
Folding Transformation Rules
for Constraint Logic Programs

Valerio Senni1, Alberto Pettorossi1, and Maurizio Proietti2

(1) DISP, University of Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy
{senni,pettorossi}@disp.uniroma2.it

(2) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy
proietti@iasi.rm.cnr.it

Abstract. We consider the folding transformation rule for constraint
logic programs. We propose an algorithm for applying the folding rule
in the case where the constraints are linear equations and inequations
over the rational or the real numbers. Basically, our algorithm consists
in reducing a rule application to the solution of one or more systems
of linear equations and inequations. We also introduce two variants of
the folding transformation rule. The first variant combines the folding
rule with the clause splitting rule, and the second variant eliminates the
existential variables of a clause, that is, those variables which occur in the
body of the clause and not in its head. Finally, we present the algorithms
for applying these variants of the folding rule.

1 Introduction

Rule-based program transformation is a program development technique which
has been first proposed by Burstall and Darlington in the context of functional
programming [4], and then it has been extended to logic programming [19] and
to other programming paradigms as well (see [13] for an overview).

In this paper we consider constraint logic programs [8] and the unfold/fold
transformation rules presented in [3,5,7,10]. In particular, we focus our inves-
tigations on the folding rule, which can be defined (in a declarative style) as
follows.

Let (i) H and K be atoms, (ii) c and d be constraints, and (iii) G and B
be goals (that is, conjunctions of literals). Given a clause γ: H ← c ∧ G and
a clause δ: K ← d ∧ B, if there exist a constraint e, a substitution ϑ, and a
goal R such that H ← c ∧ G is equivalent (in a given theory of constraints) to
H ← e ∧ (d ∧B)ϑ ∧R, then γ is folded into the clause η: H ← e ∧Kϑ ∧R.

In the literature, the folding rule is presented with respect to a generic the-
ory of constraints and no algorithm is provided to determine whether or not the
suitable e, ϑ, and R needed for applying that rule exist. In this paper we assume
that the constraints are linear equations and inequations over the rational num-
bers (but the techniques we will present are valid without significant changes
also when the equations and inequations are over the real numbers), and we



propose an algorithm based on linear algebra and term rewriting techniques for
computing e, ϑ, and R, if they exist. For instance, let us consider the clauses:

γ: p(X, Y ) ← X >1 ∧ X >T ∧ q([ ], T ) ∧ r(Y )

δ: s(U, V,A) ← U >1 ∧ V >0 ∧ U >W ∧ q(A,W )

and suppose that we want to fold γ using δ. Our folding algorithm computes:
(i) the constraint e: X > 1 ∧ X ≥U , (ii) the substitution ϑ: {A/[ ],W/T}, and
(iii) the goal R: r(Y ), and the clause derived by folding γ using δ is:

η: p(X, Y ) ← X >1 ∧ X≥U ∧ s(U, V, [ ]) ∧ r(Y )

(The correctness of folding will be stated in Section 3. At this point the reader
can check it by unfolding the atom s(U, V, [ ]) in the clause η using δ and, indeed,
that unfolding returns clause γ, modulo equivalence of constraints.)

In general, there may be zero or more triples 〈e, ϑ, R〉 that satisfy the condi-
tions for the applicability of the folding rule. For this reason, our folding algo-
rithm is nondeterministic and thus, given the clauses γ and δ, it may return, in
different computations, different folded clauses.

In this paper we also introduce two variants of the standard folding rule
presented above, which are often very useful for transforming programs, and we
propose two algorithms for their application.

The first variant of the folding rule corresponds to some applications of the
clause splitting rule [7] followed by some applications of the standard folding
rule. Clause splitting consists in replacing a clause H ← c∧G by two clauses of
the form: H ← c∧d1∧G and H ← c∧d2∧G such that in the given theory of con-
straints, the universal closure of d1 ∨ d2 is equivalent to true. This variant of the
folding rule combines in a single rule application: (i) several applications of the
clause splitting rule, by which from clause γ we derive the n clauses γ1, . . . , γn,
and (ii) n subsequent applications of the standard folding rule, by which we fold
the clauses γ1, . . . , γn using clause δ and we derive the n clauses η1, . . . , ηn. In
the paper we will also propose an algorithm for determining the suitable appli-
cations of the clause splitting rule which allow the subsequent applications of
the standard folding rule.

The second variant of the standard folding rule eliminates the existential
variables which occur in the clause to be folded [14,15]. Recall that the existential
variables are those variables which occur in the body of a clause but not in its
head.

The paper is structured as follows. In Section 2 we recall some basic defini-
tions concerning constraint logic programs. In Sections 3, 4, and 5 we introduce
the standard folding rule [3,5,7,10] and two variants of this rule. We present the
three algorithms for applying the folding rule and its two variants. For these
algorithms we also prove the soundness and completeness results with respect to
the declarative specifications of the folding rules. Finally, in Section 6 we discuss
the related work and we indicate some directions for future investigation.
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2 Preliminary Definitions

In this section we recall some basic definitions concerning constraint logic pro-
grams, where the constraints are conjunctions of linear equations and inequations
over the rational numbers. As already mentioned, the results we will present in
the following sections, are valid also when the constraints are conjunctions of
linear equations and inequations over the real numbers. For notions not defined
here the reader may refer to [8,9].

Let us consider a first order language L given by a set Var of variables, a
set Fun of function symbols, and a set Pred of predicate symbols. We assume
that the function symbols + and · denoting addition and multiplication, respec-
tively, belong to Fun, and every rational number in Q is a constant symbol (that
is, a 0-ary function symbol) belonging to Fun. We also assume that the pred-
icate symbols ≥, >, and = denoting inequality, strict inequality, and equality,
respectively, belong to Pred .

In order to distinguish terms representing rational numbers from other terms,
we assume that L is a typed language [9]. We have two basic types: rat, that
is, the type of rational numbers, and tree, that is, the type of finite trees. We
also consider types constructed from basic types by using the type constructors
× and →. A variable X ∈ Var has either type rat or tree. We denote by
Varrat and Vartree the set of variables of type rat and tree, respectively. A
predicate symbol of arity n and a function symbol of arity n in L have types
of the form τ1× . . .×τn and τ1× . . .×τn → τn+1, respectively, for some types
τ1,. . ., τn, τn+1 ∈ {rat, tree}. In particular, the predicate symbols ≥, >, and =
have type rat×rat, the function symbols + and · have type rat×rat→ rat,
and the rational numbers have type rat. The function symbols in {+, ·} ∪Q are
the only symbols whose type is τ1×. . .×τn→rat, for some types τ1,. . ., τn.
A term of type rat is a linear polynomial and has the following syntax:

p ::= a | X | a·X | p1 + p2

where a is a rational number and X is a variable in Varrat. We will also write
the term a·X as aX. A term of type tree has the following syntax:

t ::= X | f(t1, . . . , tn)

where X is a variable in Vartree, f is a function symbol of type τ1×. . .×τn→tree,
and t1, . . . , tn are terms of type τ1, . . . , τn, respectively. A term is either a term
of type rat or a term of type tree.

A constraint is a finite conjunction of atomic constraints, which are linear
equations and inequations over the rational numbers. Constraints have the fol-
lowing syntax:

c ::= p1 ≥ p2 | p1 > p2 | p1 = p2 | c1 ∧ . . . ∧ cn

When n = 0 we write c1 ∧ . . . ∧ cn as true. We denote by LIN Q the set of all
constraints.

An atom is of the form r(t1, . . . , tn), where r is a predicate symbol of type
τ1×. . .×τn not in {≥, >, =}, and t1, . . . , tn are terms of type τ1, . . . , τn, respec-
tively. A literal is either an atom or a negated atom. An atom is also called a
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positive literal and a negated atom is also called a negative literal. A goal is a
conjunction L1 ∧ . . . ∧ Ln of literals, with n ≥ 0. Similarly to the case of con-
straints, we will denote by true the conjunction of 0 literals. A constrained goal
is a conjunction c∧G, where c is a constraint and G is a goal. A clause is of the
form H ← c∧G, where H is an atom and c∧G is a constrained goal. A constraint
logic program is a set of clauses. A formula of the language L is constructed as
usual in first order logic from the symbols of L by using the logical connectives
∧, ∨, ¬, →, ←, ↔, and the quantifiers ∃, ∀.

