
Under
onsideration for publi
ation in Theory and Pra
ti
e of Logi
 Programming 1Transformations of Logi
 Programswith Goals as ArgumentsALBERTO PETTOROSSIDipartimento di Informati
a, Sistemi e Produzione,Universit�a di Roma Tor Vergata, Via del Polite
ni
o 1, I-00133 Roma, Italy(e-mail: alberto.pettorossi�uniroma2.it)MAURIZIO PROIETTIIASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy(e-mail: proietti�iasi.rm.
nr.it)Abstra
tWe
onsider a simple extension of logi
 programming where variables may range over goalsand goals may be arguments of predi
ates. In this language we
an write logi
 programswhi
h use goals as data. We give pra
ti
al eviden
e that, by exploiting this
apabilitywhen transforming programs, we
an improve program eÆ
ien
y.We propose a set of program transformation rules whi
h extend the familiar unfoldingand folding rules and allow us to manipulate
lauses with goals whi
h o

ur as argu-ments of predi
ates. In order to prove the
orre
tness of these transformation rules, weformally de�ne the operational semanti
s of our extended logi
 programming language.This semanti
s is a simple variant of LD-resolution. When suitable
onditions are satis�edthis semanti
s agrees with LD-resolution and, thus, the programs written in our extendedlanguage
an be run by ordinary Prolog systems.Our transformation rules are shown to preserve the operational semanti
s and termi-nation.KEYWORDS: program transformation, unfold/fold transformation rules, higher orderlogi
 programming,
ontinuations 1 Introdu
tionProgram transformation is a very powerful and widely re
ognized methodology forderiving programs from spe
i�
ations. The rules+ strategies approa
h to programtransformation was advo
ated in the 1970s by Burstall and Darlington (1977) fordeveloping �rst order fun
tional programs. Sin
e then Burstall and Darlington'sapproa
h has been followed in a variety of language paradigms, in
luding logi
allanguages (Tamaki and Sato 1984) and higher order fun
tional languages (Sands1996). The distin
tive feature of the rules + strategies approa
h is that it allowsus to separate the
on
ern of proving the
orre
tness of programs with respe
t tospe
i�
ations from the
on
ern of a
hieving
omputational eÆ
ien
y. Indeed, the
orre
tness of the derived programs is ensured by the use of semanti
s preservingtransformation rules, whereas the
omputational eÆ
ien
y is a
hieved through the

2 A. Pettorossi and M. Proiettiuse of suitable strategies whi
h guide the appli
ation of the rules. The preservationof the semanti
s is proved on
e and for all, for some given sets of transformationrules, and if we restri
t ourselves to suitable
lasses of programs, we
an also guar-antee the e�e
tiveness of the strategies for improving eÆ
ien
y.In this paper we will argue through some examples, that a simple extension oflogi
 programming may give extra power to the program transformation method-ology based on rules and strategies. This extension
onsists in allowing the use ofvariables whi
h range over goals,
alled goal variables, and the use of goals whi
hare arguments of predi
ates,
alled goal arguments.In the pra
ti
e of logi
 programming the idea of having goal variables and goalarguments is not novel. The reader may look, for instan
e, at (Sterling and Shapiro1986; Warren 1982). Goal variables and goal arguments
an be used for express-ing the meaning of logi
al
onne
tives and for writing programs in a
ontinuationpassing style (Tarau and Boyer 1990; Wand 1980) as the following example shows.Example 1The following program P1:F _G FF _G Gexpresses the meaning of the or
onne
tive. The following program P2:p([℄; Cont) Contp([X jXs ℄; Cont) p(Xs ; q(X ; Cont))q(0; Cont) Contuses the goal variable Cont whi
h denotes a
ontinuation. The goal p(l ; true) su
-
eeds in P2 i� the list l
onsists of 0's only. �Programs with goal variables and goal arguments, su
h as P1 and P2 in the aboveexample, are not allowed by the usual �rst order syntax of Horn
lauses, wherevariables
annot o

ur as atoms and predi
ate symbols are distin
t from fun
tionsymbols. Nevertheless, these programs
an be run by ordinary Prolog systems whoseoperational semanti
s is based on LD-resolution, that is, SLD-resolution with theleftmost sele
tion rule. For the
on
epts of LD-resolution, LD-derivation, and LD-tree the reader may refer to (Apt 1997)The extension of logi
 programming we
onsider in this paper, allows us to writeprograms whi
h use goals as data. This extension turns out to be useful for per-forming program manipulations whi
h are required during program transformationand are otherwise impossible. For instan
e, we will see that by using goal variablesand goal arguments, we are able to perform goal rearrangements (also
alled goalreorderings in (Bossi et al. 1996)) whi
h are often required for folding, withouta�e
ting program termination and without in
reasing nondeterminism.Goal rearrangement is a long standing issue in logi
 program transformation.Indeed, although the unfold/fold transformation rules by Tamaki and Sato (1984)preserve the least Herbrand model, they may require goal rearrangements and thus,they may not preserve the operational semanti
s based on LD-resolution. Moreover,goal rearrangements may in
rease nondeterminism by requiring that predi
ate
alls

Transformations of Logi
 Programs with Goals as Arguments 3have to be evaluated before their arguments are suÆ
iently instantiated, and inmany Prolog systems, insuÆ
iently instantiated
alls of built-in predi
ates may
ause errors at run-time. In (Bossi and Co

o 1994) it has been proved that by rul-ing out goal rearrangements, if some suitable
onditions hold, then the unfolding,folding, and goal repla
ement transformation rules preserve the operational seman-ti
s of logi
 programs based on LD-resolution and, in parti
ular, these rules preserveuniversal termination, that is, the �niteness of all LD-derivations (Apt 1997; Vasakand Potter 1986). But, unfortunately, if we forbid goal rearrangements, many usefulprogram transformations are no longer possible.In this paper we will show through some examples that in our simple extensionof logi
 programming we
an restri
t goal rearrangements to leftward moves of goalequalities. We will also show that these moves preserve universal termination anddo not in
rease nondeterminism, and thus, the deterioration of performan
e of thederived program is avoided.The following simple example illustrates the essential idea of our te
hnique whi
his based on the use of goal equalities. More
omplex examples will be presented inSe
tions 2 and 7.Example 2Suppose that during program transformation we are required to fold a
lause of theform:1. p(X) a(X); b(X);
(X)by using a
lause of the form:2. q(X) a(X);
(X)We
an avoid a leftward move of the atom
(X) by introdu
ing, instead, an equalitybetween a goal variable and a goal, thereby transforming
lause 1 into the following
lause:3. p(X) a(X); G=
(X); b(X); GNow we introdu
e the following predi
ate q 0 whi
h takes the goal variable G as anargument:4. q 0(X ;G) a(X); G=
(X)Then we fold
lause 3 using
lause 4, thereby getting the
lause:5. p(X) q 0(X ;G); b(X); GAt this point we may
ontinue the program transformation pro
ess by transforming
lause 4, whi
h de�nes the predi
ate q 0, instead of
lause 2, whi
h de�nes thepredi
ate q . For instan
e, we may want to unfold
lause 4 w.r.t. the goal
(X)o

urring as an argument of the equality predi
ate. �As this example indi
ates, during program transformation we need to have at ourdisposal some transformation rules whi
h
an be used when goals o

ur as argu-ments. Indeed, in this paper:(i) we will introdu
e transformation rules for our logi
 language whi
h allows goalsas arguments,

4 A. Pettorossi and M. Proietti(ii) we will show through some examples that the use of these rules makes it pos-sible to improve eÆ
ien
y without performing goal rearrangements whi
h in
reasenondeterminism, and(iii) we will prove that, under suitable
onditions, our transformation rules are
or-re
t in the sense that they preserve the operational semanti
s of our logi
 languageand, in parti
ular, they preserve universal termination.In order to show our
orre
tness result, we will �rst de�ne the operational seman-ti
s of our logi
 language with goal arguments and goal variables. This semanti
swill be given in terms of ordinary LD-resolution, ex
ept for the following two im-portant
ases whi
h we now examine.The �rst
ase o

urs when, during the
onstru
tion of an LD-derivation, wegenerate a goal whi
h has an o

urren
e of an unbound goal variable in the leftmostposition. In this
ase we say that the LD-derivation gets stu
k. This treatment ofunbound goal variables is in a

ordan
e with that of most Prolog systems whi
hhalt with error when trying to evaluate a
all
onsisting of an unbound variable.The se
ond
ase o

urs when we evaluate a goal equality of the form: g1=g2. Inthis
ase we stipulate that g1= g2 su

eeds i� g1 is a goal variable whi
h does noto

ur in g2 and it gets stu
k otherwise. (In parti
ular, for any goal g the evaluationof the equality g = g gets stu
k.) This somewhat restri
ted rule for the evaluationof goal equalities is required for the
orre
tness of our transformation rules, as thefollowing example shows.Example 3Let us
onsider the program Q1:1. h p(q)2. p(G) G=q3. q swhere h; p; q ; and s are predi
ate symbols and G is a goal variable. If we unfoldthe goal argument q in
lause 1 using
lause 3, we get the
lause:4. h p(s)and we have the new programQ2 made out of
lauses 2, 3, and 4. By using ordinaryLD-resolution and uni�
ation, the goal h su

eeds in the original programQ1, whileit fails in the derived program Q2, be
ause s does not unify with q . �This example shows that the set of su

esses is not preserved by unfolding w.r.t. agoal argument. Similar in
orre
tness problems also arise with other transformationrules, su
h as folding and goal repla
ement. These problems
ome from the fa
tthat operationally equivalent goals (su
h as q and s in the above example) are notsynta
ti
ally equal.In
ontrast, if we
onsider our restri
ted rule for the evaluation of goal equalities,the LD-derivation whi
h starts from the goal h and uses the programQ1, gets stu
kwhen the goal q=q is sele
ted. Also the LD-derivation whi
h starts from the goalh and uses the derived program Q2, gets stu
k when the goal s = q is sele
ted.Thus, the unfolding w.r.t. the argument q has preserved the operational semanti
sbased on LD-resolution with our restri
ted rule for evaluating goal equalities.

Transformations of Logi
 Programs with Goals as Arguments 5In this paper we will
onsider two forms of
orre
tness for our program trans-formations: weak
orre
tness and strong
orre
tness. Suppose that we have trans-formed a program P1 into a program P2 by applying our transformation rules. Wesay that this transformation is weakly
orre
t i�, for any ordinary goal, that is, agoal without o

urren
es of goal variables and goal arguments, the following twoproperties hold: (i) if P1 universally terminates, then P2 universally terminates,and (ii) if both P1 and P2 universally terminate, then they
ompute the same setof most general answer substitutions. The transformation from P1 to P2 is strongly
orre
t i� (i) it is weakly
orre
t, and (ii) for any ordinary goal, if P2 universallyterminates, then P1 universally terminates.Thus, when a transformation is weakly
orre
t, the transformed program maybe more de�ned than the original program in the sense that there may be somegoals whi
h have no semanti
 value in the original program (that is, either theirevaluation does not terminate or it gets stu
k), whereas they have a semanti
 valuein the transformed program (that is, their evaluation terminates and it does notget stu
k).This paper is organized as follows. In Se
tion 2 we present an introdu
tory ex-ample to motivate the language extension we will propose in this paper, and thetransformation rules for this extended language. In Se
tion 3 we give the de�nitionof the syntax of our extended logi
 language with goal variables and goal arguments.In Se
tion 4 we introdu
e the operational semanti
s of our extended language.In Se
tions 5 and 6 we present the transformation rules and the
onditions underwhi
h these rules are either weakly
orre
t or strongly
orre
t. For this purpose itis
ru
ial that we assume that: (i) the evaluation of any goal variable gets stu
k ifthat variable is unbound, and (ii) the evaluation of goal equalities is done a

ordingto the restri
ted rule we mentioned above. We will also show that, if a goal doesnot get stu
k in a program, and we transform this program by using our rules,then the given goal does not get stu
k in the transformed program. In this
ase,as it happens in the examples given in this paper, our operational semanti
s agreeswith LD-resolution, and we
an exe
ute our transformed program by using ordinaryProlog systems.In Se
tion 7 we give some more examples of program transformation using ourextended logi
 language and our transformation rules. We also give pra
ti
al evi-den
e that these transformations improve program eÆ
ien
y. In Se
tion 8 we makesome �nal remarks and we
ompare our results with related work.2 A Motivating ExampleIn order to present an example whi
h motivates the introdu
tion of goal variablesand goal arguments, we begin by re
alling a well-known program transformationstrategy,
alled tupling strategy (Pettorossi and Proietti 1994). Given a programwhere some predi
ate
alls require
ommon sub
omputations (dete
ted by a suitableprogram analysis), the tupling strategy is realized by the following three steps.

6 A. Pettorossi and M. ProiettiThe Tupling Strategy(Step A) We introdu
e a new predi
ate de�ned by a
lause, say T , whose body isthe
onjun
tion of the predi
ate
alls with
ommon sub
omputations.(Step B) We derive a program for the newly de�ned predi
ate whi
h avoids redun-dant
ommon sub
omputations. This step
an be divided into the following threesubsteps: (B.1) �rst, we unfold
lause T , (B.2) then, we apply the goal repla
ementrule to avoid redundant goals, and (B.3) �nally, we fold using
lause T .(Step C) By suitable folding steps using
lause T , we express the predi
ates whi
hare ineÆ
iently
omputed by the initial program, in terms of the predi
ate intro-du
ed at Step (A).A diÆ
ulty en
ountered when applying the tupling strategy is that, in order to applythe folding rule as indi
ated at Steps (B) and (C), it is often ne
essary to rearrangethe atoms in the body of the
lauses and, as already dis
ussed in the Introdu
tion,these rearrangements may a�e
t program termination or in
rease nondeterminism.The following example shows that this diÆ
ulty in the appli
ation of the tuplingstrategy
an be over
ome by introdu
ing goal variables and goal arguments.Example 4Let us
onsider the following program Deepest:1. deepest(l(N);N) 2. deepest(t(L;R);X) depth(L;DL); depth(R;DR); DL � DR;deepest(L;X)3. deepest(t(L;R);X) depth(L;DL); depth(R;DR); DL � DR;deepest(R;X)4. depth(l(N); 1) 5. depth(t(L;R);D) depth(L;DL); depth(R;DR); max (DL;DR;M);plus(M ; 1;D)where deepest(T ;X) holds i� T is a binary tree and X is the label of oneof the deepest leaves of T . The two
alls depth(L;DL) and deepest(L;X) in
lause 2 may generate
ommon redundant
alls of the depth predi
ate. Indeed,both depth(t(L1;R1);N) and deepest(t(L1;R1);X) generate two
alls of the formdepth(L1;DL) and depth(R1;DR). In a

ordan
e with the tupling strategy, wetransform the given program as follows.(Step A) We introdu
e the following new predi
ate:6. dd (T ;D ;X) depth(T ;D); deepest(T ;X)(Step B.1) We apply a few times the unfolding rule, and we derive:7. dd (l(N); 1;N) 8. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);depth(L;DL1); depth(R;DR1);DL1 � DR1; deepest(L;X)

Transformations of Logi
 Programs with Goals as Arguments 79. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);depth(L;DL1); depth(R;DR1);DL1 � DR1; deepest(R;X)(Step B.2) Sin
e depth is fun
tional with respe
t to its �rst argument, by applyingthe goal repla
ement rule we delete the atoms depth(L;DL1) and depth(R;DR1),in
lauses 8 and 9, and we repla
e the o

urren
es of DL1 and DR1 by DL and DR,respe
tively, thereby getting the following
lauses 10 and 11:10. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR); max(DL;DR;M);plus(M ; 1;D); DL � DR; deepest(L;X)11. dd (t(L;R);D ;X) depth(L;DL); depth(R;DR); max(DL;DR;M);plus(M ; 1;D); DL � DR; deepest(R;X)(Step B.3) In order to fold
lause 10 using
lause 6, we move deepest(L;X) imme-diately to the right of depth(L;DL). Similarly, in the body of
lause 11 we movedeepest(R;X) immediately to the right of depth(R;DR). Then, by folding we derive:12. dd (t(L;R);D ;X) dd(L;DL;X); depth(R;DR); max (DL;DR;M);plus(M ; 1;D); DL � DR13. dd (t(L;R);D ;X) depth(L;DL); dd(R;DR;X); max (DL;DR;M);plus(M ; 1;D); DL � DR(Step C) Finally, we fold
lauses 2 and 3 using
lause 6, so that to evaluate thepredi
ates depth and deepest we use the predi
ate dd , instead. Also for these foldingsteps we have to suitably rearrange the order of the atoms. By folding, we derivethe following program Deepest1:1. deepest(l(N);N) 14. deepest(t(L;R);D ;X) dd(L;DL;X); depth(R;DR); DL � DR15. deepest(t(L;R);D ;X) depth(L;DL); dd(R;DR;X); DL � DR7. dd (l(N); 1;N) 12. dd (t(L;R);D ;X) dd(L;DL;X); depth(R;DR); max (DL;DR;M);plus(M ; 1;D); DL � DR13. dd (t(L;R);D ;X) depth(L;DL); dd(R;DR;X); max (DL;DR;M);plus(M ; 1;D); DL � DRIn order to evaluate a goal of the form deepest(t ;X), where t is a ground tree andX is a variable, we may
onstru
t an LD-derivation using the program Deepest1whi
h does not generate redundant
alls of depth . This LD-derivation performsonly one traversal of the tree t and has linear length with respe
t to the sizeof t . However, this LD-derivation is
onstru
ted in a nondeterministi
 way, and ifthe
orresponding LD-tree is traversed in a depth-�rst manner, like most Prologsystems do, the program exhibits an ineÆ
ient generate-and-test behaviour. Thus,in pra
ti
e, the tupling strategy may diminish program eÆ
ien
y.The main reason of this de
rease of eÆ
ien
y is that, in order to fold
lause 10,we had to move the atom deepest(L;X) to a position to the left of DL � DR, andthis move for
es the evaluation of
alls of deepest(L;X) even when DL � DR fails.(Noti
e that the move of deepest(R;X) to the left of DL � DR is harmless be
ause

