no lause in P

0

0

� fÆ

1

; : : : ; Æ

m

g has its head uni�able

with K#;

2. there exists an annotation formula  suh that, for i =

1; : : : ;m, we have: W j= 8X ((9Y 

i

)! 9Z ( ^ d

i

#)),

whereX = vars(fH;G

L

; G

i

#;G

R

g), Y = vars(

i

)�X,

and Z = vars( ^ d

i

#)�X;

3. for i = 1; : : : ;m and for every variable U in the set

vars(d

i

^ G

i

) � vars(K): (i) U# is a variable not o-

urring in fH; ;G

L

; G

R

g, and (ii) U# does not our

in the term V #, for any variable V ourring in d

i

^G

i

and di�erent from U ; and

4. W j= 8 (! (H�G

L

^K# ^G

R

)).

By folding lauses 

1

; : : : ; 

m

using lauses Æ

1

; : : : ; Æ

m

we

derive the lause �: H  ^G

L

^K#^G

R

and from program

P

k

we derive the program P

k+1

= (P

k

�f

1

; : : : ; 

m

g)[f�g.

The di�erene between the folding rule for annotated pro-

grams and the usual folding rule for de�nite logi programs

onsists in the extra Conditions 2 and 4. However, as already

mentioned, the usual folding rule ensures partial orretness

only. The following example illustrates an appliation of the

folding rule R2.

Example 6. Let us onsider the following annotated pro-

gram P

0

, where we use the well-founded annotation �

1

over

N of Example 4:

1. p(a)hXi  

2. p(A)hXi  X>X

1

^X>X

2

^ t(A;B)hX

1

i^p(B)hX

2

i

3. q(b)hXi  

4. q(A)hXi  X>X

1

^ r(A)hX

1

i

5. r(A)hXi  X>X

1

^X>X

2

^ t(A;B)hX

1

i^q(B)hX

2

i

6. s(A)hXi  X>X

1

^ p(A)hX

1

i

7. s(A)hXi  X>X

1

^ q(A)hX

1

i

By unfolding lause 6 w.r.t. p(A)hX

1

i and by renaming vari-

ables, we get:

8. s(a)hY i  Y >Y

1

9. s(C)hY i  Y >Y

1

^ Y

1

>Y

2

^ Y

1

>Y

3

^ t(C;D)hY

2

i

^ p(D)hY

3

i

By two appliations of the unfolding rule and by renaming

variables, from lause 7 we derive:

10. s(b)hY i  Y >Y

1

11. s(C)hY i  Y >Z ^ Z>Y

1

^ Y

1

>Y

2

^ Y

1

>Y

3

^ t(C;D)hY

2

i ^ q(D)hY

3

i

Now, Conditions 1{4 of the folding rule are veri�ed by tak-

ing: (i) # to be the substitution fX=Y

1

; X

1

=Y

3

; A=Dg, and

(ii)  to be the annotation formula Y >Z ^ Z>Y

2

^ Y >Y

1

.

By folding lauses 9 and 11 using lauses 6 and 7 we derive

the lause:

12. s(C)hY i  Y >Z ^ Z>Y

2

^ Y >Y

1

^ t(C;D)hY

2

i

^ s(D)hY

1

i. �

In order to introdue the goal replaement rule, we need

the following de�nition of replaement law.

De�nition 5. (Replaement Law) Let P be a program, �

be a program annotation, G

1

and G

2

be annotated onjun-

tions, X � vars(fG

1

; G

2

g) be a set of variables, and d be

an annotation formula. We say that the replaement law



1

^G

1

)

X



2

^G

2

holds in �(P ) i� the following onditions

hold:

(i) M(�(P )) j= 8X (9Y (

1

^G

1

)! 9Z (

2

^G

2

)) and

(ii) M(P ) j= 8X (9Y G

1

 9Z G

2

)

where (1) Y = vars(

1

^G

1

)�X, (2) Z = vars(

2

^G

2

)�X,

and (3) G

1

and G

2

are the onjuntions obtained by erasing

the annotation terms from G

1

and G

2

, respetively.