If e is a term or a formula then by Varsrat(e) and Varstree(e) we denote,
respectively, the set of variables of type rat and of type tree occurring in e. By
Vars(e) we denote the set Varsrat(e) ∪ Varstree(e). By Vars(e1, e2) we denote
the set Vars(e1) ∪ Vars(e2). By FVars(e) we denote the set of free variables of
e. Given a constraint c occurring in the body of a clause γ, a variable which
occurs in c and not elsewhere in γ, is said to be a local variable of c in γ. Given
a clause γ: H ← c ∧G, by EVars(γ) we denote the set Vars(c ∧G) − Vars(H)
of the existential variables of γ. Given a set X = {X1, . . . , Xn} of variables and
a formula ϕ, by ∀X ϕ we denote the formula ∀X1 . . . ∀Xn ϕ and by ∃X ϕ we
denote the formula ∃X1 . . . ∃Xn ϕ. By ∀(ϕ) and ∃(ϕ) we denote the universal
closure and the existential closure of ϕ, respectively.

In the following we will use the notion of substitution as defined in [9] with
the following extra condition: for any substitution {X1/t1, . . . , Xn/tn}, for i =
1, . . . , n, the type of Xi is equal to the type of ti.

Let Lrat denote the sublanguage of L given by the set Varrat of variables, the
set {+, ·} ∪ Q of function symbols, and the set {≥, >, =} of predicate symbols.
The formulas of Lrat are the formulas of L where all variables, function symbols,
and predicate symbols belong to Lrat. The interpretation Q for Lrat is defined
as follows: (i) Q assigns to the function symbols + and · the usual addition and
multiplication operations in Q, (ii) Q assigns to every a ∈ Q the element a itself,
and (iii) Q assigns to the predicate symbols ≥, >, and = the usual inequality,
strict inequality, and equality relations on Q, respectively. For a formula ϕ of
Lrat (in particular, for a constraint), the satisfaction relation Q |= ϕ is defined
as usual in first order logic. Recall that the problem of checking, for any formula
ϕ of Lrat, whether or not Q |= ϕ holds, is decidable.

By Drat we denote the set Q of the rational numbers and by Dtree we denote
the set H−Q, where H is the set of ground terms constructed from the function
symbols in Fun −{+, ·}. A Q-interpretation is an interpretation I for the typed
language L defined as follows. For τ1, . . . , τn, τn+1 ∈ {rat, tree}, (i) I assigns
to a function symbol of type τ1×. . .×τn→τn+1 a function from Dτ1×. . .×Dτn

to Dτn+1 . In particular, (i.1) to any function symbol in {+, ·} ∪Q, I assigns the
same function as Q, and (i.2) to any function symbol f of type τ1×. . .×τn→tree,
I assigns the function that maps 〈d1, . . . , dn〉 ∈ Dτ1×. . .×Dτn to f(d1, . . . , dn) ∈
Dtree. (ii) I assigns to any predicate symbol of type τ1× . . .×τn a relation on
Dτ1× . . .×Dτn . In particular, to the symbols ≥, >, and =, I assigns the same
relation as Q. For any formula ϕ of L (and thus, for a constraint logic program),
the satisfaction relation I |= ϕ is defined as usual in typed first order logic. For
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any Q-interpretation I and formula ϕ of Lrat, we have that I |= ϕ iff Q |= ϕ.
We say that a Q-interpretation I is a Q-model of a program P if for every clause
γ ∈ P we have that I |= ∀(γ). Similarly to the case of logic programs, we can
define stratified constraint logic programs and we can show that every stratified
program P has a perfect Q-model [7,8,10], denoted by M(P ).

A solution of a set C of constraints is a ground substitution σ of the form
{X1/a1, . . . , Xn/an}, where {X1, . . . , Xn} = Vars(C) and a1, . . . , an ∈ Q, such
that Q |= c σ for every c ∈ C. A set of constraints is said to be satisfiable if
it has a solution. We assume that we are given a function solve that takes a
set C of constraints in LIN Q as input and returns a solution σ of C, if C is
satisfiable, and fail otherwise. The function solve can be implemented by using,
for instance, the Fourier-Motzkin algorithm or the Khachiyan algorithm [17].

We assume that we are also given a function project such that for every
constraint c, d ∈ LIN Q and for every finite set of variables X ⊆ Varrat, if
project(c, X) = d then Q |= ∀X ((∃Y c) ↔ d), where Y = Vars(c)−X and
Vars(d) ⊆ X. Also the project function can be implemented by using the Fourier-
Motzkin algorithm.

A clause γ : H ← c ∧ G is said to be in normal form if (i) the terms of
type rat occurring in G are distinct existential variables, and (ii) c has no local
variables in γ. It is always possible to transform any clause γ into a clause γ1 in
normal form such that γ and γ1 have the same Q-models. (In particular, given
a clause γ, all local variables of a constraint in γ can be eliminated by applying
the project function.) The clause γ1 is called a normal form of γ.

Since every clause can be transformed into an equivalent clause in normal
form, when presenting the folding rule and the corresponding algorithm for its
application we will assume, without loss of generality, that the clauses are in
normal form.

Given two clauses γ1 and γ2, we write γ1
∼= γ2 if there exist a normal form

H ← c1 ∧ B1 of γ1, a normal form H ← c2 ∧ B2 of γ2, and a variable renam-
ing ρ such that: (1) H = Hρ, (2) B1 =AC B2ρ, and (3) Q |= ∀ (c1 ↔ c2ρ),
where =AC denotes equality modulo the equational theory of associativity and
commutativity of conjunction. We refer to this theory as the AC∧ theory [1].

Proposition 1. (i) ∼= is an equivalence relation.
(ii) If γ1

∼= γ2 then, for every Q-interpretation I, I |= γ1 iff I |= γ2.
(iii) If γ2 is a normal form of γ1 then γ1

∼= γ2.
(iv) Let γ1 be H ← c∧B and γ2 be H ← d∧B, then γ1

∼= γ2 iff Q |= ∀ (∃V1 c ↔
∃V2 d), where V1 is the set of local variables of c in γ1 and V2 is the set of local
variables of d in γ2.

The ∼= equivalence relation can be extended to sets of clauses as follows. Let
{γ1, . . . , γm} and {δ1, . . . , δn} be two sets of clauses. We write {γ1, . . . , γm} ∼=
{δ1, . . . , δn} if there exist H,B1, B2, c1, . . . , cm, d1, . . . , dn such that, for i =
1, . . . , m, H ← ci ∧B1 is a normal form of γi, for j = 1, . . . , n, H ← dj ∧B2 is a
normal form of δj , and there exists a variable renaming ρ such that: (1) H = Hρ,
(2) B1 =AC B2ρ, and (3) Q |= ∀ ((c1 ∨ . . . ∨ cm) ↔ (d1 ∨ . . . ∨ dn)ρ).

5



3 The Standard Folding Rule

In the literature there are several, slightly different versions of the folding trans-
formation rule for constraint logic programs [3,5,7,10]. These versions differ on
the applicability conditions and on the number of clauses that can be folded
by a single rule application. In this section we introduce the rule Fold1, whose
applicability conditions are the ones given in [7]. However, unlike the folding rule
presented in [7], the rule Fold1 can be applied to one clause at a time, and in
this respect it is similar to the folding rule considered in [3,5]. The general case,
where n(≥1) clauses can be folded at once, can be addressed as a straightforward
generalization of the methods we will present here.

Definition 1 (Rule Fold1). Let γ and δ be clauses of the form

γ : H ← c ∧G
δ : K ← d ∧B

such that γ and δ are in normal form and without variables in common. Suppose
that there exist a constraint e, a substitution ϑ, and a goal R such that:
(1) γ ∼= H←e∧dϑ∧Bϑ∧R;
(2) for every variable X in EVars(δ), the following conditions hold: (2.i) Xϑ is
a variable not occurring in {H, e, R}, and (2.ii) Xϑ does not occur in the term
Y ϑ, for every variable Y occurring in d ∧B and different from X.
By folding clause γ using clause δ we derive the clause η: H ← e ∧Kϑ ∧R.

In Theorem 1 below we establish the correctness of the folding rule Fold1

w.r.t. the perfect model semantics. That result follows immediately from [18].
A transformation sequence is a sequence P0, . . . , Pn of programs such that,

for k = 0, . . . , n−1, program Pk+1 is derived from program Pk by an application
of one of the following transformation rules: definition, unfolding (w.r.t. positive
literals), folding (Here we refer to the definition rule and the unfolding rule as
they are presented in [7]). By Defsn we denote the set of clauses introduced by
applying the definition rule during the construction of P0, . . . , Pn.