8 A. Pettorossi and M. ProiettiDL � DR is evaluated after the failure of DL � DR and, thus, DL � DR neverfails.) �In the following example we will present an alternative program derivation whi
hstarts from the same initial program Deepest. In this alternative derivation we willuse our extended logi
 language whi
h will be formally de�ned in the followingSe
tion 3. As already mentioned in the Introdu
tion, when writing programs in ourextended language, we may use: (i) the goal equality predi
ate =, (ii) goal variableso

urring at top level in the body of a
lause, and (iii) the disjun
tion predi
ate_. This alternative program derivation avoids harmful goal rearrangements andprodu
es an eÆ
ient program without redundant sub
omputations.Example 5Let us
onsider the program Deepest listed at the beginning of Example 4
onsistingof
lauses 1{5. By using disjun
tion in the body of a
lause,
lauses 2 and 3
an berewritten as follows:16. deepest(t(L;R);X) depth(L;DL); depth(R;DR);((DL�DR; deepest(L;X)) _ (DL�DR; deepest(R;X)))After this initial transformation step the derived program,
all it DeepestOr,
onsistsof
lauses 1, 4, 5, and 16.Now we
onsider an extension of the tupling strategy whi
h makes use of thetransformation rules for logi
 programs with goal arguments and goal variables.These rules will be formally presented in Se
tion 5. We pro
eed as follows.(Step A) We introdu
e the following new predi
ate g whi
h takes a goal variable Gas an argument:17. g(T ;D ;X ;G) depth(T ;D); G=deepest(T ;X)Noti
e also that in
lause 17 the goal deepest(T ;X) o

urs as an argument of theequality predi
ate.(Step B) We derive a set of
lauses for the newly de�ned predi
ate g as follows.(Step B.1) We unfold
lause 17 w.r.t. depth(T ;D) and we derive:18. g(l(N); 1;X ;G) G=deepest(l(N);X)19. g(t(L;R);D ;X ;G) depth(L;DL); depth(R;DR); max (DL;DR;M);plus(M ; 1;D); G=deepest(t(L;R);X)Now, by unfolding
lauses 18 and 19 w.r.t. the atoms with the deepest predi
ate,we derive:20. g(l(N); 1;N ; true) 21. g(t(L;R);D ;X ;G) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);G=(depth(L;DL1); depth(R;DR1);((DL1�DR1; deepest(L;X)) _ (DL1�DR1; deepest(R;X))))(Step B.2) We perform two goal repla
ement steps based on the fun
tionality ofdepth , and from
lause 21 we derive:

Transformations of Logi
 Programs with Goals as Arguments 922. g(t(L;R);D ;X ;G) depth(L;DL); depth(R;DR);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR; deepest(L;X)) _ (DL�DR; deepest(R;X)))(Step B.3) In order to fold
lause 22 using
lause 17, we �rst introdu
e goal equalitiesand we then perform suitable leftward moves of those goal equalities. We derive thefollowing
lause:23. g(t(L;R);D ;X ;G) depth(L;DL); GL=deepest(L;X);depth(R;DR); GR=deepest(R;X);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR;GL) _ (DL�DR;GR))Noti
e that we
an move the goal equality GL = deepest(L;X) to the left of thetest DL�DR without altering the operational semanti
s of our program. Indeed,this goal equality su

eeds and binds the goal variable GL to the goal deepest(L;X)without evaluating it. The goal deepest(L;X) will be evaluated only when GL is
alled. A similar remark holds for the goal equality GR= deepest(L;X). Now, byfolding twi
e
lause 23 using
lause 17, we get:24. g(t(L;R);D ;X ;G) g(L;DL;X ;GL); g(R;DR;X ;GR);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR;GL) _ (DL�DR;GR))(Step C) Now we express the predi
ate deepest in terms of the new predi
ate g bytransforming
lause 16 as follows: (i) we �rst repla
e the two deepest atoms by thegoal variables GL and GR; (ii) we then introdu
e suitable goal equalities, (iii) wethen suitably move to the left the goal equalities, and (iv) we �nally fold using
lause 17. We derive the following
lause:25. deepest(t(L;R);X) g(L;DL;X ;GL); g(R;DR;X ;GR);((DL�DR;GL) _ (DL�DR;GR))Our �nal program Deepest2 is as follows:1. deepest(l(N);N) 25. deepest(t(L;R);X) g(L;DL;X ;GL); g(R;DR;X ;GR);((DL�DR;GL) _ (DL�DR;GR))20. g(l(N); 1;N ; true) 24. g(t(L;R);D ;X ;G) g(L;DL;X ;GL); g(R;DR;X ;GR);max (DL;DR;M); plus(M ; 1;D);G=((DL�DR;GL) _ (DL�DR;GR))Now, when we evaluate a goal of the form deepest(t ;X), where t is a ground treeand X is a variable, Deepest2 does not generate redundant
alls and it performsonly one traversal of the tree t . Deepest2 is more eÆ
ient than Deepest be
ause inthe worst
ase Deepest2 performs O(n) LD-resolution steps to
ompute an answerto deepest(t ;X), where n is the number of nodes of t , while the initial programDeepest takes O(n2) LD-resolution steps. The program Deepest2
an be run by anordinary Prolog system and
omputer experiments
on�rm substantial eÆ
ien
yimprovements with respe
t to the initial program Deepest (see Se
tion 7.6).

10 A. Pettorossi and M. ProiettiEÆ
ien
y improvements, although smaller, are obtained also when
omparingthe �nal program Deepest2 with respe
t to the intermediate program DeepestOrwhi
h has been obtained from the initial program Deepest by repla
ing
lauses 2and 3 by
lause 16, thereby avoiding the repetition of the
ommon goals in
lauses 2and 3. Indeed, although more eÆ
ient than Deepest in the worst
ase, the programDeepestOr still takes a quadrati
 number of LD-resolution steps to
ompute ananswer to deepest(t ;X). �In Se
tion 7 we will present more examples of program derivation and we will alsoprovide some experimental results.3 The Extended Logi
 Language with Goals as ArgumentsLet us now formally de�ne our extended logi
 language. Suppose that the followingpairwise disjoint sets are given: (i) individual variables: X ;X1;X2; : : : ; (ii) goal vari-ables: G ;G1;G2; : : : ; (iii) fun
tion symbols (with arity): f ; f1; f2; : : : ; (iv) primitivepredi
ate symbols: true, false , =t (denoting equality between terms), =g (denot-ing equality between goals), and (v) predi
ate symbols (with arity): p; p1; p2; : : :Individual and goal variables are
olle
tively
alled variables, and they are rangedover by V ;V1;V2; : : : O

asionally, we will feel free to depart from these naming
onventions, if no
onfusion arises.Terms : t ; t1; t2; : : :, goals : g ; g1; g2; : : :, and arguments : u; u1; u2; : : :, have the follow-ing syntax:t ::= X j f (t1; : : : ; tn)g ::= G j true j false j t1=t t2 j g1=g g2 j p(u1; : : : ; um) j g1 ^ g2 j g1 _ g2u ::= t j gThe binary operators ^ (
onjun
tion) and _ (disjun
tion) are assumed to be as-so
iative with neutral elements true and false, respe
tively. Thus, a goal g is thesame as true ^ g and g ^ true. Similarly, g is the same as false _ g and g _ false .Goals of the form p(u1; : : : ; um) are also
alled atoms. In the sequel, for reasons ofsimpli
ity, we will write =, instead of =t or =g , and we leave it to the reader todistinguish between the two equalities a

ording to the
ontext of use. Noti
e that,a

ording to our operational semanti
s (see Se
tion 4), _ is
ommutative, ^ is not
ommutative, =t is symmetri
, and =g is not symmetri
.Clauses
;
1;
2; : : : have the following syntax:
 ::= p(V1; : : : ;Vm) gwhere p is a non-primitive predi
ate symbol and V1; : : : ;Vm are distin
t variables.The atom p(V1; : : : ;Vm) is
alled the head of the
lause and the goal g is
alled thebody of the
lause. A
lause of the form: p(V1; : : : ;Vm) true will also be writtenas p(V1; : : : ;Vm) .Programs P ;P1;P2; : : : are sets of
lauses of the form:p1(V1; : : : ;Vm1) g1...pk (V1; : : : ;Vmk) gk

Transformations of Logi
 Programs with Goals as Arguments 11where p1; : : : ; pk are distin
t non-primitive predi
ate symbols, and every non-primitive predi
ate symbol o

urring in fg1; : : : ; gkg is an element of fp1; : : : ; pkg.Ea
h
lause head has distin
t variables as arguments. Given a program P anda non-primitive predi
ate p o

urring in P , the unique
lause in P of the formp(V1; : : : ;Vm) g , is
alled the de�nition of p in P . We say that a predi
ate p isde�ned in a program P i� p has a de�nition in P .An ordinary goal is a goal without goal variables or goal arguments. Formally, anordinary goal has the following syntax:g ::= true j false j t1=t t2 j p(t1; : : : ; tm) j g1 ^ g2 j g1 _ g2where t1; t2; : : : ; tm are terms. Ordinary programs are programs whose goals areordinary goals.Notes on syntax.(1) When no
onfusion arises, we also use
omma, instead of ^, for denoting
on-jun
tion.(2) The assumption that in our programs
lause heads have only variables as argu-ments is not restri
tive, be
ause we may always repla
e a non-variable argument,say u, by a variable argument, say V , in the head of a
lause, at the expense ofadding the extra equality V =u in the body.(3) The assumption that in every program there exists at most one
lause for ea
hpredi
ate symbol is not restri
tive, be
ause one may use disjun
tions in the bodyof
lauses. In parti
ular, every de�nite logi
 program written by using the familiarsyntax (Lloyd 1987),
an be rewritten into an equivalent program of our languageby suitable introdu
tions of equalities and _ operators in the bodies of
lauses.(4) Our logi
 language is a typed language in the sense that: (i) every indi-vidual variable has type term, (ii) every fun
tion symbol of arity n has typetermn ! term, (iii) true, false, and every goal variable have type bool , (iv.1) =thas type term � term ! bool , (iv.2) =g has type bool �bool ! bool , and (v) everypredi
ate symbol of arity n has a unique type of the form: (term j bool)n ! bool .We assume that all our programs
an be uniquely typed a

ording to the aboverules. 4 The Operational Semanti
sIn this se
tion we de�ne the operational semanti
s of our extended logi
 language.We
hoose a syntax-dire
ted style of presentation whi
h makes use of dedu
tionrules. For an elementary presentation of this te
hnique, sometimes
alled stru
turaloperational semanti
s or natural semanti
s, the reader may refer to (Winskel 1993).Before de�ning the semanti
s of our logi
 language, we re
all the following no-tions. By fV1=u1; : : : ;Vm=umg we denote the substitution of u1; : : : ; um for thevariables V1; : : : ;Vm . As usual, we assume that the Vi 's are all distin
t and fori =1; : : : ;m, ui is distin
t from Vi . By " we denote the identity substitution. By# � S we denote the restri
tion of the substitution # to set S of variables, thatis, # � S = fV=u j V=u 2 # andV 2 Sg. Given the substitutions #; �1; : : : ; �k , by# Æ f�1; : : : ; �kg we denote the set of substitutions f#�1; : : : ; #�kg (where, as usual,

12 A. Pettorossi and M. Proiettijuxtaposition of substitutions denotes
omposition (Lloyd 1987)). By g# we denotethe appli
ation of the substitution # to the goal g . By mgu(t1; t2) we denote arelevant, idempotent, most general uni�er of the terms t1 and t2.The set of all substitutions is denoted by Subst and the set of all �nite sub-sets of Subst is denoted by P(Subst). Given A;B 2 P(Subst), we say that Aand B are equally general with respe
t to a goal g i� (i) for every � 2 A thereexists � 2 B su
h that g� is an instan
e of g�, and symmetri
ally, (ii) for ev-ery � 2 B there exists � 2 A su
h that g� is an instan
e of g�. For example,A = ffX =tg; fX =Y g; fX =Zgg and B = ffX =W gg are equally general with re-spe
t to the goal p(X).Given a set of substitutions A 2 P(Subst) and a goal g , letmostgen(A; g) denote alargest subset of fg# j# 2 Ag su
h that for any two goals g1 and g2 inmostgen(A; g),g1 is not an instan
e of g2. For example, mostgen(ffX =tg; fX =Yg; fX =Zgg; p(X))= fp(Y)g. Noti
e that the set denoted by mostgen is not uniquely determined.However, it
an be shown that, whatever
hoi
e we make for the set denoted bymostgen, any two sets of substitutions A and B are equally general with respe
tto a goal g i� there exists a bije
tion � from mostgen(A; g) to mostgen(B ; g) su
hthat for any goal h 2 mostgen(A; g), �(h) is a variant of h. In this
ase we writemostgen(A; g) � mostgen(B ; g).We use g [u℄ to denote a goal g in whi
h we have sele
ted an o

urren
e of itssub
onstru
t u, where u may be either a term or a goal. By g [℄ we denote thegoal g [u℄ without the sele
ted o

urren
e of its sub
onstru
t u. We say that g [℄is a goal
ontext. For any synta
ti

onstru
t r , we use vars(r) to denote the setof variables o

urring in r and, for any set fr1; : : : ; rmg of synta
ti

onstru
ts,we use vars(r1; : : : ; rm) to denote the set of variables vars(r1) [: : : [vars(rm). Inparti
ular, given a substitution #, a variable belongs to vars(#) i� it o

urs eitherin the domain of # or in the range of #. Given two goals g and g1 and a
lause
 ofthe form p(V1; : : : ;Vm) g [g1℄, the lo
al variables of g1 in
 are those in the setvars(g1)� (fV1; : : : ;Vmg [vars(g [℄)).Given a program P , we de�ne the semanti
s of P as a ternary relation P ` g 7! A,where g is a goal and A is a �nite set of substitutions, meaning that for P and gall derivations are �nite and A is the �nite set of answer substitutions whi
h are
omputed by these derivations. The relation P ` g 7! A is de�ned by the dedu
tionrules given in Figure 1.A dedu
tion tree � for P ` g 7! A is a tree su
h that: (i) the root of � isP ` g 7! A, and (ii) for every node n of � with sons n1; : : : ;nk (with k � 0),there exists an instan
e of a dedu
tion rule, say r, whose
on
lusion is n and whosepremises are n1; : : : ;nk . We say that n is derived by applying rule r to n1; : : : ;nk .A proof of P ` g 7! A is a �nite dedu
tion tree for P ` g 7! A where every leaf isa dedu
tion rule whi
h has no premises.We say that P ` g 7! A holds i� there exists a proof of P ` g 7! A. If P ` g 7! Aholds and A 6= ;, then we say that g su

eeds in P , written P ` g # true. Otherwise,if P ` g 7! ; holds, then we say that g fails in P , written P ` g # false . If geither su

eeds or fails in P we say that g terminates in P . We say that a goal g isstu
k i� it is either of the form G ^ g1, where G is a goal variable, or of the form

Transformations of Logi
 Programs with Goals as Arguments 13(tt) P ` true 7! f"g(�) P ` false ^ g 7! ;(teq1) P ` (t1= t2) ^ g 7! ; if t1 and t2 are non-uni�able terms(teq2) P ` g mgu(t1; t2) 7! AP ` (t1= t2) ^ g 7! (mgu(t1; t2)ÆA) if t1 and t2 are uni�able terms(geq) P ` g2fG=g1g 7! AP ` (G=g1) ^ g2 7! (fG=g1gÆA)if the goal variable G is not in vars(g1)(at) P ` g1fV1=u1; : : : ;Vm=umg ^ g 7! AP ` p(u1; : : : ; um) ^ g 7! A�Swhere p(V1; : : : ;Vm) g1 is a renamed apart
lause of Pand S is vars(p(u1; : : : ; um) ^ g)(or) P ` g1 ^ g 7! A1 P ` g2 ^ g 7! A2P ` (g1 _ g2) ^ g 7! (A1 [A2)Fig. 1. Operational Semanti
s(g0=g1)^g2, where either g0 is a non-variable goal or g0 is a goal variable o

urringin g1. We say that g gets stu
k in P i� there exist a set A of substitutions and a(�nite or in�nite) dedu
tion tree � for P ` g 7! A su
h that a leaf of � is of theform P ` g1 7! B and g1 is stu
k. For instan
e, the goal (G = p) ^ (G = q) getsstu
k in any program P . We say that g is safe in P i� g does not get stu
k in P .For every program P and goal g , the three
ases: (i) g su

eeds in P , (ii) g fails inP , and (iii) g gets stu
k in P , are pairwise mutually ex
lusive, but not exhaustive.Indeed, there is a fourth
ase in whi
h the unique maximal dedu
tion tree with rootP ` g 7! A is in�nite and ea
h of its leaves, if any, is the
on
lusion of a dedu
tionrule whi
h has no premises. In this
ase no A exists su
h that P ` g 7! A holdsand g does not get stu
k in P .Notes on semanti
s.(1) In our presentation of the dedu
tion rules we have exploited the assumption that^ and _ are asso
iative operators with neutral elements true and false, respe
tively.For instan
e, we have not introdu
ed the rule P ` false 7! ; be
ause it is aninstan
e of rule (�) for g= true.(2) Given a program P and a goal g , if there exists a proof for P ` g 7! A for someA, then the proof is unique up to isomorphism. More pre
isely, given two proofs,say �1 for P ` g 7! A1 and �2 for P ` g 7! A2, there exists a bije
tion � from

14 A. Pettorossi and M. Proiettithe nodes of �1 to the nodes of �2 whi
h preserves the appli
ation of the dedu
tionrules and if �(P ` g1 7! B1) = P ` g2 7! B2 then(i) g1 is a variant of g2, and(ii) 8�12B1 9�22B2 su
h that g1�1 is a variant of g2�2, and(iii) 8�22B2 9�12B1 su
h that g2�2 is a variant of g1�1.This property is a
onsequen
e of the fa
t that: (i) for any program P and goal g ,there exists at most one rule instan
e whose
on
lusion is of the form P ` g 7! Afor some A, and (ii) our rules for the operational semanti
s are deterministi
, in thesense that no
hoi
e has to be made when one applies them during the
onstru
tionof a proof, apart from the
hoi
e of how to
ompute the most general uni�ers andhow to rename apart the
lauses.In parti
ular, any two sets A1 and A2 of answer substitutions for a programP and a goal g , are related as follows: if P ` g 7! A1 and P ` g 7! A2 then8�1 2A1 9�2 2A2 g�1 is a variant of g�2 and 8�2 2A2 9�12 A1 g�2 is a variantof g�1. Thus, A1 and A2 are equally general with respe
t to g . The same propertyholds also for any two sets of
omputed answer substitutions whi
h are
onstru
tedby LD-resolution (re
all that by LD-resolution we
an
onstru
t di�erent sets of
omputed answer substitutions by
hoosing di�erent most general uni�ers and dif-ferent variable renamings).Noti
e that, if P ` g 7! A1 and P ` g 7! A2 hold, then A1 and A2 mayhave di�erent
ardinality. Indeed, let us
onsider the program P
onsisting of thefollowing
lause only:p(X ;Y ;Z) (X =Y ^ Z =Y) _ (X =Z ^ Y =Z)In this
ase, sin
e both Z=Y and Y =Z are most general uni�ers of Y = Z ,we have that both P ` p(X ;Y ;Z) 7! ffX =Y ;Z=Y g; fX =Z ;Y =Zgg and P `p(X ;Y ;Z) 7! ffX =Y ;Z=Y gg hold. Noti
e also that the substitution fX =Y ;Z=Y gis more general than the substitution fX =Z ;Y =Zg and vi
e versa.(3) If P ` g 7! A and # 2 A, then the domain of # is a subset of vars(g).(4) In the presentation of the dedu
tion rules for the ternary relation P ` g 7! A,the program P never
hanges and thus, it
ould have been omitted. However, theexpli
it referen
e to P is useful for presenting our Corre
tness Theorem (see The-orem 2 in Se
tion 6).(5) We assume that in any relation P ` g 7! A, the program P and the goal g have
onsistent types, that is, the type of every fun
tion and predi
ate symbol should bethe same in P and in g . For instan
e, if P = fp(G) g where G is a goal variable,then P ` p(0) 7! f"g does not hold, be
ause in the program P the predi
ate p hastype bool ! bool , while in the goal p(0) the predi
ate p has type term ! bool .Moreover, for any relation P ` g1 7! A1 o

urring in the proof of P ` g 7! A, wehave that program P and goal g1 have
onsistent types.Now we dis
uss the relationship between LD-resolution and the operational se-manti
s de�ned in this se
tion. Apart from the style of presentation (usually LD-resolution is presented by means of the notions of LD-derivation and LD-tree (Apt1997; Lloyd 1987)), LD-resolution di�ers from our operational semanti
s only in the

