
Under onsideration for publiation in Theory and Pratie of Logi Programming 1Transformations of Logi Programswith Goals as ArgumentsALBERTO PETTOROSSIDipartimento di Informatia, Sistemi e Produzione,Universit�a di Roma Tor Vergata, Via del Politenio 1, I-00133 Roma, Italy(e-mail: alberto.pettorossi�uniroma2.it)MAURIZIO PROIETTIIASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy(e-mail: proietti�iasi.rm.nr.it)AbstratWe onsider a simple extension of logi programming where variables may range over goalsand goals may be arguments of prediates. In this language we an write logi programswhih use goals as data. We give pratial evidene that, by exploiting this apabilitywhen transforming programs, we an improve program eÆieny.We propose a set of program transformation rules whih extend the familiar unfoldingand folding rules and allow us to manipulate lauses with goals whih our as argu-ments of prediates. In order to prove the orretness of these transformation rules, weformally de�ne the operational semantis of our extended logi programming language.This semantis is a simple variant of LD-resolution. When suitable onditions are satis�edthis semantis agrees with LD-resolution and, thus, the programs written in our extendedlanguage an be run by ordinary Prolog systems.Our transformation rules are shown to preserve the operational semantis and termi-nation.KEYWORDS: program transformation, unfold/fold transformation rules, higher orderlogi programming, ontinuations 1 IntrodutionProgram transformation is a very powerful and widely reognized methodology forderiving programs from spei�ations. The rules+ strategies approah to programtransformation was advoated in the 1970s by Burstall and Darlington (1977) fordeveloping �rst order funtional programs. Sine then Burstall and Darlington'sapproah has been followed in a variety of language paradigms, inluding logiallanguages (Tamaki and Sato 1984) and higher order funtional languages (Sands1996). The distintive feature of the rules + strategies approah is that it allowsus to separate the onern of proving the orretness of programs with respet tospei�ations from the onern of ahieving omputational eÆieny. Indeed, theorretness of the derived programs is ensured by the use of semantis preservingtransformation rules, whereas the omputational eÆieny is ahieved through the

2 A. Pettorossi and M. Proiettiuse of suitable strategies whih guide the appliation of the rules. The preservationof the semantis is proved one and for all, for some given sets of transformationrules, and if we restrit ourselves to suitable lasses of programs, we an also guar-antee the e�etiveness of the strategies for improving eÆieny.In this paper we will argue through some examples, that a simple extension oflogi programming may give extra power to the program transformation method-ology based on rules and strategies. This extension onsists in allowing the use ofvariables whih range over goals, alled goal variables, and the use of goals whihare arguments of prediates, alled goal arguments.In the pratie of logi programming the idea of having goal variables and goalarguments is not novel. The reader may look, for instane, at (Sterling and Shapiro1986; Warren 1982). Goal variables and goal arguments an be used for express-ing the meaning of logial onnetives and for writing programs in a ontinuationpassing style (Tarau and Boyer 1990; Wand 1980) as the following example shows.Example 1The following program P1:F _G FF _G Gexpresses the meaning of the or onnetive. The following program P2:p([℄; Cont) Contp([X jXs ℄; Cont) p(Xs ; q(X ; Cont))q(0; Cont) Contuses the goal variable Cont whih denotes a ontinuation. The goal p(l ; true) su-eeds in P2 i� the list l onsists of 0's only. �Programs with goal variables and goal arguments, suh as P1 and P2 in the aboveexample, are not allowed by the usual �rst order syntax of Horn lauses, wherevariables annot our as atoms and prediate symbols are distint from funtionsymbols. Nevertheless, these programs an be run by ordinary Prolog systems whoseoperational semantis is based on LD-resolution, that is, SLD-resolution with theleftmost seletion rule. For the onepts of LD-resolution, LD-derivation, and LD-tree the reader may refer to (Apt 1997)The extension of logi programming we onsider in this paper, allows us to writeprograms whih use goals as data. This extension turns out to be useful for per-forming program manipulations whih are required during program transformationand are otherwise impossible. For instane, we will see that by using goal variablesand goal arguments, we are able to perform goal rearrangements (also alled goalreorderings in (Bossi et al. 1996)) whih are often required for folding, withouta�eting program termination and without inreasing nondeterminism.Goal rearrangement is a long standing issue in logi program transformation.Indeed, although the unfold/fold transformation rules by Tamaki and Sato (1984)preserve the least Herbrand model, they may require goal rearrangements and thus,they may not preserve the operational semantis based on LD-resolution. Moreover,goal rearrangements may inrease nondeterminism by requiring that prediate alls

Transformations of Logi Programs with Goals as Arguments 3have to be evaluated before their arguments are suÆiently instantiated, and inmany Prolog systems, insuÆiently instantiated alls of built-in prediates mayause errors at run-time. In (Bossi and Coo 1994) it has been proved that by rul-ing out goal rearrangements, if some suitable onditions hold, then the unfolding,folding, and goal replaement transformation rules preserve the operational seman-tis of logi programs based on LD-resolution and, in partiular, these rules preserveuniversal termination, that is, the �niteness of all LD-derivations (Apt 1997; Vasakand Potter 1986). But, unfortunately, if we forbid goal rearrangements, many usefulprogram transformations are no longer possible.In this paper we will show through some examples that in our simple extensionof logi programming we an restrit goal rearrangements to leftward moves of goalequalities. We will also show that these moves preserve universal termination anddo not inrease nondeterminism, and thus, the deterioration of performane of thederived program is avoided.The following simple example illustrates the essential idea of our tehnique whihis based on the use of goal equalities. More omplex examples will be presented inSetions 2 and 7.Example 2Suppose that during program transformation we are required to fold a lause of theform:1. p(X) a(X); b(X); (X)by using a lause of the form:2. q(X) a(X); (X)We an avoid a leftward move of the atom (X) by introduing, instead, an equalitybetween a goal variable and a goal, thereby transforming lause 1 into the followinglause:3. p(X) a(X); G=(X); b(X); GNow we introdue the following prediate q 0 whih takes the goal variable G as anargument:4. q 0(X ;G) a(X); G=(X)Then we fold lause 3 using lause 4, thereby getting the lause:5. p(X) q 0(X ;G); b(X); GAt this point we may ontinue the program transformation proess by transforminglause 4, whih de�nes the prediate q 0, instead of lause 2, whih de�nes theprediate q . For instane, we may want to unfold lause 4 w.r.t. the goal (X)ourring as an argument of the equality prediate. �As this example indiates, during program transformation we need to have at ourdisposal some transformation rules whih an be used when goals our as argu-ments. Indeed, in this paper:(i) we will introdue transformation rules for our logi language whih allows goalsas arguments,

4 A. Pettorossi and M. Proietti(ii) we will show through some examples that the use of these rules makes it pos-sible to improve eÆieny without performing goal rearrangements whih inreasenondeterminism, and(iii) we will prove that, under suitable onditions, our transformation rules are or-ret in the sense that they preserve the operational semantis of our logi languageand, in partiular, they preserve universal termination.In order to show our orretness result, we will �rst de�ne the operational seman-tis of our logi language with goal arguments and goal variables. This semantiswill be given in terms of ordinary LD-resolution, exept for the following two im-portant ases whih we now examine.The �rst ase ours when, during the onstrution of an LD-derivation, wegenerate a goal whih has an ourrene of an unbound goal variable in the leftmostposition. In this ase we say that the LD-derivation gets stuk. This treatment ofunbound goal variables is in aordane with that of most Prolog systems whihhalt with error when trying to evaluate a all onsisting of an unbound variable.The seond ase ours when we evaluate a goal equality of the form: g1=g2. Inthis ase we stipulate that g1= g2 sueeds i� g1 is a goal variable whih does notour in g2 and it gets stuk otherwise. (In partiular, for any goal g the evaluationof the equality g = g gets stuk.) This somewhat restrited rule for the evaluationof goal equalities is required for the orretness of our transformation rules, as thefollowing example shows.Example 3Let us onsider the program Q1:1. h p(q)2. p(G) G=q3. q swhere h; p; q ; and s are prediate symbols and G is a goal variable. If we unfoldthe goal argument q in lause 1 using lause 3, we get the lause:4. h p(s)and we have the new programQ2 made out of lauses 2, 3, and 4. By using ordinaryLD-resolution and uni�ation, the goal h sueeds in the original programQ1, whileit fails in the derived program Q2, beause s does not unify with q . �This example shows that the set of suesses is not preserved by unfolding w.r.t. agoal argument. Similar inorretness problems also arise with other transformationrules, suh as folding and goal replaement. These problems ome from the fatthat operationally equivalent goals (suh as q and s in the above example) are notsyntatially equal.In ontrast, if we onsider our restrited rule for the evaluation of goal equalities,the LD-derivation whih starts from the goal h and uses the programQ1, gets stukwhen the goal q=q is seleted. Also the LD-derivation whih starts from the goalh and uses the derived program Q2, gets stuk when the goal s = q is seleted.Thus, the unfolding w.r.t. the argument q has preserved the operational semantisbased on LD-resolution with our restrited rule for evaluating goal equalities.

Transformations of Logi Programs with Goals as Arguments 5In this paper we will onsider two forms of orretness for our program trans-formations: weak orretness and strong orretness. Suppose that we have trans-formed a program P1 into a program P2 by applying our transformation rules. Wesay that this transformation is weakly orret i�, for any ordinary goal, that is, agoal without ourrenes of goal variables and goal arguments, the following twoproperties hold: (i) if P1 universally terminates, then P2 universally terminates,and (ii) if both P1 and P2 universally terminate, then they ompute the same setof most general answer substitutions. The transformation from P1 to P2 is stronglyorret i� (i) it is weakly orret, and (ii) for any ordinary goal, if P2 universallyterminates, then P1 universally terminates.Thus, when a transformation is weakly orret, the transformed program maybe more de�ned than the original program in the sense that there may be somegoals whih have no semanti value in the original program (that is, either theirevaluation does not terminate or it gets stuk), whereas they have a semanti valuein the transformed program (that is, their evaluation terminates and it does notget stuk).This paper is organized as follows. In Setion 2 we present an introdutory ex-ample to motivate the language extension we will propose in this paper, and thetransformation rules for this extended language. In Setion 3 we give the de�nitionof the syntax of our extended logi language with goal variables and goal arguments.In Setion 4 we introdue the operational semantis of our extended language.In Setions 5 and 6 we present the transformation rules and the onditions underwhih these rules are either weakly orret or strongly orret. For this purpose itis ruial that we assume that: (i) the evaluation of any goal variable gets stuk ifthat variable is unbound, and (ii) the evaluation of goal equalities is done aordingto the restrited rule we mentioned above. We will also show that, if a goal doesnot get stuk in a program, and we transform this program by using our rules,then the given goal does not get stuk in the transformed program. In this ase,as it happens in the examples given in this paper, our operational semantis agreeswith LD-resolution, and we an exeute our transformed program by using ordinaryProlog systems.In Setion 7 we give some more examples of program transformation using ourextended logi language and our transformation rules. We also give pratial evi-dene that these transformations improve program eÆieny. In Setion 8 we makesome �nal remarks and we ompare our results with related work.2 A Motivating ExampleIn order to present an example whih motivates the introdution of goal variablesand goal arguments, we begin by realling a well-known program transformationstrategy, alled tupling strategy (Pettorossi and Proietti 1994). Given a programwhere some prediate alls require ommon subomputations (deteted by a suitableprogram analysis), the tupling strategy is realized by the following three steps.

6 A. Pettorossi and M. ProiettiThe Tupling Strategy(Step A) We introdue a new prediate de�ned by a lause, say T , whose body isthe onjuntion of the prediate alls with ommon subomputations.(Step B) We derive a program for the newly de�ned prediate whih avoids redun-dant ommon subomputations. This step an be divided into the following threesubsteps: (B.1) �rst, we unfold lause T , (B.2) then, we apply the goal replaementrule to avoid redundant goals, and (B.3) �nally, we fold using lause T .(Step C) By suitable folding steps using lause T , we express the prediates whihare ineÆiently omputed by the initial program, in terms of the prediate intro-dued at Step (A).A diÆulty enountered when applying the tupling strategy is that, in order to applythe folding rule as indiated at Steps (B) and (C), it is often neessary to rearrangethe atoms in the body of the lauses and, as already disussed in the Introdution,these rearrangements may a�et program termination or inrease nondeterminism.The following example shows that this diÆulty in the appliation of the tuplingstrategy an be overome by introduing goal variables and goal arguments.Example 4Let us onsider the following program Deepest:1. deepest(l(N);N) 2. deepest(t(L;R);X) depth(L;DL); depth(R;DR); DL � DR;deepest(L;X)3. deepest(t(L;R);X) depth(L;DL); depth(R;DR); DL � DR;deepest(R;X)4. depth(l(N); 1) 5. depth(t(L;R);D) depth(L;DL); depth(R;DR); max (DL;DR;M);plus(M ; 1;D)where deepest(T ;X) holds i� T is a binary tree and X is the label of oneof the deepest leaves of T . The two alls depth(L;DL) and deepest(L;X) inlause 2 may generate ommon redundant alls of the depth prediate. Indeed,both depth(t(L1;R1);N) and deepest(t(L1;R1);X) generate two alls of the formdepth(L1;DL) and depth(R1;DR). In aordane with the tupling strategy, wetransform the given program as follows.(Step A) We introdue the following new prediate:6. dd (T ;D ;X) depth(T ;D); deepest(T ;X)(Step B.1) We apply a few times the unfolding rule, and we derive:7. dd (l(N); 1;N) 8. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);depth(L;DL1); depth(R;DR1);DL1 � DR1; deepest(L;X)

Transformations of Logi Programs with Goals as Arguments 79. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);depth(L;DL1); depth(R;DR1);DL1 � DR1; deepest(R;X)(Step B.2) Sine depth is funtional with respet to its �rst argument, by applyingthe goal replaement rule we delete the atoms depth(L;DL1) and depth(R;DR1),in lauses 8 and 9, and we replae the ourrenes of DL1 and DR1 by DL and DR,respetively, thereby getting the following lauses 10 and 11:10. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR); max(DL;DR;M);plus(M ; 1;D); DL � DR; deepest(L;X)11. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR); max(DL;DR;M);plus(M ; 1;D); DL � DR; deepest(R;X)(Step B.3) In order to fold lause 10 using lause 6, we move deepest(L;X) imme-diately to the right of depth(L;DL). Similarly, in the body of lause 11 we movedeepest(R;X) immediately to the right of depth(R;DR). Then, by folding we derive:12. dd (t(L;R);D ;X) dd(L;DL;X); depth(R;DR); max (DL;DR;M);plus(M ; 1;D); DL � DR13. dd (t(L;R);D ;X) depth(L;DL); dd(R;DR;X); max (DL;DR;M);plus(M ; 1;D); DL � DR(Step C) Finally, we fold lauses 2 and 3 using lause 6, so that to evaluate theprediates depth and deepest we use the prediate dd , instead. Also for these foldingsteps we have to suitably rearrange the order of the atoms. By folding, we derivethe following program Deepest1:1. deepest(l(N);N) 14. deepest(t(L;R);D ;X) dd(L;DL;X); depth(R;DR); DL � DR15. deepest(t(L;R);D ;X) depth(L;DL); dd(R;DR;X); DL � DR7. dd (l(N); 1;N) 12. dd (t(L;R);D ;X) dd(L;DL;X); depth(R;DR); max (DL;DR;M);plus(M ; 1;D); DL � DR13. dd (t(L;R);D ;X) depth(L;DL); dd(R;DR;X); max (DL;DR;M);plus(M ; 1;D); DL � DRIn order to evaluate a goal of the form deepest(t ;X), where t is a ground tree andX is a variable, we may onstrut an LD-derivation using the program Deepest1whih does not generate redundant alls of depth . This LD-derivation performsonly one traversal of the tree t and has linear length with respet to the sizeof t . However, this LD-derivation is onstruted in a nondeterministi way, and ifthe orresponding LD-tree is traversed in a depth-�rst manner, like most Prologsystems do, the program exhibits an ineÆient generate-and-test behaviour. Thus,in pratie, the tupling strategy may diminish program eÆieny.The main reason of this derease of eÆieny is that, in order to fold lause 10,we had to move the atom deepest(L;X) to a position to the left of DL � DR, andthis move fores the evaluation of alls of deepest(L;X) even when DL � DR fails.(Notie that the move of deepest(R;X) to the left of DL � DR is harmless beause

8 A. Pettorossi and M. ProiettiDL � DR is evaluated after the failure of DL � DR and, thus, DL � DR neverfails.) �In the following example we will present an alternative program derivation whihstarts from the same initial program Deepest. In this alternative derivation we willuse our extended logi language whih will be formally de�ned in the followingSetion 3. As already mentioned in the Introdution, when writing programs in ourextended language, we may use: (i) the goal equality prediate =, (ii) goal variablesourring at top level in the body of a lause, and (iii) the disjuntion prediate_. This alternative program derivation avoids harmful goal rearrangements andprodues an eÆient program without redundant subomputations.Example 5Let us onsider the program Deepest listed at the beginning of Example 4 onsistingof lauses 1{5. By using disjuntion in the body of a lause, lauses 2 and 3 an berewritten as follows:16. deepest(t(L;R);X) depth(L;DL); depth(R;DR);((DL�DR; deepest(L;X)) _ (DL�DR; deepest(R;X)))After this initial transformation step the derived program, all it DeepestOr, onsistsof lauses 1, 4, 5, and 16.Now we onsider an extension of the tupling strategy whih makes use of thetransformation rules for logi programs with goal arguments and goal variables.These rules will be formally presented in Setion 5. We proeed as follows.(Step A) We introdue the following new prediate g whih takes a goal variable Gas an argument:17. g(T ;D ;X ;G) depth(T ;D); G=deepest(T ;X)Notie also that in lause 17 the goal deepest(T ;X) ours as an argument of theequality prediate.(Step B) We derive a set of lauses for the newly de�ned prediate g as follows.(Step B.1) We unfold lause 17 w.r.t. depth(T ;D) and we derive:18. g(l(N); 1;X ;G) G=deepest(l(N);X)19. g(t(L;R);D ;X ;G) depth(L;DL); depth(R;DR); max (DL;DR;M);plus(M ; 1;D); G=deepest(t(L;R);X)Now, by unfolding lauses 18 and 19 w.r.t. the atoms with the deepest prediate,we derive:20. g(l(N); 1;N ; true) 21. g(t(L;R);D ;X ;G) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);G=(depth(L;DL1); depth(R;DR1);((DL1�DR1; deepest(L;X)) _ (DL1�DR1; deepest(R;X))))(Step B.2) We perform two goal replaement steps based on the funtionality ofdepth , and from lause 21 we derive:

Transformations of Logi Programs with Goals as Arguments 922. g(t(L;R);D ;X ;G) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR; deepest(L;X)) _ (DL�DR; deepest(R;X)))(Step B.3) In order to fold lause 22 using lause 17, we �rst introdue goal equalitiesand we then perform suitable leftward moves of those goal equalities. We derive thefollowing lause:23. g(t(L;R);D ;X ;G) depth(L;DL); GL=deepest(L;X);depth(R;DR); GR=deepest(R;X);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR;GL) _ (DL�DR;GR))Notie that we an move the goal equality GL = deepest(L;X) to the left of thetest DL�DR without altering the operational semantis of our program. Indeed,this goal equality sueeds and binds the goal variable GL to the goal deepest(L;X)without evaluating it. The goal deepest(L;X) will be evaluated only when GL isalled. A similar remark holds for the goal equality GR= deepest(L;X). Now, byfolding twie lause 23 using lause 17, we get:24. g(t(L;R);D ;X ;G) g(L;DL;X ;GL); g(R;DR;X ;GR);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR;GL) _ (DL�DR;GR))(Step C) Now we express the prediate deepest in terms of the new prediate g bytransforming lause 16 as follows: (i) we �rst replae the two deepest atoms by thegoal variables GL and GR; (ii) we then introdue suitable goal equalities, (iii) wethen suitably move to the left the goal equalities, and (iv) we �nally fold usinglause 17. We derive the following lause:25. deepest(t(L;R);X) g(L;DL;X ;GL); g(R;DR;X ;GR);((DL�DR;GL) _ (DL�DR;GR))Our �nal program Deepest2 is as follows:1. deepest(l(N);N) 25. deepest(t(L;R);X) g(L;DL;X ;GL); g(R;DR;X ;GR);((DL�DR;GL) _ (DL�DR;GR))20. g(l(N); 1;N ; true) 24. g(t(L;R);D ;X ;G) g(L;DL;X ;GL); g(R;DR;X ;GR);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR;GL) _ (DL�DR;GR))Now, when we evaluate a goal of the form deepest(t ;X), where t is a ground treeand X is a variable, Deepest2 does not generate redundant alls and it performsonly one traversal of the tree t . Deepest2 is more eÆient than Deepest beause inthe worst ase Deepest2 performs O(n) LD-resolution steps to ompute an answerto deepest(t ;X), where n is the number of nodes of t , while the initial programDeepest takes O(n2) LD-resolution steps. The program Deepest2 an be run by anordinary Prolog system and omputer experiments on�rm substantial eÆienyimprovements with respet to the initial program Deepest (see Setion 7.6).

10 A. Pettorossi and M. ProiettiEÆieny improvements, although smaller, are obtained also when omparingthe �nal program Deepest2 with respet to the intermediate program DeepestOrwhih has been obtained from the initial program Deepest by replaing lauses 2and 3 by lause 16, thereby avoiding the repetition of the ommon goals in lauses 2and 3. Indeed, although more eÆient than Deepest in the worst ase, the programDeepestOr still takes a quadrati number of LD-resolution steps to ompute ananswer to deepest(t ;X). �In Setion 7 we will present more examples of program derivation and we will alsoprovide some experimental results.3 The Extended Logi Language with Goals as ArgumentsLet us now formally de�ne our extended logi language. Suppose that the followingpairwise disjoint sets are given: (i) individual variables: X ;X1;X2; : : : ; (ii) goal vari-ables: G ;G1;G2; : : : ; (iii) funtion symbols (with arity): f ; f1; f2; : : : ; (iv) primitiveprediate symbols: true, false , =t (denoting equality between terms), =g (denot-ing equality between goals), and (v) prediate symbols (with arity): p; p1; p2; : : :Individual and goal variables are olletively alled variables, and they are rangedover by V ;V1;V2; : : : Oasionally, we will feel free to depart from these namingonventions, if no onfusion arises.Terms : t ; t1; t2; : : :, goals : g ; g1; g2; : : :, and arguments : u; u1; u2; : : :, have the follow-ing syntax:t ::= X j f (t1; : : : ; tn)g ::= G j true j false j t1=t t2 j g1=g g2 j p(u1; : : : ; um) j g1 ^ g2 j g1 _ g2u ::= t j gThe binary operators ^ (onjuntion) and _ (disjuntion) are assumed to be as-soiative with neutral elements true and false, respetively. Thus, a goal g is thesame as true ^ g and g ^ true. Similarly, g is the same as false _ g and g _ false .Goals of the form p(u1; : : : ; um) are also alled atoms. In the sequel, for reasons ofsimpliity, we will write =, instead of =t or =g , and we leave it to the reader todistinguish between the two equalities aording to the ontext of use. Notie that,aording to our operational semantis (see Setion 4), _ is ommutative, ^ is notommutative, =t is symmetri, and =g is not symmetri.Clauses ; 1; 2; : : : have the following syntax: ::= p(V1; : : : ;Vm) gwhere p is a non-primitive prediate symbol and V1; : : : ;Vm are distint variables.The atom p(V1; : : : ;Vm) is alled the head of the lause and the goal g is alled thebody of the lause. A lause of the form: p(V1; : : : ;Vm) true will also be writtenas p(V1; : : : ;Vm) .Programs P ;P1;P2; : : : are sets of lauses of the form:p1(V1; : : : ;Vm1) g1...pk (V1; : : : ;Vmk) gk

Transformations of Logi Programs with Goals as Arguments 11where p1; : : : ; pk are distint non-primitive prediate symbols, and every non-primitive prediate symbol ourring in fg1; : : : ; gkg is an element of fp1; : : : ; pkg.Eah lause head has distint variables as arguments. Given a program P anda non-primitive prediate p ourring in P , the unique lause in P of the formp(V1; : : : ;Vm) g , is alled the de�nition of p in P . We say that a prediate p isde�ned in a program P i� p has a de�nition in P .An ordinary goal is a goal without goal variables or goal arguments. Formally, anordinary goal has the following syntax:g ::= true j false j t1=t t2 j p(t1; : : : ; tm) j g1 ^ g2 j g1 _ g2where t1; t2; : : : ; tm are terms. Ordinary programs are programs whose goals areordinary goals.Notes on syntax.(1) When no onfusion arises, we also use omma, instead of ^, for denoting on-juntion.(2) The assumption that in our programs lause heads have only variables as argu-ments is not restritive, beause we may always replae a non-variable argument,say u, by a variable argument, say V , in the head of a lause, at the expense ofadding the extra equality V =u in the body.(3) The assumption that in every program there exists at most one lause for eahprediate symbol is not restritive, beause one may use disjuntions in the bodyof lauses. In partiular, every de�nite logi program written by using the familiarsyntax (Lloyd 1987), an be rewritten into an equivalent program of our languageby suitable introdutions of equalities and _ operators in the bodies of lauses.(4) Our logi language is a typed language in the sense that: (i) every indi-vidual variable has type term, (ii) every funtion symbol of arity n has typetermn ! term, (iii) true, false, and every goal variable have type bool , (iv.1) =thas type term � term ! bool , (iv.2) =g has type bool �bool ! bool , and (v) everyprediate symbol of arity n has a unique type of the form: (term j bool)n ! bool .We assume that all our programs an be uniquely typed aording to the aboverules. 4 The Operational SemantisIn this setion we de�ne the operational semantis of our extended logi language.We hoose a syntax-direted style of presentation whih makes use of dedutionrules. For an elementary presentation of this tehnique, sometimes alled struturaloperational semantis or natural semantis, the reader may refer to (Winskel 1993).Before de�ning the semantis of our logi language, we reall the following no-tions. By fV1=u1; : : : ;Vm=umg we denote the substitution of u1; : : : ; um for thevariables V1; : : : ;Vm . As usual, we assume that the Vi 's are all distint and fori =1; : : : ;m, ui is distint from Vi . By " we denote the identity substitution. By# � S we denote the restrition of the substitution # to set S of variables, thatis, # � S = fV=u j V=u 2 # andV 2 Sg. Given the substitutions #; �1; : : : ; �k , by# Æ f�1; : : : ; �kg we denote the set of substitutions f#�1; : : : ; #�kg (where, as usual,

12 A. Pettorossi and M. Proiettijuxtaposition of substitutions denotes omposition (Lloyd 1987)). By g# we denotethe appliation of the substitution # to the goal g . By mgu(t1; t2) we denote arelevant, idempotent, most general uni�er of the terms t1 and t2.The set of all substitutions is denoted by Subst and the set of all �nite sub-sets of Subst is denoted by P(Subst). Given A;B 2 P(Subst), we say that Aand B are equally general with respet to a goal g i� (i) for every � 2 A thereexists � 2 B suh that g� is an instane of g�, and symmetrially, (ii) for ev-ery � 2 B there exists � 2 A suh that g� is an instane of g�. For example,A = ffX =tg; fX =Y g; fX =Zgg and B = ffX =W gg are equally general with re-spet to the goal p(X).Given a set of substitutions A 2 P(Subst) and a goal g , letmostgen(A; g) denote alargest subset of fg# j# 2 Ag suh that for any two goals g1 and g2 inmostgen(A; g),g1 is not an instane of g2. For example, mostgen(ffX =tg; fX =Yg; fX =Zgg; p(X))= fp(Y)g. Notie that the set denoted by mostgen is not uniquely determined.However, it an be shown that, whatever hoie we make for the set denoted bymostgen, any two sets of substitutions A and B are equally general with respetto a goal g i� there exists a bijetion � from mostgen(A; g) to mostgen(B ; g) suhthat for any goal h 2 mostgen(A; g), �(h) is a variant of h. In this ase we writemostgen(A; g) � mostgen(B ; g).We use g [u℄ to denote a goal g in whih we have seleted an ourrene of itssubonstrut u, where u may be either a term or a goal. By g [℄ we denote thegoal g [u℄ without the seleted ourrene of its subonstrut u. We say that g [℄is a goal ontext. For any syntati onstrut r , we use vars(r) to denote the setof variables ourring in r and, for any set fr1; : : : ; rmg of syntati onstruts,we use vars(r1; : : : ; rm) to denote the set of variables vars(r1) [: : : [vars(rm). Inpartiular, given a substitution #, a variable belongs to vars(#) i� it ours eitherin the domain of # or in the range of #. Given two goals g and g1 and a lause ofthe form p(V1; : : : ;Vm) g [g1℄, the loal variables of g1 in are those in the setvars(g1)� (fV1; : : : ;Vmg [vars(g [℄)).Given a program P , we de�ne the semantis of P as a ternary relation P ` g 7! A,where g is a goal and A is a �nite set of substitutions, meaning that for P and gall derivations are �nite and A is the �nite set of answer substitutions whih areomputed by these derivations. The relation P ` g 7! A is de�ned by the dedutionrules given in Figure 1.A dedution tree � for P ` g 7! A is a tree suh that: (i) the root of � isP ` g 7! A, and (ii) for every node n of � with sons n1; : : : ;nk (with k � 0),there exists an instane of a dedution rule, say r, whose onlusion is n and whosepremises are n1; : : : ;nk . We say that n is derived by applying rule r to n1; : : : ;nk .A proof of P ` g 7! A is a �nite dedution tree for P ` g 7! A where every leaf isa dedution rule whih has no premises.We say that P ` g 7! A holds i� there exists a proof of P ` g 7! A. If P ` g 7! Aholds and A 6= ;, then we say that g sueeds in P , written P ` g # true. Otherwise,if P ` g 7! ; holds, then we say that g fails in P , written P ` g # false . If geither sueeds or fails in P we say that g terminates in P . We say that a goal g isstuk i� it is either of the form G ^ g1, where G is a goal variable, or of the form

Transformations of Logi Programs with Goals as Arguments 13(tt) P ` true 7! f"g(�) P ` false ^ g 7! ;(teq1) P ` (t1= t2) ^ g 7! ; if t1 and t2 are non-uni�able terms(teq2) P ` g mgu(t1; t2) 7! AP ` (t1= t2) ^ g 7! (mgu(t1; t2)ÆA) if t1 and t2 are uni�able terms(geq) P ` g2fG=g1g 7! AP ` (G=g1) ^ g2 7! (fG=g1gÆA)if the goal variable G is not in vars(g1)(at) P ` g1fV1=u1; : : : ;Vm=umg ^ g 7! AP ` p(u1; : : : ; um) ^ g 7! A�Swhere p(V1; : : : ;Vm) g1 is a renamed apart lause of Pand S is vars(p(u1; : : : ; um) ^ g)(or) P ` g1 ^ g 7! A1 P ` g2 ^ g 7! A2P ` (g1 _ g2) ^ g 7! (A1 [A2)Fig. 1. Operational Semantis(g0=g1)^g2, where either g0 is a non-variable goal or g0 is a goal variable ourringin g1. We say that g gets stuk in P i� there exist a set A of substitutions and a(�nite or in�nite) dedution tree � for P ` g 7! A suh that a leaf of � is of theform P ` g1 7! B and g1 is stuk. For instane, the goal (G = p) ^ (G = q) getsstuk in any program P . We say that g is safe in P i� g does not get stuk in P .For every program P and goal g , the three ases: (i) g sueeds in P , (ii) g fails inP , and (iii) g gets stuk in P , are pairwise mutually exlusive, but not exhaustive.Indeed, there is a fourth ase in whih the unique maximal dedution tree with rootP ` g 7! A is in�nite and eah of its leaves, if any, is the onlusion of a dedutionrule whih has no premises. In this ase no A exists suh that P ` g 7! A holdsand g does not get stuk in P .Notes on semantis.(1) In our presentation of the dedution rules we have exploited the assumption that^ and _ are assoiative operators with neutral elements true and false, respetively.For instane, we have not introdued the rule P ` false 7! ; beause it is aninstane of rule (�) for g= true.(2) Given a program P and a goal g , if there exists a proof for P ` g 7! A for someA, then the proof is unique up to isomorphism. More preisely, given two proofs,say �1 for P ` g 7! A1 and �2 for P ` g 7! A2, there exists a bijetion � from

14 A. Pettorossi and M. Proiettithe nodes of �1 to the nodes of �2 whih preserves the appliation of the dedutionrules and if �(P ` g1 7! B1) = P ` g2 7! B2 then(i) g1 is a variant of g2, and(ii) 8�12B1 9�22B2 suh that g1�1 is a variant of g2�2, and(iii) 8�22B2 9�12B1 suh that g2�2 is a variant of g1�1.This property is a onsequene of the fat that: (i) for any program P and goal g ,there exists at most one rule instane whose onlusion is of the form P ` g 7! Afor some A, and (ii) our rules for the operational semantis are deterministi, in thesense that no hoie has to be made when one applies them during the onstrutionof a proof, apart from the hoie of how to ompute the most general uni�ers andhow to rename apart the lauses.In partiular, any two sets A1 and A2 of answer substitutions for a programP and a goal g , are related as follows: if P ` g 7! A1 and P ` g 7! A2 then8�1 2A1 9�2 2A2 g�1 is a variant of g�2 and 8�2 2A2 9�12 A1 g�2 is a variantof g�1. Thus, A1 and A2 are equally general with respet to g . The same propertyholds also for any two sets of omputed answer substitutions whih are onstrutedby LD-resolution (reall that by LD-resolution we an onstrut di�erent sets ofomputed answer substitutions by hoosing di�erent most general uni�ers and dif-ferent variable renamings).Notie that, if P ` g 7! A1 and P ` g 7! A2 hold, then A1 and A2 mayhave di�erent ardinality. Indeed, let us onsider the program P onsisting of thefollowing lause only:p(X ;Y ;Z) (X =Y ^ Z =Y) _ (X =Z ^ Y =Z)In this ase, sine both Z=Y and Y =Z are most general uni�ers of Y = Z ,we have that both P ` p(X ;Y ;Z) 7! ffX =Y ;Z=Y g; fX =Z ;Y =Zgg and P `p(X ;Y ;Z) 7! ffX =Y ;Z=Y gg hold. Notie also that the substitution fX =Y ;Z=Y gis more general than the substitution fX =Z ;Y =Zg and vie versa.(3) If P ` g 7! A and # 2 A, then the domain of # is a subset of vars(g).(4) In the presentation of the dedution rules for the ternary relation P ` g 7! A,the program P never hanges and thus, it ould have been omitted. However, theexpliit referene to P is useful for presenting our Corretness Theorem (see The-orem 2 in Setion 6).(5) We assume that in any relation P ` g 7! A, the program P and the goal g haveonsistent types, that is, the type of every funtion and prediate symbol should bethe same in P and in g . For instane, if P = fp(G) g where G is a goal variable,then P ` p(0) 7! f"g does not hold, beause in the program P the prediate p hastype bool ! bool , while in the goal p(0) the prediate p has type term ! bool .Moreover, for any relation P ` g1 7! A1 ourring in the proof of P ` g 7! A, wehave that program P and goal g1 have onsistent types.Now we disuss the relationship between LD-resolution and the operational se-mantis de�ned in this setion. Apart from the style of presentation (usually LD-resolution is presented by means of the notions of LD-derivation and LD-tree (Apt1997; Lloyd 1987)), LD-resolution di�ers from our operational semantis only in the

