

Generalization Strategies for the
Verification of Infinite State Systems

Fabio Fioravanti
Dip. Scienze, University of Chieti-Pescara, Italy

joint work with

Alberto Pettorossi, Valerio Senni
DISP, University of Rome Tor Vergata, Italy

and
Maurizio Proietti

IASI-CNR, Rome, Italy

Outline

● Verification of infinite state systems
– Computational tree logic
– Constraint logic programming

● Two-phase Verification method
– Rule-based program specialization

● Generalization strategies
– Perfect model computation

● Experimental evaluation

Infinite state systems

● The behaviour of a concurrent system can be
represented as a state transition system which
generates infinite computation paths:

. . .

. . .

. . .
s

0

s
1 s

3

s
2

s
4

s
5

Computational Tree Logic

● Properties are expressed in CTL, a propositional logic
augmented with:

– quantifiers over paths: E (Exists), A (All), and
– temporal operators along paths: X (Next, in the next

state in the path), F (Future, there exists a state in the
path), G (Globally, for all states of the path).

● CTL Model Checking: decide whether or not K,s |= φ

– decidable in polynomial time for finite state systems
– undecidable for infinite state systems

Computational Tree Logic

Let Κ be a Kripke structure (S,I,R,L), s a state, and Elem a set of el. prop.
where S set of states, I ⊆ S initial states, R ⊆ SxS transition relation,
L: S → P(Elem) labeling function.

Let π be an infinite list [s0 ,...,sk,...] of states and d, φ, ψ be CTL formulas
Κ  s |= d iff d  L(s)

Κ  s |=  φ iff Κ, s |= φ does not hold
Κ  s |= φ ∧ ψ iff Κ, s |= φ and Κ, s |= ψ

Κ  s | EX φ iff  π = [s0,s1,...], s=s0, and Κ, s1 | φ

Κ  s | EU(φ ψ   iff  π = [s0,s1,...] s.t. s=s0 and n ≥ 0
 ((k, 0 ≤ k < n, Κ,sk |= φ) and Κ,sn | ψ)

Κ  s | AF φ iff  π = [s0,s1,...] if s=s0 then n ≥ 0 s.t. Κ, sn | ψ

The Bakery Protocol (Lamport)

Each process has: control state: s ∈ {think,wait,use} and counter: n N∈

System: A || B
Path: <think,0,think,0>→ <wait,1,think,0> →<wait,1,wait,2>→ <use,1,wait,2>→ ---

Mutual Exclusion: <think,0,think,0> |=  EF unsafe
where, for all n

A
,n

B
: <use,n

A
,use,n

B
> |= unsafe

Process A think

wait

use

n
A

: n
B
+1

If n
A
<n

B
or n

B
=0

n
A

: 0

think

wait

use

n
B

: n
A
+1

If n
B
<n

A
or n

A
=0

n
B

: 0

Process B

Temporal Properties as
Constraint Logic Programs

A system S and the temporal logic are encoded by a CLP program.

- the transition relation is encoded by a binary predicate tr, like f.e.:

tr(<think,A,S,B>,<wait,A1,S,B>) :- A1=B+1.

tr(<wait,A,S,B>,<use,A,S,B>) :- A<B.

tr(<wait,A,S,B>,<use,A,S,B>) :- B=0.

tr(<use,A,S,B>,<think,A1,S,B>) :- A1=0.

+ similar clauses for process B
- the initial states: initial(<think, A, think, B>) :- A=0, B=0.

- the elementary properties: elem(<use,A,use,B>,unsafe).

Temporal Properties as
Constraint Logic Programs

The satisfaction relation |= is encoded by a binary predicate sat
sat(X, F) :- elem(X,F)
sat(X, not(F)) :- \+ sat(X,F)
sat(X, and(F1,F2)) :- sat(X,F1), sat(X,F2)
sat(X, ex(F)) :- tr(X,Y), sat (Y,F)
sat(X, eu(F1,F2)) :- sat(X,F2)
sat(X, eu(F1,F2)) :- sat(X,F1), tr(X,Y), sat(Y,eu(F1,F2))
sat(X, af(F)) :- sat(X,F)
sat(X, af(F)) :- ts(X,Ys), sat_all(Ys,af(F))
sat_all([],F).
sat_all([X|Xs],F) :- sat(X,F), sat_all(Xs,F)

where ts(X,Ys) holds iff Ys is a list of all the successor states of X

Temporal Properties as
Constraint Logic Programs

The property to be verified is defined by a predicate prop.
s.t. prop ≡def X(initial(X) → sat(X,φ))∀