Transformations of Logi
 Programs with Goals as Arguments 15treatment of goal equality. Indeed, by using LD-resolution, the goal equality g1=g2is evaluated by applying the ordinary uni�
ation algorithm also in the
ase whereg1 is not a goal variable or g1 is a goal variable o

urring in vars(g2). In
ontrast,a

ording to our operational semanti
s, a goal of the form g1= g2 is evaluated byunifying g1 and g2, only if g1 is a variable whi
h does not o

ur in vars(g2) (seerule (geq) above).Thus, if a goal g is safe in P , then the evaluation of g a

ording to our operationalsemanti
s agrees with the one whi
h uses LD-resolution in the following sense: if gis safe in P , then there exists a set A of answer substitutions su
h that P ` g 7! Aholds i�: (i) all LD-derivations starting from g and using P are �nite (that is, guniversally terminates in P (Apt 1997; Vasak and Potter 1986)), and (ii) A is the setof the
omputed answer substitutions obtained by LD-resolution. Point (i) followsfrom the fa
t that in our operational semanti
s, the evaluation of a disjun
tion ofgoals (see the (or) rule) requires the evaluation of ea
h disjun
t. Thus, in order to
ompute the relation P ` g 7! A in the
ase where g is safe in P , we
an use anyordinary Prolog system whi
h implements LD-resolution.Noti
e that, given a program P and a goal g , if the LD-tree has an in�nite LD-derivation, then no set A of answer substitutions exists su
h that P ` g 7! A. Inparti
ular, for the program P = fp(0) ; p(X) p(X)g no A exists su
h thatP ` p(X) 7! A, while the set of
omputed answer substitutions
onstru
ted byLD-resolution for the program P and the goal p(X) is the singleton
onsisting ofthe substitution fX =0g only.It may also be the
ase that a goal g is not safe in a program P (thus, thereexists no set A of answer substitutions su
h that P ` g 7! A holds) while, byusing LD-resolution, g su

eeds or fails in P . For instan
e, for any program and forany two distin
t nullary predi
ates p and q , (i) the goal p=p is not safe, while itsu

eeds by using LD-resolution and (ii) the goal p=q is not safe, while it fails byusing LD-resolution.We re
all that our interpretation of goal equality is motivated by the fa
t thatwe want the operational semanti
s to be preserved by program transformationsand, in parti
ular, by unfolding. As already shown in the Introdu
tion, unfortu-nately, unfolding does not preserve the operational semanti
s based on ordinaryLD-resolution.The following Proposition 1 establishes an important property of our operationalsemanti
s. This property is useful for the proof the
orre
tness results in Se
tion 6(see Theorem 2). The proof of this proposition is similar to the one in the
ase ofLD-resolution for de�nite programs (see, for instan
e, (Lloyd 1987)) and will beomitted.Proposition 1Let P be a program, g be an ordinary goal, and A be a set of substitutions su
hthat P ` g 7! A. Then, for all # 2 Subst , the following hold:(i) g# terminates, that is, either P ` g# # true or P ` g# # false , and(ii.1) P ` g# # true i� there exists � 2 A su
h that g# is an instan
e of g�, and(ii.2) P ` g# # false i� it does not exist � 2 A su
h that g# is an instan
e of g�.

16 A. Pettorossi and M. ProiettiLet us
on
lude this se
tion by introdu
ing the notions of re�nement and equivalen
ebetween programs whi
h we will use in Se
tion 6 to state the weak and strong
orre
tness of the program transformations that
an be realized by applying ourtransformation rules. These rules are presented in the next se
tion.De�nition 1 (Re�nement and Equivalen
e)Given two programs P1 and P2, we say that P2 is a re�nement of P1, writtenP1 v P2, i� for every ordinary goal g and for every A 2 P(Subst), if P1 ` g 7! Athen there exists B 2 P(Subst) su
h that:(1) P2 ` g 7! B and(2) A and B are equally general with respe
t to g .We say that P1 is equivalent to P2, written P1 � P2, i� P1 v P2 and P2 v P1.Remark 1Re
all that Condition (2)
an be written as mostgen(A; g) � mostgen(B ; g). In thissense we will say that if P1 v P2 and the ordinary goal g terminates in P1, thenthe most general answer substitutions for g are the same in P1 and P2, modulovariable renaming. �Remark 2P1 v P2 implies that, for every ordinary goal g ,- if g su

eeds in P1 then g su

eeds in P2, and- if g fails in P1 then g fails in P2. �Theorem 2 stated in Se
tion 6 shows that, if from program P1 we derive programP2 by using our transformation rules and suitable
onditions hold, then P1 v P2. Inthis
ase we say that the transformation is weakly
orre
t. If additional
onditionshold, then we may have that P1 � P2 and we say that the transformation is strongly
orre
t.In Se
tion 6 we will also show that our transformation rules preserve safety, thatis, if from program P1 we derive program P2 by using the transformation rules andgoal g is safe in P1, then goal g is safe also in P2.5 The Transformation RulesIn this se
tion we present the transformation rules for our extended logi
 lan-guage. We assume that starting from an initial program P0 we have
onstru
tedthe transformation sequen
e P0; : : : ;Pi (Pettorossi and Proietti 1994; Tamaki andSato 1984). By an appli
ation of a transformation rule, from program Pi we derivea new program Pi+1.Rule R1 (De�nition Introdu
tion)We derive the new program Pi+1 by adding to program Pi a new
lause,
alled ade�nition, of the form:newp(V1; : : : ;Vm) g

Transformations of Logi
 Programs with Goals as Arguments 17where: (i) newp is a new non-primitive predi
ate symbol not o

urring in any pro-gram of the sequen
e P0; : : : ;Pi , (ii) the non-primitive predi
ate symbols o

urringin g are de�ned in P0, and (iii) V1; : : : ;Vm are some of (possibly all) the distin
tvariables o

urring in g .The set of all de�nitions introdu
ed during the transformation sequen
e P0; : : : ;Pi ,is denoted by Defi . Thus, Def0 = ;.Rule R2 (Unfolding)Let
1: h body [p(u1; : : : ; um)℄ be a renamed apart
lause in program Pi wherep is a non-primitive predi
ate symbol. Let d : p(V1; : : : ;Vm) g be a
lause inP0 [Defi . By unfolding
1 w.r.t. p(u1; : : : ; um) using d we derive the new
lause
2: h body [gfV1=u1; : : : ;Vm=umg℄. We derive the new program Pi+1 by repla
ingin program Pi
lause
1 by
lause
2.Rule R3 (Folding)Let
1: h body [g#℄ be a renamed apart
lause in program Pi and let d :p(V1; : : : ;Vm) g be a
lause in Defi . Suppose that, for every lo
al variableV of g in d , we have that:(1) V # is a lo
al variable of g# in
1, and(2) the variable V # does not o

ur in W #, for any variable W o

urring in gand di�erent from V .Then, by folding
1 using d we derive the new
lause
2: h body [p(V1; : : : ;Vm)#℄.We derive the new program Pi+1 by repla
ing in program Pi
lause
1 by
lause
2.In order to present the goal repla
ement rule (see rule R4 below) we introdu
ethe notion of repla
ement law. Basi
ally, a repla
ement law denotes two goals whi
h
an be repla
ed one for the other in the body of a
lause. We have two kinds ofrepla
ement laws: the weak and the strong repla
ement laws, whi
h ensure weakand strong
orre
tness, respe
tively (see the end of this se
tion for an informaldis
ussion and Se
tion 6 for a formal proof of this fa
t).First we need the following de�nition.De�nition 2 (Depth of a Dedu
tion Tree)Let � be a �nite dedu
tion tree and let m be the maximal number of appli
ationsof the (at) rule in a root-to-leaf path of � . Then we say that � has depth m.Let � be a proof for P ` g 7! A, for some program P , goal g , and set A ofsubstitutions, and let m be the depth of �. If A = ; we write P ` g #m false ;otherwise, if A 6=; we write P ` g #m true.Re
all that, given a program P and a goal g , if for some set A of substitutionsthere exists a proof for P ` g 7! A, then the proof is unique up to isomorphism.In parti
ular, given a proof for P ` g 7! A1 and a proof for P ` g 7! A2, theyhave the same depth.De�nition 3 (Repla
ement Laws)Let P be a program, let g1 and g2 be two goals, and let V be a set of variables.(i) The relation P ` 8V (g1 �! g2) holds i� for every goal
ontext g [℄ su
h thatvars(g [℄) \ vars(g1; g2) � V , and for every b 2 ftrue; falseg, we have that:

18 A. Pettorossi and M. Proiettiif P ` g [g1℄ # b then P ` g [g2℄ # b. (y)(ii) The relation P ` 8V (g1 >�! g2),
alled a weak repla
ement law, holds i�for every goal
ontext g [℄ su
h that vars(g [℄) \ vars(g1; g2) � V , and for everyb 2 ftrue; falseg, we have that:if P ` g [g1℄ #m b then P ` g [g2℄ #n b with m�n. (yy)(iii) The relation P ` 8V (g1 > ! g2),
alled a strong repla
ement law, holds i�P ` 8V (g1 >�! g2) and P ` 8V (g2 �! g1).(iv) We write P ` 8V (g1 = ! g2) to mean that the strong repla
ement lawsP ` 8V (g1 >�! g2) and P ` 8V (g2 >�! g1) hold.If V = ; then P ` 8V (g1 >�! g2) is also written as P ` g1 >�! g2. If V =fV1; : : : ;Vng then P ` 8V (g1 >�! g2) is also written as P ` 8V1; : : : ;Vn (g1 >�! g2).If V =vars(g1; g2) then P ` 8V (g1 >�! g2) is also written as P ` 8 (g1 >�! g2).A few
omments on the above De�nition 3 are now in order.(1) In the relation P ` 8V (g1 �! g2) we have used the set V of universallyquanti�ed variables as a notational devi
e for indi
ating that when we repla
e g1by g2 in a
lause h body [g1℄, the variables in
ommon between h body [℄ and(g1; g2) are those in V (see the goal repla
ement rule R4 below). Thus, vars(g1)�Vis the set of the lo
al variables of g1 in h body [g1℄ and vars(g2)�V is the set ofthe lo
al variables of g2 in h body [g2℄.(2) Impli
ation (yy) implies Impli
ation (y).(3) Every strong repla
ement law is also a weak repla
ement law.(4) If P ` 8V (g1 = ! g2) then there exists A1 2 P(Subst) su
h that P ` g1 7! A1has a proof of depth m i� there exists A2 2 P(Subst) su
h that P ` g2 7! A2 hasa proof of depth m. Moreover, if both proofs exist, A1=; i� A2=;.The properties listed in the next proposition follow dire
tly from De�nition 3.Proposition 2Let P be a program, let g1 and g2 be goals, and let V be a set of variables.(i) P ` 8V (g1 �! g2) holds i� for every goal
ontext g [℄ su
h that vars(g [℄) \vars(g1; g2) � V , P ` 8W (g [g1℄ �! g [g2℄) holds, where W = V [vars(g [℄).(ii) P ` 8V (g1 �! g2) holds i� P ` 8W (g1 �! g2) holds, where W = V \vars(g1; g2).(iii) P ` 8V (g1 �! g2) holds i� for every W � V , P ` 8W (g1 �! g2) holds.(iv) P ` 8V (g1 �! g2) holds i� for every substitution # su
h that vars(#) \vars(g1; g2) � V , P ` 8W (g1# �! g2#) holds, where W = vars(V #).(v) P ` 8V (g1 �! g2) holds i� for every renaming substitution � su
h thatvars(�) \ V = ;, P ` 8V (g1� �! g2�) holds.The properties obtained from (i) { (v) by repla
ing �! by >�! are also true.We will refer to them as Properties (i0) { (v0), respe
tively.

Transformations of Logi
 Programs with Goals as Arguments 19De�nition 4We say that a weak repla
ement law P ` 8V (g1 >�! g2) (or a strong repla
ementlaw P ` 8V (g1 > ! g2)) preserves safety i� for every goal
ontext g [℄ su
h thatvars(g [℄) \ vars(g1; g2) � V , we have that:if g [g1℄ is safe in P then g [g2℄ is safe in P .Rule R4 (Goal Repla
ement)Let
1: h body [g1℄ be a
lause in program Pi and let g2 be a goal su
h that:(i) all non-primitive predi
ate symbols o

urring in g1 or g2 are de�ned in P0, andeither (ii.1) P0 ` 8V (g1 >�! g2), or (ii.2) P0 ` 8V (g1 > ! g2), where V =vars(h; body [℄) \ vars(g1; g2).By goal repla
ement we derive the new
lause
2: h body [g2℄, and we derive thenew program Pi+1 by repla
ing in program Pi
lause
1 by
lause
2.In
ase (ii.1) we say that the goal repla
ement is based on a weak repla
ement law.In
ase (ii.2) we say that the goal repla
ement is based on a strong repla
ementlaw. We say that the goal repla
ement preserves safety i� it is based on a (weak orstrong) repla
ement law whi
h preserves safety.Impli
ation (yy) of De�nition 3 makes >�! and > ! to be improvement relationsin the sense of (Sands 1996). As stated in Theorem 2 of Se
tion 6, Impli
ation (yy)is required for ensuring the weak
orre
tness of a goal repla
ement step, while Im-pli
ation (y) of De�nition 3 does not suÆ
e. This fa
t is illustrated by the followingexample.Example 6Let us
onsider the program P1:1. p q2. q We have that P1 ` q �! p and thus, Impli
ation (y) holds by taking g1 to be q , g2to be p, and g [℄ to be the empty goal
ontext. The repla
ement of q by p in
lause1 produ
es the following program P2:1*. p p2. q This repla
ement is not an appli
ation of rule R4, be
ause Impli
ation (yy) does nothold. (Indeed, we have that the depth of the proof for P1 ` q 7! f"g is smaller thanthe depth of the proof for P1 ` p 7! f"g). The transformation from program P1 toprogram P2 is not weakly
orre
t (nor strongly
orre
t), be
ause p su

eeds in P1,while p does not terminate in P2, and thus, it is not the
ase that P1 v P2. �The reader may
he
k that, for any program P , and goals g , g1, g2, and g3, wehave the following repla
ement laws. It
an be shown that these repla
ement lawspreserve safety.

20 A. Pettorossi and M. Proietti1. Boolean Laws:P ` 8 (g ^ true = ! g) P ` 8 (g ^ g >�! g)P ` 8 (true ^ g = ! g) P ` 8 (g _ g = ! g)P ` 8 (true _ g >�! true) P ` 8 (g1 _ g2 = ! g2 _ g1)P ` 8 (g ^ false >�! false) P ` 8 ((g1 ^ g2) _ (g1 ^ g3) = ! g1 ^ (g2 _ g3))P ` 8 (false ^ g = ! false) P ` 8 ((g1 ^ g2) _ (g3 ^ g2) = ! (g1 _ g3) ^ g2)P ` 8 (false _ g = ! g) P ` 8 ((g1 _ g2) ^ (g1 _ g3) >�! g1 _ (g2 ^ g3))In the following repla
ement laws 2.1 and 2.2, a

ording to our
onventions, Vstands for either an individual variable or a goal variable, and u stands for either aterm or a goal, respe
tively.2.1 Introdu
tion and elimination of equalities:P ` 8U (g [u℄ = ! ((V =u) ^ g [V ℄)) where U = vars(g [u℄) and V 62 U .2.2 Rearrangement of equalities:P ` 8U (g [(V =u) ^ g1℄ = ! ((V =u) ^ g [g1℄))where U = vars(g [g1℄; u) and V 62 U .When referring to goal variables, laws 2.1 and 2.2 will also be
alled `Introdu
tionand elimination of goal equalities' and `Rearrangement of goal equalities', respe
-tively.3. Rearrangement of term equalities:P ` 8 (g ^ (t1= t2) >�! (t1= t2) ^ g)4. Clark Equality Theory (also
alled CET, see (Lloyd 1987)):P ` 8X (eq1 = ! eq2) if CET ` 8X (9Y eq1 $ 9Z eq2)where: (i) eq1 and eq2 are goals
onstru
ted by using true, false, term equalities,
onjun
tions, and disjun
tions, and (ii) Y =(vars(eq1)�X) and Z =(vars(eq2)�X).Noti
e that, for some program P and for some goals g ; g1; g2, and g3, the followingdo not hold:P ` 8 (true �! true _ g)P ` 8 (false �! g ^ false)P ` 8 ((t1= t2) ^ g �! g ^ (t1= t2))P ` 8 (g1 _ (g2 ^ g3) �! (g1 _ g2) ^ (g1 _ g3))P ` 8V (g2[g1℄ �! g2[G ℄ ^ (G=g1)) where V =vars(g2[g1℄) and G 62 VP ` 8V (g [(G=g1) ^ g2℄ �! (G=g1) ^ g [g2℄)where V =(vars(g [g2℄; g1)� fGg) and G 2 vars(g [℄; g1)P ` 8 (g [(G=g1) ^ g2℄ �! (G=g1) ^ g [g2℄) where G 62 vars(g [℄; g1)Let us now make some remarks on the goal repla
ement rule.In the Weak Corre
tness part of Theorem 2 (see Se
tion 6) we will prove that ifprogram P2 is derived from program P1 by an appli
ation of the goal repla
ementrule based on a weak repla
ement law, then P2 is a re�nement of P1, that is,P1 v P2. Thus, there may be some ordinary goal g whi
h either su

eeds or failsin P2, while g does not terminate in P1, as shown by the following example.