Transformations of Logi Programs with Goals as Arguments 15treatment of goal equality. Indeed, by using LD-resolution, the goal equality g1=g2is evaluated by applying the ordinary uni�ation algorithm also in the ase whereg1 is not a goal variable or g1 is a goal variable ourring in vars(g2). In ontrast,aording to our operational semantis, a goal of the form g1= g2 is evaluated byunifying g1 and g2, only if g1 is a variable whih does not our in vars(g2) (seerule (geq) above).Thus, if a goal g is safe in P , then the evaluation of g aording to our operationalsemantis agrees with the one whih uses LD-resolution in the following sense: if gis safe in P , then there exists a set A of answer substitutions suh that P ` g 7! Aholds i�: (i) all LD-derivations starting from g and using P are �nite (that is, guniversally terminates in P (Apt 1997; Vasak and Potter 1986)), and (ii) A is the setof the omputed answer substitutions obtained by LD-resolution. Point (i) followsfrom the fat that in our operational semantis, the evaluation of a disjuntion ofgoals (see the (or) rule) requires the evaluation of eah disjunt. Thus, in order toompute the relation P ` g 7! A in the ase where g is safe in P , we an use anyordinary Prolog system whih implements LD-resolution.Notie that, given a program P and a goal g , if the LD-tree has an in�nite LD-derivation, then no set A of answer substitutions exists suh that P ` g 7! A. Inpartiular, for the program P = fp(0) ; p(X) p(X)g no A exists suh thatP ` p(X) 7! A, while the set of omputed answer substitutions onstruted byLD-resolution for the program P and the goal p(X) is the singleton onsisting ofthe substitution fX =0g only.It may also be the ase that a goal g is not safe in a program P (thus, thereexists no set A of answer substitutions suh that P ` g 7! A holds) while, byusing LD-resolution, g sueeds or fails in P . For instane, for any program and forany two distint nullary prediates p and q , (i) the goal p=p is not safe, while itsueeds by using LD-resolution and (ii) the goal p=q is not safe, while it fails byusing LD-resolution.We reall that our interpretation of goal equality is motivated by the fat thatwe want the operational semantis to be preserved by program transformationsand, in partiular, by unfolding. As already shown in the Introdution, unfortu-nately, unfolding does not preserve the operational semantis based on ordinaryLD-resolution.The following Proposition 1 establishes an important property of our operationalsemantis. This property is useful for the proof the orretness results in Setion 6(see Theorem 2). The proof of this proposition is similar to the one in the ase ofLD-resolution for de�nite programs (see, for instane, (Lloyd 1987)) and will beomitted.Proposition 1Let P be a program, g be an ordinary goal, and A be a set of substitutions suhthat P ` g 7! A. Then, for all # 2 Subst , the following hold:(i) g# terminates, that is, either P ` g# # true or P ` g# # false , and(ii.1) P ` g# # true i� there exists � 2 A suh that g# is an instane of g�, and(ii.2) P ` g# # false i� it does not exist � 2 A suh that g# is an instane of g�.

16 A. Pettorossi and M. ProiettiLet us onlude this setion by introduing the notions of re�nement and equivalenebetween programs whih we will use in Setion 6 to state the weak and strongorretness of the program transformations that an be realized by applying ourtransformation rules. These rules are presented in the next setion.De�nition 1 (Re�nement and Equivalene)Given two programs P1 and P2, we say that P2 is a re�nement of P1, writtenP1 v P2, i� for every ordinary goal g and for every A 2 P(Subst), if P1 ` g 7! Athen there exists B 2 P(Subst) suh that:(1) P2 ` g 7! B and(2) A and B are equally general with respet to g .We say that P1 is equivalent to P2, written P1 � P2, i� P1 v P2 and P2 v P1.Remark 1Reall that Condition (2) an be written as mostgen(A; g) � mostgen(B ; g). In thissense we will say that if P1 v P2 and the ordinary goal g terminates in P1, thenthe most general answer substitutions for g are the same in P1 and P2, modulovariable renaming. �Remark 2P1 v P2 implies that, for every ordinary goal g ,- if g sueeds in P1 then g sueeds in P2, and- if g fails in P1 then g fails in P2. �Theorem 2 stated in Setion 6 shows that, if from program P1 we derive programP2 by using our transformation rules and suitable onditions hold, then P1 v P2. Inthis ase we say that the transformation is weakly orret. If additional onditionshold, then we may have that P1 � P2 and we say that the transformation is stronglyorret.In Setion 6 we will also show that our transformation rules preserve safety, thatis, if from program P1 we derive program P2 by using the transformation rules andgoal g is safe in P1, then goal g is safe also in P2.5 The Transformation RulesIn this setion we present the transformation rules for our extended logi lan-guage. We assume that starting from an initial program P0 we have onstrutedthe transformation sequene P0; : : : ;Pi (Pettorossi and Proietti 1994; Tamaki andSato 1984). By an appliation of a transformation rule, from program Pi we derivea new program Pi+1.Rule R1 (De�nition Introdution)We derive the new program Pi+1 by adding to program Pi a new lause, alled ade�nition, of the form:newp(V1; : : : ;Vm) g

Transformations of Logi Programs with Goals as Arguments 17where: (i) newp is a new non-primitive prediate symbol not ourring in any pro-gram of the sequene P0; : : : ;Pi , (ii) the non-primitive prediate symbols ourringin g are de�ned in P0, and (iii) V1; : : : ;Vm are some of (possibly all) the distintvariables ourring in g .The set of all de�nitions introdued during the transformation sequene P0; : : : ;Pi ,is denoted by Defi . Thus, Def0 = ;.Rule R2 (Unfolding)Let 1: h body [p(u1; : : : ; um)℄ be a renamed apart lause in program Pi wherep is a non-primitive prediate symbol. Let d : p(V1; : : : ;Vm) g be a lause inP0 [Defi . By unfolding 1 w.r.t. p(u1; : : : ; um) using d we derive the new lause2: h body [gfV1=u1; : : : ;Vm=umg℄. We derive the new program Pi+1 by replaingin program Pi lause 1 by lause 2.Rule R3 (Folding)Let 1: h body [g#℄ be a renamed apart lause in program Pi and let d :p(V1; : : : ;Vm) g be a lause in Defi . Suppose that, for every loal variableV of g in d , we have that:(1) V # is a loal variable of g# in 1, and(2) the variable V # does not our in W #, for any variable W ourring in gand di�erent from V .Then, by folding 1 using d we derive the new lause 2: h body [p(V1; : : : ;Vm)#℄.We derive the new program Pi+1 by replaing in program Pi lause 1 by lause 2.In order to present the goal replaement rule (see rule R4 below) we introduethe notion of replaement law. Basially, a replaement law denotes two goals whihan be replaed one for the other in the body of a lause. We have two kinds ofreplaement laws: the weak and the strong replaement laws, whih ensure weakand strong orretness, respetively (see the end of this setion for an informaldisussion and Setion 6 for a formal proof of this fat).First we need the following de�nition.De�nition 2 (Depth of a Dedution Tree)Let � be a �nite dedution tree and let m be the maximal number of appliationsof the (at) rule in a root-to-leaf path of � . Then we say that � has depth m.Let � be a proof for P ` g 7! A, for some program P , goal g , and set A ofsubstitutions, and let m be the depth of �. If A = ; we write P ` g #m false ;otherwise, if A 6=; we write P ` g #m true.Reall that, given a program P and a goal g , if for some set A of substitutionsthere exists a proof for P ` g 7! A, then the proof is unique up to isomorphism.In partiular, given a proof for P ` g 7! A1 and a proof for P ` g 7! A2, theyhave the same depth.De�nition 3 (Replaement Laws)Let P be a program, let g1 and g2 be two goals, and let V be a set of variables.(i) The relation P ` 8V (g1 �! g2) holds i� for every goal ontext g [℄ suh thatvars(g [℄) \ vars(g1; g2) � V , and for every b 2 ftrue; falseg, we have that:

18 A. Pettorossi and M. Proiettiif P ` g [g1℄ # b then P ` g [g2℄ # b. (y)(ii) The relation P ` 8V (g1 >�! g2), alled a weak replaement law, holds i�for every goal ontext g [℄ suh that vars(g [℄) \ vars(g1; g2) � V , and for everyb 2 ftrue; falseg, we have that:if P ` g [g1℄ #m b then P ` g [g2℄ #n b with m�n. (yy)(iii) The relation P ` 8V (g1 > ! g2), alled a strong replaement law, holds i�P ` 8V (g1 >�! g2) and P ` 8V (g2 �! g1).(iv) We write P ` 8V (g1 = ! g2) to mean that the strong replaement lawsP ` 8V (g1 >�! g2) and P ` 8V (g2 >�! g1) hold.If V = ; then P ` 8V (g1 >�! g2) is also written as P ` g1 >�! g2. If V =fV1; : : : ;Vng then P ` 8V (g1 >�! g2) is also written as P ` 8V1; : : : ;Vn (g1 >�! g2).If V =vars(g1; g2) then P ` 8V (g1 >�! g2) is also written as P ` 8 (g1 >�! g2).A few omments on the above De�nition 3 are now in order.(1) In the relation P ` 8V (g1 �! g2) we have used the set V of universallyquanti�ed variables as a notational devie for indiating that when we replae g1by g2 in a lause h body [g1℄, the variables in ommon between h body [℄ and(g1; g2) are those in V (see the goal replaement rule R4 below). Thus, vars(g1)�Vis the set of the loal variables of g1 in h body [g1℄ and vars(g2)�V is the set ofthe loal variables of g2 in h body [g2℄.(2) Impliation (yy) implies Impliation (y).(3) Every strong replaement law is also a weak replaement law.(4) If P ` 8V (g1 = ! g2) then there exists A1 2 P(Subst) suh that P ` g1 7! A1has a proof of depth m i� there exists A2 2 P(Subst) suh that P ` g2 7! A2 hasa proof of depth m. Moreover, if both proofs exist, A1=; i� A2=;.The properties listed in the next proposition follow diretly from De�nition 3.Proposition 2Let P be a program, let g1 and g2 be goals, and let V be a set of variables.(i) P ` 8V (g1 �! g2) holds i� for every goal ontext g [℄ suh that vars(g [℄) \vars(g1; g2) � V , P ` 8W (g [g1℄ �! g [g2℄) holds, where W = V [vars(g [℄).(ii) P ` 8V (g1 �! g2) holds i� P ` 8W (g1 �! g2) holds, where W = V \vars(g1; g2).(iii) P ` 8V (g1 �! g2) holds i� for every W � V , P ` 8W (g1 �! g2) holds.(iv) P ` 8V (g1 �! g2) holds i� for every substitution # suh that vars(#) \vars(g1; g2) � V , P ` 8W (g1# �! g2#) holds, where W = vars(V #).(v) P ` 8V (g1 �! g2) holds i� for every renaming substitution � suh thatvars(�) \ V = ;, P ` 8V (g1� �! g2�) holds.The properties obtained from (i) { (v) by replaing �! by >�! are also true.We will refer to them as Properties (i0) { (v0), respetively.

Transformations of Logi Programs with Goals as Arguments 19De�nition 4We say that a weak replaement law P ` 8V (g1 >�! g2) (or a strong replaementlaw P ` 8V (g1 > ! g2)) preserves safety i� for every goal ontext g [℄ suh thatvars(g [℄) \ vars(g1; g2) � V , we have that:if g [g1℄ is safe in P then g [g2℄ is safe in P .Rule R4 (Goal Replaement)Let 1: h body [g1℄ be a lause in program Pi and let g2 be a goal suh that:(i) all non-primitive prediate symbols ourring in g1 or g2 are de�ned in P0, andeither (ii.1) P0 ` 8V (g1 >�! g2), or (ii.2) P0 ` 8V (g1 > ! g2), where V =vars(h; body [℄) \ vars(g1; g2).By goal replaement we derive the new lause 2: h body [g2℄, and we derive thenew program Pi+1 by replaing in program Pi lause 1 by lause 2.In ase (ii.1) we say that the goal replaement is based on a weak replaement law.In ase (ii.2) we say that the goal replaement is based on a strong replaementlaw. We say that the goal replaement preserves safety i� it is based on a (weak orstrong) replaement law whih preserves safety.Impliation (yy) of De�nition 3 makes >�! and > ! to be improvement relationsin the sense of (Sands 1996). As stated in Theorem 2 of Setion 6, Impliation (yy)is required for ensuring the weak orretness of a goal replaement step, while Im-pliation (y) of De�nition 3 does not suÆe. This fat is illustrated by the followingexample.Example 6Let us onsider the program P1:1. p q2. q We have that P1 ` q �! p and thus, Impliation (y) holds by taking g1 to be q , g2to be p, and g [℄ to be the empty goal ontext. The replaement of q by p in lause1 produes the following program P2:1*. p p2. q This replaement is not an appliation of rule R4, beause Impliation (yy) does nothold. (Indeed, we have that the depth of the proof for P1 ` q 7! f"g is smaller thanthe depth of the proof for P1 ` p 7! f"g). The transformation from program P1 toprogram P2 is not weakly orret (nor strongly orret), beause p sueeds in P1,while p does not terminate in P2, and thus, it is not the ase that P1 v P2. �The reader may hek that, for any program P , and goals g , g1, g2, and g3, wehave the following replaement laws. It an be shown that these replaement lawspreserve safety.

20 A. Pettorossi and M. Proietti1. Boolean Laws:P ` 8 (g ^ true = ! g) P ` 8 (g ^ g >�! g)P ` 8 (true ^ g = ! g) P ` 8 (g _ g = ! g)P ` 8 (true _ g >�! true) P ` 8 (g1 _ g2 = ! g2 _ g1)P ` 8 (g ^ false >�! false) P ` 8 ((g1 ^ g2) _ (g1 ^ g3) = ! g1 ^ (g2 _ g3))P ` 8 (false ^ g = ! false) P ` 8 ((g1 ^ g2) _ (g3 ^ g2) = ! (g1 _ g3) ^ g2)P ` 8 (false _ g = ! g) P ` 8 ((g1 _ g2) ^ (g1 _ g3) >�! g1 _ (g2 ^ g3))In the following replaement laws 2.1 and 2.2, aording to our onventions, Vstands for either an individual variable or a goal variable, and u stands for either aterm or a goal, respetively.2.1 Introdution and elimination of equalities:P ` 8U (g [u℄ = ! ((V =u) ^ g [V ℄)) where U = vars(g [u℄) and V 62 U .2.2 Rearrangement of equalities:P ` 8U (g [(V =u) ^ g1℄ = ! ((V =u) ^ g [g1℄))where U = vars(g [g1℄; u) and V 62 U .When referring to goal variables, laws 2.1 and 2.2 will also be alled `Introdutionand elimination of goal equalities' and `Rearrangement of goal equalities', respe-tively.3. Rearrangement of term equalities:P ` 8 (g ^ (t1= t2) >�! (t1= t2) ^ g)4. Clark Equality Theory (also alled CET, see (Lloyd 1987)):P ` 8X (eq1 = ! eq2) if CET ` 8X (9Y eq1 $ 9Z eq2)where: (i) eq1 and eq2 are goals onstruted by using true, false, term equalities,onjuntions, and disjuntions, and (ii) Y =(vars(eq1)�X) and Z =(vars(eq2)�X).Notie that, for some program P and for some goals g ; g1; g2, and g3, the followingdo not hold:P ` 8 (true �! true _ g)P ` 8 (false �! g ^ false)P ` 8 ((t1= t2) ^ g �! g ^ (t1= t2))P ` 8 (g1 _ (g2 ^ g3) �! (g1 _ g2) ^ (g1 _ g3))P ` 8V (g2[g1℄ �! g2[G ℄ ^ (G=g1)) where V =vars(g2[g1℄) and G 62 VP ` 8V (g [(G=g1) ^ g2℄ �! (G=g1) ^ g [g2℄)where V =(vars(g [g2℄; g1)� fGg) and G 2 vars(g [℄; g1)P ` 8 (g [(G=g1) ^ g2℄ �! (G=g1) ^ g [g2℄) where G 62 vars(g [℄; g1)Let us now make some remarks on the goal replaement rule.In the Weak Corretness part of Theorem 2 (see Setion 6) we will prove that ifprogram P2 is derived from program P1 by an appliation of the goal replaementrule based on a weak replaement law, then P2 is a re�nement of P1, that is,P1 v P2. Thus, there may be some ordinary goal g whih either sueeds or failsin P2, while g does not terminate in P1, as shown by the following example.