Program Pk+1 is derived from program Pk by an application of the folding
rule Fold1 if Pk+1 = (Pk −{γ})∪{η}, where γ is a clause in Pk, δ is a clause in
Defsk, and η is the clause derived by folding γ using δ as described in Definition 1.

Theorem 1. Let P0 be a stratified program and let P0, . . . , Pn be a transforma-
tion sequence. Suppose that, for k = 0, . . . , n−1, if Pk+1 is derived from Pk by
folding clause γ using clause δ in Defsk, then there exists j, with 0<j <n, such
that δ ∈ Pj and program Pj+1 is derived from Pj by unfolding δ w.r.t. a positive
literal in its body. Then P0 ∪Defsn and Pn are stratified and M(P0 ∪Defsn) =
M(Pn).

Now we will present an algorithm for determining whether or not a clause
γ : H ← c ∧G can be folded using a clause δ : K ← d ∧B, according to Defini-
tion 1. Our folding algorithm finds, if they exist, a substitution ϑ, a constraint e,
and a goal R that satisfy the clause equivalence H ← c∧G ∼= H ← e∧dϑ∧Bϑ∧R
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of Point (1) of Definition 1 with the extra conditions of Point (2) of that same
definition. If it is not possible to fold clause γ using clause δ, our algorithm
returns fail.

Note that since Definition 1 does not determine in a unique way ϑ, e, and R,
our folding algorithm is nondeterministic.

Our algorithm can be viewed as a solver of a matching problem [20] and it
consists of two procedures which we will present below: (i) the goal matching
procedure, called GM, which matches goals modulo the AC∧ theory [1], and
(ii) the constraint matching procedure, called CM1, which matches constraints
modulo the theory of constraints.

Now let us present the goal matching procedure GM, which given two clauses
γ : H ← c∧G and δ : K ← d∧B, either computes, if they exist, two new clauses
γ′ : H ← c∧Bϑ1 ∧R and δ′ : Kϑ1 ← dϑ1 ∧Bϑ1 such that G is equal to Bϑ1∧R
modulo the AC∧ theory, for some substitution ϑ1 and goal R, or returns fail,
otherwise.

Goal Matching Procedure: GM
Input: two clauses γ : H ← c∧G and δ : K ← d∧B in normal form without
variables in common.
Output: (A) two clauses γ′ : H ← c ∧Bϑ1 ∧R and δ′ : Kϑ1 ← dϑ1 ∧Bϑ1 in
normal form such that: (1) γ ∼= γ′ and (2) for every variable X in EVars(δ),
the following conditions hold: (2.i) Xϑ1 is a variable not occurring in {H, R},
and (2.ii) Xϑ1 does not occur in the term Y ϑ1, for every variable Y occurring
in d ∧B and different from X, if such two clauses γ′ and δ′ exist, and
(B) fail, otherwise.
Step 1. Compute an injection µ from the multiset B of the literals occurring
in B, to the multiset G of the literals occurring in G such that: (i) µ is
different from any previously computed injection from B to G, if any, and
(ii) for all L∈B, L and µ(L) are either both positive or both negative literals,
and have the same predicate symbol with the same arity. If there exists no
such an injection µ then return fail.
Step 2. Consider the set of equations S = {L= µ(L) | L∈B}. Transform the
set S by applying as long as possible the following rewriting rules:
(i) {¬A1 =¬A2} ∪ S =⇒ {A1 =A2} ∪ S;
(ii) {a(s1, . . . , sn)=a(t1, . . . , tn)} ∪ S =⇒ {s1 = t1, . . . , sn = tn} ∪ S;
(iii) {a(s1, . . . , sm)=b(t1, . . . , tn)} ∪ S =⇒ fail, if a is different from b;
(iv) {a(s1, . . . , sn)=X} ∪ S =⇒ fail, if X is a variable;
(v) {X = t1} ∪ S =⇒ fail, if X is a variable and in the current set S of

equations there is an equation X = t2 such that t1 is different from t2.

Step 3. Let R be the conjunction of all literals in G − {µ(L) | L∈B} and
S be the final set of equations (possibly, fail) which is derived at the end of
Step 2.
IF S is not fail and for every equation X = t in S such that X∈EVars(δ) we
have that: (i) the term t is a variable not occurring in {H, R} and (ii) there
is no Y ∈ Vars(d ∧ B) different from X such that Y = r is an equation in
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S and t ∈ Vars(r) THEN return the clauses γ′ : H ← c ∧ Bϑ1 ∧ R and
δ′ : Kϑ1 ← dϑ1 ∧ Bϑ1, where ϑ1 is the substitution {X/t | X = t ∈ S}∪
{V1/s1, . . . , V`/s`}, where {V1, . . . , V`}=Varstree(K)−Vars(B) and s1, . . . , s`

are arbitrary ground terms of type tree ELSE go to Step 1.

Note that the goal matching procedure GM is nondeterministic because, in
general, more than one injection µ may lead to the construction of a match-
ing substitution ϑ1 and different mappings µ may determine different matching
substitutions.

Moreover, the goal matching procedure GM has a ‘generate-and-test’ struc-
ture in the sense that at Step 1 it looks for an injection µ and then at Step 3
it tests whether or not that injection µ allows the construction of the match-
ing substitution ϑ1. It could be desirable to avoid the inefficiency due to that
‘generate-and-test’ structure, but one should recall that the problem of matching
modulo the equational theory AC∧ has been shown to be NP-complete [1,2].

Note also that, since the input clauses γ and δ are in normal form, the
substitution ϑ1 computed by the goal matching procedure GM is a renaming
substitution when restricted to the variables of type rat.

Finally, note that the arbitrary ground substitution {V1/s1, . . . , V`/s`} for
the variables of Varstree(K)−Vars(B) can be chosen before executing the GM
procedure, so that GM does not compute distinct substitutions ϑ1 differing only
on the choice of {V1/s1, . . . , V`/s`}.

The following theorem states that the goal matching procedure GM is sound
and complete, that is, GM finds a suitable matching substitution ϑ1 and a goal
R if and only if they exist.

Theorem 2 (Termination, Soundness, and Completeness of the Goal
Matching Procedure). Let γ : H ← c ∧ G and δ : K ← d ∧ B be two clauses
in normal form and without variables in common, given in input to the goal
matching procedure GM. Then the following properties hold:
(i) GM terminates;
(ii) If the output of GM is the pair of clauses γ′ : H ← c ∧ Bϑ1 ∧ R and
δ′ : Kϑ1 ← dϑ1 ∧Bϑ1, then
1. γ′ and δ′ are in normal form,
2. γ ∼= γ′, and
3. the substitution ϑ1 is such that, for every variable X in EVars(δ), the fol-

lowing conditions hold: (i) Xϑ1 is a variable not occurring in {H,R}, and
(ii) Xϑ1 does not occur in the term Y ϑ1, for every variable Y occurring in
d ∧B and different from X;

(iii) If there exist a substitution ϑ1 and a goal R such that:
1. γ ∼= H ← c ∧Bϑ1 ∧R, and
2. for every variable X in EVars(δ), the following conditions hold: (i) Xϑ1 is

a variable not occurring in {H,R}, and (ii) Xϑ1 does not occur in the term
Y ϑ1, for every variable Y occurring in d ∧B and different from X,

then the output of GM is not fail.
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Now we present the constraint matching procedure CM1 which takes in input
the two clauses γ′ and δ′ which are produced in output by the goal matching
procedure. When presenting the procedure CM1 we will assume that the clauses
γ′ and δ′ are of the following form:

γ′ : H ← c ∧B′ ∧R
δ′ : K ′ ← d′ ∧B′.

The constraint matching procedure CM1 returns either a clause γ′′: H ← e ∧
d′ ∧B′ ∧R such that γ′ ∼= γ′′ and EVars(δ′) ∩ Vars(e)=∅ (see Condition 2.i of
Definition 1), or fail.

Note that, by Point (iv) of Proposition 1, the equivalence γ′ ∼= γ′′ holds iff
Q |= ∀(∃W (e ∧ d′) ↔ c), where W is the set of the local variables of e ∧ d′ in
γ′′. As a consequence of this fact and the fact that, without loss of generality,
we may assume that the constraint e has no local variables in γ′′, one can show
that Vars(e)=Vars(c, d′)− (Vars(c) ∩Vars(d′)).

Now let us consider the formula ê defined as follows.