Transformations of Logi
 Programs with Goals as Arguments 21Example 7Let us
onsider the following two programs P1 and P2, where P2 is derived fromP1 by applying the goal repla
ement rule based on the weak (and not strong)repla
ement law P1 ` 8 (true _ g >�! true):P1: p true _ q P2: p trueq q q qWe have that p does not terminate in P1 and p su

eeds in P2.Next, let us
onsider the following programs:P3: p q ^ false P4: p falseq q q qwhere P4 is derived from P3 by a goal repla
ement rule based on a weak (andnot strong) repla
ement law P ` 8 (g ^ false >�! false). We have that p does notterminate in P3, while p fails in P4. �In the Strong Corre
tness part of Theorem 2 we will prove that if program P2 isderived from program P1 by an appli
ation of the goal repla
ement rule based ona strong repla
ement law, then P1 and P2 are equivalent, that is P1 � P2. Thus, inparti
ular, for any goal g , g terminates in P1 i� g terminates in P2.Moreover, in Theorem 3 of Se
tion 6 we will prove that if program P2 is derivedfrom program P1 by goal repla
ements whi
h preserve safety, then every goal whi
his safe in P1, is safe also in P2.6 Corre
tness of Program TransformationsThe unrestri
ted use of our rules for transforming programs may allow the
on-stru
tion of in
orre
t transformation sequen
es, as the following example shows.Example 8Let us
onsider the following initial program:P0: p qq By two de�nition introdu
tion steps, we get:P1: p qq newp1 qnewp2 qBy three folding steps, from program P1 we get the �nal program:P2: p newp1q newp1 newp2newp2 newp1We have that p su

eeds in P0, while p does not terminate in P2. �

22 A. Pettorossi and M. ProiettiIn this se
tion we will present some
onditions whi
h ensure that every transfor-mation sequen
e P0; : : : ;Pk
onstru
ted by using our rules, is:(i) weakly
orre
t, in the sense that P0 [Defk v Pk (see Point (1) of Theorem 2),(ii) strongly
orre
t, in the sense that P0[Defk � Pk (see Point (2) of Theorem 2),(iii) preserves safety, in the sense that, for every goal g , if g is safe in P0 [Defkthen g is safe also in Pk (see Theorem 3).Similarly to other
orre
tness results presented in the literature (Bossi and Co

o1994; Pettorossi and Proietti 1994; Sands 1996; Tamaki and Sato 1984), some ofthe
onditions whi
h ensure (weak or strong)
orre
tness, require that the trans-formation sequen
es are
onstru
ted by performing suitable unfolding steps beforeperforming folding steps.In parti
ular, Theorem 2 below ensures the (weak or strong)
orre
tness of agiven transformation sequen
e in the
ase where this sequen
e is admissible, thatis, it is
onstru
ted by performing parallel leftmost unfoldings (see De�nition 5) onall de�nitions whi
h are used for performing subsequent foldings.In order to present our
orre
tness results it is
onvenient to
onsider admissi-ble transformation sequen
es whi
h are ordered, that is, transformation sequen
es
onstru
ted by:(i) �rst, applying the de�nition introdu
tion rule,(ii) then, performing parallel leftmost unfoldings of the de�nitions that are used forsubsequent foldings, and(iii) �nally, performing unfoldings, foldings, and goal repla
ements in any order.Thus, an ordered, admissible transformation sequen
e has all its de�nition intro-du
tions performed at the beginning, and it
an be written in the form P0; : : : ;P0[Defk ; : : : ;Pk , where Defk is the set of all de�nitions introdu
ed during the entiretransformation sequen
e P0; : : : ;P0[Defk ; : : : ;Pk . By Proposition 3 below we mayassume, without loss of generality, that all admissible transformation sequen
es areordered.In order to prove that an admissible transformation sequen
e is weakly
orre
t(see Point (1) of Theorem 2), we pro
eed as follows.(i) In Lemma 1 we
onsider a generi
 transformation by whi
h we derive a programNewP from a program P by repla
ing the bodies of the
lauses of P by new bodies.We show that, if these body repla
ements
an be viewed as goal repla
ements basedon weak repla
ement laws, then the transformation from P to NewP preservessu

esses and failures, that is,- if a goal g su

eeds in P then g su

eeds in NewP , and- if a goal g fails in P then g fails in NewP .(ii) Then, in Lemma 2 we prove that in an ordered, admissible transformationsequen
e P0; : : : ;P0 [Defk ; : : : ;Pk , any appli
ation of the unfolding, folding, andgoal repla
ement rule is an instan
e of the generi
 transformation
onsidered inLemma 1, that is, it
onsists in the repla
ement of the body of a
lause by a newbody, and this repla
ement
an be viewed as a goal repla
ement based on a weakrepla
ement law.

Transformations of Logi
 Programs with Goals as Arguments 23(iii) Thus, by using Lemmata 1 and 2 we get Point (1) of Theorem 1. In parti
ular,we have that in any admissible transformation sequen
e P0; : : : ;P0 [Defk ; : : : ;Pk ,su

esses and failures are preserved, that is:- if a goal g su

eeds in P0 [Defk then g su

eeds in Pk , and- if a goal g fails in P0 [Defk then g fails in Pk .(iv) Finally, Proposition 1 allows us to infer the preservation of most general answersubstitutions from the preservation of su

esses and failures. Indeed, by Proposi-tion 1 and Point (1) of Theorem 1 we prove that if an ordinary goal g su

eeds inP0 [Defk then the set of answer substitutions for g in P0 [Defk and the set ofanswer substitutions for g in Pk are equally general.A

ording to De�nition 1, Points (iii) and (iv) mean that P0 [Defk v Pk , that is,the ordered, admissible transformation sequen
e P0; : : : ;P0[Defk ; : : : ;Pk is weakly
orre
t (see Point (1) of Theorem 2).In order to prove that an admissible transformation sequen
e is strongly
orre
t(see Point (2) of Theorem 2), we make the additional hypothesis that all goalrepla
ements performed during the
onstru
tion of the transformation sequen
eare based on strong repla
ement laws. Analogously to the proof of weak
orre
tnesswhi
h is based on Lemmata 1 and 2, the proof of strong
orre
tness is based onLemmata 3 and 4 whi
h we give below. By using these lemmata, we prove Point (2)of Theorem 1, that is:- if a goal g su

eeds in Pk then g su

eeds in P0 [Defk , and- if a goal g fails in Pk then g fails in P0 [Defk .Finally, by Proposition 1 and Theorem 1, we prove that any admissible transfor-mation sequen
e in whi
h all goal repla
ements are based on strong repla
ementlaws, is strongly
orre
t (see Point (2) of Theorem 2), that is, P0 [Defk � Pk .Now let us formally de�ne the notions of parallel leftmost unfolding of a
lause, ad-missible transformation sequen
e, and ordered admissible transformation sequen
eas follows.De�nition 5Let
 be a
lause in a program P . If
 is of the form:p(V1; : : : ;Vm) (a1 ^ g1) _ : : : _ (as ^ gs)where a1; : : : ; as are atoms with non-primitive predi
ates, g1; : : : ; gs are goals, ands > 0, then the parallel leftmost unfolding of
lause
 in program P is the pro-gram Q obtained from P by applying s times the unfolding rule w.r.t. a1; : : : ; as ,respe
tively.If
lause
 is not of the form indi
ated in De�nition 5 above, then the parallelleftmost unfolding of
 is not de�ned.De�nition 6A transformation sequen
e P0; : : : ;Pk is said to be admissible i� for every h, with0� h < k , if Ph+1 has been obtained from Ph by folding
lause
 using
lause d ,then there exist i ; j , with 0� i < j � k , su
h that d 2 Pi and Pj is obtained fromPi by parallel leftmost unfolding of d .

24 A. Pettorossi and M. ProiettiDe�nition 7An admissible transformation sequen
e P0; : : : ;Pk is said to be ordered i� it is of theform P0; : : : ;Pi ; : : : ;Pj ; : : : ;Pk , where: (i) the sequen
e P0; : : : ;Pi is
onstru
ted byapplying the de�nition introdu
tion rule, (ii) the sequen
e Pi ; : : : ;Pj is
onstru
tedby parallel leftmost unfolding of all de�nitions whi
h have been introdu
ed duringthe sequen
e P0; : : : ;Pi and are used for folding during the sequen
e Pj ; : : : ;Pk ,and (iii) the de�nition introdu
tion rule is never applied in the sequen
e Pj ; : : : ;Pk .Given an ordered, admissible transformation sequen
e P0; : : : ; Pi ; : : : ;Pj ; : : : ;Pk ,the set of de�nitions introdu
ed during P0; : : : ;Pi is the same as the set of de�nitionsintrodu
ed during the entire sequen
e P0; : : : ;Pk , and thus, in the above De�nition 7we have that Pi is P0 [Defk .An admissible transformation sequen
e P0; : : : ;Pk whi
h is ordered, is also de-noted by P0; : : : ;Pi ; : : : ;Pj ; : : : ;Pk , where we expli
itly indi
ate the program Piafter the introdu
tion of the de�nitions, and the program Pj after the parallelleftmost unfolding steps.Proposition 3For any admissible transformation sequen
e P0; : : : ;Pn there exists an ordered,admissible transformation sequen
e P0; : : : ;Pi ; : : : ; Pj ; : : : ;Pk su
h that Pn = Pkand Defn = Defk .Now, in order to prove the
orre
tness of transformation sequen
es, we state the fol-lowing Lemmata 1, 2, 3, and 4, whose proofs are given in the Appendix. As alreadymentioned, these Lemmata 1, 2, 3, and 4 will allow us to show that, under suitable
onditions, for every admissible transformation sequen
e P0; : : : ;Pk , (i) su

essesand failures are preserved (see Theorem 1 below), and (ii) weak
orre
tness holds(that is, P0 [Defk v Pk) or strong
orre
tness holds (that is, P0 [Defk � Pk) (seeTheorem 2 below).Lemma 1Let P and NewP be programs of the form:P : hd1 bd1 NewP : hd1 newbd1... ...hds bds hds newbd sFor r = 1; : : : ; s , let Vr be vars(hdr) and suppose that P ` 8Vr (bdr >�! newbd r).Then, for every goal g and for every b 2 ftrue; falseg, we have that:if P ` g #m b then NewP ` g #n b with m � n.Lemma 2Let us
onsider an ordered, admissible transformation sequen
e P0; : : : ; Pi ; : : : ;Pj ; : : : ;Pk , where Pi is P0 [Defk .(i) For h = i ; : : : ; j�1 and for any pair of
lauses
1: hd bd in program Ph and
2: hd newbd in program Ph+1, su
h that
2 is derived from
1 by applying theunfolding rule, we have that:

Transformations of Logi
 Programs with Goals as Arguments 25Pi ` 8V (bd >�! newbd)where V = vars(hd). (Noti
e that the unfolding rule does not
hange the heads ofthe
lauses.)(ii) For h = j ; : : : ; k�1 and for any pair of
lauses
1: hd bd in program Ph and
2: hd newbd in program Ph+1, su
h that
2 is derived from
1 by applying theunfolding, or folding, or goal repla
ement rule, we have that:Pj ` 8V (bd >�! newbd)where V = vars(hd). (Noti
e that the unfolding, folding, and goal repla
ementrules do not
hange the heads of the
lauses.)Lemma 3Let P and NewP be programs of the form:P : hd1 bd1 NewP : hd1 newbd1... ...hds bds hds newbdsFor r = 1; : : : ; s , let Vr be vars(hdr) and suppose that P ` 8Vr (newbdr �! bdr).Then, for every goal g and for every b 2 ftrue; falseg, we have that if NewP ` g # bthen P ` g # b.Noti
e that Lemma 3 is a partial
onverse of Lemma 1. These two lemmata im-ply that if we derive a program NewP from a program P by repla
ing the bodiesof the
lauses of P by new bodies, and these body repla
ements are goal repla
e-ments based on strong repla
ement laws, then every goal terminates in NewP i� itterminates in P .Lemma 4Let us
onsider a transformation sequen
e P0; : : : ;Pk and let Defk be the set ofde�nitions introdu
ed during that sequen
e. For h = 0; : : : ; k�1 and for any pairof
lauses
1: hd bd in program Ph and
2: hd newbd in program Ph+1, su
hthat
2 is derived from
1 by applying the unfolding rule, or the folding rule, or thegoal repla
ement rule based on strong repla
ement laws, we have that:P0 [Defk ` 8V (newbd �! bd)where V = vars(hd).In parti
ular, as a
onsequen
e of Lemma 2 and Lemma 4, we have that in anyordered, admissible transformation sequen
e the unfolding and folding rules
an beviewed as goal repla
ements based on strong repla
ement laws.The following theorem states that for every admissible transformation sequen
esu

esses and failures are preserved.Theorem 1 (Preservation of Su

esses and Failures)Let P0; : : : ;Pk be an admissible transformation sequen
e and let Defk be the setof de�nitions introdu
ed during that sequen
e. Then for every goal g and for everyb 2 ftrue; falseg, we have that:(1) if P0 [Defk ` g #m b then Pk ` g #n b with m � n, and(2) if all appli
ations of the goal repla
ement rule are based on strong repla
ementlaws and Pk ` g # b, then P0 [Defk ` g # b.

26 A. Pettorossi and M. ProiettiProof of Theorem 1See Appendix. The proof of (1) is based on Proposition 3 and Lemmata 1 and 2,and the proof of (2) is based on Proposition 3 and Lemmata 3 and 4.The following theorem establishes the weak
orre
tness and, under suitable
on-ditions, the strong
orre
tness of admissible transformation sequen
es.Theorem 2 (Corre
tness Theorem)Let P0; : : : ;Pk be an admissible transformation sequen
e. Let Defk be the set ofde�nitions introdu
ed during that sequen
e. We have that:(1) (Weak Corre
tness) P0 [Defk v Pk , that is, Pk is a re�nement of P0 [Defk ,and(2) (Strong Corre
tness) if all appli
ations of the goal repla
ement rule are based onstrong repla
ement laws then P0[Defk � Pk , that is, Pk is equivalent to P0[Defk .Proof of Theorem 2See Appendix. The proof of (1) is based on Proposition 1 and Theorem 1 (Point 1),and the proof of (2) is based on Proposition 1 and Theorem 1 (Points 1 and 2).The following two examples show that in the statement of Theorem 2 we
annotdrop the admissibility
ondition. Indeed, in these examples we
onstru
t transfor-mation sequen
es whi
h are not admissible and not weakly
orre
t.Example 9Let us
onstru
t a transformation sequen
e as follows. The initial program is:P0: p p ^ qq falseBy de�nition introdu
tion we get:P1: p p ^ qq falsenewp false ^ pThen we perform the unfolding of newp false ^ p w.r.t. p. (Noti
e that this isnot a parallel leftmost unfolding.) We get:P2: p p ^ qq falsenewp false ^ p ^ qBy folding we get the �nal program:P3: p p ^ qq falsenewp newp ^ qWe have that newp fails in P0 [Def3 (that is, P1), while newp does not terminatein P3. �

Transformations of Logi
 Programs with Goals as Arguments 27Example 10Let us
onstru
t a transformation sequen
e as follows. The initial program is:P0: p falseq true _ qBy de�nition introdu
tion we get:P1: p falseq true _ qnewp p _ (p ^ q)Then we perform the unfolding of newp p _ (p ^ q) w.r.t. q . (Noti
e that this isnot a parallel leftmost unfolding.) We get:P2: p falseq true _ qnewp false _ (p ^ (true _ q))By goal repla
ement based on boolean laws we get:P3: p falseq true _ qnewp p _ (p ^ q)By folding we get the �nal program:P4: p falseq true _ qnewp newpWe have that newp fails in P0 [Def4 (that is, P1), while newp does not terminatein P4. �Finally, the following theorem states that a (possibly not admissible) transfor-mation sequen
e preserves safety, if all goal repla
ements performed during thatsequen
e preserve safety.Theorem 3 (Preservation of Safety)Let P0; : : : ;Pk be a transformation sequen
e and let Defk be the set of de�nitionsintrodu
ed during that sequen
e. Let us also assume that all appli
ations of the goalrepla
ement rule R4 preserve safety. Then, for every goal g , if g is safe in P0 [Defkthen g is safe in Pk .Proof of Theorem 3See Appendix. The proof is based on Lemmata 5 and 6 given in the Appendix.We end this se
tion by making some
omments about our
orre
tness results.Let us
onsider an admissible transformation sequen
e P0; : : : ;Pk , during whi
h weintrodu
e the set Defk of de�nitions. Then, by Point (1) of Theorem 1 programPk may be more de�ned than program P0 [Defk in the sense that there may bea goal whi
h terminates (i.e., su

eeds or fails) in Pk , while it does not terminatein P0 [Defk . This `in
rease of termination' is often desirable when transformingprograms and it may be a
hieved by goal repla
ements whi
h are not based onstrong repla
ement laws (see, for instan
e, Example 7 in Se
tion 5).

28 A. Pettorossi and M. ProiettiNow suppose that during the
onstru
tion of the admissible transformation se-quen
e P0; : : : ;Pk all appli
ations of the goal repla
ement rule are based on strongrepla
ement laws. Then, by Theorem 1 we have that for all goals g , g terminates inP0[Defk i� g terminates in Pk . However, safety may be not preserved, in the sensethat there may be a goal g whi
h is safe in P0 [Defk (but g neither su

eeds norfails in P0 [Defk) and g is not safe in Pk (or vi
e versa), as shown by the followingexample.Example 11Let us
onsider the following two programs P1 and P2:P1: p p P2: p GProgram P2 is derived from P1 by applying the goal repla
ement rule based on thestrong repla
ement law P1 ` p = ! G , whi
h does not preserve safety. We havethat p is safe, p does not terminate in P1, and p is not safe in P2. Noti
e that therepla
ement law P1 ` p = ! G trivially holds be
ause, for any b 2 ftrue; falseg,P1 ` p # b does not hold and P1 ` G # b does not hold. �In order to ensure that if g is safe in P1 then g is safe in P2, it is enough touse repla
ement laws whi
h preserve safety (see Theorem 3). Indeed, unfolding andfolding always preserve safety (see Lemma 6 in the Appendix).We have not presented any result whi
h guarantees that if a goal is safe in the�nal program Pk then it is safe in the program P0[Defk . This result
ould have beena
hieved by imposing further restri
tions on the goal repla
ement rule. However,we believe that this `inverse preservation of safety' is not important in pra
ti
e,be
ause usually we start from an initial program where all goals of interest are safeand we want to derive a �nal program where those goals of interest are still safe. Inparti
ular, if in the transformation sequen
e P0; : : : ;Pk the initial program P0 is anordinary program, then every ordinary goal g is safe in P0 and, by Theorem 3, wehave that g is safe also in Pk . Thus, as dis
ussed in Se
tion 4, we
an use ordinaryimplementations of LD-resolution to
ompute the relation Pk j= g 7! A.Noti
e also that, if P0[Defk v Pk and an ordinary goal g terminates in P0, theng has the same most general answer substitutions in P0 [Defk and Pk , modulovariable renaming (see Point (i) of Remark 1 at the end of Se
tion 4). However,the set of all answer substitutions may not be preserved, and in parti
ular, thereare programs P1 and P2 su
h that P1 v P2 and, for some goal g , we have thatP1 ` g 7! A1 and P2 ` g 7! A2, where A1 and A2 have di�erent
ardinality, asshown by the following example adapted from (Bossi et al. 1992). A similar propertyholds if we assume that P1 � P2, instead of P1 v P2.Example 12Let us
onsider the following two programs P1 and P2, where P2 is derived fromP1 by applying the goal repla
ement rule based on the weak repla
ement lawP ` 8 (g ^ g >�! g), whi
h holds for every program P and and goal g :P1: p(X) q(X) ^ q(X) P2: p(X) q(X)q(X) X = f (a;Z) q(X) X = f (a;Z)q(X) X = f (Y ; a) q(X) X = f (Y ; a)