R3. Goal Replaement. Let  : H  ^

1

^G

L

^G

1

^G

R

be a lause of the annotated program P

k

and let G

2

be

an annotated onjuntion suh that the following replae-

ment law 

1

^G

1

)

X



2

^G

2

holds in P

0

, where X =

vars(fH; ; G

L

; G

R

g) \ vars(f

1

; G

1

; 

2

; G

2

g). Suppose also

that:

W j= 8 (( ^ 

2

)! (H� G

L

^G

2

^G

R

)) (y)

By goal replaement from lause  we derive the lause � :

H  ^ 

2

^G

L

^G

2

^G

R

and from program P

k

we derive

the program P

k+1

= (P

k

� fg) [ f�g.

The goal replaement rule R3 for annotated programs dif-

fers from the usual (partially orret) goal replaement rule

for de�nite logi programs beause of Condition (y). We will

see an example of appliation of the goal replaement rule

in the next setion.

By using the results of Setion 3 we an prove the total

orretness of the transformation rules.

Theorem 7. (Total Corretness of the Transformation

Rules) Let �

0

(P

0

); : : : ; �

n

(P

n

) be an annotated transforma-

tion sequene suh that �

0

is an enhaning, well-founded

annotation. Then M(P

0

) =M(P

n

).

Proof. (Sketh) For k = 0; : : : ; n�1, let �

k+1

(P

k+1

) be

the annotated program derived from �

k

(P

k

) by the appli-

ation of a transformation rule in R1{R3. Then, for some

sets of annotated lauses �

k

(�

k

) and �

k+1

(�

k+1

), we have

that �

k+1

(P

k+1

) = (�

k

(P

k

) � �

k

(�

k

)) [ �

k+1

(�

k+1

). We

have the following properties: (P1) M(P

0

) j= �

k

) �

k+1

,

(P2) M(�

0

(P

0

)) j= �

k

(�

k

)( �

k+1

(�

k+1

), and (P3) if �

k

is

well-founded then �

k+1

is well-founded. The proofs of prop-

erties P1{P3 are straightforward appliations of the de�ni-

tions, and they are left to the reader. Notie that in the

proof of P3 we use Condition 4 of the folding rule and Con-

dition (y) of the goal replaement rule.

Now let us onsider the lause replaement P

0

7! P

n

. The

following properties hold.

(i) P

0

7! P

n

is an impliation-based lause replaement.

Indeed, by Property P1, Lemma 1, and transitivity of) we

have: M(P

0

) j= P

0

) P

n

.

(ii) �

0

(P

0

) 7! �

n

(P

n

) is a reverse-impliation-based lause

replaement. Indeed, by Property P2, Lemma 1, and tran-

sitivity of ( we have: M(�

0

(P

0

)) j= �

0

(P

0

)( �

n

(P

n

).

(iii) �

0

is enhaning (by hypothesis).

(iv) �

n

is well-founded (by the hypothesis that �

0

is well-

founded and Property P3).

Thus, by Theorem 6 P

0

7! P

n

is totally orret, that is,

M(P

0

) =M(P

n

).

5. AN EXTENDED EXAMPLE
In this setion we revisit an example of program trans-

formation taken from [16℄. In that paper the proof of total

orretness of the transformation rules is rather intriate.

On the ontrary we show that the total orretness of this

transformation an be established by our well-founded an-

notation method in a very easy way. Let us onsider the

following program P :

1. thm(X) gen(X) ^ test(X)

2. gen([ ℄) 

3. gen([0jX℄) gen(X)

4. test(X) anon(X)

5. test(X) trans(X;Y ) ^ test(Y )

6. anon([ ℄) 

7. anon([1jX℄) anon(X)

8. trans([0jX℄; [1jX℄) 

9. trans([1jX℄; [1jY ℄) trans(X;Y )

where we have that thm(X) holds i� X is a list of 0's that

an be transformed into a list of 1's by repeated appliations

of trans(X;Y ). Given the list X, the prediate trans(X;Y )

generates the list Y by replaing the leftmost 0 in X by 1.

The formula 8X (thm(X) $ gen(X)) is true in the least

Herbrand model of program P . As indiated in [16℄, the

truth of this formula an be established by onstruting a

totally orret transformation of P into a program Q where

the prediates thm and gen are de�ned by two sets of lauses

whih are idential up to a prediate renaming. Let us see

how we onstrut this transformation by applying our rules

of Setion 4.