Definition 2. Let γ′ and δ′ be the output clauses of the goal matching procedure
GM. By ê we denote the formula ∀Z (d′ → c), where: (i) c and d′ are the
constraints occurring in the clauses γ′ and δ′, respectively, and (ii) Z is the set
of variables Vars(c) ∩Vars(d′).

From Definition 2, we immediately get that FVars(ê)=Vars(c, d′)− (Vars(c) ∩
Vars(d′)). In the following Lemma 1 we show that, among all formulas e in Lrat

such that Q |= ∀((∃W (e ∧ d′)) ↔ c), where W is the set of the free variables of
e∧ d′ not occurring in {H, B′ ∧R}, the formula ê is the most general one in the
sense that Q |= ∀(e → ê).

Lemma 1. Let γ′ : H ← c ∧B′ ∧R and δ′ : K ′ ← d′ ∧B′ be the two clauses in
normal form which are the output clauses of the goal matching procedure GM.
Let Y be FVars(ê ∧ d′)−Vars(H, B′ ∧R). The following properties hold:

1. Q |= ∀((∃Y (ê ∧ d′)) → c);
2. For all formulas e in Lrat such that FVars(e)=FVars(ê),

if Q |= ∀((∃Y (e ∧ d′)) → c) then Q |= ∀(e → ê) and
if Q |= ∀((∃Y (e ∧ d′)) ↔ c) then Q |= ∀((∃Y (ê ∧ d′)) ↔ c).

Note that, in general, the formula ê is not a constraint and, therefore, the
constraint matching procedure cannot return H ← ê∧d′∧B′∧R. Thus, starting
from the formula ê, we need to construct a constraint e such that FVars(e) =
FVars(ê) and Q |= ∀(∃Y (e ∧ d′) ↔ ∃Y (ê ∧ d′)) where Y = FVars(ê ∧ d′) −
Vars(H, B′∧R). Note also that it is always possible to rewrite the formula ê into
a finite disjunction e1∨. . .∨em of constraints such thatQ |= ∀(ê ↔ (e1∨. . .∨em))
and FVars(ê)=Vars(e1 ∨ . . . ∨ em). Thus, we have the following property.

Lemma 2. Let ê be the formula introduced in Definition 2 and let e1, . . . , em

be constraints such that Q |= ∀(ê ↔ (e1 ∨ . . . ∨ em)). Let Y be FVars(ê ∧ d′) −
Vars(H, B′∧R). Then for i = 1, . . . , m, we have that Q |= ∀((∃Y (ei∧d′)) → c).
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Now we present the constraint matching procedure CM1 which is a non-
deterministic procedure whose soundness follows from Proposition 1 and from
Lemma 2. At Step 1 of the CM1 procedure the formula ê is replaced by an equiv-
alent finite disjunction e1∨ . . .∨en of constraints. At Step 2, the procedure tests
whether or not there exists a constraint ei such thatQ |= ∀(c → ∃Y (ei∧d′)) and,
thus, by Lemma 2, it can be taken to be the constraint e we want to construct.
Note that this technique for constructing e is very simple but, unfortunately, it
leads to the incompleteness of the constraint matching procedure CM1 because,
in general, there may be a constraint e such that Q |= ∀(c ↔ ∃Y (e ∧ d′)), and
yet, it does not exists ei in {e1, . . . , em} such that Q |= ∀(c → ∃Y (ei ∧ d′)).

Constraint Matching Procedure: CM1

Input: two clauses γ′ : H ← c∧B′ ∧R and δ′ : K ′ ← d′ ∧B′ in normal form.
Suppose that they are an output of the goal matching procedure GM.
Output: either a clause γ′′ : H ← e ∧ d′ ∧ B′ ∧ R such that γ′ ∼= γ′′ and
EVars(δ′) ∩Vars(e)=∅, or fail.
Step 1. Transform the formula ê : ∀Z (d′ → c), where Z = Vars(c)∩Vars(d′),
into a finite disjunction of constraints as follows:
1.1 Transform the formula into ¬∃Z¬ (d′ → c).
1.2 Eliminate the negation from the formula ¬ (d′ → c) by eliminating →

in favor of ∨ and ¬, by pushing ¬ inward as much as possible, and by
replacing ¬(p1≥p2) by p2 >p1, ¬(p1 >p2) by p2 ≥ p1, and ¬(p1 =p2) by
p1 >p2∨p2 >p1. A formula f1∨ . . .∨fk, where f1, . . . , fk are constraints,
is obtained.

1.3 Distribute ∃Z over ∨, eliminate the existential variables of the set Z of
variables from each disjunct fi using the function project , and obtain
the formula g1 ∨ . . . ∨ gk, where for i = 1, . . . , k, the disjunct gi is the
constraint project(fi, Vars(fi)−Z).

1.4 Eliminate the negation from the formula ¬ (g1 ∨ . . . ∨ gk) by pushing ¬
inward, and obtain a formula e1 ∨ . . . ∨ em, where e1, . . . , em are con-
straints.

Step 2. IF there exists ei in {e1, . . . , em} such that Q |= ∀(c → ∃Y (ei ∧ d′)),
where Y is the set FVars(ei ∧ d′)−Vars(H, B′ ∧R) THEN return γ′′ : H ←
ei ∧ d′ ∧B′ ∧R ELSE return fail.

In the following theorem we prove that the constraint matching procedure
CM1 terminates and returns a correct output in the sense that if CM1 con-
structs a constraint e then the clauses γ′ : H ← c ∧ B′ ∧ R and γ′′ : H ←
e ∧ d′ ∧B′ ∧R are equivalent.

Theorem 3 (Termination and Soundness of the Constraint Matching
Procedure CM1). Let the two clauses γ′ : H ← c ∧ B′ ∧ R and δ′ : K ′ ←
d′ ∧B′ in normal form be the input of the constraint matching procedure CM1.
Suppose that γ′ and δ′ are an output of GM. Then: (i) CM1 terminates, and
(ii) if CM1 returns the clause γ′′ : H ← e ∧ d′ ∧ B′ ∧ R, then γ′ ∼= γ′′ and
EVars(δ′) ∩Vars(e)=∅.
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Now we introduce the folding algorithm FA1, which makes use of the goal
matching procedure GM and the constraint matching procedure CM1. In order
to fold a clause γ using a clause δ, the folding algorithm FA1: (i) applies the goal
matching procedure GM and computes a matching substitution ϑ and a goal R,
and then (ii) it applies the constraint matching procedure CM1 and looks for a
constraint e such that Conditions (1) and (2) of Definition 1 are satisfied. If CM1

fails to compute the desired constraint e, the folding algorithm executes again
the GM procedure so that new, alternative outputs ϑ and R are generated, until
the CM1 procedure computes the desired constraint e. The folding algorithm
FA1 returns fail whenever GM fails to compute a substitution ϑ and a goal
R, and whenever, for all ϑ and R computed by GM, the CM1 procedure fails
to compute a constraint e such that Conditions (1) and (2) of Definition 1 are
satisfied.

Folding Algorithm: FA1

Input: two clauses γ : H ← c ∧ G and δ : K ← d ∧ B in normal form and
without variables in common.
Output: either a clause η : H ← e∧Kϑ∧R such that η is the result of folding
γ using δ according to Definition 1, or fail.
IF there exist two clauses of the form γ′ : H ← c ∧ Bϑ ∧ R and δ′ : Kϑ ←
dϑ ∧ Bϑ, which are the output of an execution of the GM procedure when
the clauses γ and δ are given in input
AND there exists a clause γ′′ : H ← e ∧ dϑ ∧Bϑ ∧R which is the output of
an execution of the CM1 procedure when the clauses γ′ and δ′ are given in
input
THEN return the clause η : H ← e ∧Kϑ ∧R
ELSE return fail.

By using Theorems 2 and 3 we can prove termination and soundness of the
folding algorithm FA1.

Theorem 4 (Termination and Soundness of the Folding Algorithm
FA1). Let γ and δ two clauses in normal form and without variables in common,
which are the input of Algorithm FA1. Then: (i) FA1 terminates, and (ii) if the
output of FA1 is a clause η, then η can be derived by folding γ using δ according
to Definition 1.