Transformations of Logi
 Programs with Goals as Arguments 29We have that:P1 ` p(X) 7! ffX =f (a;Z)g; fX =f (a; a)g; fX =f (Y ; a)gg, andP2 ` p(X) 7! ffX =f (a;Z)g; fX =f (Y ; a)gg. �The above example shows that, if during program transformation we want to pre-serve the set of answer substitutions, then we should not apply goal repla
ementsbased on the repla
ement law P ` 8 (g ^ g >�! g) whi
h, however, may be usefulfor avoiding the
omputation of redundant goals and improving program eÆ
ien
y.Another repla
ement law whi
h is very useful in many examples of programtransformation, is the law whi
h expresses the fun
tionality of a predi
ate. Forinstan
e, in the Deepest example of Se
tion 2, the depth predi
ate is fun
tionalwith respe
t to its �rst argument in the sense that, for every goal
ontext g [℄, thefollowing repla
ement law holds:Deepest ` 8 (depth(T ;X) ^ g [depth(T ;Y)℄ > ! depth(T ;X) ^ g [X =Y ℄).The following example, similar to Example 12, shows that in general the fun
tion-ality law does not preserve the set of answer substitutions.Example 13Let us
onsider the following two programs P1 and P2, where P2 is derived fromP1 by applying the goal repla
ement rule based on the (strong) repla
ement lawP1 ` 8 (q(X ;Y) ^ q(X ;Z) > ! q(X ;Y) ^ Y =Z):P1: p(X) q(X ;Y) ^ q(X ;Z) P2: p(X) q(X ;Y) ^ Y =Zq(f (a;Z); b) q(f (a;Z); b) q(f (Y ; a); b) q(f (Y ; a); b) As in Example 12, we have that:P1 ` p(X) 7! ffX =f (a;Z)g; fX =f (a; a)g; fX =f (Y ; a)gg andP2 ` p(X) 7! ffX =f (a;Z)g; fX =f (Y ; a)gg. �Finally, noti
e that Theorem 2 ensures the preservation of most general answersubstitutions for ordinary goals only. Thus, the answer substitutions
omputed forgoals with o

urren
es of goal variables, may not be preserved, as shown by thefollowing example.Example 14Let us
onsider the following two programs P1 and P2, where P2 is derived fromP1 by unfolding
lause 1 w.r.t. p using
lause 2:P1: 1. a(G) (G=p) ^G P2: 1*. a(G) (G=q) ^G2. p q 2. p q3. q 3. q We have that P1 ` a(G) 7! ffG=pgg, and P2 ` a(G) 7! ffG=qgg. �

30 A. Pettorossi and M. Proietti7 Program Derivation in the Extended LanguageIn this se
tion we present some examples whi
h illustrate the use of our trans-formation rules. In these examples, by using goal variables and goal arguments,we introdu
e and manipulate
ontinuations. For this reason we have measured theimprovements of program eÆ
ien
y by running our programs using the BinProlog
ontinuation passing
ompiler (Tarau 1996). These run-time improvements havebeen reported in Se
tion 7.6. Compilers based on di�erent implementation method-ologies, su
h as SICStus Prolog, may not give the same improvements. However, itshould be noti
ed that the eÆ
ien
y improvements we get, do not
ome from theuse of
ontinuations, but from the program transformations performed by apply-ing our transformation rules (see Se
tion 5). Indeed, in BinProlog the
ontinuationpassing style transformation in itself gives no speed-ups.Let us introdu
e the following terminology whi
h will be useful in the sequel. Wesay that: (i) a
lause is in
ontinuation passing style i� its body has no o

urren
esof the
onjun
tion operator, and (ii) a program is in
ontinuation passing style i� allits
lauses are in
ontinuation passing style. Thus, every program in
ontinuationpassing style is a binary program in the sense of Tarau and Boyer (1990), that is,a program with at most one atom in the body of its
lauses.When writing programs in this se
tion we use the following primitive predi
ates:=, 6=, �, and <. For the derivation of programs in
ontinuation passing style, weassume that, for ea
h of these predi
ates there exists a
orresponding primitivepredi
ate with an extra argument denoting a
ontinuation. Let us
all these predi-
ates eq�
, di��
, geq�
, and lt�
, respe
tively.We assume that, for every program P , the following strong repla
ement lawshold:P ` 8 ((X =Y) ^ C = ! eq�
(X ;Y ;C))P ` 8 ((M 6=N) ^ C = ! di��
(M ;N ;C))P ` 8 ((M �N) ^ C = ! geq�
(M ;N ;C))P ` 8 ((M <N) ^ C = ! lt�
(M ;N ;C))In this se
tion we use the following synta
ti
al
onventions:(1) the
onjun
tion operator ^ is repla
ed by
omma,(2) a
lause of the form h g1_ g2 is also written as two
lauses, namely, h g1and h g2, and(3) a
lause of the form h (V = u); g where the variable V does not o

ur inthe argument u, is also written as (h g)fV =ug.7.1 Tree FlippingThis example is borrowed from (J�rgensen et al. 1997) where it is used for showingthat
onjun
tive partial dedu
tion may a�e
t program termination when trans-forming programs for eliminating multiple traversals of data stru
tures. A similarproblem arises when multiple traversals of data stru
tures are avoided by apply-ing Tamaki and Sato's unfold/fold transformation rules (Tamaki and Sato 1984)

Transformations of Logi
 Programs with Goals as Arguments 31a

ording to the tupling strategy (see Se
tion 2). In this example by using goalarguments and introdu
ing
ontinuations, we are able to derive a program in
on-tinuation passing style whi
h eliminates multiple traversals of data stru
tures and,at the same time, preserves universal termination.Let us
onsider the initial program FlipChe
k:1.
ip
he
k (X ;Y)
ip(X ;Y);
he
k (Y)2.
ip(l(N); l(N)) 3.
ip(t(L;N ;R); t(FR;N ;FL))
ip(L;FL);
ip(R;FR)4.
he
k (l(N)) nat(N)5.
he
k (t(L;N ;R)) nat(N);
he
k (L);
he
k (R)6. nat(0) 7. nat(s(N)) nat(N)where: (i) the term l(N) denotes a leaf with label N and the term t(L;N ;R) denotesa tree with label N and the two subtrees L and R, (ii) nat(X) holds i� X is a naturalnumber, (iii)
he
k (X) holds i� all labels in the tree X are natural numbers, and(iv)
ip(X ;Y) holds i� the tree Y
an be obtained by
ipping all subtrees of thetree X .We would like to transform this program so to avoid the double traversal of trees(see the double o

urren
e of Y in the body of
lause 1). By applying the tuplingstrategy (or, equivalently,
onjun
tive partial dedu
tion), we derive the followingprogram FlipChe
k1:8.
ip
he
k (l(N); l(N)) nat(N)9.
ip
he
k (t(L;N ;R); t(FR;N ;FL)) nat(N);
ip
he
k (L;FL);
ip
he
k (R;FR)Program FlipChe
k1 performs only one traversal of any input tree whi
h is the �rstargument of
ip
he
k . However, as already mentioned, FlipChe
k1 does not preservetermination. Indeed, the goal
ip
he
k (t(l(N); 0; l(a));Y) fails in FlipChe
k, whilethis goal does not terminate in the derived program FlipChe
k1.Now we present a se
ond derivation starting from the same program FlipChe
kand produ
ing a �nal program FlipChe
k2 whi
h: (i) is in
ontinuation passingstyle, (ii) traverses the input tree only on
e, and (iii) preserves termination. Duringthis se
ond derivation we introdu
e goal arguments and we make use of the trans-formation rules introdu
ed in Se
tion 5. The initial step of this derivation is theintrodu
tion of the following new
lause:10. newp(X ;Y ;G ;C ;D)
ip(X ;Y); G=(
he
k (Y);C); DAs already mentioned, in this paper we do not illustrate the strategies needed forguiding the appli
ation of our transformation rules and, in parti
ular, we do notindi
ate how to
onstru
t the new de�nitions to be introdu
ed, su
h as
lause 10above. For
lause 10 we noti
e that: (i) by introdu
ing a de�nition with the goalequality G=(
he
k (Y); C), instead of the goal
he
k(Y), we will be able to applythe folding rule by �rst performing leftward moves of goal equalities, instead of(possibly in
orre
t) leftward moves of goals, and (ii) by introdu
ing the
ontinu-

32 A. Pettorossi and M. Proiettiations C and D , we will avoid the expensive use of the
onjun
tion operator for
onstru
ting goal arguments.We
ontinue our derivation by unfolding
lause 10 w.r.t.
ip(X ;Y) and we get:11. newp(l(N); l(N);G ;C ;D) (G=(
he
k (l(N));C)); D12. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D)
ip(L;FL);
ip(R;FR)(G=(
he
k (t(FR;N ;FL));C)); DWe then unfold
lauses 11 and 12 w.r.t. the
he
k atoms, and after some appli
ationsof the goal repla
ement rule based on boolean laws and CET, we get:13. newp(l(N); l(N);G ;C ;D) G=(nat(N);C); D14. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D)
ip(L;FL);
ip(R;FR);(G=(nat(N);
he
k (FR);
he
k (FL);C)); DBy introdu
ing and rearranging goal equalities (see laws 2.1 and 2.2, respe
tively,in Se
tion 5), we transform
lause 14 into:15. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D)
ip(L;FL); U =(
he
k (FL);C);
ip(R;FR); V =(
he
k (FR);U); (G=(nat(N);V)); DNow we fold twi
e
lause 15 using
lause 10 and we get:16. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D) newp(L;FL;U ;C ;newp(R;FR;V ;U ; (G=(nat(N);V);D)))In order to express
ip
he
k in terms of newp we introdu
e a goal equality into
lause 1 and we derive:17.
ip
he
k (X ;Y)
ip(X ;Y); G=(
he
k (Y); true); GThen we fold
lause 17 using
lause 10 and we get:18.
ip
he
k (X ;Y) newp(X ;Y ;G ; true;G)The program we have derived so far
onsists of
lauses 13, 16, and 18. Noti
e that
lauses 13 and 16 are not in
ontinuation passing style be
ause the
onjun
tionoperator o

urs in their bodies. In order to derive
lauses in
ontinuation passingstyle we introdu
e the following new de�nition:19. nat�
(N ;C) nat(N); CBy unfolding, folding, and goal repla
ement steps based on the repla
ement lawFlipChe
k ` 8 ((X = Y);C = ! eq�
(X ;Y ;C)), we derive the following �nalprogram FlipChe
k2:18.
ip
he
k (X ;Y) newp(X ;Y ;G ; true;G)20. newp(l(N); l(N);G ;C ;D) eq�
(G ;nat�
(N ;C);D)21. newp(t(L;N ;R); t(FR;N ;FL);G ;C ;D) newp(L;FL;U ;C ; newp(R;FR;V ;U ;eq�
(G ;nat�
(N ;V);D)))22. nat�
(0;C) C23. nat�
(s(N);C) nat�
(N ;C)Program FlipChe
k2 traverses the input tree only on
e. Moreover, Theorem 1 en-sures that, for every goal g of the form
ip
he
k (t1; t2), where t1 and t2 are any

Transformations of Logi
 Programs with Goals as Arguments 33two terms, g terminates in FlipChe
k i� g terminates in FlipChe
k2 (see also Se
-tion 7.5 for a more detailed dis
ussion of the
orre
tness properties of our programderivations). 7.2 Summing the Leaves of a TreeLet us
onsider the following program TreeSum that, given a binary tree t whoseleaves are labeled by natural numbers,
omputes the sum of the labels of the leavesof t .1. treesum(l(N);N) 2. treesum(t(L;R);N) treesum(L;NL); treesum(R;NR); plus(NL;NR;N)3. plus(0;X ;X) 4. plus(s(X);Y ; s(Z)) plus(X ;Y ;Z)By using Tamaki and Sato's transformation rules, from program TreeSum we mayderive a more eÆ
ient program with a

umulator arguments. In parti
ular, duringthis program derivation we introdu
e the following new predi
ate:5. a

�ts(T ;Y ;Z) treesum(T ;X); plus(X ;Y ;Z)We also use the asso
iativity of the predi
ate plus, that is, we use the followingequivalen
e whi
h holds in the least Herbrand model M (TreeSum) of the givenprogram TreeSum:M (TreeSum) j= 8X 1;X 2;X 3;S (9I (plus(X 1;X 2; I); plus(I ;X 3;S))$9J (plus(X 1; J ;S); plus(X 2;X 3; J)))During the derivation, we also make suitable goal rearrangements needed for per-forming foldings that use
lause 5. We derive the following program TreeSum1.6. treesum(l(N);N) 7. treesum(t(L;R);N) a

�ts(L;NR;N); treesum(R;NR)8. a

�ts(l(N);A

;Z) plus(N ;A

;Z)9. a

�ts(t(L;R);A

;N) a

�ts(L;A

;NewA

); a

�ts(R;NewA

;N)The least Herbrand models of programs TreeSum and TreeSum1 de�ne the samerelation for the predi
ate treesum. However, the two programs do not have thesame termination behaviour. For instan
e, the goal treesum(t(l(N); 0);Z) fails inTreeSum while it does not terminate in TreeSum1.By introdu
ing goal arguments and using the transformation rules presented inSe
tion 5, we are able to derive a program whi
h: (i) is in
ontinuation passingstyle, (ii) preserves termination, and (iii) is asymptoti
ally more eÆ
ient than theoriginal program TreeSum. Our derivation begins by introdu
ing the following new
lause:10. gen�ts(T ;Y ;Z ;G ;C ;D) treesum(T ;X); (G=(plus(X ;Y ;Z);C)); DWe unfold
lause 10 and we get:11. gen�ts(l(N);Y ;Z ;G ;C ;D) (G=(plus(N ;Y ;Z);C)); D12. gen�ts(t(L;R);Y ;Z ;G ;C ;D) treesum(L;LS); treesum(R;RS);plus(LS ;RS ;S); (G=(plus(S ;Y ;Z);C)); D

34 A. Pettorossi and M. ProiettiNow we may exploit the following generalized asso
iativity law for plus:TreeSum ` 8V ((plus(X 1;X 2; I); g [plus(I ;X 3;S)℄) > !(plus(X 1; J ;S); g [plus(X 2;X 3; J)℄))where V = fX 1;X 2;X 3;Sg [vars(g [℄) and fI ; Jg \ vars(g [℄) = ;. By this law,from
lause 12 we get the following
lause:13. gen�ts(t(L;R);Y ;Z ;G ;C ;D) treesum(L;LS); treesum(R;RS);plus(LS ;S1;Z); (G=(plus(RS ;Y ;S1);C)); DBy introdu
ing and rearranging goal equalities (see laws 2.1 and 2.2 in Se
tion 5),we transform
lause 13 into:14. gen�ts(t(L;R);Y ;Z ;G ;C ;D) treesum(L;LS); (GL=(plus(LS ;S1;Z); G=GR; D));treesum(R;RS); (GR=(plus(RS ;Y ;S1);C)); GLIn order to derive
lauses in
ontinuation passing style we introdu
e the followingnew de�nitions:15. ts�
(T ;N ;C) treesum(T ;N); C16. plus�
(X ;Y ;Z ;C) plus(X ;Y ;Z); CBy unfolding
lauses 15 and 16 we get:17. ts�
(l(N);N ;C) C18. ts�
(t(L;R);N ;C) treesum(L;LN); treesum(R;RN);plus(LN ;RN ;N); C19. plus�
(0;X ;X ;C) C20. plus�
(s(X);Y ; s(Z);C) plus(X ;Y ;Z); CBy introdu
ing and rearranging goal equalities, we transform
lause 18 into:21. ts�
(t(L;R);N ;C) treesum(L;LN); (G = (plus(LN ;RN ;N);C));treesum(R;RN); GBy folding steps and goal repla
ements (based on, among others, the repla
ementlaw TreeSum ` 8 ((X = Y);C = ! eq�
(X ;Y ;C))), we get the following �nalprogram TreeSum2:22. treesum(T ;N) ts�
(T ;N ; true)18. ts�
(l(N);N ;C) C23. ts�
(t(L;R);N ;C) gen�ts(L;RN ;N ;G ;C ; ts�
(R;RN ;G))24. gen�ts(l(N);Y ;Z ;G ;C ;D) eq�
(G ; plus�
(N ;Y ;Z ;C);D)25. gen�ts(t(L;R);Y ;Z ;G ;C ;D) gen�ts(L;S1;Z ;GL; eq�
(G ;GR;D);gen�ts(R;Y ;S1;GR;C ;GL))19. plus�
(0;X ;X ;C) C20. plus�
(s(X);Y ; s(Z);C) plus�
(X ;Y ;Z ;C)This �nal program TreeSum2 is more eÆ
ient than TreeSum. Indeed, in the worst
ase, TreeSum2 takes O(n) steps for solving a goal of the form treesum(t ;N), wheret is a ground tree and sn(0) is the sum of the labels of the leaves of t , while the initialprogram TreeSum takes O(n2) steps. Moreover, by our Theorem 1 of Se
tion 6, forevery goal g of the form treesum(t1; t2), where t1 and t2 are any terms, g terminatesin TreeSum i� g terminates in TreeSum2 (see also Se
tion 7.5).