Let N be the well-founded ordering (Nat ; >), where Nat

is the set of the natural numbers and > is the usual `greater

than' ordering on Nat . Let us onsider the well-founded

annotation � that assoiates with every lause H  A

1

^

: : : ^A

k

the annotated lause:

HhNi  N>N

1

+: : :+N

k

^A

1

hN

1

i ^ : : : ^A

k

hN

k

i

where the annotation variables N;N

1

; : : : ; N

k

range over

natural numbers. Thus, the annotated program �(P ) is the

following one:

1a. thm(X)hNi  N>N

1

+N

2

^ gen(X)hN

1

i

^ test(X)hN

2

i

2a. gen([ ℄)hNi  

3a. gen([0jX℄)hNi  N>N

1

^ gen(X)hN

1

i

4a. test(X)hNi  N>N

1

^ anon(X)hN

1

i

5a. test(X)hNi  N>N

1

+N

2

^ trans(X;Y )hN

1

i

^ test(Y )hN

2

i

6a. anon([ ℄)hNi  

7a. anon([1jX℄)hNi  N>N

1

^ anon(X)hN

1

i

8a. trans([0jX℄; [1jX℄)hNi  

9a. trans([1jX℄; [1jY ℄)hNi  N>N

1

^ trans(X;Y )hN

1

i

Now, let us onstrut a totally orret transformation se-

quene by using our rules of Setion 4. By applying several

times the unfolding rule, from lause 1a we derive:

10a. thm([ ℄)hNi  N�3

11a. thm([0jX℄)hNi  N>N

1

+N

2

+4 ^ gen(X)hN

1

i

^ anon(X)hN

2

i

12a. thm([0jX℄)hNi  N>N

1

+N

2

+N

3

+4

^ gen(X)hN

1

i ^ trans(X;Y )hN

2

i

^ test([1jY ℄)hN

3

i

The reader may verify that the replaement law

test([1jY ℄)hN

3

i )

fY;N3g

(N

3

�N

4

^ test(Y )hN

4

i)

holds in �(P ). Indeed, we have that:

(i) M(�(P )) j= 8Y 8N

3

(test([1jY ℄)hN

3

i

! 9N

4

(N

3

�N

4

^ test(Y )hN

4

i)), and

(ii) M(P ) j= 8Y (test([1jY ℄) test(Y )).

Moreover,

N j= 8 (N>N

1

+N

2

+N

3

+4 ^N

3

�N

4

! N>N

1

^N>N

2

^N>N

4

).

Thus, we may apply the goal replaement rule and we re-

plae lause 12a by the following lause:



13a. thm([0jX℄)hNi  N>N

1

+N

2

+N

3

+4 ^N

3

�N

4

^ gen(X)hN

1

i ^ trans(X;Y )hN

2

i

^ test(Y )hN

4

i

By folding lauses 11a and 13a using lauses 4a and 5a we

get:

14a. thm([0jX℄)hNi  N>N

1

+N

5

+3 ^ gen(X)hN

1

i

^ test(X)hN

5

i

Finally, by folding lause 14a using lause 1a, we derive:

15a. thm([0jX℄)hNi  N>N

6

+3 ^ thm(X)hN

6

i

The �nal annotated program is (�(P )� f1ag) [ f10a; 15ag.

By applying the projetion � we erase the annotations from

lauses 10a and 15a and we get:

10. thm([ ℄) 

15. thm([0jX℄) thm(X)

Thus, the �nal program is Q = (P � f1g) [ f10; 15g. By

Theorem 7 of Setion 4 the transformation of P into Q is

totally orret. In Q the prediates thm and gen are de�ned

by sets of lauses whih are equal up to prediate renam-

ing (namely, lauses 10, 15 and lauses 2, 3, respetively)

and, therefore, as mentioned above, we may onlude that

8X (thm(X)$ gen(X)) is true in the least Herbrand model

of P .

6. RELATED WORK AND CONCLUSIONS
We have studied the orretness of a general transforma-

tion rule, alled lause replaement, whih is an adaptation

to the ase of de�nite logi programs of the rule replaement

transformation for indutive de�nitions introdued in [15℄.