Let us now illustrate the folding algorithm FA1 by considering the example
presented in the Introduction. The clauses γ and δ are already in normal form and
do not have variable in common. Let p be a predicate symbol of type rat×tree,
s be of type rat× rat× tree, q be of type tree× rat, and r be of type tree.
If we apply the goal matching procedure GM to the clauses γ and δ we get the
substitution ϑ: {A/[ ],W/T} and the goal R: r(Y ). Thus, we get the following
clauses:
γ′: p(X,Y ) ← X >1 ∧ X >T ∧ q([ ], T ) ∧ r(Y )
δ′: s(U, V, [ ]) ← U >1 ∧ V >0 ∧ U >T ∧ q([ ], T )
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Then these clauses are given in input to the constraint matching procedure CM1.
Since in that procedure we have assumed that γ′ is of the form: H ← c∧B′ ∧R
and δ′ is of the form: K ′ ← d′ ∧B′, we have that:

c is X >1 ∧X >T and d′ is U >1 ∧ V >0 ∧ U >T .
We also have that Vars(c) ∩ Vars(d′) = {T} and thus, we have to perform
Step 1 starting from the formula ∀T (d′ → c). At the end of Step 1 we obtain the
following new formula:

(1≥U) ∨ (0≥V ) ∨ (X >1 ∧X ≥ U)
which is the disjunction of the following three constraints: e1 ≡ 1≥U , e2 ≡ 0≥V ,
and e3 ≡ X >1 ∧X ≥ U . Then, at Step 2 we get that:

(i) Q 6|= ∀(c → ∃U∃V (1≥U ∧ d′)),
(ii) Q 6|= ∀(c → ∃U∃V (0≥V ∧ d′)), and
(iii) Q |= ∀(c → ∃U∃V (X >1 ∧X ≥ U ∧ d′)).

Thus, the constraint matching procedure CM1 returns the clause:
γ′′: p(X, Y ) ← X >1 ∧ X≥U ∧ d′ ∧ q(T ) ∧ r(Y )
which after folding, that is, after the replacement of d′∧q(T ) by s(U, V ), becomes,
as indicated in the Introduction:
η: p(X, Y ) ← X >1 ∧ X≥U ∧ s(U, V ) ∧ r(Y ).
Due to the the fact that in general the constraint matching procedure CM1 is
not complete, the folding algorithm FA1 is not complete either. Indeed, for some
input clauses γ and δ there exists a triple 〈e, ϑ, R〉 such that Conditions (1) and
(2) of Definition 1 are satisfied, and yet FA1 returns fail.

In the next two sections, we will present two more folding algorithms for
applying the standard folding rule as introduced in Definition 1, and we will
provide the conditions under which they are complete. In particular, the first
algorithm can be used when there is the extra requirement that no existential
variable should be present in the folded clause, while the second algorithm can
be used when, before applying the folding rule, preliminary applications of the
clause splitting rule are possible.

4 A Folding Rule Combined with Clause Splitting

In this section we present a rule, called Fold2, which is an extension of the
folding rule Fold1 presented in Section 3. An application of the rule Fold2 is
equivalent to zero or more applications of the clause splitting rule [6] followed
by some applications of the folding rule Fold1.

Let us motivate the introduction of the rule Fold2 by means of an example.
Let us consider the following two clauses:

γ: p(X) ← 2≥X ∧X≥1 ∧ Z≥1 ∧ 2≥Z ∧ q(Z)
δ: s(Y ) ← W + 3

4≥Y ∧ Y ≥W− 3
4 ∧ 4−W ≥Y ∧ Y ≥2−W ∧ q(W )

where the predicate symbols p, q, and s are of type rat. It is not possible to
apply the rule Fold1 and fold clause γ using δ, because no constrained subgoal
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of clause γ is an instance of the body of clause δ. In order to allow folding, we
can use the clause splitting transformation rule. In particular, given the property
Q |= ∀Z (Z≥ 5

4 ∨ 7
4≥Z), we can split clause γ into two clauses:

γ1: p(X) ← 2≥X ∧X≥1 ∧ Z≥1 ∧ 2≥Z ∧ Z≥ 5
4 ∧ q(Z)

γ2: p(X) ← 2≥X ∧X≥1 ∧ Z≥1 ∧ 2≥Z ∧ 7
4≥Z ∧ q(Z)

Now it is possible to fold both clause γ1 and clause γ2 using δ.
In order to fold γ1 using δ (by applying the rule Fold1), we introduce: (i) the

constraint e1: 2≥X ∧X≥1∧1≥Y , (ii) the substitution ϑ: {W/Z}, and (iii) the
empty conjunction R. In order to fold γ2 using δ we introduce: (i) the constraint
e2: 2≥X ∧X ≥ 1 ∧ Y ≥ 2, (ii) the substitution ϑ: {W/Z}, and (iii) the empty
conjunction R. The clauses η1 and η2 derived by folding γ1 and γ2 using δ are:

η1: p(X) ← 2≥X ∧X≥1 ∧ 1≥Y ∧ s(Y )
η2: p(X) ← 2≥X ∧X≥1 ∧ Y ≥2 ∧ s(Y )

Note that in general it may be difficult to find a suitable formula (such as
∀Z (Z≥ 5

4∨ 7
4≥Z) in our example above) which after clause splitting will allow

folding.
Definition 3 below introduces the folding rule Fold2 by which a clause γ :

H ← c ∧ G can be folded using a clause δ : K ← d ∧ B if: (i) there exist n
constraints c1, . . . , cn such that Q |= ∀(c ↔ c1 ∨ . . . ∨ cn) holds, and (ii) for
i = 1, . . . , n, by applying the folding rule Fold1, the clause H ← ci ∧G can be
folded using δ, thereby deriving H ← ei ∧ Kϑ ∧ R. Note that in Definition 3
the constraints c1, . . . , cn are not mentioned, and we will only require to find the
clauses η1, . . . , ηn, or equivalently, the constraints e1, . . . , en, the substitution ϑ,
and the goal R. Indeed, in the algorithm FA2 for applying the rule Fold2 we
will introduce below, we directly compute, if they exist, the clauses η1, . . . , ηn,
without finding the constraints c1, . . . , cn.

Definition 3 (Rule Fold2). Let γ and δ be clauses of the form
γ : H ← c ∧G
δ : K ← d ∧B

such that γ and δ are in normal form and without variables in common. Suppose
that there exist some constraints e1, . . . , en, a substitution ϑ, and a goal R such
that:
(1) {γ} ∼= {H ← e1 ∧ dϑ ∧Bϑ ∧R, . . . ,H ← en ∧ dϑ ∧Bϑ ∧R};
(2) for every variable X in EVars(δ), the following conditions hold: (i) Xϑ is a
variable not occurring in {H, e1, . . . , en, R}, and (ii) Xϑ does not occur in the
term Y ϑ, for every variable Y occurring in d ∧B and different from X.
By folding clause γ using clause δ we derive the clauses η1: H ← e1∧Kϑ∧R, . . . ,
ηn: H ← en ∧Kϑ ∧R.

Now we provide the algorithm FA2 for applying rule Fold2. Given two input
clauses γ and δ, the output of the algorithm is: (i) a set of clauses derived
by folding γ using δ as specified in Definition 3, if it is possible to fold, and
(ii) fail, otherwise. The FA2 algorithm looks for suitable constraints e1, . . . , en,
substitution ϑ, and goal R such that Conditions (1) and (2) of Definition 3 hold.
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Similarly to Algorithm FA1 presented in Section 3, Algorithm FA2 makes
use of two procedures: the goal matching procedure GM, which is the one used
in FA1, and the constraint matching procedure CM2, which is the following
variant of CM1.

Constraint Matching Procedure: CM2

Input: two clauses γ′ : H ← c∧B′ ∧R and δ′ : K ′ ← d′ ∧B′ in normal form.
Suppose that they are an output of the goal matching procedure GM.
Output: (A) a set {γ′′1 , . . . , γ′′n} of clauses, with n ≥ 0, such that: (i) for
i = 1, . . . , n, γ′′i is of the form H ← ei ∧ d′ ∧B′ ∧R, (ii) {γ′} ∼= {γ′′1 , . . . , γ′′n},
and (iii) EVars(δ′) ∩Vars(e1, . . . , en)=∅, if such set exists, and
(B) fail, otherwise.
Step 1. Starting from ê = ∀Z(d′ → c) compute the disjunction h1 ∨ . . .∨ hm

of constraints in the same way as it has been done at Step 1 of the procedure
CM1 for computing e1 ∨ . . . ∨ em starting from ê = ∀Z(d′ → c).
Step 2. Let {e1, . . . , en}, with n ≤ m, be the set of those hi, with 1≤ i≤m,
such that Q |= ∃(hi ∧ d′). IF Q |= ∀(c → ∃Y ((e1 ∨ . . . ∨ en) ∧ d′)), where
Y = FVars((e1 ∨ . . . ∨ en) ∧ d′) − Vars(H,B ∧ R) THEN return the set
{H ← ei ∧ d′ ∧B′ ∧R | i = 1, . . . , n} of clauses ELSE return fail.