Transformations of Logi
 Programs with Goals as Arguments 357.3 Mat
hing a Regular ExpressionLet us
onsider the following mat
hing problem: given a string S in f0; 1; 2g�, wewant to �nd the position N of an o

urren
e of a substring P of S su
h that Pis generated by the regular expression 0�1. The following program RegExprMat
h
omputes su
h a position:1. mat
h(S ;N) pattern(S); N =02. mat
h([C jS ℄;N)
har (C); mat
h(S ;M); plus(s(0);M ;N)3. pattern([0jS ℄) pattern(S)4. pattern([1jS ℄) 5.
har (0) 6.
har (1) 7.
har (2) 8. plus(0;X ;X) 9. plus(s(X);Y ; s(Z)) plus(X ;Y ;Z)If we assume the depth-�rst, left-to-right evaluation strategy of Prolog, the runningtime of this program RegExprMat
h is O(n2) in the worst
ase, where n is thelength of the input string. For a goal of the form mat
h(s ;N), where s is a groundstring made out of n 0's, the program RegExprMat
h performs one resolution stepusing
lause 1 for the
all to mat
h, and then n resolution steps using
lause 3 forthe su

essive
alls to pattern. When the
omputation ba
ktra
ks, for the su

essive
all of mat
h(s1;N), where s1 is the tail of s , the program RegExprMat
h performsagain n�1 resolution steps using
lause 3.By using the transformation rules of Se
tion 5, we now present the derivation ofa new program RegExprMat
h1 whi
h: (i) is in
ontinuation passing style, (ii) pre-serves termination, and (iii) is asymptoti
ally more eÆ
ient than the original pro-gram RegExprMat
h. Indeed, program RegExprMat
h1 avoids the redundant res-olution steps performed by RegExprMat
h using
lause 3. For our derivation weintrodu
e the following new predi
ates with goal arguments whi
h are
ontinua-tions:10. mat
h�
(S ;N ;C) mat
h(S ;N); C11. newp(S ;N ;C1;C2) (pattern(S); C1) _ (mat
h(S ;N); C2)12. plus�
(X ;Y ;Z ;C) plus(X ;Y ;Z); CBy unfolding
lauses 10, 11, and 12 we get:13. mat
h�
([0jS ℄;N ;C) (pattern(S);N =0;C) _(mat
h(S ;M); plus(s(0);M ;N);C)14. mat
h�
([1jS ℄;N ;C) (N =0;C) _(mat
h(S ;M); plus(s(0);M ;N);C)15. mat
h�
([2jS ℄;N ;C) mat
h(S ;M); plus(s(0);M ;N);C16. newp([0jS ℄;N ;C1;C2) (pattern(S);C1) _(pattern(S);N =0;C2) _(mat
h(S ;M); plus(s(0);M ;N);C2)

36 A. Pettorossi and M. Proietti17. newp([1jS ℄;N ;C1;C2) C1 _(N =0;C2) _(mat
h(S ;M); plus(s(0);M ;N);C2)18. newp([2jS ℄;N ;C1;C2) mat
h(S ;M); plus(s(0);M ;N);C219. plus�
(0;X ;X ;C) C20. plus�
(s(X);Y ; s(Z);C) plus(X ;Y ;Z); CBy goal repla
ement using boolean laws, from
lause 16 we get:21. newp([0jS ℄;N ;C1;C2) (pattern(S); (C1 _ (N =0;C2))) _(mat
h(S ;M); plus(s(0);M ;N);C2)By performing folding and goal repla
ement steps (based on the repla
ement lawRegExprMat
h ` 8 ((X = Y);C = ! eq�
(X ;Y ;C)) and other laws), we derivethe following program RegExprMat
h1:22. mat
h(S ;N) mat
h�
(S ;N ; true)23. mat
h�
([0jS ℄;N ;C) newp(S ;M ; eq�
(N ; 0;C); plus�
(s(0);M ;N ;C))24. mat
h�
([1jS ℄;N ;C) eq�
(N ; 0;C)25. mat
h�
([1jS ℄;N ;C) mat
h�
(S ;M ; plus�
(s(0);M ;N ;C))26. mat
h�
([2jS ℄;N ;C) mat
h�
(S ;M ; plus�
(s(0);M ;N ;C))27. newp([0jS ℄;N ;C1;C2) newp(S ;M ; (C1 _ eq�
(N ; 0;C2)); plus�
(s(0);M ;N ;C2))28. newp([1jS ℄;N ;C1;C2) C129. newp([1jS ℄;N ;C1;C2) eq�
(N ; 0;C2)30. newp([1jS ℄;N ;C1;C2) mat
h�
(S ;M ; plus�
(s(0);M ;N ;C2))31. newp([2jS ℄;N ;C1;C2) mat
h�
(S ;M ; plus�
(s(0);M ;N ;C2))19. plus�
(0;X ;X ;C) C32. plus�
(s(X);Y ; s(Z);C) plus�
(X ;Y ;Z ;C)This program RegExprMat
h1 is in
ontinuation passing style, avoids redundant
alls in
ase of ba
ktra
king, and takes O(n) resolution steps in the worst
ase,to �nd an o

urren
e of a substring of the form 0�1, where n is the length of theinput string. Moreover, by our Theorem 1 of Se
tion 6, for every goal g of the formmat
h(t1; t2), where t1 and t2 are any terms, g terminates in RegExprMat
h i� gterminates in RegExprMat
h1 (see also Se
tion 7.5).7.4 Marking maximal elementsLet us
onsider the following marking problem. We are given: (i) a list L1 of theform [x0; : : : ; xr ℄, where for i=0; : : : ; r , xi is a list of integers, and (ii) an integer n(� 0). A list l of s+1 elements will also be denoted by [l [0℄; : : : ; l [s ℄℄. We assumethat for i =0; : : : ; r , the list xi has at least n+1 elements (and thus, the elementxi [n℄ exists) and we denote by m the maximum element of the set fx0[n℄; : : : ; xr [n℄g.From the list L1 we want to
ompute a new list L2 of the form [y0; : : : ; yr ℄ su
hthat, for i=0; : : : ; r , if xi [n℄=m then yi [n℄=> else yi [n℄=xi [n℄.For instan
e, if L1 = [[3; 8;�2; 4℄; [1; 3℄; [1; 8; 1℄℄ and n=1, then m=8, that is,the maximum element in f8; 3g. Thus, L2 = [[3;>; 2; 4℄; [1; 3℄; [1;>; 1℄℄.

Transformations of Logi
 Programs with Goals as Arguments 37The following program MaxMark
omputes the desired list L2 from the list L1and the value N :1. mmark (N ;L1;L2) max�nth(N ;L1; 0;M); mark(N ;M ;L1;L2)2. max�nth(N ; [℄;M ;M) 3. max�nth(N ; [X jXs℄;A;M) nth(N ;X ;XN); max (A;XN ;B);max�nth(N ;Xs;B ;M)4. nth(0; [H jT ℄;H) 5. nth(s(N); [H jT ℄;E) nth(N ;T ;E)6. mark (N ;M ; [℄; [℄) 7. mark (N ;M ; [X jXs℄; [Y jYs ℄) mark�nth(N ;M ;X ;Y);mark(N ;M ;Xs;Ys)8. mark�nth(0;M ; [H 1jT ℄; [H 2jT ℄) (M =H 1;H 2=>)_ (M 6=H 1;H 2=H 1)9. mark�nth(s(N);M ; [H jT1℄; [H jT2℄) mark�nth(N ;M ;T1;T2)10. max (X ;Y ;X) X � Y11. max (X ;Y ;Y) X < YWhen running this program, the input list L1 = [x0; : : : ; xr ℄ is traversed twi
e: (i) the�rst time L1 is traversed to
ompute the maximum m of the set fx0[n℄; : : : ; xr [n℄g(see the goalmax�nth(N ;L1; 0;M) in the body of
lause 1), and (ii) the se
ond timeL1 is traversed to
onstru
t the list L2 by repla
ing, for i =0; : : : ; r , the elementxi [n℄ by > whenever xi [n℄=m (see the goal mark(N ;M ;L1;L2)).Now we use the transformation rules of Se
tion 5 and from program MaxMarkwe derive a new program MaxMark1 whi
h: (i) is in
ontinuation passing style,(ii) preserves termination, and (iii) traverses the list L1 only on
e.By the de�nition introdu
tion rule we introdu
e the following new predi
ateswith goal arguments:12. newp1(N ;L1;L2;A;M ;G ;C1;C2) max�nth(N ;L1;A;M); (G=(mark(N ;M ;L1;L2); C1)); C213. newp2(N ;X ;M ;Y ;A;B ;G1;G2;C) nth(N ;X ;XN); (G1=(mark�nth(N ;M ;X ;Y);G2));max (A;XN ;B); C14. max�
(X ;Y ;Z ;C) max (X ;Y ;Z); CWe unfold
lauses 12, 13, and 14, and then we move leftwards term equalities (seelaw 3 in Se
tion 5 whi
h allows us to rearrange term equalities). We get the following
lauses:15. newp1(N ; [℄; [℄;M ;M ;C1;C1;C2) C216. newp1(N ; [X jXs℄; [Y jYs ℄;A;M ;G ;C1;C2) nth(N ;X ;XN); max (A;XN ;B); max�nth(N ;Xs;B ;M);(G=(mark�nth(N ;M ;X ;Y); mark(N ;M ;Xs;Ys); C1));C217. newp2(0; [H 1jT ℄;M ; [H 2jT ℄;A;B ;G1;G2;C) (G1=(((M =H 1;H 2=>)_ (M 6=H 1;H 2=H 1));G2));max (A;H 1;B); C

38 A. Pettorossi and M. Proietti18. newp2(s(N); [H jT1℄;M ; [H jT2℄;A;B ;G1;G2;C) nth(N ;T1;XN); (G1=(mark�nth(N ;M ;T1;T2);G2));max (A;XN ;B); C19. max�
(X ;Y ;X ;C) X �Y ; C20. max�
(X ;Y ;Y ;C) X <Y ; CBy introdu
ing and rearranging goal equalities, from
lause 16 we get:21. newp1(N ; [X jXs℄; [Y jYs ℄;A;M ;G ;C1;C2) nth(N ;X ;XN); (G1=(mark�nth(N ;M ;X ;Y); G2));max (A;XN ;B);max�nth(N ;Xs;B ;M); (G2=(mark (N ;M ;Xs;Ys); C1));(G=G1); C2Finally, by folding steps and goal repla
ements based on the repla
ement laws forthe primitive predi
ates =, 6=, �, and <, we derive the following �nal programMaxMark1:22. mmark (N ;L1;L2) newp1(N ;L1;L2; 0;M ;G ; true;G)15. newp1(N ; [℄; [℄;M ;M ;C1;C1;C2) C223. newp1(N ; [X jXs℄; [Y jYs ℄;A;M ;G ;C1;C2) newp2(N ;X ;M ;Y ;A;B ;G1;G2);newp1(N ;Xs;Ys;B ;M ;G2;C1; eq�
(G ;G1;C2)))24. newp2(0; [H 1jT ℄;M ; [H 2jT ℄;A;B ;G1;G2;C) eq�
(G1; (eq�
(M ;H 1; eq�
(H 2;>;G2))_di��
(M ;H 1; eq�
(H 2;H 1;G2)));max�
(A;H 1;B ;C))25. newp2(s(N); [H jT1℄;M ; [H jT2℄;A;B ;G1;G2;C) newp2(N ;T1;M ;T2;A;B ;G1;G2;C)26. max�
(X ;Y ;X ;C) geq�
(X ;Y ;C)27. max�
(X ;Y ;Y ;C) lt�
(X ;Y ;C)This �nal program MaxMark1 is in
ontinuation passing style and traverses theinput list L1 only on
e. Moreover, by our Theorem 1 of Se
tion 6, for every goal gof the form mmark(t1; t2; t3), where t1, t2, and t3 are any terms, if g terminates inMaxMark then g terminates in MaxMark1 (see also Se
tion 7.5).7.5 Corre
tness of the Program DerivationsLet us brie
y
omment on the
orre
tness properties of the program derivations wehave presented in this Se
tion 7.In all program derivations of Se
tion 7, when using the transformation rules, wehave
omplied with the restri
tions indi
ated at Point (1) of Theorem 2 (WeakCorre
tness). Thus, for every program derivation from an initial program P0 to a�nal program Pk , we have that Pk is a re�nement of P0 [Defk , where Defk is theset of de�nitions introdu
ed during the derivation. In parti
ular, for every ordinarygoal g , if g terminates in P0, then g terminates in Pk and the most general answersubstitutions for g
omputed by P0 are the same as those
omputed by Pk .In the examples of Se
tions 7.1, 7.2, and 7.3 we have also
omplied with the

Transformations of Logi
 Programs with Goals as Arguments 39restri
tions of Point (2) of Theorem 2 (Strong Corre
tness), be
ause all appli
ationsof the goal repla
ement rule are based on strong repla
ement laws. Thus, in theseexamples we have that Pk is equivalent to P0[Defk . In parti
ular, for every ordinarygoal g , if g terminates in Pk then g terminates in P0 [Defk .However, in the derivation of Se
tion 7.4 we have not
omplied with the restri
-tions of Point (2) of Theorem 2. In parti
ular, after unfolding
lauses 12, 13, and14, we have made leftward moves of term equalities by using law 3 of Se
tion 5,and law 3 is not a strong repla
ement law. Thus, there may be an ordinary goalwhi
h does not terminate in the initial program MaxMark and terminates in the�nal program MaxMark1. Indeed, the goal mmark (0; [H jT ℄; [℄) does not terminatein MaxMark and terminates in MaxMark1.Finally, in all program derivations of this Se
tion 7, we have
omplied with therestri
tions of Theorem 3 (Preservation of Safety), be
ause all repla
ement laws wehave applied preserve safety. Thus, sin
e every ordinary goal is safe in the ordinaryinitial program P0, we have that every ordinary goal is safe in the �nal program Pk .7.6 Experimental ResultsIn Table 1 below we have reported the speed-ups a
hieved in the examples presentedin this paper. The speed-up (see Column D) is de�ned as the ratio between the run-time of the initial program (see Column A) and the run-time of the derived, �nalprogram (see Column B). In Columns A and B we have also indi
ated the asymp-toti
 worst-
ase time
omplexity of the initial and �nal programs, respe
tively. Forea
h program the
omplexity is measured in terms of the size of the proofs relativeto that program (or, equivalently, the number of LD-resolution steps performedusing that program). The input goal is indi
ated in Column C. We performed ourmeasurements by using BinProlog on a SUN workstation. This use is justi�ed bythe fa
t that every ordinary goal g is safe both in the initial program P0 and inthe �nal program Pk . Thus, we
an use any Prolog system whi
h implements LD-resolution (and, in parti
ular, the BinProlog system) for
omputing the relationsP0 ` g 7! A and Pk ` g 7! A de�ned by our operational semanti
s.In Column C of Table 1 we have that:(1) t1 is a random binary tree with 100,000 nodes;(2) t2 is a random binary tree with 100,000 nodes;(3) t3 is a random binary tree with 20,000 nodes and ea
h node is labeled by anumeral of the form sk (0), where 0�k�500;(4) t4 is a random binary tree with 20,000 nodes whose leaves are labeled by nu-merals of the form sk (0), where 0�k�500;(5) s is a random sequen
e of integers of the form: f0; 2g500001; and(6) n1 is 700, l1 is a random list of 1000 lists, and ea
h of these lists
onsists of 800integers.When measuring the speed-ups for the programs Deepest and DeepestOr inRows 1 and 2 we have
omputed the set of all answer substitutions, while forthe programs FlipChe
k, TreeSum, RegExprMat
h, and MaxMark in Rows 3{6 wehave
omputed one answer substitution only.

40 A. Pettorossi and M. ProiettiTable 1. Speed-ups of the Final Programs with respe
t to the Initial ProgramsA. Initial Program : B. Final Program : C. Input goal D. Speed-up :aAsymptoti
 Complexity Asymptoti
 Complexity run-time(A)run-time(B)1. Deepest : O(n2)b Deepest2 : O(n) deepest (t1;N) 5.22. DeepestOr : O(n2)
 Deepest2 : O(n) deepest (t2;N) 2.73. FlipChe
k : O(n)d FlipChe
k2 : O(n)
ip
he
k (t3;T) 1.04. TreeSum : O(n2)e TreeSum2: O(n) treesum(t4;N) 9.25. RegExprMat
h : O(n2)f RegExprMat
h1 : O(n) mat
h(s;N) 1.86. MaxMark : O(n)g MaxMark1 : O(n) mmark(n1;l1;L2) 1.8a run-time(A) denotes the run-time of the program in Column A for the input goal in Column C.run-time(B) denotes the run-time of the program in Column B for the input goal in Column C.b n is the number of nodes of the tree t1.
 n is the number of nodes of the tree t2.d n is the number of nodes of the tree t3. For the goal
ip
he
k(t3;T), the program FlipChe
kvisits the tree t3 twi
e, while the program FlipChe
k2 visits t3 only on
e.e n is the sum of the leaves of the tree t4.f n is the length of the string s.g n is the sum of the lengths of the lists in l1.As already mentioned at the end of Se
tion 2, the value of the speed-up relativeto the initial program Deepest (see Row 1) is higher than the value of the speed-uprelative to the initial program DeepestOr (see Row 2), and this is not due to the useof goals as arguments, but to the introdu
tion of a disjun
tion, thereby
lauses 2and 3 have been repla
ed by
lause 16.The absen
e of speed-up for the �nal program FlipChe
k2 (see Row 3) with re-spe
t to the initial program FlipChe
k, is
aused by the fa
t that the eÆ
ien
yimprovements due to the elimination of the double traversal of the input tree t4are
an
elled out by the slowdown due to the introdu
tion of multiple
ontinua-tion arguments. However, the experimental results for the initial programMaxMarkand the �nal program MaxMark1 (see Row 6) show that the elimination of doubletraversals of data stru
tures may yield a signi�
ant speed-up, espe
ially when thea

ess to the data stru
ture is very
ostly. Re
all that the program MaxMark tra-verses twi
e the list l1, and for ea
h list l in the list l1, the program has to a

essn1 elements of l . We have veri�ed that the speed-up obtained by eliminating thedouble traversal of l1 in
reases with the value of n1.8 Final Remarks and Related WorkWe have shown that a simple extension of logi
 programming, where variables mayrange over goals and goals may appear as arguments of predi
ate symbols,
an bevery useful for transforming programs and improving their eÆ
ien
y.We have presented a set of transformation rules for our extended logi
 languageand we have shown their
orre
tness with respe
t to the operational semanti
s givenin Se
tion 4. In parti
ular, in Se
tion 6 we have shown that, under suitable
ondi-

Transformations of Logi
 Programs with Goals as Arguments 41tions, our transformation rules preserve termination (see Theorem 1), most generalanswer substitutions (see Theorem 2), and safety (see Theorem 3). As in (Bossi andCo

o 1994), for our logi
 programs we
onsider an operational semanti
s based onuniversal termination (that is, the operational semanti
s of a goal is de�ned i� allLD-derivations starting from that goal are �nite). Theorem 2 extends the resultspresented in (Bossi and Co

o 1994) for de�nite logi
 programs in that: (i) ourlanguage is an extension of de�nite logi
 programs, and (ii) our folding rule is morepowerful. Indeed, even restri
ting ourselves to programs that do not
ontain goalvariables and goal arguments, we allow folding steps whi
h use
lauses whose bodies
ontain disjun
tions, and this is not possible in (Bossi and Co

o 1994), where forapplying the folding rule one is required to use exa
tly one
lause whose body isa
onjun
tion of atoms. However, one should noti
e that the transformations pre-sented in (Bossi and Co

o 1994) preserve all
omputed answer substitutions, whileours preserve the most general answer substitutions only.Our logi
 language has some higher order
apabilities be
ause goals may o

ur asarguments, but these
apabilities are limited by the fa
t that the quanti�
ation offun
tion or predi
ate variables is not allowed. However, the obje
tive of this paperis not the design of a new higher order logi
 language, su
h as the ones presentedin (Chen et al. 1993; Hill and Gallagher 1998; Nadathur and Miller 1998). Rather,our aim was to demonstrate the usefulness of some higher order
onstru
ts forderiving eÆ
ient logi
 programs by transformation. Indeed, we have shown thatvariables whi
h range over goals are useful in the
ontext of program transformation.Moreover, the use of these variables may avoid the need for goal rearrangementswhi
h
ould generate programs that do not preserve termination.The approa
h we have proposed in this paper for avoiding in
orre
t goal rear-rangements, is
omplementary to the approa
h des
ribed in (Bossi et al. 1996),where the authors give suÆ
ient
onditions for goal rearrangements to preserve lefttermination. (Re
all that a program P is said to be left terminating i� all groundgoals universally terminate in P .) Thus, when these suÆ
ient
onditions are notmet or their validity
annot be proved, one may apply our te
hnique whi
h avoidsin
orre
t goal rearrangements by the introdu
tion and the rearrangement of goalequalities. Indeed, we have proved that the appli
ation of our te
hnique preservesuniversal termination, and thus, it preserves left termination as well.The theory we have presented may also be used to give sound semanti
 foun-dations to the development of logi
 programs whi
h use higher order generaliza-tions and
ontinuations. In (Pettorossi and Proietti 1997; Tarau and Boyer 1990)and (Pettorossi and Skowron 1987; Wand 1980) the reader may �nd some examplesof use of these te
hniques in the
ase of logi
 and fun
tional programs, respe
tively.We leave for future work the development of suitable strategies for dire
ting theuse of the transformation rules we have proposed in this paper.A
knowledgementsWe would like to thank Mi
hael Leus
hel for pointing out an error in a preliminaryversion of this paper and for his helpful
omments. We also thank the anonymous