Clause replaement generalizes the familiar unfolding, fold-

ing, and goal replaement transformations of de�nite logi

programs. The lause replaement rule generalizes also the

simultaneous replaement operation (when restrited to def-

inite programs), whih simultaneously replaes n(> 0) on-

juntions of literals eah of whih ours in the body of a

lause [4℄. Moreover, lause replaement stritly general-

izes simultaneous replaement, beause the unfolding rule

is not an instane of simultaneous replaement. We have

shown that, in fat, lause replaement is the most general

transformation rule, in the sense that every orret trans-

formation an be expressed as an equivalene-based lause

replaement (see Theorem 1 of Setion 2).

The main ontribution of this paper is a method for prov-

ing the total orretness of the lause replaement rule. Our

method is based on program annotations, whih are fun-

tions that add suitable arguments to the prediates our-

ring in a given program. In partiular, we introdue well-

founded annotations, whih ensure that the annotated pro-

gram is terminating and, thus, it has a unique �xpoint [2℄.

Annotated logi programs are a generalization of the instru-

mented SOS rules introdued in [17℄, beause SOS rules [14℄

an be onsidered as partiular logi programs.

Our proof method uses well-founded annotations and the

unique �xpoint method [6, 15℄ to prove the total orretness

of lause replaement. However, our proof method is more

general than the unique �xpoint method. Indeed, in order to

prove the total orretness of the transformation of program

P into program Q, in pratie the unique �xpoint method

requires the proof of the termination of Q, while aording

to Theorem 6, we need only to onstrut a well-founded

annotation � for Q so that �(Q) is terminating, but Q itself

need not be terminating.

Our proof method is also more general than the improve-

ment indution method [17℄ in the sense that our method

allows us to prove the total orretness of lause replae-

ments whih are not improvements, as we now see in the

partiular ase where lause replaement is realized by the

goal replaement rule R3 (see Setion 4). By adapting the

de�nitions of [17℄ to our ontext, here we say that, given a

program P , an annotated atom A

1

hX

1

i is improved by an

annotated atom A

2

hX

2

i i� for every ground instane a

1

hw

1

i

of A

1

hX

1

i belonging toM(P ), there exists a ground instane

a

2

hw

2

i of A

2

hX

2

i in M(P ) suh that w

1

�w

2

. The reader

may verify that the goal replaement rule R3 allows us to re-

plae an annotated atom A

1

hX

1

i by a new annotated atom

A

2

hX

2

i even if A

1

hX

1

i is not improved by A

2

hX

2

i.

We would like to stress that our unfolding, folding, and

goal replaement rules presented in Setion 4 are parametri

w.r.t. the hoie of suitable program annotations. Indeed,

these program annotations are spei�ed only by the prop-

erties they should ful�ll. By suitable hoies of the annota-

tions we obtain transformation rules whih are equivalent to

the di�erent variants of the unfolding, folding, and goal re-

plaement rules proposed in the literature [8, 10, 16, 18, 19℄.

For instane, the reader may verify that the rules presented

in [10℄ are a partiular ase of our rules where we hoose the

annotation �

2

of Example 4. Here we do not show in detail

how other existing transformation rules an be viewed as

instanes of our rules of Setion 4.

It should also be notied that the use of our general proof

method based on well-founded annotations (see Theorem 6)

greatly simpli�es the proofs of total orretness of the trans-

formation rules w.r.t. those presented in [8, 10, 16, 18, 19℄.

Finally, we would like to notie that the notion of total

orretness onsidered in this paper is di�erent from the one

for imperative programs, where a program is said to be to-

tally orret w.r.t. a given spei�ation i� its input-output

relation satis�es the spei�ation and, moreover, the pro-

gram terminates (see, for instane, [12℄). In fat, as already

mentioned, a lause replaement P 7! Q an be totally or-

ret even if Q is not terminating. However, in order to prove

that P 7! Q is totally orret we have to transform an anno-

tated program �(P ) into a terminating annotated program

�(Q). In this sense we may say that program �(Q) is to-

tally orret w.r.t. the spei�ation given by program �(P ).

Similarly to the proofs of total orretness for imperative

programs based on the axiomati approah [12℄, also the

derivation of the terminating program �(Q) is performed by

applying �rst order logial inferenes and proving suitable

well-founded ordering relations.
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