It can be shown that the constraint matching procedure CM2 always terminates
and it is sound and complete with respect to its specification. Thus, we slightly
modify the folding algorithm FA1 by using CM2, instead of CM1, and we get
a terminating, sound, complete folding algorithm FA2 to compute the result of
applying rule Fold2 to clause γ using clause δ.

Folding Algorithm: FA2

Input: two clauses γ : H ← c∧G and δ : K ← d∧B in normal form and with
no variables in common.
Output: n clauses η1 : H ← e1 ∧Kϑ ∧ R, . . . , ηn : H ← en ∧Kϑ ∧ R, with
n ≥ 0, if it is possible to fold γ using δ according to Definition 3, and fail,
otherwise.
IF c is unsatisfiable, that is, Q |= ¬∃(c) THEN return the empty set of
clauses
ELSE IF there exist two clauses of the form γ′ : H ← c ∧ Bϑ ∧ R and
δ′ : Kϑ ← dϑ ∧ Bϑ, which are the output of an execution of the GM
procedure when given in input clauses γ and δ
AND there exists a set {H ← e1∧dϑ∧Bϑ∧R, . . . , H ← en∧dϑ∧Bϑ∧R}
of clauses which is the output of an execution of the CM2 procedure when
given in input clauses γ′ and δ′

THEN return the clauses η1 : H ← e1 ∧Kϑ∧R, . . . , ηn : H ← en ∧Kϑ∧R
ELSE return fail.

We leave it to the reader to check that the clauses η1 and η2 considered in
the example at the beginning of this section can be computed by applying the
folding algorithm FA2 with clauses γ and δ as input.
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Theorem 5 (Termination, Soundness, and Completeness of the Fold-
ing Algorithm FA2). Let two clauses γ and δ, in normal form and with no
variables in common, be the input of Algorithm FA2. Then:
(i) FA2 terminates,
(ii) if FA2 returns the clauses η1, . . . , ηn, then η1, . . . , ηn can be derived by folding
γ using δ according to Definition 3, and
(iii) if it is possible to fold γ using δ according to Definition 3, then FA2 does
not return fail.

5 A Folding Rule for the Elimination of Existential
Variables

In this section we introduce a folding rule, called Fold3, which is a variant of
the rule Fold1. When we apply the rule Fold3 to the clauses γ : H ← c∧G and
δ : K ← d ∧ B, we replace a subgoal of c ∧ G, where some existential variables
may occur, by an atom Kϑ thereby getting a new clause η in which Kϑ has no
existential variables.

Definition 4 (Rule Fold3). Let γ and δ be clauses of the form
γ : H ← c ∧G
δ : K ← d ∧B

such that γ and δ are in normal form and without variables in common. Suppose
that there exist a constraint e, a substitution ϑ, and goal R such that:
(1) γ ∼= H ← e ∧ dϑ ∧Bϑ ∧R;
(2) for every variable X in EVars(δ), the following conditions hold: (i) Xϑ is a
variable not occurring in {H, e,R}, and (ii) Xϑ does not occur in the term Y ϑ,
for every variable Y occurring in d ∧B and different from X;
(3) Vars(Kϑ) ⊆ Vars(H).
By folding clause γ using clause δ we derive the clause η : H ← e ∧Kϑ ∧R.

Condition (3) ensures that no existential variable in the body of η occurs
in Kϑ. However, it may happen that in the folded clause η there are still some
existential variables occurring in e or R, which could be eliminated by further
folding steps using clause δ again or using other clauses.

Now we will present an algorithm, called FA3, for applying rule Fold3. The
FA3 algorithm is a variant of the FA1 algorithm for applying rule Fold1 pre-
sented in Section 3. Given two clauses γ and δ, the FA3 algorithm returns a
clause obtained by folding, if folding is possible, and it returns fail, otherwise.
The FA3 algorithm makes use of: (i) the goal matching procedure GM presented
in Section 3 with the following additional rewriting rule:

(vi) {X = t} ∪ S =⇒ fail if X ∈ Varstree(K) and Vars(t) 6⊆ Varstree(H)
and (ii) a constraint matching procedure, called CM3, we will present below.

The rewrite rule (vi) ensures that Varstree(Kϑ) ⊆ Varstree(H) and this fact
will be used in the proof of Theorem 7 below for showing that Point (3) of
Definition 4 holds and, thus, existential variables are eliminated.
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The CM3 procedure takes as input the two clauses γ′ : H ← c ∧B′ ∧R and
δ′ : K ′ ← d′ ∧B′, which are the output of the goal matching procedure. If there
exist a constraint e and a substitution ϑ2 such that: (i) γ′ ∼= H ← e∧d′ϑ2∧B′∧R,
(ii) B′ϑ2 = B′, (iii) Vars(K ′ϑ2) ⊆ Vars(H), and (iv) Vars(e) ⊆ Vars(H, R),
then the constraint matching procedure CM3 returns a clause γ′′ : H ← e ∧
d′ϑ2 ∧B′ϑ2 ∧R, else it returns fail.

Let ẽ denote the constraint project(c,X), where X = Vars(c)−Vars(B′) (see
Section 2 for the definition of the project function). Lemma 3 below shows that,
for any substitution ϑ2, if there exists a constraint e satisfying Conditions (i)–
(iv) above, then we can always take e to be the constraint ẽ. Thus, by Lemma 3
the procedure CM3 should only search for a substitution ϑ2 such that Q |=
∀(c ↔ (ẽ ∧ d′ϑ2)).

Lemma 3. Let γ′ : H ← c∧B′∧R and δ′ : K ′ ← d′∧B′ be the input clauses of the
constraint matching procedure. For every substitution ϑ2, there exists a constraint
e such that: (i) γ′ ∼= H ← e ∧ d′ϑ2 ∧B′ ∧R, (ii) B′ϑ2 = B′, (iii) Vars(K ′ϑ2) ⊆
Vars(H), and (iv) Vars(e) ⊆ Vars({H, R}) iff Q |= ∀(c ↔ (ẽ ∧ d′ϑ2)) and
Conditions (ii) and (iii) hold.

Now we introduce some notions and we state some properties (see Lemma 4
and Theorem 6) which will be exploited by the constraint matching procedure
CM3 for reducing the equivalence between c and ẽ ∧ d′ϑ2, for a suitable ϑ2, to
a set of equivalences between the atomic constraints occurring in c and ẽ∧ d′ϑ2.

A conjunction a1∧ . . .∧am of (not necessarily distinct) atomic constraints is
said to be redundant if there exists i, with 0≤ i ≤ m, such that Q |= ∀((a1∧ . . .∧
ai−1 ∧ ai+1 ∧ . . . ∧ am) → ai). In this case we also say that ai is redundant in
a1∧ . . .∧am. Thus, the empty conjunction true is non-redundant and an atomic
constraint a is redundant iff Q |= ∀(a). Given a redundant constraint c, we can
always derive a non-redundant constraint c′ which is equivalent to c, that is,
Q |= ∀(c ↔ c′), by repeatedly eliminating from the constraint at hand an atomic
constraint which is redundant in that constraint.

Without loss of generality we can assume that any given constraint c is of
the form p1 ρ1 0∧ . . .∧pm ρm 0, where m≥0 and ρ1, . . . , ρm ∈ {≥, >}. We define
the interior of c, denoted interior(c), to be the constraint p1 >0∧ . . .∧pm >0. A
constraint c is said to be admissible if both c and interior(c) are satisfiable and
non-redundant. For instance, the constraint c1 : X−Y ≥0 ∧ Y ≥0 is admissible,
while the constraint c2 : X−Y ≥0 ∧ Y ≥0 ∧X >0 is not admissible (indeed, c2

is non-redundant and interior(c2) : X−Y >0∧ Y >0∧X >0 is redundant). The
following Lemma 4 characterizes the equivalence of two constraints when one of
them is admissible.