42 A. Pettorossi and M. Proiettireferees of the LoPSTr '99 Workshop, where a preliminary version of this paperwas presented (Pettorossi and Proietti 2000), and the referees of the Theory andPra
ti
e of Logi
 Programming Journal for their suggestions.This work has been partially supported by MURST Progetto Co�nanziato `Te
-ni
he Formali per la Spe
i�
a, l'Analisi, la Veri�
a, la Sintesi e la Trasformazione diSistemi Software' (Italy), and Progetto Coordinato CNR `Veri�
a, Analisi e Trasfor-mazione dei Programmi Logi
i' (Italy).AppendixThis Appendix
ontains:(i) Proposition 4 and its proof,(ii) the proofs of Lemmata 1, 2, 3, and 4 (based on Propositions 2 and 4),(iii) Lemmata 5 and 6 and their proofs (based on Proposition 4), and(iv) the proofs of the main results, that is, (iv.1) the proof of Theorem 1 (basedon Proposition 3, Lemmata 1, 2, 3, and 4), (iv.2) the proof of Theorem 2 (basedon Proposition 1 and Theorem 1), and (iv.3) the proof of Theorem 3 (based onLemmata 5 and 6).For the proofs of Proposition 4 and Lemma 1 given below, we need the followingde�nition.De�nition 8 (Size and �-measure of a Dedu
tion Tree)Let � be a �nite dedu
tion tree. The size of � is the number of its nodes, and the�-measure of � , denoted �(�), is the pair hm; si, where m is the depth of � and sis the size of � .The values of the �-measure
an be lexi
ographi
ally ordered, and we stipulatethat: hm1; s1i < hm2; s2i i� either m1<m2 or (m1=m2 and s1<s2).Proposition 4Let P be a program, g1, g2 be goals and let V be a set of variables.(i) P ` 8V (g1 �! g2) holds i� for every idempotent substitution # su
h thatvars(#) \ vars(g1; g2) � V , for every goal g su
h that vars(g) \ vars(g1; g2) � V ,and for every b 2 ftrue; falseg, we have that:if P ` (g1# ^ g) # b then P ` (g2# ^ g) # b.(ii) P ` 8V (g1 >�! g2) holds i� for every idempotent substitution # su
h thatvars(#) \ vars(g1; g2) � V , for every goal g su
h that vars(g) \ vars(g1; g2) � V ,and for every b 2 ftrue; falseg, we have that:if P ` (g1# ^ g) #m b then P ` (g2# ^ g) #n b and m � n.(iii) The following two properties are equivalent:(iii.1) for every goal
ontext h[℄ su
h that vars(h[℄) \ vars(g1; g2) � V ,if h[g1℄ is safe in P then h[g2℄ is safe in P , and(iii.2) for every idempotent substitution # su
h that vars(#)\vars(g1; g2) � V andfor every goal g su
h that vars(g) \ vars(g1; g2) � V ,if g1# ^ g is safe in P then g2# ^ g is safe in P .

Transformations of Logi
 Programs with Goals as Arguments 43Proof of Proposition 4(i) only-if part. Let us
onsider an idempotent substitution # su
h that vars(#) \vars(g1; g2) � V . Let # be fU1=u1; : : : ;Uk=ukg. Sin
e # is idempotent we havethat for i = 1; : : : ; k , Ui 62 ui . Assume that for every goal g su
h that vars(g) \vars(g1; g2) � V , and for every b 2 ftrue; falseg, there exists A1 2 P(Subst) su
hthat P ` (g1# ^ g) 7! A1. We have to show that there exists A2 2 P(Subst) su
hthat P ` (g2# ^ g) 7! A2 and A1=; i� A2=;.By suitably renaming the variables of the goal g1, without loss of generality wemay assume that, for i = 1; : : : ; k , Ui 62 vars(g). Sin
e # is idempotent, by usingrules (teq2) and (geq) we may
onstru
t a proof of P ` U1 = u1 ^ : : : ^ Uk = uk^g1 ^ g 7! B1, where B1=(#ÆA1). By the hypothesis that P ` 8V (g1 �! g2) holdsand the hypotheses that vars(#)\ vars(g1; g2) � V and vars(g)\ vars(g1; g2) � V ,we have that there exists B2 2 P(Subst) su
h that P ` U1= u1 ^ : : : ^ Uk = uk^g2 ^ g 7! B2 has a proof and B1 = ; i� B2 = ;. The only way of
onstru
tingthis proof is by using k times the rules (teq2) or (geq) and
onstru
ting a proof ofP ` g2# ^ g 7! A2, where B2=(#ÆA2). Thus, A1=; i� B1=; i� B2=; i� A2=;.(i) if part. We show a slightly more general fa
t than the if part of (i). We assumethat for every idempotent substitution # su
h that vars(#)\ vars(g1; g2) � V , andfor every goal g su
h that vars(g)\ vars(g1; g2) � V , if there exists A1 2 P(Subst)su
h that P ` (g1# ^ g) 7! A1, then there exists A2 2 P(Subst) su
h that P `(g2# ^ g) 7! A2 and A1 = ; i� A2= ;. Then we show that, for every goal
ontexth[℄ and substitution # su
h that vars(h[℄#) \ vars(g1; g2) � V ,if there exists B1 2 P(Subst) su
h that P ` h[g1℄# 7! B1then there exists B2 2 P(Subst) su
h that P ` h[g2℄# 7! B2and B1=; i� B2=;.We prove our thesis by indu
tion on the measure �(�) (see De�nition 8) of theproof � of P ` h[g1℄# 7! B1(re
all that a proof is a parti
ular �nite dedu
tiontree). We reason by
ases on the stru
ture of the goal
ontext h[℄. We
onsider thefollowing four
ases only. The others are similar and we omit them.- Case 1: h[℄ is ^ g3.Assume that P ` g1#^g3# 7! B1. Then, by hypothesis, we get: P ` g2#^g3# 7! B2for some B2 2 P(Subst) su
h that B1=; i� B2=;.- Case 2: h[℄ is t1= t2 ^ g3[℄.Assume that there exists a proof �1 of P ` t1#= t2# ^ g3[g1℄# 7! B1.If t1# and t2# are not uni�able then, by rule (teq1), B1 is ; and there exists a proofof P ` t1#= t2# ^ g3[g2℄# 7! ;.If t1# and t2# are uni�able then, by rule (teq2), B1 is of the form (mgu(t1#; t2#)ÆC1)for some C1 2 P(Subst) and there exists a proof �2 of P ` g3[g1℄#mgu(t1#; t2#) 7!C1. Sin
e �(�2) < �(�1), by indu
tion hypothesis P ` g3[g2℄#mgu(t1#; t2#) 7! C2has a proof for some C2 2 P(Subst) and C1 = ; i� C2 = ;. Thus, by rule (teq2),there exists B2 2 P(Subst) su
h that P ` t1#= t2# ^ g3[g2℄# 7! B2 where B2 =mgu(t1#; t2#) Æ C2 and B1=; i� C1=; i� C2=; i� B2=;.- Case 3: h[℄ is (G=g3[℄) ^ g4.Assume that P ` ((G = g3[g1℄) ^ g4)# 7! B1 has a proof of depth m and size s .

44 A. Pettorossi and M. ProiettiThen, G# is a goal variable not o

urring in g3[g1℄#, the node P ` (G#=g3[g1℄#)^g4# 7! B1 has been obtained by applying rule (geq), B1 is fG#=g3[g1℄#gÆC1 forsome C1 2 P(Subst), and P ` g4#fG#=g3[g1℄#g 7! C1 has a proof of depthm and size s � 1. Now, suppose that G# o

urs in g4# n times. Thus, also g1will o

ur n times in g4#fG#=g3[g1℄#g. Sin
e hm; s�1i < hm; si, by applying theindu
tion hypothesis n times, we have that there exists C2 2 P(Subst) su
h thatP ` g4#fG#=g3[g2℄#g 7! C2 has a proof and C1 = ; i� C2 = ;. By using rule(geq), we
an
onstru
t a proof of P ` G# = g3[g2℄# ^ g4# 7! B2, where B2 isfG#=g3[g2℄#gÆC2. Thus, B1=; i� C1=; i� C2=; i� B2=;.- Case 4: h[℄ is p(u1; : : : ; ui [℄; : : : ; uk) ^ g3.Assume that P ` p(u1#; : : : ; ui [g1℄#; : : : ; uk#) ^ g3# 7! B1 has a proof of depth mand size s . Then, in the last step of this proof rule (at) has been used, B1 is ofthe form C1 �vars(p(u1#; : : : ; ui [g1℄#; : : : ; uk#) ^ g3#) for some C1 2 P(Subst), andP ` bodyfU1=u1#; : : : ;Ui=ui [g1℄#; : : : ;Uk=uk#g ^ g3# 7! C1 has a proof of depthm�1 and size s�1, where p(U1; : : : ;Ui ; : : : ;Uk) body is a renamed apart
lauseof P . Sin
e hm�1; s�1i < hm; si, by indu
tion hypothesis we have that thereexists C2 2 P(Subst) su
h that P ` bodyfU1=u1#; : : : ;Ui=ui [g2℄#; : : : ;Uk=uk#g ^g3# 7! C2 has a proof and C1 = ; i� C2 = ;. Thus, by using rule (at), we
an
onstru
t a proof of P ` p(u1#; : : : ; ui [g2℄#; : : : ; uk#) ^ g3# 7! B2, where B2 isC2 � vars(p(u1#; : : : ; ui [g2℄#; : : : ; uk#) ^ g3#) and B1 = ; i� C1 = ; i� C2 = ; i�B2=;.(ii) The proof is similar to the one of (i) and we omit it.(iii) Suppose that (iii.1) holds and suppose also that # is an idempotent substitutionsu
h that vars(#)\vars(g1; g2) � V , g is a goal su
h that vars(g)\vars(g1; g2) � V ,and g1# ^ g is safe in P . We have to prove that g2# ^ g is safe in P .Suppose that g2# ^ g is not safe in P . Then there exist A 2 P(Subst) and adedu
tion tree �1 for P ` g2# ^ g 7! A su
h that a leaf of �1 is of the formP ` g3 7! B and g3 is stu
k. Let # be the substitution fU1=u1; : : : ;Uk=ukg su
hthat, for i = 1; : : : ; k , Ui 62 ui . Without loss of generality, we may assume that,for i = 1; : : : ; k , Ui 62 vars(g). By using rules (teq2) and (geq), we
an
onstru
ta dedu
tion tree �2 for P ` U1 = u1 ^ : : : ^ Uk = uk ^ g2 ^ g 7! A su
h that�2 has P ` g3 7! B at a leaf. Thus, U1 = u1 ^ : : : ^ Uk = uk ^ g2 ^ g is notsafe in P . Sin
e vars(#) \ vars(g1; g2) � V and vars(g) \ vars(g1; g2) � V , wehave that vars(U1=u1 ^ : : : ^ Uk =uk ^ g) \ vars(g1; g2) � V and, thus, by (iii.1)U1=u1^ : : :^Uk=uk^g1^g is not safe in P . None of the goals U1=u1; : : : ;Uk=ukis stu
k and, thus, a des
endant node of g1#^ g is stu
k, that is, g1#^ g is not safein P .The proof that (iii.2) implies (iii.1)
an be done by indu
tion on dedu
tion treesordered by the �-measure. We omit this proof.Proof of Lemma 1Re
all that, by de�nition, for every b 2 ftrue; falseg, P ` g #m b means that thereexists A 2 P(Subst) su
h that P ` g 7! A has a proof of depth m and b= true i�

Transformations of Logi
 Programs with Goals as Arguments 45A 6=;. We prove the thesis by indu
tion on the �-measure (see De�nition 8) of theproof of P ` g 7! A whi
h, by hypothesis, has depth m and size s .Our indu
tion hypothesis is that, for all hm1; s1i < hm; si, for all goals g , and forall A1 2 P(Subst), if P ` g 7! A1 has a proof of depth m1 and size s1, then thereexists B1 2 P(Subst) su
h that NewP ` g 7! B1 has a proof of depth n1, withm1 � n1, and A1= ; i� B1= ;. We have to show that there exists B 2 P(Subst)su
h that NewP ` g 7! B has a proof of depth n, with m � n, and A = ; i�B = ;. We pro
eed by
ases on the stru
ture of g . We �rst noti
e that, sin
e ^ isasso
iative with neutral element true, the grammar for generating goals given inSe
tion 2
an be repla
ed by the following one:g ::= G ^ g1 j true j false ^ g1 j (t1= t2) ^ g1 j (g1=g2) ^ g3 jp(u1; : : : ; um) ^ g1 j (g1 _ g2) ^ g3We
onsider the following two
ases only. The others are similar and we omit them.- Case 1: g is (g1=g2)^g3. Assume that P ` (g1=g2)^g3 7! A has a proof of depthm and size s . Then, g1 is a goal variable, say G , G 62 vars(g2), P ` (G=g2)^g3 7!A has been derived by applying rule (geq), and there exists A1 2 P(Subst) su
hthat A=(fG=g2g Æ A1) and P ` g3fG=g2g 7! A1 has a proof of depth m and sizes � 1. Sin
e hm; s�1i < hm; si, by indu
tion hypothesis there exists B1 2 P(Subst)su
h that NewP ` g3fG=g2g 7! B1 has a proof of depth n with m � n andA1= ; i� B1= ;. By rule (geq), we have that NewP ` (G = g2) ^ g3 7! B , whereB = (fG=g2g Æ B1), has a proof of depth n with m � n. By the de�nition of the Æoperator, we have that A=; i� A1=; i� B1=; i� B=;.- Case 2: g is p(u1; : : : ; um) ^ g1. Assume that P ` p(u1; : : : ; um) ^ g1 7! A hasa proof of depth m and size s . Then, P ` p(u1; : : : ; um) ^ g1 7! A has beenderived by using rule (at), and there exists A1 2 P(Subst) su
h that A = (A1 �vars(p(u1; : : : ; uk) ^ g1)) and P ` bd rfV1=u1; : : : ;Vm=umg ^ g1 7! A1 has a proofof depth m�1 and size s�1, where p(V1; : : : ;Vm) bd r is a renamed apart
lause of P . Now, by the hypothesis that P ` 8V1; : : : ;Vm (bdr >�! newbd r), bythe fa
t that vars(fV1=u1; : : : ;Vm=umg) \ vars(bd r ;newbdr) � fV1; : : : ;Vmg andvars(g1) \ vars(bd r ;newbd r) � fV1; : : : ;Vmg, and by Proposition 4 (ii), we havethat there exists A2 2 P(Subst) su
h that P ` newbd rfV1=u1; : : : ; Vm=umg^g1 7!A2 has a proof of depth n1 and size s1, with m�1 � n1 and A1 = ; i� A2 = ;.Sin
e hn1; s1i < hm; si, by indu
tion hypothesis there exists B1 2 P(Subst) su
hthat NewP ` newbd rfV1=u1; : : : ; Vm=umg ^ g1 7! B1 has a proof of depth n2with n1 � n2 and A2=; i� B1=;. Sin
e hd r is p(V1; : : : ;Vm), by using rule (at)we
an
onstru
t a proof for NewP ` p(u1; : : : ; um) ^ g1 7! B of depth n = n2+1where B = (B1 � vars(p(u1; : : : ; uk) ^ g1)). Thus, m � n and, by the de�nition ofthe � operator, A=; i� A1=; i� A2=; i� B1=; i� B=;.Proof of Lemma 2(i) Let us
onsider the transformation sequen
e Pi ; : : : ;Pj . Let us also
onsiderany index h in fi ; : : : ; j�1g and any two
lauses
1: hd bd in program Ph and
2: hd newbd in program Ph+1. Sin
e Pi ; : : : ;Pj is
onstru
ted by using theunfolding rule only, we have that:

46 A. Pettorossi and M. Proiettibd = b[p(u1; : : : ; um)℄ and newbd = b[gfV1=u1; : : : ;Vm=umg℄for some
lause p(V1; : : : ;Vm) g in Pi , some goal
ontext b[℄, and some m-tupleof arguments (u1; : : : ; um). To prove this lemma we have to show that:Pi ` 8V (b[p(u1; : : : ; um)℄ >�! b[gfV1=u1; : : : ;Vm=umg℄) (�)where V = vars(hd). Now, for every
lause p(V1; : : : ;Vm) g in Pi we have that:Pi ` 8V1; : : : ;Vm (p(V1; : : : ;Vm) >�! g) (�)From (�), by Point (iv0) of Proposition 2 we get:Pi ` 8W (p(u1; : : : ; um) >�! gfV1=u1; : : : ;Vm=umg) (
)where W = vars(u1; : : : ; um). From (
), by Point (i0) of Proposition 2 we get:Pi ` 8Z (b[p(u1; : : : ; um)℄ >�! b[gfV1=u1; : : : ;Vm=umg℄) (Æ)where Z = vars(b[p(u1; : : : ; um)℄). From (Æ), by Points (ii0) and (iii0) of Proposi-tion 2 we get (�), as desired.(ii) In order to prove Point (ii) of the thesis, we �rst show the following property.Property (A): For every
lause d : newp(V1; : : : ;Vm) g in Defk whi
h is usedfor folding during the
onstru
tion of the sequen
e Pj ; : : : ;Pk , we have that therepla
ement law Pj ` 8V1; : : : ;Vm (newp(V1; : : : ;Vm) = ! g) holds.Property (A) is a
onsequen
e of the fa
t that during the sequen
e Pi ; : : : ;Pj wehave performed the parallel leftmost unfolding of every
lause whi
h is used forfolding during Pj ; : : : ;Pk .Now we prove Point (ii) of the thesis by
ases with respe
t to the transformationrule whi
h is used to derive program Ph+1 from program Ph , for h = j ; : : : ; k�1.- Case 1: Ph+1 is derived from Ph by the unfolding rule using a
lause whi
h isamong those also used for folding (in a previous transformation step). The thesisfollows from Property (A) and Points (i0), (ii0), (iii0), and (iv0) of Proposition 2.- Case 2: Ph+1 is derived from Ph by the unfolding rule using a
lause
 whi
his not among those used for folding. Thus,
 belongs to P0 be
ause the only wayof introdu
ing in the body of a
lause an o

urren
e of a non-primitive predi
atewhi
h is not de�ned in P0, is by an appli
ation of the folding rule. Hen
e,
 belongsto Pj as well. Now, for every
lause
 of the form: p(V1; : : : ;Vm) g in Pj wehave that:Pj ` 8V1; : : : ;Vm (p(V1; : : : ;Vm) >�! g)The thesis follows from Property (A) and Points (i0), (ii0), (iii0), and (iv0) of Propo-sition 2.- Case 3: Ph+1 is derived from Ph by the folding rule. The thesis follows fromProperty (A) and Points (i0), (ii0), (iii0), and (iv0) of Proposition 2.- Case 4: Ph+1 is derived from Ph by the goal repla
ement rule based on a repla
e-ment law of the form P0 ` 8V (g1 >�! g2). The thesis follows from Points (i0), (ii0),and (iii0) of Proposition 2 and the fa
t that also Pj ` 8V (g1 >�! g2) holds, be
ausethe non-primitive predi
ates of fg1; g2g are de�ned in P0, and for ea
h predi
ate pde�ned in P0, the de�nition of p in P0 is equal to the de�nition of p in Pj .