 ∃ X(initial(X) ∧  sat(X,φ))

encoded as follows
 g1 : prop :- \+ negprop
 g2 : negprop :- initial(X), \+ sat(X,φ)

Correctness of the Encoding

Let PS be the set of clauses defining predicates sat, tr, ts, sat_all,
prop, negprop. PS is locally stratified, and thus it has a unique
perfect model.
 Theorem 1. Let K be a Kripke structure, let I be the set of initial
states of K, and let φ be a CTL formula. Then,
 (for all states s I, K,s|=φ) iff prop M(∈ ∈ PS).
But...
● Bottom-up construction of M(PS) from facts may not terminate

because M(PS) is infinite.

● Top-down evaluation of PS from prop may not terminate due to infinite
computation paths.

Two-phase Verification Method

● Phase 1: specialize PS w.r.t. the query prop:

PS → ··· → SpPS s.t. prop M(∈ PS) iff prop M(Sp∈ PS)

and keep only the clauses on which the predicate prop
depends. SpPS is a stratified program.

Specialization is performed by using the rules + strategies
program transformation approach

– '→' is an application of a transformation rule.

● Phase 2: construct bottom-up the perfect model of M(SpPS)
(may not terminate)

Specialization strategy

● Input: The program PS
Output : A stratified program SpPS such that

prop M(∈ PS) iff prop M(Sp∈ PS).

● SpPs := {g1}; InDefs := {g2};Defs := {};
● while (there exists a clause γ in InDefs) do

– Unfold(γ,Γ);
– Generalize&Fold(Defs, Γ, NewDefs, Φ);
– SpPs := SpPs Φ; InDefs := (InDefs − {γ}) NewDefs;∪ ∪

end-while

Termination of specialization
(Phase 1)

● Local control
– Termination of the Unfold procedure

● Global control
– Termination of the while loop
– We use constraint generalization techniques

Generalization

● For limiting the number of clauses introduced by definition,
sometimes we introduce definitions containing a generalized
constraint

● Well quasi orderings: generalization is eventually applied

● Generalization operators: each definition can be generalized a
finite number of times only

● Selecting a good generalization strategy is not trivial
– Too coarse -> unable to prove property
– Too fine-grained -> high verification times

The constraint domain Link

● Link are linear inequations over k distinct
variables X1,...,Xk

● Constraints of Link are conjunctions of atomic
constraints of the form

– p ≤ 0 or p < 0

where p is a polynomial of the form
– q0 +q1X1 +... + qkXk

and qi 's are integers

Well-quasi orderings

● A well-quasi ordering on a set S is a reflexive,
transitive, binary relation ⪯ such that,
for every infinite sequence e0,e1,... of elements
of S, there exist i and j such that i < j and ei ⪯ ej.

HomeoCoeff wqo

● HomeoCoeff compares sequences of absolute
values of integer coefficients occurring in
polynomials

(i) q0 +q1X1 +... + qkXk ⪯ r0 +r1X1 +... + rkXk
 iff there exist a permutation h of the indexes

0,...,k such that, for i=0,...,k, | q⟨ ⟩ i | ≤ | rh(i) |
● Extended to atomic constraints and constraints

– for example q<0 ⪯ r<0 iff (i) holds

MaxCoeff and SumCoeff wqo's

● MaxCoeff compares the maximum absolute
value of coefficients occurring in polynomials

for any two atomic constraints q and r, we have
that q⪯r iff max{|q0|,...,|qk|} ≤ max{|r0|,...,|rk|}
● SumCoeff compares the sum of the absolute

value of coefficients occurring in polynomials
Similarly q r iff |q⪯ 0|+...+|qk| ≤ |r0|+...+|rk|

Generalization operators

● Given a wqo , ⪯ the generalization of a constraint c w.r.t. a
constraint d is a constraint c⊖d such that

– d ⊑ c⊖d
– c⊖d ⪯ c

● c⊖d can replace d in a candidate definition for folding
● every infinite sequence of constraints constructed by using

the generalization operator eventually stabilizes (similar to
the widening operator in abstract interpretation)