Transformations of Logi Programs with Goals as Arguments 21Example 7Let us onsider the following two programs P1 and P2, where P2 is derived fromP1 by applying the goal replaement rule based on the weak (and not strong)replaement law P1 ` 8 (true _ g >�! true):P1: p true _ q P2: p trueq q q qWe have that p does not terminate in P1 and p sueeds in P2.Next, let us onsider the following programs:P3: p q ^ false P4: p falseq q q qwhere P4 is derived from P3 by a goal replaement rule based on a weak (andnot strong) replaement law P ` 8 (g ^ false >�! false). We have that p does notterminate in P3, while p fails in P4. �In the Strong Corretness part of Theorem 2 we will prove that if program P2 isderived from program P1 by an appliation of the goal replaement rule based ona strong replaement law, then P1 and P2 are equivalent, that is P1 � P2. Thus, inpartiular, for any goal g , g terminates in P1 i� g terminates in P2.Moreover, in Theorem 3 of Setion 6 we will prove that if program P2 is derivedfrom program P1 by goal replaements whih preserve safety, then every goal whihis safe in P1, is safe also in P2.6 Corretness of Program TransformationsThe unrestrited use of our rules for transforming programs may allow the on-strution of inorret transformation sequenes, as the following example shows.Example 8Let us onsider the following initial program:P0: p qq By two de�nition introdution steps, we get:P1: p qq newp1 qnewp2 qBy three folding steps, from program P1 we get the �nal program:P2: p newp1q newp1 newp2newp2 newp1We have that p sueeds in P0, while p does not terminate in P2. �

22 A. Pettorossi and M. ProiettiIn this setion we will present some onditions whih ensure that every transfor-mation sequene P0; : : : ;Pk onstruted by using our rules, is:(i) weakly orret, in the sense that P0 [Defk v Pk (see Point (1) of Theorem 2),(ii) strongly orret, in the sense that P0[Defk � Pk (see Point (2) of Theorem 2),(iii) preserves safety, in the sense that, for every goal g , if g is safe in P0 [Defkthen g is safe also in Pk (see Theorem 3).Similarly to other orretness results presented in the literature (Bossi and Coo1994; Pettorossi and Proietti 1994; Sands 1996; Tamaki and Sato 1984), some ofthe onditions whih ensure (weak or strong) orretness, require that the trans-formation sequenes are onstruted by performing suitable unfolding steps beforeperforming folding steps.In partiular, Theorem 2 below ensures the (weak or strong) orretness of agiven transformation sequene in the ase where this sequene is admissible, thatis, it is onstruted by performing parallel leftmost unfoldings (see De�nition 5) onall de�nitions whih are used for performing subsequent foldings.In order to present our orretness results it is onvenient to onsider admissi-ble transformation sequenes whih are ordered, that is, transformation sequenesonstruted by:(i) �rst, applying the de�nition introdution rule,(ii) then, performing parallel leftmost unfoldings of the de�nitions that are used forsubsequent foldings, and(iii) �nally, performing unfoldings, foldings, and goal replaements in any order.Thus, an ordered, admissible transformation sequene has all its de�nition intro-dutions performed at the beginning, and it an be written in the form P0; : : : ;P0[Defk ; : : : ;Pk , where Defk is the set of all de�nitions introdued during the entiretransformation sequene P0; : : : ;P0[Defk ; : : : ;Pk . By Proposition 3 below we mayassume, without loss of generality, that all admissible transformation sequenes areordered.In order to prove that an admissible transformation sequene is weakly orret(see Point (1) of Theorem 2), we proeed as follows.(i) In Lemma 1 we onsider a generi transformation by whih we derive a programNewP from a program P by replaing the bodies of the lauses of P by new bodies.We show that, if these body replaements an be viewed as goal replaements basedon weak replaement laws, then the transformation from P to NewP preservessuesses and failures, that is,- if a goal g sueeds in P then g sueeds in NewP , and- if a goal g fails in P then g fails in NewP .(ii) Then, in Lemma 2 we prove that in an ordered, admissible transformationsequene P0; : : : ;P0 [Defk ; : : : ;Pk , any appliation of the unfolding, folding, andgoal replaement rule is an instane of the generi transformation onsidered inLemma 1, that is, it onsists in the replaement of the body of a lause by a newbody, and this replaement an be viewed as a goal replaement based on a weakreplaement law.

Transformations of Logi Programs with Goals as Arguments 23(iii) Thus, by using Lemmata 1 and 2 we get Point (1) of Theorem 1. In partiular,we have that in any admissible transformation sequene P0; : : : ;P0 [Defk ; : : : ;Pk ,suesses and failures are preserved, that is:- if a goal g sueeds in P0 [Defk then g sueeds in Pk , and- if a goal g fails in P0 [Defk then g fails in Pk .(iv) Finally, Proposition 1 allows us to infer the preservation of most general answersubstitutions from the preservation of suesses and failures. Indeed, by Proposi-tion 1 and Point (1) of Theorem 1 we prove that if an ordinary goal g sueeds inP0 [Defk then the set of answer substitutions for g in P0 [Defk and the set ofanswer substitutions for g in Pk are equally general.Aording to De�nition 1, Points (iii) and (iv) mean that P0 [Defk v Pk , that is,the ordered, admissible transformation sequene P0; : : : ;P0[Defk ; : : : ;Pk is weaklyorret (see Point (1) of Theorem 2).In order to prove that an admissible transformation sequene is strongly orret(see Point (2) of Theorem 2), we make the additional hypothesis that all goalreplaements performed during the onstrution of the transformation sequeneare based on strong replaement laws. Analogously to the proof of weak orretnesswhih is based on Lemmata 1 and 2, the proof of strong orretness is based onLemmata 3 and 4 whih we give below. By using these lemmata, we prove Point (2)of Theorem 1, that is:- if a goal g sueeds in Pk then g sueeds in P0 [Defk , and- if a goal g fails in Pk then g fails in P0 [Defk .Finally, by Proposition 1 and Theorem 1, we prove that any admissible transfor-mation sequene in whih all goal replaements are based on strong replaementlaws, is strongly orret (see Point (2) of Theorem 2), that is, P0 [Defk � Pk .Now let us formally de�ne the notions of parallel leftmost unfolding of a lause, ad-missible transformation sequene, and ordered admissible transformation sequeneas follows.De�nition 5Let be a lause in a program P . If is of the form:p(V1; : : : ;Vm) (a1 ^ g1) _ : : : _ (as ^ gs)where a1; : : : ; as are atoms with non-primitive prediates, g1; : : : ; gs are goals, ands > 0, then the parallel leftmost unfolding of lause in program P is the pro-gram Q obtained from P by applying s times the unfolding rule w.r.t. a1; : : : ; as ,respetively.If lause is not of the form indiated in De�nition 5 above, then the parallelleftmost unfolding of is not de�ned.De�nition 6A transformation sequene P0; : : : ;Pk is said to be admissible i� for every h, with0� h < k , if Ph+1 has been obtained from Ph by folding lause using lause d ,then there exist i ; j , with 0� i < j � k , suh that d 2 Pi and Pj is obtained fromPi by parallel leftmost unfolding of d .

24 A. Pettorossi and M. ProiettiDe�nition 7An admissible transformation sequene P0; : : : ;Pk is said to be ordered i� it is of theform P0; : : : ;Pi ; : : : ;Pj ; : : : ;Pk , where: (i) the sequene P0; : : : ;Pi is onstruted byapplying the de�nition introdution rule, (ii) the sequene Pi ; : : : ;Pj is onstrutedby parallel leftmost unfolding of all de�nitions whih have been introdued duringthe sequene P0; : : : ;Pi and are used for folding during the sequene Pj ; : : : ;Pk ,and (iii) the de�nition introdution rule is never applied in the sequene Pj ; : : : ;Pk .Given an ordered, admissible transformation sequene P0; : : : ; Pi ; : : : ;Pj ; : : : ;Pk ,the set of de�nitions introdued during P0; : : : ;Pi is the same as the set of de�nitionsintrodued during the entire sequene P0; : : : ;Pk , and thus, in the above De�nition 7we have that Pi is P0 [Defk .An admissible transformation sequene P0; : : : ;Pk whih is ordered, is also de-noted by P0; : : : ;Pi ; : : : ;Pj ; : : : ;Pk , where we expliitly indiate the program Piafter the introdution of the de�nitions, and the program Pj after the parallelleftmost unfolding steps.Proposition 3For any admissible transformation sequene P0; : : : ;Pn there exists an ordered,admissible transformation sequene P0; : : : ;Pi ; : : : ; Pj ; : : : ;Pk suh that Pn = Pkand Defn = Defk .Now, in order to prove the orretness of transformation sequenes, we state the fol-lowing Lemmata 1, 2, 3, and 4, whose proofs are given in the Appendix. As alreadymentioned, these Lemmata 1, 2, 3, and 4 will allow us to show that, under suitableonditions, for every admissible transformation sequene P0; : : : ;Pk , (i) suessesand failures are preserved (see Theorem 1 below), and (ii) weak orretness holds(that is, P0 [Defk v Pk) or strong orretness holds (that is, P0 [Defk � Pk) (seeTheorem 2 below).Lemma 1Let P and NewP be programs of the form:P : hd1 bd1 NewP : hd1 newbd1... ...hds bds hds newbd sFor r = 1; : : : ; s , let Vr be vars(hdr) and suppose that P ` 8Vr (bdr >�! newbd r).Then, for every goal g and for every b 2 ftrue; falseg, we have that:if P ` g #m b then NewP ` g #n b with m � n.Lemma 2Let us onsider an ordered, admissible transformation sequene P0; : : : ; Pi ; : : : ;Pj ; : : : ;Pk , where Pi is P0 [Defk .(i) For h = i ; : : : ; j�1 and for any pair of lauses 1: hd bd in program Ph and2: hd newbd in program Ph+1, suh that 2 is derived from 1 by applying theunfolding rule, we have that:

Transformations of Logi Programs with Goals as Arguments 25Pi ` 8V (bd >�! newbd)where V = vars(hd). (Notie that the unfolding rule does not hange the heads ofthe lauses.)(ii) For h = j ; : : : ; k�1 and for any pair of lauses 1: hd bd in program Ph and2: hd newbd in program Ph+1, suh that 2 is derived from 1 by applying theunfolding, or folding, or goal replaement rule, we have that:Pj ` 8V (bd >�! newbd)where V = vars(hd). (Notie that the unfolding, folding, and goal replaementrules do not hange the heads of the lauses.)Lemma 3Let P and NewP be programs of the form:P : hd1 bd1 NewP : hd1 newbd1... ...hds bds hds newbdsFor r = 1; : : : ; s , let Vr be vars(hdr) and suppose that P ` 8Vr (newbdr �! bdr).Then, for every goal g and for every b 2 ftrue; falseg, we have that if NewP ` g # bthen P ` g # b.Notie that Lemma 3 is a partial onverse of Lemma 1. These two lemmata im-ply that if we derive a program NewP from a program P by replaing the bodiesof the lauses of P by new bodies, and these body replaements are goal replae-ments based on strong replaement laws, then every goal terminates in NewP i� itterminates in P .Lemma 4Let us onsider a transformation sequene P0; : : : ;Pk and let Defk be the set ofde�nitions introdued during that sequene. For h = 0; : : : ; k�1 and for any pairof lauses 1: hd bd in program Ph and 2: hd newbd in program Ph+1, suhthat 2 is derived from 1 by applying the unfolding rule, or the folding rule, or thegoal replaement rule based on strong replaement laws, we have that:P0 [Defk ` 8V (newbd �! bd)where V = vars(hd).In partiular, as a onsequene of Lemma 2 and Lemma 4, we have that in anyordered, admissible transformation sequene the unfolding and folding rules an beviewed as goal replaements based on strong replaement laws.The following theorem states that for every admissible transformation sequenesuesses and failures are preserved.Theorem 1 (Preservation of Suesses and Failures)Let P0; : : : ;Pk be an admissible transformation sequene and let Defk be the setof de�nitions introdued during that sequene. Then for every goal g and for everyb 2 ftrue; falseg, we have that:(1) if P0 [Defk ` g #m b then Pk ` g #n b with m � n, and(2) if all appliations of the goal replaement rule are based on strong replaementlaws and Pk ` g # b, then P0 [Defk ` g # b.

26 A. Pettorossi and M. ProiettiProof of Theorem 1See Appendix. The proof of (1) is based on Proposition 3 and Lemmata 1 and 2,and the proof of (2) is based on Proposition 3 and Lemmata 3 and 4.The following theorem establishes the weak orretness and, under suitable on-ditions, the strong orretness of admissible transformation sequenes.Theorem 2 (Corretness Theorem)Let P0; : : : ;Pk be an admissible transformation sequene. Let Defk be the set ofde�nitions introdued during that sequene. We have that:(1) (Weak Corretness) P0 [Defk v Pk , that is, Pk is a re�nement of P0 [Defk ,and(2) (Strong Corretness) if all appliations of the goal replaement rule are based onstrong replaement laws then P0[Defk � Pk , that is, Pk is equivalent to P0[Defk .Proof of Theorem 2See Appendix. The proof of (1) is based on Proposition 1 and Theorem 1 (Point 1),and the proof of (2) is based on Proposition 1 and Theorem 1 (Points 1 and 2).The following two examples show that in the statement of Theorem 2 we annotdrop the admissibility ondition. Indeed, in these examples we onstrut transfor-mation sequenes whih are not admissible and not weakly orret.Example 9Let us onstrut a transformation sequene as follows. The initial program is:P0: p p ^ qq falseBy de�nition introdution we get:P1: p p ^ qq falsenewp false ^ pThen we perform the unfolding of newp false ^ p w.r.t. p. (Notie that this isnot a parallel leftmost unfolding.) We get:P2: p p ^ qq falsenewp false ^ p ^ qBy folding we get the �nal program:P3: p p ^ qq falsenewp newp ^ qWe have that newp fails in P0 [Def3 (that is, P1), while newp does not terminatein P3. �

Transformations of Logi Programs with Goals as Arguments 27Example 10Let us onstrut a transformation sequene as follows. The initial program is:P0: p falseq true _ qBy de�nition introdution we get:P1: p falseq true _ qnewp p _ (p ^ q)Then we perform the unfolding of newp p _ (p ^ q) w.r.t. q . (Notie that this isnot a parallel leftmost unfolding.) We get:P2: p falseq true _ qnewp false _ (p ^ (true _ q))By goal replaement based on boolean laws we get:P3: p falseq true _ qnewp p _ (p ^ q)By folding we get the �nal program:P4: p falseq true _ qnewp newpWe have that newp fails in P0 [Def4 (that is, P1), while newp does not terminatein P4. �Finally, the following theorem states that a (possibly not admissible) transfor-mation sequene preserves safety, if all goal replaements performed during thatsequene preserve safety.Theorem 3 (Preservation of Safety)Let P0; : : : ;Pk be a transformation sequene and let Defk be the set of de�nitionsintrodued during that sequene. Let us also assume that all appliations of the goalreplaement rule R4 preserve safety. Then, for every goal g , if g is safe in P0 [Defkthen g is safe in Pk .Proof of Theorem 3See Appendix. The proof is based on Lemmata 5 and 6 given in the Appendix.We end this setion by making some omments about our orretness results.Let us onsider an admissible transformation sequene P0; : : : ;Pk , during whih weintrodue the set Defk of de�nitions. Then, by Point (1) of Theorem 1 programPk may be more de�ned than program P0 [Defk in the sense that there may bea goal whih terminates (i.e., sueeds or fails) in Pk , while it does not terminatein P0 [Defk . This `inrease of termination' is often desirable when transformingprograms and it may be ahieved by goal replaements whih are not based onstrong replaement laws (see, for instane, Example 7 in Setion 5).

28 A. Pettorossi and M. ProiettiNow suppose that during the onstrution of the admissible transformation se-quene P0; : : : ;Pk all appliations of the goal replaement rule are based on strongreplaement laws. Then, by Theorem 1 we have that for all goals g , g terminates inP0[Defk i� g terminates in Pk . However, safety may be not preserved, in the sensethat there may be a goal g whih is safe in P0 [Defk (but g neither sueeds norfails in P0 [Defk) and g is not safe in Pk (or vie versa), as shown by the followingexample.Example 11Let us onsider the following two programs P1 and P2:P1: p p P2: p GProgram P2 is derived from P1 by applying the goal replaement rule based on thestrong replaement law P1 ` p = ! G , whih does not preserve safety. We havethat p is safe, p does not terminate in P1, and p is not safe in P2. Notie that thereplaement law P1 ` p = ! G trivially holds beause, for any b 2 ftrue; falseg,P1 ` p # b does not hold and P1 ` G # b does not hold. �In order to ensure that if g is safe in P1 then g is safe in P2, it is enough touse replaement laws whih preserve safety (see Theorem 3). Indeed, unfolding andfolding always preserve safety (see Lemma 6 in the Appendix).We have not presented any result whih guarantees that if a goal is safe in the�nal program Pk then it is safe in the program P0[Defk . This result ould have beenahieved by imposing further restritions on the goal replaement rule. However,we believe that this `inverse preservation of safety' is not important in pratie,beause usually we start from an initial program where all goals of interest are safeand we want to derive a �nal program where those goals of interest are still safe. Inpartiular, if in the transformation sequene P0; : : : ;Pk the initial program P0 is anordinary program, then every ordinary goal g is safe in P0 and, by Theorem 3, wehave that g is safe also in Pk . Thus, as disussed in Setion 4, we an use ordinaryimplementations of LD-resolution to ompute the relation Pk j= g 7! A.Notie also that, if P0[Defk v Pk and an ordinary goal g terminates in P0, theng has the same most general answer substitutions in P0 [Defk and Pk , modulovariable renaming (see Point (i) of Remark 1 at the end of Setion 4). However,the set of all answer substitutions may not be preserved, and in partiular, thereare programs P1 and P2 suh that P1 v P2 and, for some goal g , we have thatP1 ` g 7! A1 and P2 ` g 7! A2, where A1 and A2 have di�erent ardinality, asshown by the following example adapted from (Bossi et al. 1992). A similar propertyholds if we assume that P1 � P2, instead of P1 v P2.Example 12Let us onsider the following two programs P1 and P2, where P2 is derived fromP1 by applying the goal replaement rule based on the weak replaement lawP ` 8 (g ^ g >�! g), whih holds for every program P and and goal g :P1: p(X) q(X) ^ q(X) P2: p(X) q(X)q(X) X = f (a;Z) q(X) X = f (a;Z)q(X) X = f (Y ; a) q(X) X = f (Y ; a)