Lemma 4. Let us consider an admissible constraint a of the form a1 ∧ . . .∧ am

and a constraint b of the form b1∧. . .∧bn, where a1, . . . , am, b1, . . . , bn are atomic
constraints (in particular, they are not equalities). We have that Q |= ∀ (a ↔ b)
holds iff there exists an injection µ : {1, . . . , m} → {1, . . . , n} such that for
i = 1, . . . , m, Q |= ∀ (ai ↔ bµ(i)) and for j = 1, . . . , n, if j 6∈ {µ(i) | 1≤ i≤m},
then Q |= ∀ (a → bj).
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In order to see that admissibility is a needed hypothesis for Lemma 4, let us
consider the non-admissible constraint c3 : X−Y ≥ 0 ∧ Y ≥ 0 ∧ X +Y > 0. We
have that Q |= ∀(c2 ↔ c3) and yet there is no injection which has the properties
stated in Lemma 4.

Lemma 4 will be used to show that if there exists a substitution ϑ2 such
that Q |= ∀(c ↔ (ẽ∧ d′ϑ2)), where c is an admissible constraint and ẽ is defined
as in Lemma 3, then CM3 computes such a substitution ϑ2. Indeed, given the
constraint c, of the form a1 ∧ . . . ∧ am, and the constraint ẽ ∧ d′, of the form
b1 ∧ . . . ∧ bn, CM3 computes: (1) an injection µ from {1, . . . , m} to {1, . . . , n},
and (2) a substitution ϑ2 such that: (2.i) for i=1, . . . , m, Q |= ∀(ai ↔ bµ(i)ϑ2),
and (2.ii) for j = 1, . . . , n, if j 6∈ {µ(i) | 1≤ i≤m}, then Q |= ∀(c → bjϑ2).

In order to compute ϑ2 satisfying the property of Point (2.i), we make use of
the following Property P1: given the satisfiable, non-redundant constraints p>0
and q > 0, we have that Q |= ∀(p > 0 ↔ q > 0) holds iff there exists a rational
number k >0 such that Q |= ∀(kp − q = 0) holds. Property P1 holds also if we
replace p>0 and q>0 by p≥0 and q≥0, respectively.

Finally, in order to compute ϑ2 satisfying the property of Point (2.ii), we
make use of the following Theorem 6 which is a generalization of the above
Property P1 and it is an extension of Farkas’ Lemma to the case of systems of
weak and strict inequalities [17].

Theorem 6. Suppose that p1 ρ1 0 , . . . , pm ρm 0, pm+1 ρm+1 0 are atomic con-
straints such that, for i = 1, . . . ,m + 1, ρi ∈ {≥, >} and Q |= ∃(p1 ρ1 0 ∧ . . . ∧
pm ρm 0). Then Q |= ∀(p1 ρ1 0 ∧ . . . ∧ pm ρm 0 → pm+1 ρm+1 0) iff there exist
k1≥ 0, . . . , km+1≥0 such that: (i) Q |= ∀ (k1p1 + · · · + kmpm + km+1 = pm+1),
and (ii) if ρm+1 is > then (

∑
i∈I ki)>0, where I ={i | 1≤ i≤m+1, ρi is >}.

As we will see below, the constraint matching procedure CM3 may generate
bilinear polynomials (see rules (i)–(iii)), that is, non-linear polynomials of a
particular form, which we now define. Let p be a polynomial and 〈P1, P2〉 be
a partition of a (proper or not) superset of Vars(p). The polynomial p is said
to be bilinear in the partition 〈P1, P2〉 if the monomials of p are of the form:
either (i) k XY , where k is a rational number, X ∈P1, and Y ∈P2, or (ii) k X,
where k is a rational number and X is a variable, or (iii) k, where k is a rational
number. Let us consider a polynomial p which is bilinear in the partition 〈P1, P2〉
where P2 = {Y1, . . . , Ym}. The normal form of p, denoted nf (p), w.r.t. a given
ordering Y1, . . . , Ym of the variables in P2, is a bilinear polynomial which is
derived by: (i) computing the bilinear polynomial p1Y1 + · · · + pmYm + pm+1

such that Q |= ∀ (p1Y1 + · · · + pmYm + pm+1 = p), and (ii) erasing from that
bilinear polynomial every summand piYi such that Q |= ∀ (pi = 0).

Constraint Matching Procedure: CM3

Input: two clauses γ′ : H ← c∧B′ ∧R and δ′ : K ′ ← d′ ∧B′ in normal form.
Output: a clause γ′′ : H ← e ∧ d′ϑ2 ∧ B′ϑ2 ∧ R such that: (i) γ′ ∼= H ← e ∧
d′ϑ2∧B′∧R, (ii) B′ϑ2 = B′, (iii) Vars(K ′ϑ2) ⊆ Vars(H), and (iv) Vars(e) ⊆
Vars(H, R). If such clause γ′′ does not exist, then fail.
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Let X be the set Vars(c) − Vars(B′), Y be the set Vars(d′) − Vars(B′),
and Z be the set Varsrat(B′). Let e be the constraint project(c,X). Without
loss of generality, we may assume that: (i) c is a constraint of the form
p1 ρ1 0 ∧ . . . ∧ pm ρm 0, where for i = 1, . . . , m, pi is a linear polynomial and
ρi ∈ {≥, >}, and (ii) e ∧ d′ is a constraint of the form q1 π1 0 ∧ . . . ∧ qn πn 0,
where for j = 1, . . . , n, qi is a linear polynomial and πi ∈ {≥, >}.
Let us consider the following rewrite rules (i)–(v) which are all of the form:

〈f1 ↔ g1, S1, σ1〉 =⇒ 〈f2 ↔ g2, S2, σ2〉
where: (1) f1, g1, f2, and g2 are constraints, (2) S1 and S2 are sets of con-
straints, and (3) σ1 and σ2 are substitutions. In the rewrite rules (i)–(v)
below, whenever S1 is written as A ∪B, we assume that A ∩B = ∅.
(i) 〈p ρ 0 ∧f ↔ g1 ∧ q ρ 0 ∧ g2, S, σ〉 =⇒

〈f ↔ g1∧g2, {nf (V p−q) = 0, V >0}∪ S, σ〉
where V is a new variable and ρ ∈ {≥, >};

(ii) 〈true ↔ q≥0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0} ∪ S, σ〉
where V1, . . . , Vm+1 are new variables;

(iii) 〈true ↔ q>0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0, (
∑

i∈I Vi)>0} ∪ S, σ〉
where V1, . . . , Vm+1 are new variables and I ={i | 1≤ i≤m+1, ρi is >};

(iv) 〈f ↔ g, {pU+q = 0}∪S, σ〉 =⇒ 〈f ↔ g, {p = 0, q = 0}∪S, σ〉
if U ∈ X ∪ Z;

(v) 〈f ↔ g, {aU+q = 0}∪S, σ〉 =⇒
〈f ↔ (g{U/− q

a}), {nf (p{U/− q
a})ρ 0 | p ρ 0 ∈ S}, σ{U/− q

a}〉
if U ∈Y , Vars(q) ∩Vars(R) = ∅, and a ∈ (Q− {0});

IF Q |= ¬∃(e) THEN return clause γ′′ : H ← e∧d′ϑ2∧B′ϑ2∧R, where ϑ2 is
an arbitrary substitution of the form {U1/a1, . . . , Us/as}, with {U1, . . . , Us} =
Varsrat(K ′)−Vars(H), and a1, . . . , as ∈ Q;

ELSE IF there exists a set C of constraints and a substitution σY such that:
1. 〈c ↔ e ∧ d′, ∅, ∅〉 =⇒∗ 〈true ↔ true, C, σY 〉,
2. there is no triple T such that 〈true ↔ true, C, σY 〉 =⇒ T ,
3. for all f ∈ C, Vars(f) ⊆ W , where W is the set of the new variables

introduced when applying rules (i)–(v) at Step 1,
4. C is satisfiable and solve(C) = σW ,

THEN let σG be an arbitrary substitution of the form {U1/a1, . . . , Us/as},
where {U1, . . . , Us} = Varsrat(K ′σY σW )−Vars(H) and a1, . . . , as ∈ Q;
let ϑ2 be σY σW σG;
return clause γ′′ : H ← e ∧ d′ϑ2 ∧B′ϑ2 ∧R

ELSE return fail.
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Note that in order to apply rules (iv) and (v), p U and a U , respectively, should be
the leftmost monomials. The procedure CM3 is nondeterministic (see rule (i)).
By induction on the number of rule applications, we can show that the polyno-
mials occurring in the second components of the triples are all bilinear in the
partition 〈W,X ∪Y ∪Z〉, where W is the set of the new variables introduced
during the application of the rewrite rules. The normal forms of the bilinear
polynomials which occur in the rewrite rules are all computed w.r.t. the fixed
variable ordering Z1, . . . , Zh, Y1, . . . , Yk, X1, . . . , Xl, where {Z1, . . . , Zh} = Z,
{Y1, . . . , Yk} = Y , and {X1, . . . , Xl} = X.