● In general, ⊖ is not commutative

Generalization operators

Let c = a1,...,am and d = b1,...,bn
● Top: c⊖d is the constraint true
● Widen: c⊖d is the conjunction of all ai 's such

that d a⊑ i

● WidenPlus: c⊖d is the conjunction of all ai 's
such that d a⊑ i and of all bj 's such that bj ⪯ c

● CHWiden and CHWidenPlus obtained by
applying the Convex Hull operator

Experimental evaluation

● Experiments performed using the MAP transformation
system

– http://www.iasi.cnr.it/~proietti/system.html
● Mutual exclusion protocols:

– bakery2 (safety and liveness)
– bakery3 (safety)
– Mutast (safety)
– Peterson (safety for N processes)
– Ticket (safety and liveness)

Experimental evaluation

● Parameterized cache coherence protocols
– Berkeley RISC, DEC Firefly, IEEE Futurebus+,

Illinois University, MESI, MOESI,
Synapse N+1, and Xerox PARC Dragon.

● Used in shared-memory multiprocessing
systems for guaranteeing data consistency of
the local cache associated with every CPU

Experimental evaluation

● Other systems
– Parameterized barber problem with N

customers
– Producer-consumer via Bounded and

Unbounded buffer
– CSM a central server model
– Insertion and selection sort: check array bounds
– Office light control
– Reset Petri nets

Analysis

● Precision (number of properties proved) and
average verification time

– SumCoeff &WidenPlus 23/23 (820 ms)
– MaxCoeff &WidenPlus 22/23 (730 ms)
– SumCoeff &CHWidenPlus 22/23 (2990 ms)

● Top and Widen are fast but not accurate
– information about the call can be lost

Comparison with other systems

● Action Language Verifier (Bultan 01)
– combines BDD-based symbolic manipulation for

boolean and enumerated types, with a solver
for linear constraints on integers

● DMC (Delzanno 01)
– computes (approximated) least and greatest

models of CLP(R) programs
● HyTech (Henzinger 97)

– model checker for hybrid systems

Analysis

● Precision (number of properties proved) and
average verification time

– MAP 23/23 (820 ms)
– DMC (with abstraction) 19/23 (820 ms)
– ALV (default option) 18/23 (8480 ms)
– HyTech (backwards) 17/23 (70 ms)

Analysis

● Bounded and Unbounded Buffer can be easily
verified by backward reachability

– The specialization phase is redundant
– MAP slower than other systems

● Peterson and CSM examples
– The specialization phase pays off
– MAP much more efficient than other systems

Future work

● Use approximation methods during the bottom-
up computation of the perfect model (Phase 2)

● Apply specialization to concurrent systems
specified in different languages, not necessarily
(C)LP based

The end

Transformation rules

● Unfolding
– basically a resolution step
– From p(X,Y) :- Y=0, q(X)

q(X) :- X>2, r
q(X) :- X<1, s

– To p(X,Y) :- Y=0, X>2, r
p(X,Y) :- Y=0, X<1, s
q(X) :- X>2, r
q(X):- X<1, s

Transformation rules

● Constrained atomic definition
● We add a new clause to the current program

– newpred(X) :- e(X), sat(X,φ)

where newpred is a fresh predicate symbol

Transformation rules

● Constrained atomic folding
– Inverse of unfolding
– From p(X) :- X=2, q(X)

newq(X) :- X>1, q(X)
– To p(X) :- X=2, newq(X)

newq(X) :- X>1, q(X)
– Notice that X=2 implies X>1

Transformation rules

● Clause removal
● Remove clauses with unsatisfiable constraints

– p(X) :- X=0, X=1.
● Remove clauses subsumed by other clauses of

the form H :- c where c is a contraint
– For example q(Y) :- Y>2, p(X,Y)

is subsumed by q(Y) :- Y>0.

Unfold procedure

● Unfold once, then unfold as long as in the body of a clause obtained
by unfolding there is an atom of one of the following forms:

– t(s1,s2), ts(s,ss)
– sat(s,e), where e is an elementary property,
– sat(s,not(ψ)), sat(s,and(ψ1,ψ2)),sat(s,ex(ψ1))
– sat_all(ss,ψ1), where ss is a non-variable list

● Clause removal
● We do not repeatedly unfold atoms sat(s,eu(ψ)) and sat(s,af(ψ))
● Unfold(γ,Γ) terminates for any clause γ with a ground CTL formula

	Folie 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