Transformations of Logi Programs with Goals as Arguments 29We have that:P1 ` p(X) 7! ffX =f (a;Z)g; fX =f (a; a)g; fX =f (Y ; a)gg, andP2 ` p(X) 7! ffX =f (a;Z)g; fX =f (Y ; a)gg. �The above example shows that, if during program transformation we want to pre-serve the set of answer substitutions, then we should not apply goal replaementsbased on the replaement law P ` 8 (g ^ g >�! g) whih, however, may be usefulfor avoiding the omputation of redundant goals and improving program eÆieny.Another replaement law whih is very useful in many examples of programtransformation, is the law whih expresses the funtionality of a prediate. Forinstane, in the Deepest example of Setion 2, the depth prediate is funtionalwith respet to its �rst argument in the sense that, for every goal ontext g [℄, thefollowing replaement law holds:Deepest ` 8 (depth(T ;X) ^ g [depth(T ;Y)℄ > ! depth(T ;X) ^ g [X =Y ℄).The following example, similar to Example 12, shows that in general the funtion-ality law does not preserve the set of answer substitutions.Example 13Let us onsider the following two programs P1 and P2, where P2 is derived fromP1 by applying the goal replaement rule based on the (strong) replaement lawP1 ` 8 (q(X ;Y) ^ q(X ;Z) > ! q(X ;Y) ^ Y =Z):P1: p(X) q(X ;Y) ^ q(X ;Z) P2: p(X) q(X ;Y) ^ Y =Zq(f (a;Z); b) q(f (a;Z); b) q(f (Y ; a); b) q(f (Y ; a); b) As in Example 12, we have that:P1 ` p(X) 7! ffX =f (a;Z)g; fX =f (a; a)g; fX =f (Y ; a)gg andP2 ` p(X) 7! ffX =f (a;Z)g; fX =f (Y ; a)gg. �Finally, notie that Theorem 2 ensures the preservation of most general answersubstitutions for ordinary goals only. Thus, the answer substitutions omputed forgoals with ourrenes of goal variables, may not be preserved, as shown by thefollowing example.Example 14Let us onsider the following two programs P1 and P2, where P2 is derived fromP1 by unfolding lause 1 w.r.t. p using lause 2:P1: 1. a(G) (G=p) ^G P2: 1*. a(G) (G=q) ^G2. p q 2. p q3. q 3. q We have that P1 ` a(G) 7! ffG=pgg, and P2 ` a(G) 7! ffG=qgg. �

30 A. Pettorossi and M. Proietti7 Program Derivation in the Extended LanguageIn this setion we present some examples whih illustrate the use of our trans-formation rules. In these examples, by using goal variables and goal arguments,we introdue and manipulate ontinuations. For this reason we have measured theimprovements of program eÆieny by running our programs using the BinPrologontinuation passing ompiler (Tarau 1996). These run-time improvements havebeen reported in Setion 7.6. Compilers based on di�erent implementation method-ologies, suh as SICStus Prolog, may not give the same improvements. However, itshould be notied that the eÆieny improvements we get, do not ome from theuse of ontinuations, but from the program transformations performed by apply-ing our transformation rules (see Setion 5). Indeed, in BinProlog the ontinuationpassing style transformation in itself gives no speed-ups.Let us introdue the following terminology whih will be useful in the sequel. Wesay that: (i) a lause is in ontinuation passing style i� its body has no ourrenesof the onjuntion operator, and (ii) a program is in ontinuation passing style i� allits lauses are in ontinuation passing style. Thus, every program in ontinuationpassing style is a binary program in the sense of Tarau and Boyer (1990), that is,a program with at most one atom in the body of its lauses.When writing programs in this setion we use the following primitive prediates:=, 6=, �, and <. For the derivation of programs in ontinuation passing style, weassume that, for eah of these prediates there exists a orresponding primitiveprediate with an extra argument denoting a ontinuation. Let us all these predi-ates eq�, di��, geq�, and lt�, respetively.We assume that, for every program P , the following strong replaement lawshold:P ` 8 ((X =Y) ^ C = ! eq�(X ;Y ;C))P ` 8 ((M 6=N) ^ C = ! di��(M ;N ;C))P ` 8 ((M �N) ^ C = ! geq�(M ;N ;C))P ` 8 ((M <N) ^ C = ! lt�(M ;N ;C))In this setion we use the following syntatial onventions:(1) the onjuntion operator ^ is replaed by omma,(2) a lause of the form h g1_ g2 is also written as two lauses, namely, h g1and h g2, and(3) a lause of the form h (V = u); g where the variable V does not our inthe argument u, is also written as (h g)fV =ug.7.1 Tree FlippingThis example is borrowed from (J�rgensen et al. 1997) where it is used for showingthat onjuntive partial dedution may a�et program termination when trans-forming programs for eliminating multiple traversals of data strutures. A similarproblem arises when multiple traversals of data strutures are avoided by apply-ing Tamaki and Sato's unfold/fold transformation rules (Tamaki and Sato 1984)

Transformations of Logi Programs with Goals as Arguments 31aording to the tupling strategy (see Setion 2). In this example by using goalarguments and introduing ontinuations, we are able to derive a program in on-tinuation passing style whih eliminates multiple traversals of data strutures and,at the same time, preserves universal termination.Let us onsider the initial program FlipChek:1. iphek (X ;Y) ip(X ;Y); hek (Y)2. ip(l(N); l(N)) 3. ip(t(L;N ;R); t(FR;N ;FL)) ip(L;FL); ip(R;FR)4. hek (l(N)) nat(N)5. hek (t(L;N ;R)) nat(N); hek (L); hek (R)6. nat(0) 7. nat(s(N)) nat(N)where: (i) the term l(N) denotes a leaf with label N and the term t(L;N ;R) denotesa tree with label N and the two subtrees L and R, (ii) nat(X) holds i� X is a naturalnumber, (iii) hek (X) holds i� all labels in the tree X are natural numbers, and(iv) ip(X ;Y) holds i� the tree Y an be obtained by ipping all subtrees of thetree X .We would like to transform this program so to avoid the double traversal of trees(see the double ourrene of Y in the body of lause 1). By applying the tuplingstrategy (or, equivalently, onjuntive partial dedution), we derive the followingprogram FlipChek1:8. iphek (l(N); l(N)) nat(N)9. iphek (t(L;N ;R); t(FR;N ;FL)) nat(N);iphek (L;FL); iphek (R;FR)Program FlipChek1 performs only one traversal of any input tree whih is the �rstargument of iphek . However, as already mentioned, FlipChek1 does not preservetermination. Indeed, the goal iphek (t(l(N); 0; l(a));Y) fails in FlipChek, whilethis goal does not terminate in the derived program FlipChek1.Now we present a seond derivation starting from the same program FlipChekand produing a �nal program FlipChek2 whih: (i) is in ontinuation passingstyle, (ii) traverses the input tree only one, and (iii) preserves termination. Duringthis seond derivation we introdue goal arguments and we make use of the trans-formation rules introdued in Setion 5. The initial step of this derivation is theintrodution of the following new lause:10. newp(X ;Y ;G ;C ;D) ip(X ;Y); G=(hek (Y);C); DAs already mentioned, in this paper we do not illustrate the strategies needed forguiding the appliation of our transformation rules and, in partiular, we do notindiate how to onstrut the new de�nitions to be introdued, suh as lause 10above. For lause 10 we notie that: (i) by introduing a de�nition with the goalequality G=(hek (Y); C), instead of the goal hek(Y), we will be able to applythe folding rule by �rst performing leftward moves of goal equalities, instead of(possibly inorret) leftward moves of goals, and (ii) by introduing the ontinu-

32 A. Pettorossi and M. Proiettiations C and D , we will avoid the expensive use of the onjuntion operator foronstruting goal arguments.We ontinue our derivation by unfolding lause 10 w.r.t. ip(X ;Y) and we get:11. newp(l(N); l(N);G ;C ;D) (G=(hek (l(N));C)); D12. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D) ip(L;FL); ip(R;FR)(G=(hek (t(FR;N ;FL));C)); DWe then unfold lauses 11 and 12 w.r.t. the hek atoms, and after some appliationsof the goal replaement rule based on boolean laws and CET, we get:13. newp(l(N); l(N);G ;C ;D) G=(nat(N);C); D14. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D) ip(L;FL); ip(R;FR);(G=(nat(N); hek (FR); hek (FL);C)); DBy introduing and rearranging goal equalities (see laws 2.1 and 2.2, respetively,in Setion 5), we transform lause 14 into:15. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D) ip(L;FL); U =(hek (FL);C);ip(R;FR); V =(hek (FR);U); (G=(nat(N);V)); DNow we fold twie lause 15 using lause 10 and we get:16. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D) newp(L;FL;U ;C ;newp(R;FR;V ;U ; (G=(nat(N);V);D)))In order to express iphek in terms of newp we introdue a goal equality intolause 1 and we derive:17. iphek (X ;Y) ip(X ;Y); G=(hek (Y); true); GThen we fold lause 17 using lause 10 and we get:18. iphek (X ;Y) newp(X ;Y ;G ; true;G)The program we have derived so far onsists of lauses 13, 16, and 18. Notie thatlauses 13 and 16 are not in ontinuation passing style beause the onjuntionoperator ours in their bodies. In order to derive lauses in ontinuation passingstyle we introdue the following new de�nition:19. nat�(N ;C) nat(N); CBy unfolding, folding, and goal replaement steps based on the replaement lawFlipChek ` 8 ((X = Y);C = ! eq�(X ;Y ;C)), we derive the following �nalprogram FlipChek2:18. iphek (X ;Y) newp(X ;Y ;G ; true;G)20. newp(l(N); l(N);G ;C ;D) eq�(G ;nat�(N ;C);D)21. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D) newp(L;FL;U ;C ; newp(R;FR;V ;U ;eq�(G ;nat�(N ;V);D)))22. nat�(0;C) C23. nat�(s(N);C) nat�(N ;C)Program FlipChek2 traverses the input tree only one. Moreover, Theorem 1 en-sures that, for every goal g of the form iphek (t1; t2), where t1 and t2 are any

Transformations of Logi Programs with Goals as Arguments 33two terms, g terminates in FlipChek i� g terminates in FlipChek2 (see also Se-tion 7.5 for a more detailed disussion of the orretness properties of our programderivations). 7.2 Summing the Leaves of a TreeLet us onsider the following program TreeSum that, given a binary tree t whoseleaves are labeled by natural numbers, omputes the sum of the labels of the leavesof t .1. treesum(l(N);N) 2. treesum(t(L;R);N) treesum(L;NL); treesum(R;NR); plus(NL;NR;N)3. plus(0;X ;X) 4. plus(s(X);Y ; s(Z)) plus(X ;Y ;Z)By using Tamaki and Sato's transformation rules, from program TreeSum we mayderive a more eÆient program with aumulator arguments. In partiular, duringthis program derivation we introdue the following new prediate:5. a�ts(T ;Y ;Z) treesum(T ;X); plus(X ;Y ;Z)We also use the assoiativity of the prediate plus, that is, we use the followingequivalene whih holds in the least Herbrand model M (TreeSum) of the givenprogram TreeSum:M (TreeSum) j= 8X 1;X 2;X 3;S (9I (plus(X 1;X 2; I); plus(I ;X 3;S))$9J (plus(X 1; J ;S); plus(X 2;X 3; J)))During the derivation, we also make suitable goal rearrangements needed for per-forming foldings that use lause 5. We derive the following program TreeSum1.6. treesum(l(N);N) 7. treesum(t(L;R);N) a�ts(L;NR;N); treesum(R;NR)8. a�ts(l(N);A;Z) plus(N ;A;Z)9. a�ts(t(L;R);A;N) a�ts(L;A;NewA); a�ts(R;NewA;N)The least Herbrand models of programs TreeSum and TreeSum1 de�ne the samerelation for the prediate treesum. However, the two programs do not have thesame termination behaviour. For instane, the goal treesum(t(l(N); 0);Z) fails inTreeSum while it does not terminate in TreeSum1.By introduing goal arguments and using the transformation rules presented inSetion 5, we are able to derive a program whih: (i) is in ontinuation passingstyle, (ii) preserves termination, and (iii) is asymptotially more eÆient than theoriginal program TreeSum. Our derivation begins by introduing the following newlause:10. gen�ts(T ;Y ;Z ;G ;C ;D) treesum(T ;X); (G=(plus(X ;Y ;Z);C)); DWe unfold lause 10 and we get:11. gen�ts(l(N);Y ;Z ;G ;C ;D) (G=(plus(N ;Y ;Z);C)); D12. gen�ts(t(L;R);Y ;Z ;G ;C ;D) treesum(L;LS); treesum(R;RS);plus(LS ;RS ;S); (G=(plus(S ;Y ;Z);C)); D

34 A. Pettorossi and M. ProiettiNow we may exploit the following generalized assoiativity law for plus:TreeSum ` 8V ((plus(X 1;X 2; I); g [plus(I ;X 3;S)℄) > !(plus(X 1; J ;S); g [plus(X 2;X 3; J)℄))where V = fX 1;X 2;X 3;Sg [vars(g [℄) and fI ; Jg \ vars(g [℄) = ;. By this law,from lause 12 we get the following lause:13. gen�ts(t(L;R);Y ;Z ;G ;C ;D) treesum(L;LS); treesum(R;RS);plus(LS ;S1;Z); (G=(plus(RS ;Y ;S1);C)); DBy introduing and rearranging goal equalities (see laws 2.1 and 2.2 in Setion 5),we transform lause 13 into:14. gen�ts(t(L;R);Y ;Z ;G ;C ;D) treesum(L;LS); (GL=(plus(LS ;S1;Z); G=GR; D));treesum(R;RS); (GR=(plus(RS ;Y ;S1);C)); GLIn order to derive lauses in ontinuation passing style we introdue the followingnew de�nitions:15. ts�(T ;N ;C) treesum(T ;N); C16. plus�(X ;Y ;Z ;C) plus(X ;Y ;Z); CBy unfolding lauses 15 and 16 we get:17. ts�(l(N);N ;C) C18. ts�(t(L;R);N ;C) treesum(L;LN); treesum(R;RN);plus(LN ;RN ;N); C19. plus�(0;X ;X ;C) C20. plus�(s(X);Y ; s(Z);C) plus(X ;Y ;Z); CBy introduing and rearranging goal equalities, we transform lause 18 into:21. ts�(t(L;R);N ;C) treesum(L;LN); (G = (plus(LN ;RN ;N);C));treesum(R;RN); GBy folding steps and goal replaements (based on, among others, the replaementlaw TreeSum ` 8 ((X = Y);C = ! eq�(X ;Y ;C))), we get the following �nalprogram TreeSum2:22. treesum(T ;N) ts�(T ;N ; true)18. ts�(l(N);N ;C) C23. ts�(t(L;R);N ;C) gen�ts(L;RN ;N ;G ;C ; ts�(R;RN ;G))24. gen�ts(l(N);Y ;Z ;G ;C ;D) eq�(G ; plus�(N ;Y ;Z ;C);D)25. gen�ts(t(L;R);Y ;Z ;G ;C ;D) gen�ts(L;S1;Z ;GL; eq�(G ;GR;D);gen�ts(R;Y ;S1;GR;C ;GL))19. plus�(0;X ;X ;C) C20. plus�(s(X);Y ; s(Z);C) plus�(X ;Y ;Z ;C)This �nal program TreeSum2 is more eÆient than TreeSum. Indeed, in the worstase, TreeSum2 takes O(n) steps for solving a goal of the form treesum(t ;N), wheret is a ground tree and sn(0) is the sum of the labels of the leaves of t , while the initialprogram TreeSum takes O(n2) steps. Moreover, by our Theorem 1 of Setion 6, forevery goal g of the form treesum(t1; t2), where t1 and t2 are any terms, g terminatesin TreeSum i� g terminates in TreeSum2 (see also Setion 7.5).