Transformations of Logi
 Programs with Goals as Arguments 47Proof of Lemma 3We assume that there exists A 2 P(Subst) su
h that NewP ` g 7! A has a proofof size n. We have to show that there exists B 2 P(Subst) su
h that P ` g 7! Bholds, and A=; i� B =;. We pro
eed by indu
tion on n. We assume that, for allm < n, for all goals h, and for all A1 2 P(Subst), if NewP ` h 7! A1 has a proofof size m, then P ` h 7! B1 has a proof for some B1 2 P(Subst) su
h that A1=;i� B1=;. Now we pro
eed by
ases on the stru
ture of g . We
onsider the followingtwo
ases. The other
ases are similar and we omit them.- Case 1: g is (g1 = g2) ^ g3. Assume that NewP ` (g1 = g2) ^ g3 7! A has aproof of size n. Then, g1 is a goal variable, say G , G 62 vars(g2), and NewP `(G = g2) ^ g3 7! A has been derived by applying rule (geq). Thus, there existsA1 2 P(Subst) su
h that A is (fG=g2g Æ A1) and NewP ` g3fG=g2g 7! A1 has aproof of size n�1. By indu
tion hypothesis there exists B1 2 P(Subst) su
h thatP ` g3fG=g2g 7! B1 has a proof and A1 = ; i� B1 = ;. By using rule (geq), we
an
onstru
t a proof of P ` (G = g2) ^ g3 7! B where B is fG=g2g Æ B1. By thede�nition of the Æ operator, we have that A=; i� A1=; i� B1=; i� B=;.- Case 2: g is p(u1; : : : ; um)^g1. Assume that NewP ` p(u1; : : : ; um)^g1 7! A has aproof of size n. Then, NewP ` p(u1; : : : ; um)^g1 7! A has been derived by applyingrule (at), and there exists a proof of size n � 1 of NewP ` newbdrfV1=u1; : : : ;Vm=umg ^ g1 7! A1 where p(V1; : : : ;Vm) newbdr is a renamed apart
lauseof NewP and A is (A1 � vars(p(u1; : : : ; uk) ^ g1)). By indu
tion hypothesis thereexists a proof of P ` newbdrfV1=u1; : : : ; Vm=umg ^ g1 7! B1 su
h that A1 = ;i� B1 = ;. Now, by the hypothesis that P ` 8V1; : : : ;Vm (newbdr �! bdr), bythe fa
t that vars(fV1=u1; : : : ;Vm=umg) \ vars(bdr ;newbdr) � fV1; : : : ;Vmg andvars(g1)\vars(bdr ;newbdr) � fV1; : : : ;Vmg, and by Proposition 4 (i), we have thatP ` bdrfV1=u1; : : : ;Vm=umg ^ g1 7! B2 has a proof for some B2 2 P(Subst) su
hthat B1=; i� B2=;. Sin
e hd r is p(V1; : : : ;Vm), by using rule (at) we
an
onstru
ta proof for P ` p(u1; : : : ; um) ^ g1 7! B where B is (B2 �vars(p(u1; : : : ; uk) ^ g1)).By the de�nition of the � operator, we have that A=; i� A1=; i� B1=; i� B2=;i� B=;.Proof of Lemma 4If Ph+1 is derived from Ph by the unfolding rule using a
lause of the formp(V1; : : : ;Vm) g in P0 [Defk , then the thesis follows from Points (i), (ii), (iii),and (iv) of Proposition 2, and the fa
t that the repla
ement law P0 [Defk `8V1; : : : ;Vm (g �! p(V1; : : : ;Vm)) holds. Similarly, if Ph+1 is derived from Ph bythe folding rule using a
lause of the form newp(V1; : : : ;Vm) g in Defk , then thethesis follows from Points (i), (ii), (iii), and (iv) of Proposition 2, and the fa
t thatthe repla
ement law P0 [Defk ` 8V1; : : : ;Vm (newp(V1; : : : ;Vm) �! g) holds.Finally, if Ph+1 is derived from Ph by the goal repla
ement rule, then the thesis fol-lows from the fa
t that it is based on a strong repla
ement law and from Points (i),(ii), and (iii) of Proposition 2.The following Lemma 5 and Lemma 6 are ne
essary for proving that a transforma-tion sequen
e preserves safety (see Theorem 3).

48 A. Pettorossi and M. ProiettiLemma 5Let P and NewP be programs of the form:P : hd1 bd1 NewP : hd1 newbd1... ...hds bds hds newbd sSuppose that for r = 1; : : : ; s and for every goal
ontext b[℄ su
h that vars(b[℄) \vars(bdr ;newbdr) � vars(hdr), we have that if b[bd r ℄ is safe in P then b[newbd r ℄ issafe in P . Then, for every goal g , if g is safe in P then g is safe in NewP .Proof of Lemma 5We assume that g is not safe in NewP and we prove that g is not safe in P .Sin
e g is not safe in NewP, there exist A 2 P(Subst) and a dedu
tion tree � forNewP ` g 7! A su
h that a leaf of � is of the form NewP ` gstu
k 7! B andthe goal gstu
k is stu
k. We pro
eed by indu
tion on the size of � . We
onsider thefollowing two
ases only. The others are similar and we omit them.- Case 1: g is (g1 = g2) ^ g3. Assume that the dedu
tion tree � for NewP `(g1=g2)^g3 7! A has size s . If g1 is not a goal variable or it is a goal variableo

urring in g2, then (g1=g2)^ g3 is not safe in P . Otherwise, g1 is a goal variable,say G , and G 62 vars(g2). Thus, NewP ` (G = g2) ^ g3 7! A has been derived byapplying rule (geq), and there exists A1 2 P(Subst) su
h that: (a) the subtree �1 of� rooted at NewP ` g3fG=g2g 7! A1 has size s�1, and (b) NewP ` gstu
k 7! B isa leaf of �1. By indu
tion hypothesis g3fG=g2g is not safe in P and, by rule (geq),also (G=g2) ^ g3 is not safe in P .- Case 2: g is p(u1; : : : ; um) ^ g1. Assume that the dedu
tion tree � for NewP `p(u1; : : : ; um) ^ g1 7! A has size s . Thus, NewP ` p(u1; : : : ; um) ^ g1 7! Ahas been derived by using rule (at), and there exist A0 2 P(Subst) and a re-named apart
lause p(V1; : : : ;Vm) newbd r of NewP su
h that: (a) the sub-tree �1 of � rooted at NewP ` newbd rfV1=u1; : : : ;Vm=umg ^ g1 7! A0 hassize s � 1 and (b) NewP ` gstu
k 7! B is a leaf of �1. By indu
tion hypoth-esis newbd rfV1=u1; : : : ;Vm=umg ^ g1 is not safe in P . Now, by hypothesis, bythe fa
t that vars(fV1=u1; : : : ;Vm=umg) \ vars(bdr ;newbdr) � fV1; : : : ;Vmg andvars(g1) \ vars(bdr ;newbdr) � fV1; : : : ;Vmg, and by Proposition 4 (iii), we havethat bd rfV1=u1; : : : ;Vm=umg^ g1 is not safe in P . Sin
e p(V1; : : : ;Vm) bd r is arenamed apart
lause of P , by rule (at), also p(u1; : : : ; um)^g1 is not safe in P .Lemma 6Let P0; : : : ;Pk be a transformation sequen
e and let Defk be the set of de�nitionsintrodu
ed during that sequen
e. For h = 0; : : : ; k�1, for any pair of
lauses
1:hd bd in program Ph and
2: hd newbd in program Ph+1, su
h that
2 isderived from
1 by an appli
ation of the unfolding rule, or folding rule, or goalrepla
ement rule whi
h preserves safety, and for every goal
ontext b[℄ su
h thatvars(b[℄) \ vars(bd ;newbd) � vars(hd), we have that:if b[bd ℄ is safe in P0 [Defk then b[newbd ℄ is safe in P0 [Defk .

Transformations of Logi
 Programs with Goals as Arguments 49Proof of Lemma 6First we noti
e that, for every
lause hd0 bd0 in P0 [Defk and for every goal
ontext b[℄ su
h that vars(b[℄) \ vars(bd0) � vars(hd0), we have the following:Property (S): b[hd0℄ is safe in P0 [Defk i� b[bd0℄ is safe in P0 [Defk .Now, take any h = 0; : : : ; k �1. We reason by
ases on the transformation ruleapplied for deriving the
lause hd newbd in Ph+1 from the
lause hd bd inPh .If hd newbd is derived from hd bd by the unfolding rule using a
lausehd0 bd0 in P0 [Defk , then for some goal
ontext g [℄, bd is of the form g [hd0#℄and newbd is of the form g [bd0#℄. Then the thesis follows from the only-if part ofProperty (S).Similarly, if hd newbd is derived from hd bd by the folding rule using a
lause hd0 bd0 in P0 [Defk , then for some goal
ontext g [℄, bd is of the formg [bd0#℄ and newbd is of the form g [hd0#℄. Then the thesis follows from the if partof Property (S).Finally, if hd newbd is derived from hd bd by the goal repla
ement rule, thenthe thesis follows from the hypothesis that every appli
ation of the goal repla
ementrule preserves safety.Proof of Theorem 1 (Preservation of Su

esses and Failures).By Proposition 3, without loss of generality we may assume that the admissiblesequen
e P0; : : : ;Pk is ordered. Let Pj be the program obtained at the end of these
ond subsequen
e of P0; : : : ;Pk , that is, after unfolding every
lause in Defk whi
his used for folding. Point (1) of this theorem is a
onsequen
e of the following twofa
ts:(F1) by Lemma 1 and Point (i) of Lemma 2, we have that, for every goal g and forevery b 2 ftrue; falseg, if P0 [Defk ` g #m b then Pj ` g #n1 b with m � n1,and(F2) by Lemma 1 and Point (ii) of Lemma 2, we have that: for every goal g andfor every b 2 ftrue; falseg, if Pj ` g #n1 b then Pk ` g #n b with n1 � n.Point (2) of this theorem is a straightforward
onsequen
e of Lemmata 3 and 4.Proof of Theorem 2 (Corre
tness Theorem).(1) First we prove that P0 [Defk v Pk . Let g be an ordinary goal and let A bea set of substitutions su
h that P0 [Defk ` g 7! A. We have to prove that thereexists B 2 P(Subst) su
h that Pk ` g 7! B and A and B are equally general withrespe
t to g .Sin
e P0 [Defk ` g 7! A, by de�nition there exists b 2 ftrue; falseg su
h thatP0 [Defk ` g # b. By Point (1) of Theorem 1, we have that Pk ` g # b and, thus,there exists B 2 P(Subst) su
h that Pk ` g 7! B .In order to prove that A and B are equally general with respe
t to g , we have toshow that: (a) for every substitution � 2 A there exists a substitution � 2 B su
hthat g� is an instan
e of g�, and (b) for every � 2 B there exists � 2 A su
h thatg� is an instan
e of g�.

50 A. Pettorossi and M. Proietti(a) Let � be a substitution in A. From P0 [Defk ` g 7! A, by Proposition 1 (ii.1),we have that P0 [Defk ` g� # true. Thus, by Point (1) of Theorem 1, we havethat Pk ` g� # true. Sin
e Pk ` g 7! B holds, by Proposition 1 (ii.1), there existsa substitution � 2 B su
h that g� is an instan
e of g�.(b) Let � be a substitution in B . From Pk ` g 7! B , by Proposition 1 (ii.1), we havethat Pk ` g� # true. From P0 [Defk ` g 7! A, by Proposition 1 (i), we have thateither P0 [Defk ` g� # true or P0 [Defk ` g� # false . Now P0 [Defk ` g� # falseis impossible be
ause by Point (1) of Theorem 1, we would have Pk ` g� # false .Thus, P0 [Defk ` g� # true. Sin
e P0 [Defk ` g 7! A, by Proposition 1 (ii.1),there exists � 2 A su
h that g� is an instan
e of g�.(2) We have to prove that if all appli
ations of the goal repla
ement rule in thesequen
e P0; : : : ;Pk are based on strong repla
ement laws, then P0 [Defk � Pk .Sin
e P0 [Defk v Pk has been shown at Point (1) of this proof, it remains to showthat: Pk v P0 [Defk . The proof is similar to that of Point (1) and it is based onPoint (2) of Theorem 1 and Proposition 1 (ii.1).Proof of Theorem 3 (Preservation of Safety).Let hd bd be a
lause in P0 [Defk and let hd newbd be the
lause in Pk withthe same head. By Lemma 6 we have that, for every goal
ontext b[℄ su
h thatvars(b[℄) \ vars(bd ;newbd) � vars(hd), if b[bd ℄ is safe in P0 [Def k then b[newbd ℄is safe in P0 [Defk . Then, by Lemma 5, for every goal g , if g is safe in P0 [Defkthen g is safe in Pk . Referen
esApt, K. R. 1997. From Logi
 Programming to Prolog. Prenti
e Hall, London, UK.Bossi, A. and Co

o, N. 1994. Preserving universal termination through unfold/fold. InPro
eedings ALP '94. Le
ture Notes in Computer S
ien
e 850. Springer-Verlag, Berlin,269{286.Bossi, A., Co

o, N., and Etalle, S. 1992. Transforming normal programs by repla
e-ment. In Pro
eedings 3rd International Workshop on Meta-Programming in Logi
,Meta '92, Uppsala, Sweden, A. Pettorossi, Ed. Le
ture Notes in Computer S
ien
e 649.Springer-Verlag, Berlin, 265{279.Bossi, A., Co

o, N., and Etalle, S. 1996. Transforming left-terminating programs:The reordering problem. In Logi
 Program Synthesis and Transformation, Pro
eedingsLoPSTr '95, Utre
ht, The Netherlands, M. Proietti, Ed. Le
ture Notes in ComputerS
ien
e 1048. Springer, Berlin, 33{45.Burstall, R. M. and Darlington, J. 1977. A transformation system for developingre
ursive programs. Journal of the ACM 24, 1 (January), 44{67.Chen, W., Kifer, M., and Warren, D. S. 1993. HILOG: A foundation for higher-orderlogi
 programming. Journal of Logi
 Programming 15, 3, 187{230.Hill, P. M. and Gallagher, J. 1998. Meta-programming in logi
 programming. InHandbook of Logi
 in Arti�
ial Intelligen
e and Logi
 Programming, D. M. Gabbay,C. J. Hogger, and J. A. Robinson, Eds. Vol. 5. Oxford University Press, Oxford, UK,421{497.J�rgensen, J., Leus
hel, M., and Martens, B. 1997. Conjun
tive partial dedu
tionin pra
ti
e. In Logi
 Program Synthesis and Transformation, Pro
eedings of LoPSTr

Transformations of Logi
 Programs with Goals as Arguments 51'96, Sto
kholm, Sweden, J. Gallagher, Ed. Le
ture Notes in Computer S
ien
e 1207.Springer-Verlag, Berlin, 59{82.Lloyd, J. W. 1987. Foundations of Logi
 Programming. Springer-Verlag, Berlin. Se
ondEdition.Nadathur, G. and Miller, D. A. 1998. Higher-order logi
 programming. In Handbookof Logi
 in Arti�
ial Intelligen
e and Logi
 Programming, D. M. Gabbay, C. J. Hogger,and J. A. Robinson, Eds. Vol. 5. Oxford University Press, Oxford, UK, 499{590.Pettorossi, A. and Proietti, M. 1994. Transformation of logi
 programs: Foundationsand te
hniques. Journal of Logi
 Programming 19,20, 261{320.Pettorossi, A. and Proietti, M. 1997. Flexible
ontinuations in logi
 programs viaunfold/fold transformations and goal generalization. In Pro
eedings of the 2nd ACMSIGPLAN Workshop on Continuations, January 14, 1997, ENS, Paris (Fran
e) 1997,O. Danvy, Ed. BRICS Notes Series, N6-93-13, Aahrus, Denmark, 9.1{9.22.Pettorossi, A. and Proietti, M. 2000. Transformation rules for logi
 programs withgoals as arguments. In Pro
eedings 9th International Workshop on Logi
-based ProgramSynthesis and Transformation, LoPSTr '99, Venezia, Italy, A. Bossi, Ed. Le
ture Notesin Computer S
ien
e 1817. Springer, Berlin, 177{196.Pettorossi, A. and Skowron, A. 1987. Higher order generalization in program deriva-tion. In International Joint Conferen
e on Theory and Pra
ti
e of Software Develop-ment, TAPSOFT '87. Le
ture Notes in Computer S
ien
e 250. Springer-Verlag, Berlin,182{196.Sands, D. 1996. Total
orre
tness by lo
al improvement in the transformation of fun
-tional programs. ACM Toplas 18, 2, 175{234.Sterling, L. S. and Shapiro, E. 1986. The Art of Prolog. The MIT Press, Cambridge,Massa
husetts.Tamaki, H. and Sato, T. 1984. Unfold/fold transformation of logi
 programs. In Pro-
eedings of the Se
ond International Conferen
e on Logi
 Programming, S.-�A. T�arnlund,Ed. Uppsala University, Uppsala, Sweden, 127{138.Tarau, P. 1996. BinProlog 5.25. User Guide. Te
hni
al report, University of Mon
ton,Mon
ton, Canada, E1A 3E9.Tarau, P. and Boyer, M. 1990. Elementary logi
 programs. In Pro
eedings PLILP'90,P. Deransart and J. Ma luszy�nski, Eds. Le
ture Notes in Computer S
ien
e 456. Springer-Verlag, Berlin, 159{173.Vasak, T. and Potter, J. 1986. Chara
terization of terminating logi
 programs. InPro
eedings of the Third IEEE Int'l Symp. on Logi
 Programming, Salt Lake City,Utah. IEEE Comp. So
. Press, Washington, DC, 140{147.Wand, M. 1980. Continuation-based program transformation strategies. Journal of theACM 27, 1, 164{180.Warren, D. H. D. 1982. Higher-order extensions to Prolog: are they needed? In Ma
hineIntelligen
e, Y.-H. P. J.E. Hayes, D. Mi
hie, Ed. Vol. 10. Ellis Horwood Ltd., Chi
hester,441{454.Winskel, G. 1993. The Formal Semanti
s of Programming Languages: An Introdu
tion.The MIT Press, Cambridge, Massa
husetts.