It can be shown that the constraint matching procedure CM3 always termi-
nates and it returns a clause γ′′ which satisfies the Output conditions of Proce-
dure CM3. Moreover, it can be shown that if the constraint c occurring in the
input clause γ′ (and γ) is either unsatisfiable or admissible then the constraint
matching procedure CM3 does not return fail. Thus, by using CM3, instead of
CM1, we get a terminating, sound, and (under the above mentioned condition
on the constraint c) complete folding algorithm FA3 for applying the rule Fold3.

Folding Algorithm: FA3

Input: two clauses γ : H ← c ∧ G and δ : K ← d ∧ B in normal form and
without variables in common.
Output: a clause η : H ← e ∧ Kϑ ∧ R, if it is possible to fold γ using δ
according to Definition 4, and fail, otherwise.
IF there exist two clauses of the form γ′ : H ← c ∧Bϑ1 ∧R and δ′ : Kϑ1 ←
dϑ1∧Bϑ1, which are the output of an execution of the GM procedure when
the clauses γ and δ are given in input
AND there exists a clause γ′′ : H ← e ∧ dϑ1ϑ2 ∧ Bϑ1ϑ2 ∧ R which is the
output of an execution of the CM3 procedure when the clauses γ′ and δ′

are given in input
THEN return the clause η : H ← e ∧Kϑ1ϑ2 ∧R
ELSE return fail.

Theorem 7 (Termination, Soundness, and Completeness of the Fold-
ing Algorithm FA3). Let two clauses γ and δ, in normal form and without
variables in common, be the input of Algorithm FA3. Then:
(i) FA3 terminates,
(ii) if FA3 returns a clause η, then η can be derived by folding γ using δ according
to Definition 4, and
(iii) if it is possible to fold γ using δ according to Definition 4 and the constraint
occurring in γ is either unsatisfiable or admissible, then FA3 does not return
fail.

Let us now present an example of application of the folding algorithm FA3.
Suppose we are given the following two clauses:
γ: p(X1, X2) ← Z > 0 ∧ X1 − Z−1 ≥ 0 ∧ X2 −X1 > 0 ∧ s(Z, f(X3))
δ: q(Y1, Y2) ← U > 0 ∧ Y1−3− 2U ≥ 0 ∧ 2Y2 − Y1−1 > 0 ∧ s(U, f(Y3))
where p and q are predicate symbols of type rat×rat, s of type rat×tree, and
we want to fold γ using δ. These clauses are in normal form and do not have
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variables in common. The output of the goal matching procedure applied to the
clauses γ and δ is the following pair of clauses:
γ′: p(X1, X2) ← Z > 0 ∧ X1 − Z−1 ≥ 0 ∧ X2 −X1 > 0 ∧ s(Z, f(X3))
δ′: q(Y1, Y2) ← Z > 0 ∧ Y1−3− 2Z ≥ 0 ∧ 2Y2 − Y1−1 > 0 ∧ s(Z, f(X3))
which are the input of the constraint matching procedure CM3. The CM3

procedure starts off by computing the following constraint e which is defined as
project(Z > 0 ∧ X1 ≥ Z+1 ∧ X2 > X1, {X1, X2}):
e : X1−1 > 0 ∧X2−X1 >0
Now, starting from the triple:
〈(Z > 0 ∧ X1 − Z−1 ≥ 0 ∧ X2 −X1 > 0) ↔
(X1−1 > 0 ∧X2−X1 >0 ∧ Z > 0 ∧ Y1−3− 2Z ≥ 0 ∧ 2Y2 − Y1−1 > 0), ∅, ∅〉

and applying the rewrite rules (i)–(v), we derive the following set of constraints:
C: {W1 − 1 = 0, W1 > 0, 2−W2 = 0, W2 > 0, W3 > 0}
together with the following substitution:
σY : {Y1/W2X1 + 3−W2, Y2/(W2

2 − W3
2 )X1 + W3

2 X2 + 2− W2
2 }

The solution solve(C) is the ground substitution σW = {W1/1, W2/2, W3/2}.
Since Varsrat(q(Y1, Y2)σY σW ) ⊆ Vars(p(X1, X2)), we have that σG is the identity
substitution ∅. Thus, the substitution ϑ2 is equal to σY σW . Since we have to
compute q(Y1, Y2) ϑ2, we can restrict ϑ2 to the set {Y1, Y2} and we get:
ϑ2 : {Y1/2X1 + 1, Y2/X2 + 1}
Thus, an output of the folding algorithm FA3 is the clause p(X1, X2) ← e ∧
q(Y1, Y2)ϑ2, that is:
η: p(X1, X2) ← X1 >1 ∧X2 >X1 ∧ q(2X1+1, X2+1)
Clause η has no existential variables.

When applying the rewrite rule (i), the nondeterministic procedure CM3

may also compute a different substitution, which we call ϑ′2, by selecting a dif-
ferent atomic constraint q ρ 0. In particular, the procedure CM3 may compute
the following alternative set of constraints:
C ′: {W1 + W2 + W3 > 0, W1 ≥ 0, W2 ≥ 0, W3 ≥ 0}
together with the substitution:
σ′Y : {Y1/2X1 + 1, Y2/

W1+1
2 X1 + W2

2 X2 + 1 + W3
2 }

The solution solve(C ′) is the ground substitution σ′W = {W1/1, W2/0, W3/1}.
Since Varsrat(q(Y1, Y2)σ′Y σ′W ) ⊆ Vars(p(X1, X2)), we have that σ′G is the identity
substitution ∅. Therefore, the substitution ϑ′2 is equal to σ′Y σ′W . Since we have
to compute q(Y1, Y2)ϑ′2, we can restrict ϑ′2 to the set {Y1, Y2} and we get:
ϑ′2 : {Y1/2X1 + 1, Y2/X1 + 3

2}
Thus, an alternative output of the folding algorithm FA3 is the clause:
η′: p(X1, X2) ← X1 >1 ∧X2 >X1 ∧ q(2X1+1, X2+ 3

2 )
Also this clause η′ has no existential variables.

The reader can check that the CM3 procedure cannot generate other sets of
constraints besides the two sets C and C ′ we have indicated above.
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6 Related Work and Conclusions

The folding rule has been often considered in the papers that deal with the trans-
formation rules for logic programs and constraints logic programs [3,5,7,10,18,19].
Folding is a crucial transformation rule because, besides other reasons, it al-
lows beneficial changes of the recursive structure of the programs and, when
using program transformation for inductive proofs [14], its application is basi-
cally equivalent to the use of the inductive hypothesis.

In the literature the folding rule is specified in a declarative way and no
algorithm is provided to determine whether or not, given a clause γ to be folded
and a clause δ for folding, one can actually fold γ using δ.

In this paper we have considered constraint logic programs with constraints
that are conjunctions of linear equations and inequations over the rational num-
bers (or the real numbers) and we have proposed an algorithm, based on linear
algebra and term rewriting techniques, for applying the folding rule.

We have also introduced two variants of the folding rule and we have pre-
sented two algorithms for applying these variants. The first variant combines the
folding rule with the clause splitting rule and the second variant can be applied
for eliminating the existential variables of a clause, that is, the variables which
occur in the body of a clause and not in the head.

The problem of checking whether or not, given two clauses, say γ and δ,
clause γ can be folded using clause δ, is similar to the problem of matching two
terms modulo an equational theory [1,20], but the matching problem for deciding
the applicability of folding has an extra difficulty that is due to the presence of
existential variables (these variables are not taken into account in the equational
theories considered in [1,20]).

In the future we plan to investigate in more detail the connections between
the problem of folding and the problem of matching modulo an equational theory,
by looking, in particular, at those techniques which deal with combinations of
equational theories (see, for instance, [16]).

We also plan to adapt of our folding algorithms to other constraint domains,
such as the linear equations and inequations over the integer numbers.

One more aspect that need to be addressed is the analysis of the computa-
tional complexity of our algorithms for folding. Since our algorithms make use of
the Fourier-Motzkin variable elimination procedure, they take superexponential
time in the number of variables occurring in the input clauses.

Finally, an implementation of our folding algorithms is under development in
the MAP transformation system [11]. This implementation will allow us to eval-
uate in practice the efficiency of the folding algorithms, as well as the usefulness
of the various versions of the folding rule in various program derivations.
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