Transformations of Logi Programs with Goals as Arguments 357.3 Mathing a Regular ExpressionLet us onsider the following mathing problem: given a string S in f0; 1; 2g�, wewant to �nd the position N of an ourrene of a substring P of S suh that Pis generated by the regular expression 0�1. The following program RegExprMathomputes suh a position:1. math(S ;N) pattern(S); N =02. math([C jS ℄;N) har (C); math(S ;M); plus(s(0);M ;N)3. pattern([0jS ℄) pattern(S)4. pattern([1jS ℄) 5. har (0) 6. har (1) 7. har (2) 8. plus(0;X ;X) 9. plus(s(X);Y ; s(Z)) plus(X ;Y ;Z)If we assume the depth-�rst, left-to-right evaluation strategy of Prolog, the runningtime of this program RegExprMath is O(n2) in the worst ase, where n is thelength of the input string. For a goal of the form math(s ;N), where s is a groundstring made out of n 0's, the program RegExprMath performs one resolution stepusing lause 1 for the all to math, and then n resolution steps using lause 3 forthe suessive alls to pattern. When the omputation baktraks, for the suessiveall of math(s1;N), where s1 is the tail of s , the program RegExprMath performsagain n�1 resolution steps using lause 3.By using the transformation rules of Setion 5, we now present the derivation ofa new program RegExprMath1 whih: (i) is in ontinuation passing style, (ii) pre-serves termination, and (iii) is asymptotially more eÆient than the original pro-gram RegExprMath. Indeed, program RegExprMath1 avoids the redundant res-olution steps performed by RegExprMath using lause 3. For our derivation weintrodue the following new prediates with goal arguments whih are ontinua-tions:10. math�(S ;N ;C) math(S ;N); C11. newp(S ;N ;C1;C2) (pattern(S); C1) _ (math(S ;N); C2)12. plus�(X ;Y ;Z ;C) plus(X ;Y ;Z); CBy unfolding lauses 10, 11, and 12 we get:13. math�([0jS ℄;N ;C) (pattern(S);N =0;C) _(math(S ;M); plus(s(0);M ;N);C)14. math�([1jS ℄;N ;C) (N =0;C) _(math(S ;M); plus(s(0);M ;N);C)15. math�([2jS ℄;N ;C) math(S ;M); plus(s(0);M ;N);C16. newp([0jS ℄;N ;C1;C2) (pattern(S);C1) _(pattern(S);N =0;C2) _(math(S ;M); plus(s(0);M ;N);C2)

36 A. Pettorossi and M. Proietti17. newp([1jS ℄;N ;C1;C2) C1 _(N =0;C2) _(math(S ;M); plus(s(0);M ;N);C2)18. newp([2jS ℄;N ;C1;C2) math(S ;M); plus(s(0);M ;N);C219. plus�(0;X ;X ;C) C20. plus�(s(X);Y ; s(Z);C) plus(X ;Y ;Z); CBy goal replaement using boolean laws, from lause 16 we get:21. newp([0jS ℄;N ;C1;C2) (pattern(S); (C1 _ (N =0;C2))) _(math(S ;M); plus(s(0);M ;N);C2)By performing folding and goal replaement steps (based on the replaement lawRegExprMath ` 8 ((X = Y);C = ! eq�(X ;Y ;C)) and other laws), we derivethe following program RegExprMath1:22. math(S ;N) math�(S ;N ; true)23. math�([0jS ℄;N ;C) newp(S ;M ; eq�(N ; 0;C); plus�(s(0);M ;N ;C))24. math�([1jS ℄;N ;C) eq�(N ; 0;C)25. math�([1jS ℄;N ;C) math�(S ;M ; plus�(s(0);M ;N ;C))26. math�([2jS ℄;N ;C) math�(S ;M ; plus�(s(0);M ;N ;C))27. newp([0jS ℄;N ;C1;C2) newp(S ;M ; (C1 _ eq�(N ; 0;C2)); plus�(s(0);M ;N ;C2))28. newp([1jS ℄;N ;C1;C2) C129. newp([1jS ℄;N ;C1;C2) eq�(N ; 0;C2)30. newp([1jS ℄;N ;C1;C2) math�(S ;M ; plus�(s(0);M ;N ;C2))31. newp([2jS ℄;N ;C1;C2) math�(S ;M ; plus�(s(0);M ;N ;C2))19. plus�(0;X ;X ;C) C32. plus�(s(X);Y ; s(Z);C) plus�(X ;Y ;Z ;C)This program RegExprMath1 is in ontinuation passing style, avoids redundantalls in ase of baktraking, and takes O(n) resolution steps in the worst ase,to �nd an ourrene of a substring of the form 0�1, where n is the length of theinput string. Moreover, by our Theorem 1 of Setion 6, for every goal g of the formmath(t1; t2), where t1 and t2 are any terms, g terminates in RegExprMath i� gterminates in RegExprMath1 (see also Setion 7.5).7.4 Marking maximal elementsLet us onsider the following marking problem. We are given: (i) a list L1 of theform [x0; : : : ; xr ℄, where for i=0; : : : ; r , xi is a list of integers, and (ii) an integer n(� 0). A list l of s+1 elements will also be denoted by [l [0℄; : : : ; l [s ℄℄. We assumethat for i =0; : : : ; r , the list xi has at least n+1 elements (and thus, the elementxi [n℄ exists) and we denote by m the maximum element of the set fx0[n℄; : : : ; xr [n℄g.From the list L1 we want to ompute a new list L2 of the form [y0; : : : ; yr ℄ suhthat, for i=0; : : : ; r , if xi [n℄=m then yi [n℄=> else yi [n℄=xi [n℄.For instane, if L1 = [[3; 8;�2; 4℄; [1; 3℄; [1; 8; 1℄℄ and n=1, then m=8, that is,the maximum element in f8; 3g. Thus, L2 = [[3;>; 2; 4℄; [1; 3℄; [1;>; 1℄℄.

Transformations of Logi Programs with Goals as Arguments 37The following program MaxMark omputes the desired list L2 from the list L1and the value N :1. mmark (N ;L1;L2) max�nth(N ;L1; 0;M); mark(N ;M ;L1;L2)2. max�nth(N ; [℄;M ;M) 3. max�nth(N ; [X jXs℄;A;M) nth(N ;X ;XN); max (A;XN ;B);max�nth(N ;Xs;B ;M)4. nth(0; [H jT ℄;H) 5. nth(s(N); [H jT ℄;E) nth(N ;T ;E)6. mark (N ;M ; [℄; [℄) 7. mark (N ;M ; [X jXs℄; [Y jYs ℄) mark�nth(N ;M ;X ;Y);mark(N ;M ;Xs;Ys)8. mark�nth(0;M ; [H 1jT ℄; [H 2jT ℄) (M =H 1;H 2=>)_ (M 6=H 1;H 2=H 1)9. mark�nth(s(N);M ; [H jT1℄; [H jT2℄) mark�nth(N ;M ;T1;T2)10. max (X ;Y ;X) X � Y11. max (X ;Y ;Y) X < YWhen running this program, the input list L1 = [x0; : : : ; xr ℄ is traversed twie: (i) the�rst time L1 is traversed to ompute the maximum m of the set fx0[n℄; : : : ; xr [n℄g(see the goalmax�nth(N ;L1; 0;M) in the body of lause 1), and (ii) the seond timeL1 is traversed to onstrut the list L2 by replaing, for i =0; : : : ; r , the elementxi [n℄ by > whenever xi [n℄=m (see the goal mark(N ;M ;L1;L2)).Now we use the transformation rules of Setion 5 and from program MaxMarkwe derive a new program MaxMark1 whih: (i) is in ontinuation passing style,(ii) preserves termination, and (iii) traverses the list L1 only one.By the de�nition introdution rule we introdue the following new prediateswith goal arguments:12. newp1(N ;L1;L2;A;M ;G ;C1;C2) max�nth(N ;L1;A;M); (G=(mark(N ;M ;L1;L2); C1)); C213. newp2(N ;X ;M ;Y ;A;B ;G1;G2;C) nth(N ;X ;XN); (G1=(mark�nth(N ;M ;X ;Y);G2));max (A;XN ;B); C14. max�(X ;Y ;Z ;C) max (X ;Y ;Z); CWe unfold lauses 12, 13, and 14, and then we move leftwards term equalities (seelaw 3 in Setion 5 whih allows us to rearrange term equalities). We get the followinglauses:15. newp1(N ; [℄; [℄;M ;M ;C1;C1;C2) C216. newp1(N ; [X jXs℄; [Y jYs ℄;A;M ;G ;C1;C2) nth(N ;X ;XN); max (A;XN ;B); max�nth(N ;Xs;B ;M);(G=(mark�nth(N ;M ;X ;Y); mark(N ;M ;Xs;Ys); C1));C217. newp2(0; [H 1jT ℄;M ; [H 2jT ℄;A;B ;G1;G2;C) (G1=(((M =H 1;H 2=>)_ (M 6=H 1;H 2=H 1));G2));max (A;H 1;B); C

38 A. Pettorossi and M. Proietti18. newp2(s(N); [H jT1℄;M ; [H jT2℄;A;B ;G1;G2;C) nth(N ;T1;XN); (G1=(mark�nth(N ;M ;T1;T2);G2));max (A;XN ;B); C19. max�(X ;Y ;X ;C) X �Y ; C20. max�(X ;Y ;Y ;C) X <Y ; CBy introduing and rearranging goal equalities, from lause 16 we get:21. newp1(N ; [X jXs℄; [Y jYs ℄;A;M ;G ;C1;C2) nth(N ;X ;XN); (G1=(mark�nth(N ;M ;X ;Y); G2));max (A;XN ;B);max�nth(N ;Xs;B ;M); (G2=(mark (N ;M ;Xs;Ys); C1));(G=G1); C2Finally, by folding steps and goal replaements based on the replaement laws forthe primitive prediates =, 6=, �, and <, we derive the following �nal programMaxMark1:22. mmark (N ;L1;L2) newp1(N ;L1;L2; 0;M ;G ; true;G)15. newp1(N ; [℄; [℄;M ;M ;C1;C1;C2) C223. newp1(N ; [X jXs℄; [Y jYs ℄;A;M ;G ;C1;C2) newp2(N ;X ;M ;Y ;A;B ;G1;G2);newp1(N ;Xs;Ys;B ;M ;G2;C1; eq�(G ;G1;C2)))24. newp2(0; [H 1jT ℄;M ; [H 2jT ℄;A;B ;G1;G2;C) eq�(G1; (eq�(M ;H 1; eq�(H 2;>;G2))_di��(M ;H 1; eq�(H 2;H 1;G2)));max�(A;H 1;B ;C))25. newp2(s(N); [H jT1℄;M ; [H jT2℄;A;B ;G1;G2;C) newp2(N ;T1;M ;T2;A;B ;G1;G2;C)26. max�(X ;Y ;X ;C) geq�(X ;Y ;C)27. max�(X ;Y ;Y ;C) lt�(X ;Y ;C)This �nal program MaxMark1 is in ontinuation passing style and traverses theinput list L1 only one. Moreover, by our Theorem 1 of Setion 6, for every goal gof the form mmark(t1; t2; t3), where t1, t2, and t3 are any terms, if g terminates inMaxMark then g terminates in MaxMark1 (see also Setion 7.5).7.5 Corretness of the Program DerivationsLet us briey omment on the orretness properties of the program derivations wehave presented in this Setion 7.In all program derivations of Setion 7, when using the transformation rules, wehave omplied with the restritions indiated at Point (1) of Theorem 2 (WeakCorretness). Thus, for every program derivation from an initial program P0 to a�nal program Pk , we have that Pk is a re�nement of P0 [Defk , where Defk is theset of de�nitions introdued during the derivation. In partiular, for every ordinarygoal g , if g terminates in P0, then g terminates in Pk and the most general answersubstitutions for g omputed by P0 are the same as those omputed by Pk .In the examples of Setions 7.1, 7.2, and 7.3 we have also omplied with the

Transformations of Logi Programs with Goals as Arguments 39restritions of Point (2) of Theorem 2 (Strong Corretness), beause all appliationsof the goal replaement rule are based on strong replaement laws. Thus, in theseexamples we have that Pk is equivalent to P0[Defk . In partiular, for every ordinarygoal g , if g terminates in Pk then g terminates in P0 [Defk .However, in the derivation of Setion 7.4 we have not omplied with the restri-tions of Point (2) of Theorem 2. In partiular, after unfolding lauses 12, 13, and14, we have made leftward moves of term equalities by using law 3 of Setion 5,and law 3 is not a strong replaement law. Thus, there may be an ordinary goalwhih does not terminate in the initial program MaxMark and terminates in the�nal program MaxMark1. Indeed, the goal mmark (0; [H jT ℄; [℄) does not terminatein MaxMark and terminates in MaxMark1.Finally, in all program derivations of this Setion 7, we have omplied with therestritions of Theorem 3 (Preservation of Safety), beause all replaement laws wehave applied preserve safety. Thus, sine every ordinary goal is safe in the ordinaryinitial program P0, we have that every ordinary goal is safe in the �nal program Pk .7.6 Experimental ResultsIn Table 1 below we have reported the speed-ups ahieved in the examples presentedin this paper. The speed-up (see Column D) is de�ned as the ratio between the run-time of the initial program (see Column A) and the run-time of the derived, �nalprogram (see Column B). In Columns A and B we have also indiated the asymp-toti worst-ase time omplexity of the initial and �nal programs, respetively. Foreah program the omplexity is measured in terms of the size of the proofs relativeto that program (or, equivalently, the number of LD-resolution steps performedusing that program). The input goal is indiated in Column C. We performed ourmeasurements by using BinProlog on a SUN workstation. This use is justi�ed bythe fat that every ordinary goal g is safe both in the initial program P0 and inthe �nal program Pk . Thus, we an use any Prolog system whih implements LD-resolution (and, in partiular, the BinProlog system) for omputing the relationsP0 ` g 7! A and Pk ` g 7! A de�ned by our operational semantis.In Column C of Table 1 we have that:(1) t1 is a random binary tree with 100,000 nodes;(2) t2 is a random binary tree with 100,000 nodes;(3) t3 is a random binary tree with 20,000 nodes and eah node is labeled by anumeral of the form sk (0), where 0�k�500;(4) t4 is a random binary tree with 20,000 nodes whose leaves are labeled by nu-merals of the form sk (0), where 0�k�500;(5) s is a random sequene of integers of the form: f0; 2g500001; and(6) n1 is 700, l1 is a random list of 1000 lists, and eah of these lists onsists of 800integers.When measuring the speed-ups for the programs Deepest and DeepestOr inRows 1 and 2 we have omputed the set of all answer substitutions, while forthe programs FlipChek, TreeSum, RegExprMath, and MaxMark in Rows 3{6 wehave omputed one answer substitution only.

40 A. Pettorossi and M. ProiettiTable 1. Speed-ups of the Final Programs with respet to the Initial ProgramsA. Initial Program : B. Final Program : C. Input goal D. Speed-up :aAsymptoti Complexity Asymptoti Complexity run-time(A)run-time(B)1. Deepest : O(n2)b Deepest2 : O(n) deepest (t1;N) 5.22. DeepestOr : O(n2) Deepest2 : O(n) deepest (t2;N) 2.73. FlipChek : O(n)d FlipChek2 : O(n) iphek (t3;T) 1.04. TreeSum : O(n2)e TreeSum2: O(n) treesum(t4;N) 9.25. RegExprMath : O(n2)f RegExprMath1 : O(n) math(s;N) 1.86. MaxMark : O(n)g MaxMark1 : O(n) mmark(n1;l1;L2) 1.8a run-time(A) denotes the run-time of the program in Column A for the input goal in Column C.run-time(B) denotes the run-time of the program in Column B for the input goal in Column C.b n is the number of nodes of the tree t1. n is the number of nodes of the tree t2.d n is the number of nodes of the tree t3. For the goal iphek(t3;T), the program FlipChekvisits the tree t3 twie, while the program FlipChek2 visits t3 only one.e n is the sum of the leaves of the tree t4.f n is the length of the string s.g n is the sum of the lengths of the lists in l1.As already mentioned at the end of Setion 2, the value of the speed-up relativeto the initial program Deepest (see Row 1) is higher than the value of the speed-uprelative to the initial program DeepestOr (see Row 2), and this is not due to the useof goals as arguments, but to the introdution of a disjuntion, thereby lauses 2and 3 have been replaed by lause 16.The absene of speed-up for the �nal program FlipChek2 (see Row 3) with re-spet to the initial program FlipChek, is aused by the fat that the eÆienyimprovements due to the elimination of the double traversal of the input tree t4are anelled out by the slowdown due to the introdution of multiple ontinua-tion arguments. However, the experimental results for the initial programMaxMarkand the �nal program MaxMark1 (see Row 6) show that the elimination of doubletraversals of data strutures may yield a signi�ant speed-up, espeially when theaess to the data struture is very ostly. Reall that the program MaxMark tra-verses twie the list l1, and for eah list l in the list l1, the program has to aessn1 elements of l . We have veri�ed that the speed-up obtained by eliminating thedouble traversal of l1 inreases with the value of n1.8 Final Remarks and Related WorkWe have shown that a simple extension of logi programming, where variables mayrange over goals and goals may appear as arguments of prediate symbols, an bevery useful for transforming programs and improving their eÆieny.We have presented a set of transformation rules for our extended logi languageand we have shown their orretness with respet to the operational semantis givenin Setion 4. In partiular, in Setion 6 we have shown that, under suitable ondi-

Transformations of Logi Programs with Goals as Arguments 41tions, our transformation rules preserve termination (see Theorem 1), most generalanswer substitutions (see Theorem 2), and safety (see Theorem 3). As in (Bossi andCoo 1994), for our logi programs we onsider an operational semantis based onuniversal termination (that is, the operational semantis of a goal is de�ned i� allLD-derivations starting from that goal are �nite). Theorem 2 extends the resultspresented in (Bossi and Coo 1994) for de�nite logi programs in that: (i) ourlanguage is an extension of de�nite logi programs, and (ii) our folding rule is morepowerful. Indeed, even restriting ourselves to programs that do not ontain goalvariables and goal arguments, we allow folding steps whih use lauses whose bodiesontain disjuntions, and this is not possible in (Bossi and Coo 1994), where forapplying the folding rule one is required to use exatly one lause whose body isa onjuntion of atoms. However, one should notie that the transformations pre-sented in (Bossi and Coo 1994) preserve all omputed answer substitutions, whileours preserve the most general answer substitutions only.Our logi language has some higher order apabilities beause goals may our asarguments, but these apabilities are limited by the fat that the quanti�ation offuntion or prediate variables is not allowed. However, the objetive of this paperis not the design of a new higher order logi language, suh as the ones presentedin (Chen et al. 1993; Hill and Gallagher 1998; Nadathur and Miller 1998). Rather,our aim was to demonstrate the usefulness of some higher order onstruts forderiving eÆient logi programs by transformation. Indeed, we have shown thatvariables whih range over goals are useful in the ontext of program transformation.Moreover, the use of these variables may avoid the need for goal rearrangementswhih ould generate programs that do not preserve termination.The approah we have proposed in this paper for avoiding inorret goal rear-rangements, is omplementary to the approah desribed in (Bossi et al. 1996),where the authors give suÆient onditions for goal rearrangements to preserve lefttermination. (Reall that a program P is said to be left terminating i� all groundgoals universally terminate in P .) Thus, when these suÆient onditions are notmet or their validity annot be proved, one may apply our tehnique whih avoidsinorret goal rearrangements by the introdution and the rearrangement of goalequalities. Indeed, we have proved that the appliation of our tehnique preservesuniversal termination, and thus, it preserves left termination as well.The theory we have presented may also be used to give sound semanti foun-dations to the development of logi programs whih use higher order generaliza-tions and ontinuations. In (Pettorossi and Proietti 1997; Tarau and Boyer 1990)and (Pettorossi and Skowron 1987; Wand 1980) the reader may �nd some examplesof use of these tehniques in the ase of logi and funtional programs, respetively.We leave for future work the development of suitable strategies for direting theuse of the transformation rules we have proposed in this paper.AknowledgementsWe would like to thank Mihael Leushel for pointing out an error in a preliminaryversion of this paper and for his helpful omments. We also thank the anonymous

42 A. Pettorossi and M. Proiettireferees of the LoPSTr '99 Workshop, where a preliminary version of this paperwas presented (Pettorossi and Proietti 2000), and the referees of the Theory andPratie of Logi Programming Journal for their suggestions.This work has been partially supported by MURST Progetto Co�nanziato `Te-nihe Formali per la Spei�a, l'Analisi, la Veri�a, la Sintesi e la Trasformazione diSistemi Software' (Italy), and Progetto Coordinato CNR `Veri�a, Analisi e Trasfor-mazione dei Programmi Logii' (Italy).AppendixThis Appendix ontains:(i) Proposition 4 and its proof,(ii) the proofs of Lemmata 1, 2, 3, and 4 (based on Propositions 2 and 4),(iii) Lemmata 5 and 6 and their proofs (based on Proposition 4), and(iv) the proofs of the main results, that is, (iv.1) the proof of Theorem 1 (basedon Proposition 3, Lemmata 1, 2, 3, and 4), (iv.2) the proof of Theorem 2 (basedon Proposition 1 and Theorem 1), and (iv.3) the proof of Theorem 3 (based onLemmata 5 and 6).For the proofs of Proposition 4 and Lemma 1 given below, we need the followingde�nition.De�nition 8 (Size and �-measure of a Dedution Tree)Let � be a �nite dedution tree. The size of � is the number of its nodes, and the�-measure of � , denoted �(�), is the pair hm; si, where m is the depth of � and sis the size of � .The values of the �-measure an be lexiographially ordered, and we stipulatethat: hm1; s1i < hm2; s2i i� either m1<m2 or (m1=m2 and s1<s2).Proposition 4Let P be a program, g1, g2 be goals and let V be a set of variables.(i) P ` 8V (g1 �! g2) holds i� for every idempotent substitution # suh thatvars(#) \ vars(g1; g2) � V , for every goal g suh that vars(g) \ vars(g1; g2) � V ,and for every b 2 ftrue; falseg, we have that:if P ` (g1# ^ g) # b then P ` (g2# ^ g) # b.(ii) P ` 8V (g1 >�! g2) holds i� for every idempotent substitution # suh thatvars(#) \ vars(g1; g2) � V , for every goal g suh that vars(g) \ vars(g1; g2) � V ,and for every b 2 ftrue; falseg, we have that:if P ` (g1# ^ g) #m b then P ` (g2# ^ g) #n b and m � n.(iii) The following two properties are equivalent:(iii.1) for every goal ontext h[℄ suh that vars(h[℄) \ vars(g1; g2) � V ,if h[g1℄ is safe in P then h[g2℄ is safe in P , and(iii.2) for every idempotent substitution # suh that vars(#)\vars(g1; g2) � V andfor every goal g suh that vars(g) \ vars(g1; g2) � V ,if g1# ^ g is safe in P then g2# ^ g is safe in P .

Transformations of Logi Programs with Goals as Arguments 43Proof of Proposition 4(i) only-if part. Let us onsider an idempotent substitution # suh that vars(#) \vars(g1; g2) � V . Let # be fU1=u1; : : : ;Uk=ukg. Sine # is idempotent we havethat for i = 1; : : : ; k , Ui 62 ui . Assume that for every goal g suh that vars(g) \vars(g1; g2) � V , and for every b 2 ftrue; falseg, there exists A1 2 P(Subst) suhthat P ` (g1# ^ g) 7! A1. We have to show that there exists A2 2 P(Subst) suhthat P ` (g2# ^ g) 7! A2 and A1=; i� A2=;.By suitably renaming the variables of the goal g1, without loss of generality wemay assume that, for i = 1; : : : ; k , Ui 62 vars(g). Sine # is idempotent, by usingrules (teq2) and (geq) we may onstrut a proof of P ` U1 = u1 ^ : : : ^ Uk = uk^g1 ^ g 7! B1, where B1=(#ÆA1). By the hypothesis that P ` 8V (g1 �! g2) holdsand the hypotheses that vars(#)\ vars(g1; g2) � V and vars(g)\ vars(g1; g2) � V ,we have that there exists B2 2 P(Subst) suh that P ` U1= u1 ^ : : : ^ Uk = uk^g2 ^ g 7! B2 has a proof and B1 = ; i� B2 = ;. The only way of onstrutingthis proof is by using k times the rules (teq2) or (geq) and onstruting a proof ofP ` g2# ^ g 7! A2, where B2=(#ÆA2). Thus, A1=; i� B1=; i� B2=; i� A2=;.(i) if part. We show a slightly more general fat than the if part of (i). We assumethat for every idempotent substitution # suh that vars(#)\ vars(g1; g2) � V , andfor every goal g suh that vars(g)\ vars(g1; g2) � V , if there exists A1 2 P(Subst)suh that P ` (g1# ^ g) 7! A1, then there exists A2 2 P(Subst) suh that P `(g2# ^ g) 7! A2 and A1 = ; i� A2= ;. Then we show that, for every goal ontexth[℄ and substitution # suh that vars(h[℄#) \ vars(g1; g2) � V ,if there exists B1 2 P(Subst) suh that P ` h[g1℄# 7! B1then there exists B2 2 P(Subst) suh that P ` h[g2℄# 7! B2and B1=; i� B2=;.We prove our thesis by indution on the measure �(�) (see De�nition 8) of theproof � of P ` h[g1℄# 7! B1(reall that a proof is a partiular �nite dedutiontree). We reason by ases on the struture of the goal ontext h[℄. We onsider thefollowing four ases only. The others are similar and we omit them.- Case 1: h[℄ is ^ g3.Assume that P ` g1#^g3# 7! B1. Then, by hypothesis, we get: P ` g2#^g3# 7! B2for some B2 2 P(Subst) suh that B1=; i� B2=;.- Case 2: h[℄ is t1= t2 ^ g3[℄.Assume that there exists a proof �1 of P ` t1#= t2# ^ g3[g1℄# 7! B1.If t1# and t2# are not uni�able then, by rule (teq1), B1 is ; and there exists a proofof P ` t1#= t2# ^ g3[g2℄# 7! ;.If t1# and t2# are uni�able then, by rule (teq2), B1 is of the form (mgu(t1#; t2#)ÆC1)for some C1 2 P(Subst) and there exists a proof �2 of P ` g3[g1℄#mgu(t1#; t2#) 7!C1. Sine �(�2) < �(�1), by indution hypothesis P ` g3[g2℄#mgu(t1#; t2#) 7! C2has a proof for some C2 2 P(Subst) and C1 = ; i� C2 = ;. Thus, by rule (teq2),there exists B2 2 P(Subst) suh that P ` t1#= t2# ^ g3[g2℄# 7! B2 where B2 =mgu(t1#; t2#) Æ C2 and B1=; i� C1=; i� C2=; i� B2=;.- Case 3: h[℄ is (G=g3[℄) ^ g4.Assume that P ` ((G = g3[g1℄) ^ g4)# 7! B1 has a proof of depth m and size s .

44 A. Pettorossi and M. ProiettiThen, G# is a goal variable not ourring in g3[g1℄#, the node P ` (G#=g3[g1℄#)^g4# 7! B1 has been obtained by applying rule (geq), B1 is fG#=g3[g1℄#gÆC1 forsome C1 2 P(Subst), and P ` g4#fG#=g3[g1℄#g 7! C1 has a proof of depthm and size s � 1. Now, suppose that G# ours in g4# n times. Thus, also g1will our n times in g4#fG#=g3[g1℄#g. Sine hm; s�1i < hm; si, by applying theindution hypothesis n times, we have that there exists C2 2 P(Subst) suh thatP ` g4#fG#=g3[g2℄#g 7! C2 has a proof and C1 = ; i� C2 = ;. By using rule(geq), we an onstrut a proof of P ` G# = g3[g2℄# ^ g4# 7! B2, where B2 isfG#=g3[g2℄#gÆC2. Thus, B1=; i� C1=; i� C2=; i� B2=;.- Case 4: h[℄ is p(u1; : : : ; ui [℄; : : : ; uk) ^ g3.Assume that P ` p(u1#; : : : ; ui [g1℄#; : : : ; uk#) ^ g3# 7! B1 has a proof of depth mand size s . Then, in the last step of this proof rule (at) has been used, B1 is ofthe form C1 �vars(p(u1#; : : : ; ui [g1℄#; : : : ; uk#) ^ g3#) for some C1 2 P(Subst), andP ` bodyfU1=u1#; : : : ;Ui=ui [g1℄#; : : : ;Uk=uk#g ^ g3# 7! C1 has a proof of depthm�1 and size s�1, where p(U1; : : : ;Ui ; : : : ;Uk) body is a renamed apart lauseof P . Sine hm�1; s�1i < hm; si, by indution hypothesis we have that thereexists C2 2 P(Subst) suh that P ` bodyfU1=u1#; : : : ;Ui=ui [g2℄#; : : : ;Uk=uk#g ^g3# 7! C2 has a proof and C1 = ; i� C2 = ;. Thus, by using rule (at), we anonstrut a proof of P ` p(u1#; : : : ; ui [g2℄#; : : : ; uk#) ^ g3# 7! B2, where B2 isC2 � vars(p(u1#; : : : ; ui [g2℄#; : : : ; uk#) ^ g3#) and B1 = ; i� C1 = ; i� C2 = ; i�B2=;.(ii) The proof is similar to the one of (i) and we omit it.(iii) Suppose that (iii.1) holds and suppose also that # is an idempotent substitutionsuh that vars(#)\vars(g1; g2) � V , g is a goal suh that vars(g)\vars(g1; g2) � V ,and g1# ^ g is safe in P . We have to prove that g2# ^ g is safe in P .Suppose that g2# ^ g is not safe in P . Then there exist A 2 P(Subst) and adedution tree �1 for P ` g2# ^ g 7! A suh that a leaf of �1 is of the formP ` g3 7! B and g3 is stuk. Let # be the substitution fU1=u1; : : : ;Uk=ukg suhthat, for i = 1; : : : ; k , Ui 62 ui . Without loss of generality, we may assume that,for i = 1; : : : ; k , Ui 62 vars(g). By using rules (teq2) and (geq), we an onstruta dedution tree �2 for P ` U1 = u1 ^ : : : ^ Uk = uk ^ g2 ^ g 7! A suh that�2 has P ` g3 7! B at a leaf. Thus, U1 = u1 ^ : : : ^ Uk = uk ^ g2 ^ g is notsafe in P . Sine vars(#) \ vars(g1; g2) � V and vars(g) \ vars(g1; g2) � V , wehave that vars(U1=u1 ^ : : : ^ Uk =uk ^ g) \ vars(g1; g2) � V and, thus, by (iii.1)U1=u1^ : : :^Uk=uk^g1^g is not safe in P . None of the goals U1=u1; : : : ;Uk=ukis stuk and, thus, a desendant node of g1#^ g is stuk, that is, g1#^ g is not safein P .The proof that (iii.2) implies (iii.1) an be done by indution on dedution treesordered by the �-measure. We omit this proof.Proof of Lemma 1Reall that, by de�nition, for every b 2 ftrue; falseg, P ` g #m b means that thereexists A 2 P(Subst) suh that P ` g 7! A has a proof of depth m and b= true i�

Transformations of Logi Programs with Goals as Arguments 45A 6=;. We prove the thesis by indution on the �-measure (see De�nition 8) of theproof of P ` g 7! A whih, by hypothesis, has depth m and size s .Our indution hypothesis is that, for all hm1; s1i < hm; si, for all goals g , and forall A1 2 P(Subst), if P ` g 7! A1 has a proof of depth m1 and size s1, then thereexists B1 2 P(Subst) suh that NewP ` g 7! B1 has a proof of depth n1, withm1 � n1, and A1= ; i� B1= ;. We have to show that there exists B 2 P(Subst)suh that NewP ` g 7! B has a proof of depth n, with m � n, and A = ; i�B = ;. We proeed by ases on the struture of g . We �rst notie that, sine ^ isassoiative with neutral element true, the grammar for generating goals given inSetion 2 an be replaed by the following one:g ::= G ^ g1 j true j false ^ g1 j (t1= t2) ^ g1 j (g1=g2) ^ g3 jp(u1; : : : ; um) ^ g1 j (g1 _ g2) ^ g3We onsider the following two ases only. The others are similar and we omit them.- Case 1: g is (g1=g2)^g3. Assume that P ` (g1=g2)^g3 7! A has a proof of depthm and size s . Then, g1 is a goal variable, say G , G 62 vars(g2), P ` (G=g2)^g3 7!A has been derived by applying rule (geq), and there exists A1 2 P(Subst) suhthat A=(fG=g2g Æ A1) and P ` g3fG=g2g 7! A1 has a proof of depth m and sizes � 1. Sine hm; s�1i < hm; si, by indution hypothesis there exists B1 2 P(Subst)suh that NewP ` g3fG=g2g 7! B1 has a proof of depth n with m � n andA1= ; i� B1= ;. By rule (geq), we have that NewP ` (G = g2) ^ g3 7! B , whereB = (fG=g2g Æ B1), has a proof of depth n with m � n. By the de�nition of the Æoperator, we have that A=; i� A1=; i� B1=; i� B=;.- Case 2: g is p(u1; : : : ; um) ^ g1. Assume that P ` p(u1; : : : ; um) ^ g1 7! A hasa proof of depth m and size s . Then, P ` p(u1; : : : ; um) ^ g1 7! A has beenderived by using rule (at), and there exists A1 2 P(Subst) suh that A = (A1 �vars(p(u1; : : : ; uk) ^ g1)) and P ` bd rfV1=u1; : : : ;Vm=umg ^ g1 7! A1 has a proofof depth m�1 and size s�1, where p(V1; : : : ;Vm) bd r is a renamed apartlause of P . Now, by the hypothesis that P ` 8V1; : : : ;Vm (bdr >�! newbd r), bythe fat that vars(fV1=u1; : : : ;Vm=umg) \ vars(bd r ;newbdr) � fV1; : : : ;Vmg andvars(g1) \ vars(bd r ;newbd r) � fV1; : : : ;Vmg, and by Proposition 4 (ii), we havethat there exists A2 2 P(Subst) suh that P ` newbd rfV1=u1; : : : ; Vm=umg^g1 7!A2 has a proof of depth n1 and size s1, with m�1 � n1 and A1 = ; i� A2 = ;.Sine hn1; s1i < hm; si, by indution hypothesis there exists B1 2 P(Subst) suhthat NewP ` newbd rfV1=u1; : : : ; Vm=umg ^ g1 7! B1 has a proof of depth n2with n1 � n2 and A2=; i� B1=;. Sine hd r is p(V1; : : : ;Vm), by using rule (at)we an onstrut a proof for NewP ` p(u1; : : : ; um) ^ g1 7! B of depth n = n2+1where B = (B1 � vars(p(u1; : : : ; uk) ^ g1)). Thus, m � n and, by the de�nition ofthe � operator, A=; i� A1=; i� A2=; i� B1=; i� B=;.Proof of Lemma 2(i) Let us onsider the transformation sequene Pi ; : : : ;Pj . Let us also onsiderany index h in fi ; : : : ; j�1g and any two lauses 1: hd bd in program Ph and2: hd newbd in program Ph+1. Sine Pi ; : : : ;Pj is onstruted by using theunfolding rule only, we have that:

46 A. Pettorossi and M. Proiettibd = b[p(u1; : : : ; um)℄ and newbd = b[gfV1=u1; : : : ;Vm=umg℄for some lause p(V1; : : : ;Vm) g in Pi , some goal ontext b[℄, and some m-tupleof arguments (u1; : : : ; um). To prove this lemma we have to show that:Pi ` 8V (b[p(u1; : : : ; um)℄ >�! b[gfV1=u1; : : : ;Vm=umg℄) (�)where V = vars(hd). Now, for every lause p(V1; : : : ;Vm) g in Pi we have that:Pi ` 8V1; : : : ;Vm (p(V1; : : : ;Vm) >�! g) (�)From (�), by Point (iv0) of Proposition 2 we get:Pi ` 8W (p(u1; : : : ; um) >�! gfV1=u1; : : : ;Vm=umg) ()where W = vars(u1; : : : ; um). From (), by Point (i0) of Proposition 2 we get:Pi ` 8Z (b[p(u1; : : : ; um)℄ >�! b[gfV1=u1; : : : ;Vm=umg℄) (Æ)where Z = vars(b[p(u1; : : : ; um)℄). From (Æ), by Points (ii0) and (iii0) of Proposi-tion 2 we get (�), as desired.(ii) In order to prove Point (ii) of the thesis, we �rst show the following property.Property (A): For every lause d : newp(V1; : : : ;Vm) g in Defk whih is usedfor folding during the onstrution of the sequene Pj ; : : : ;Pk , we have that thereplaement law Pj ` 8V1; : : : ;Vm (newp(V1; : : : ;Vm) = ! g) holds.Property (A) is a onsequene of the fat that during the sequene Pi ; : : : ;Pj wehave performed the parallel leftmost unfolding of every lause whih is used forfolding during Pj ; : : : ;Pk .Now we prove Point (ii) of the thesis by ases with respet to the transformationrule whih is used to derive program Ph+1 from program Ph , for h = j ; : : : ; k�1.- Case 1: Ph+1 is derived from Ph by the unfolding rule using a lause whih isamong those also used for folding (in a previous transformation step). The thesisfollows from Property (A) and Points (i0), (ii0), (iii0), and (iv0) of Proposition 2.- Case 2: Ph+1 is derived from Ph by the unfolding rule using a lause whihis not among those used for folding. Thus, belongs to P0 beause the only wayof introduing in the body of a lause an ourrene of a non-primitive prediatewhih is not de�ned in P0, is by an appliation of the folding rule. Hene, belongsto Pj as well. Now, for every lause of the form: p(V1; : : : ;Vm) g in Pj wehave that:Pj ` 8V1; : : : ;Vm (p(V1; : : : ;Vm) >�! g)The thesis follows from Property (A) and Points (i0), (ii0), (iii0), and (iv0) of Propo-sition 2.- Case 3: Ph+1 is derived from Ph by the folding rule. The thesis follows fromProperty (A) and Points (i0), (ii0), (iii0), and (iv0) of Proposition 2.- Case 4: Ph+1 is derived from Ph by the goal replaement rule based on a replae-ment law of the form P0 ` 8V (g1 >�! g2). The thesis follows from Points (i0), (ii0),and (iii0) of Proposition 2 and the fat that also Pj ` 8V (g1 >�! g2) holds, beausethe non-primitive prediates of fg1; g2g are de�ned in P0, and for eah prediate pde�ned in P0, the de�nition of p in P0 is equal to the de�nition of p in Pj .

Transformations of Logi Programs with Goals as Arguments 47Proof of Lemma 3We assume that there exists A 2 P(Subst) suh that NewP ` g 7! A has a proofof size n. We have to show that there exists B 2 P(Subst) suh that P ` g 7! Bholds, and A=; i� B =;. We proeed by indution on n. We assume that, for allm < n, for all goals h, and for all A1 2 P(Subst), if NewP ` h 7! A1 has a proofof size m, then P ` h 7! B1 has a proof for some B1 2 P(Subst) suh that A1=;i� B1=;. Now we proeed by ases on the struture of g . We onsider the followingtwo ases. The other ases are similar and we omit them.- Case 1: g is (g1 = g2) ^ g3. Assume that NewP ` (g1 = g2) ^ g3 7! A has aproof of size n. Then, g1 is a goal variable, say G , G 62 vars(g2), and NewP `(G = g2) ^ g3 7! A has been derived by applying rule (geq). Thus, there existsA1 2 P(Subst) suh that A is (fG=g2g Æ A1) and NewP ` g3fG=g2g 7! A1 has aproof of size n�1. By indution hypothesis there exists B1 2 P(Subst) suh thatP ` g3fG=g2g 7! B1 has a proof and A1 = ; i� B1 = ;. By using rule (geq), wean onstrut a proof of P ` (G = g2) ^ g3 7! B where B is fG=g2g Æ B1. By thede�nition of the Æ operator, we have that A=; i� A1=; i� B1=; i� B=;.- Case 2: g is p(u1; : : : ; um)^g1. Assume that NewP ` p(u1; : : : ; um)^g1 7! A has aproof of size n. Then, NewP ` p(u1; : : : ; um)^g1 7! A has been derived by applyingrule (at), and there exists a proof of size n � 1 of NewP ` newbdrfV1=u1; : : : ;Vm=umg ^ g1 7! A1 where p(V1; : : : ;Vm) newbdr is a renamed apart lauseof NewP and A is (A1 � vars(p(u1; : : : ; uk) ^ g1)). By indution hypothesis thereexists a proof of P ` newbdrfV1=u1; : : : ; Vm=umg ^ g1 7! B1 suh that A1 = ;i� B1 = ;. Now, by the hypothesis that P ` 8V1; : : : ;Vm (newbdr �! bdr), bythe fat that vars(fV1=u1; : : : ;Vm=umg) \ vars(bdr ;newbdr) � fV1; : : : ;Vmg andvars(g1)\vars(bdr ;newbdr) � fV1; : : : ;Vmg, and by Proposition 4 (i), we have thatP ` bdrfV1=u1; : : : ;Vm=umg ^ g1 7! B2 has a proof for some B2 2 P(Subst) suhthat B1=; i� B2=;. Sine hd r is p(V1; : : : ;Vm), by using rule (at) we an onstruta proof for P ` p(u1; : : : ; um) ^ g1 7! B where B is (B2 �vars(p(u1; : : : ; uk) ^ g1)).By the de�nition of the � operator, we have that A=; i� A1=; i� B1=; i� B2=;i� B=;.Proof of Lemma 4If Ph+1 is derived from Ph by the unfolding rule using a lause of the formp(V1; : : : ;Vm) g in P0 [Defk , then the thesis follows from Points (i), (ii), (iii),and (iv) of Proposition 2, and the fat that the replaement law P0 [Defk `8V1; : : : ;Vm (g �! p(V1; : : : ;Vm)) holds. Similarly, if Ph+1 is derived from Ph bythe folding rule using a lause of the form newp(V1; : : : ;Vm) g in Defk , then thethesis follows from Points (i), (ii), (iii), and (iv) of Proposition 2, and the fat thatthe replaement law P0 [Defk ` 8V1; : : : ;Vm (newp(V1; : : : ;Vm) �! g) holds.Finally, if Ph+1 is derived from Ph by the goal replaement rule, then the thesis fol-lows from the fat that it is based on a strong replaement law and from Points (i),(ii), and (iii) of Proposition 2.The following Lemma 5 and Lemma 6 are neessary for proving that a transforma-tion sequene preserves safety (see Theorem 3).

48 A. Pettorossi and M. ProiettiLemma 5Let P and NewP be programs of the form:P : hd1 bd1 NewP : hd1 newbd1... ...hds bds hds newbd sSuppose that for r = 1; : : : ; s and for every goal ontext b[℄ suh that vars(b[℄) \vars(bdr ;newbdr) � vars(hdr), we have that if b[bd r ℄ is safe in P then b[newbd r ℄ issafe in P . Then, for every goal g , if g is safe in P then g is safe in NewP .Proof of Lemma 5We assume that g is not safe in NewP and we prove that g is not safe in P .Sine g is not safe in NewP, there exist A 2 P(Subst) and a dedution tree � forNewP ` g 7! A suh that a leaf of � is of the form NewP ` gstuk 7! B andthe goal gstuk is stuk. We proeed by indution on the size of � . We onsider thefollowing two ases only. The others are similar and we omit them.- Case 1: g is (g1 = g2) ^ g3. Assume that the dedution tree � for NewP `(g1=g2)^g3 7! A has size s . If g1 is not a goal variable or it is a goal variableourring in g2, then (g1=g2)^ g3 is not safe in P . Otherwise, g1 is a goal variable,say G , and G 62 vars(g2). Thus, NewP ` (G = g2) ^ g3 7! A has been derived byapplying rule (geq), and there exists A1 2 P(Subst) suh that: (a) the subtree �1 of� rooted at NewP ` g3fG=g2g 7! A1 has size s�1, and (b) NewP ` gstuk 7! B isa leaf of �1. By indution hypothesis g3fG=g2g is not safe in P and, by rule (geq),also (G=g2) ^ g3 is not safe in P .- Case 2: g is p(u1; : : : ; um) ^ g1. Assume that the dedution tree � for NewP `p(u1; : : : ; um) ^ g1 7! A has size s . Thus, NewP ` p(u1; : : : ; um) ^ g1 7! Ahas been derived by using rule (at), and there exist A0 2 P(Subst) and a re-named apart lause p(V1; : : : ;Vm) newbd r of NewP suh that: (a) the sub-tree �1 of � rooted at NewP ` newbd rfV1=u1; : : : ;Vm=umg ^ g1 7! A0 hassize s � 1 and (b) NewP ` gstuk 7! B is a leaf of �1. By indution hypoth-esis newbd rfV1=u1; : : : ;Vm=umg ^ g1 is not safe in P . Now, by hypothesis, bythe fat that vars(fV1=u1; : : : ;Vm=umg) \ vars(bdr ;newbdr) � fV1; : : : ;Vmg andvars(g1) \ vars(bdr ;newbdr) � fV1; : : : ;Vmg, and by Proposition 4 (iii), we havethat bd rfV1=u1; : : : ;Vm=umg^ g1 is not safe in P . Sine p(V1; : : : ;Vm) bd r is arenamed apart lause of P , by rule (at), also p(u1; : : : ; um)^g1 is not safe in P .Lemma 6Let P0; : : : ;Pk be a transformation sequene and let Defk be the set of de�nitionsintrodued during that sequene. For h = 0; : : : ; k�1, for any pair of lauses 1:hd bd in program Ph and 2: hd newbd in program Ph+1, suh that 2 isderived from 1 by an appliation of the unfolding rule, or folding rule, or goalreplaement rule whih preserves safety, and for every goal ontext b[℄ suh thatvars(b[℄) \ vars(bd ;newbd) � vars(hd), we have that:if b[bd ℄ is safe in P0 [Defk then b[newbd ℄ is safe in P0 [Defk .

Transformations of Logi Programs with Goals as Arguments 49Proof of Lemma 6First we notie that, for every lause hd0 bd0 in P0 [Defk and for every goalontext b[℄ suh that vars(b[℄) \ vars(bd0) � vars(hd0), we have the following:Property (S): b[hd0℄ is safe in P0 [Defk i� b[bd0℄ is safe in P0 [Defk .Now, take any h = 0; : : : ; k �1. We reason by ases on the transformation ruleapplied for deriving the lause hd newbd in Ph+1 from the lause hd bd inPh .If hd newbd is derived from hd bd by the unfolding rule using a lausehd0 bd0 in P0 [Defk , then for some goal ontext g [℄, bd is of the form g [hd0#℄and newbd is of the form g [bd0#℄. Then the thesis follows from the only-if part ofProperty (S).Similarly, if hd newbd is derived from hd bd by the folding rule using alause hd0 bd0 in P0 [Defk , then for some goal ontext g [℄, bd is of the formg [bd0#℄ and newbd is of the form g [hd0#℄. Then the thesis follows from the if partof Property (S).Finally, if hd newbd is derived from hd bd by the goal replaement rule, thenthe thesis follows from the hypothesis that every appliation of the goal replaementrule preserves safety.Proof of Theorem 1 (Preservation of Suesses and Failures).By Proposition 3, without loss of generality we may assume that the admissiblesequene P0; : : : ;Pk is ordered. Let Pj be the program obtained at the end of theseond subsequene of P0; : : : ;Pk , that is, after unfolding every lause in Defk whihis used for folding. Point (1) of this theorem is a onsequene of the following twofats:(F1) by Lemma 1 and Point (i) of Lemma 2, we have that, for every goal g and forevery b 2 ftrue; falseg, if P0 [Defk ` g #m b then Pj ` g #n1 b with m � n1,and(F2) by Lemma 1 and Point (ii) of Lemma 2, we have that: for every goal g andfor every b 2 ftrue; falseg, if Pj ` g #n1 b then Pk ` g #n b with n1 � n.Point (2) of this theorem is a straightforward onsequene of Lemmata 3 and 4.Proof of Theorem 2 (Corretness Theorem).(1) First we prove that P0 [Defk v Pk . Let g be an ordinary goal and let A bea set of substitutions suh that P0 [Defk ` g 7! A. We have to prove that thereexists B 2 P(Subst) suh that Pk ` g 7! B and A and B are equally general withrespet to g .Sine P0 [Defk ` g 7! A, by de�nition there exists b 2 ftrue; falseg suh thatP0 [Defk ` g # b. By Point (1) of Theorem 1, we have that Pk ` g # b and, thus,there exists B 2 P(Subst) suh that Pk ` g 7! B .In order to prove that A and B are equally general with respet to g , we have toshow that: (a) for every substitution � 2 A there exists a substitution � 2 B suhthat g� is an instane of g�, and (b) for every � 2 B there exists � 2 A suh thatg� is an instane of g�.

50 A. Pettorossi and M. Proietti(a) Let � be a substitution in A. From P0 [Defk ` g 7! A, by Proposition 1 (ii.1),we have that P0 [Defk ` g� # true. Thus, by Point (1) of Theorem 1, we havethat Pk ` g� # true. Sine Pk ` g 7! B holds, by Proposition 1 (ii.1), there existsa substitution � 2 B suh that g� is an instane of g�.(b) Let � be a substitution in B . From Pk ` g 7! B , by Proposition 1 (ii.1), we havethat Pk ` g� # true. From P0 [Defk ` g 7! A, by Proposition 1 (i), we have thateither P0 [Defk ` g� # true or P0 [Defk ` g� # false . Now P0 [Defk ` g� # falseis impossible beause by Point (1) of Theorem 1, we would have Pk ` g� # false .Thus, P0 [Defk ` g� # true. Sine P0 [Defk ` g 7! A, by Proposition 1 (ii.1),there exists � 2 A suh that g� is an instane of g�.(2) We have to prove that if all appliations of the goal replaement rule in thesequene P0; : : : ;Pk are based on strong replaement laws, then P0 [Defk � Pk .Sine P0 [Defk v Pk has been shown at Point (1) of this proof, it remains to showthat: Pk v P0 [Defk . The proof is similar to that of Point (1) and it is based onPoint (2) of Theorem 1 and Proposition 1 (ii.1).Proof of Theorem 3 (Preservation of Safety).Let hd bd be a lause in P0 [Defk and let hd newbd be the lause in Pk withthe same head. By Lemma 6 we have that, for every goal ontext b[℄ suh thatvars(b[℄) \ vars(bd ;newbd) � vars(hd), if b[bd ℄ is safe in P0 [Def k then b[newbd ℄is safe in P0 [Defk . Then, by Lemma 5, for every goal g , if g is safe in P0 [Defkthen g is safe in Pk . ReferenesApt, K. R. 1997. From Logi Programming to Prolog. Prentie Hall, London, UK.Bossi, A. and Coo, N. 1994. Preserving universal termination through unfold/fold. InProeedings ALP '94. Leture Notes in Computer Siene 850. Springer-Verlag, Berlin,269{286.Bossi, A., Coo, N., and Etalle, S. 1992. Transforming normal programs by replae-ment. In Proeedings 3rd International Workshop on Meta-Programming in Logi,Meta '92, Uppsala, Sweden, A. Pettorossi, Ed. Leture Notes in Computer Siene 649.Springer-Verlag, Berlin, 265{279.Bossi, A., Coo, N., and Etalle, S. 1996. Transforming left-terminating programs:The reordering problem. In Logi Program Synthesis and Transformation, ProeedingsLoPSTr '95, Utreht, The Netherlands, M. Proietti, Ed. Leture Notes in ComputerSiene 1048. Springer, Berlin, 33{45.Burstall, R. M. and Darlington, J. 1977. A transformation system for developingreursive programs. Journal of the ACM 24, 1 (January), 44{67.Chen, W., Kifer, M., and Warren, D. S. 1993. HILOG: A foundation for higher-orderlogi programming. Journal of Logi Programming 15, 3, 187{230.Hill, P. M. and Gallagher, J. 1998. Meta-programming in logi programming. InHandbook of Logi in Arti�ial Intelligene and Logi Programming, D. M. Gabbay,C. J. Hogger, and J. A. Robinson, Eds. Vol. 5. Oxford University Press, Oxford, UK,421{497.J�rgensen, J., Leushel, M., and Martens, B. 1997. Conjuntive partial dedutionin pratie. In Logi Program Synthesis and Transformation, Proeedings of LoPSTr

Transformations of Logi Programs with Goals as Arguments 51'96, Stokholm, Sweden, J. Gallagher, Ed. Leture Notes in Computer Siene 1207.Springer-Verlag, Berlin, 59{82.Lloyd, J. W. 1987. Foundations of Logi Programming. Springer-Verlag, Berlin. SeondEdition.Nadathur, G. and Miller, D. A. 1998. Higher-order logi programming. In Handbookof Logi in Arti�ial Intelligene and Logi Programming, D. M. Gabbay, C. J. Hogger,and J. A. Robinson, Eds. Vol. 5. Oxford University Press, Oxford, UK, 499{590.Pettorossi, A. and Proietti, M. 1994. Transformation of logi programs: Foundationsand tehniques. Journal of Logi Programming 19,20, 261{320.Pettorossi, A. and Proietti, M. 1997. Flexible ontinuations in logi programs viaunfold/fold transformations and goal generalization. In Proeedings of the 2nd ACMSIGPLAN Workshop on Continuations, January 14, 1997, ENS, Paris (Frane) 1997,O. Danvy, Ed. BRICS Notes Series, N6-93-13, Aahrus, Denmark, 9.1{9.22.Pettorossi, A. and Proietti, M. 2000. Transformation rules for logi programs withgoals as arguments. In Proeedings 9th International Workshop on Logi-based ProgramSynthesis and Transformation, LoPSTr '99, Venezia, Italy, A. Bossi, Ed. Leture Notesin Computer Siene 1817. Springer, Berlin, 177{196.Pettorossi, A. and Skowron, A. 1987. Higher order generalization in program deriva-tion. In International Joint Conferene on Theory and Pratie of Software Develop-ment, TAPSOFT '87. Leture Notes in Computer Siene 250. Springer-Verlag, Berlin,182{196.Sands, D. 1996. Total orretness by loal improvement in the transformation of fun-tional programs. ACM Toplas 18, 2, 175{234.Sterling, L. S. and Shapiro, E. 1986. The Art of Prolog. The MIT Press, Cambridge,Massahusetts.Tamaki, H. and Sato, T. 1984. Unfold/fold transformation of logi programs. In Pro-eedings of the Seond International Conferene on Logi Programming, S.-�A. T�arnlund,Ed. Uppsala University, Uppsala, Sweden, 127{138.Tarau, P. 1996. BinProlog 5.25. User Guide. Tehnial report, University of Monton,Monton, Canada, E1A 3E9.Tarau, P. and Boyer, M. 1990. Elementary logi programs. In Proeedings PLILP'90,P. Deransart and J. Ma luszy�nski, Eds. Leture Notes in Computer Siene 456. Springer-Verlag, Berlin, 159{173.Vasak, T. and Potter, J. 1986. Charaterization of terminating logi programs. InProeedings of the Third IEEE Int'l Symp. on Logi Programming, Salt Lake City,Utah. IEEE Comp. So. Press, Washington, DC, 140{147.Wand, M. 1980. Continuation-based program transformation strategies. Journal of theACM 27, 1, 164{180.Warren, D. H. D. 1982. Higher-order extensions to Prolog: are they needed? In MahineIntelligene, Y.-H. P. J.E. Hayes, D. Mihie, Ed. Vol. 10. Ellis Horwood Ltd., Chihester,441{454.Winskel, G. 1993. The Formal Semantis of Programming Languages: An Introdution.The MIT Press, Cambridge, Massahusetts.

