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Outline

● Verification of infinite state systems
– Computational tree logic
– Constraint logic programming

● Two-phase Verification method
– Rule-based program specialization

● Generalization strategies
– Perfect model computation

● Experimental evaluation



  

Infinite state systems

● The behaviour of a concurrent system can be 
represented as a state transition system which 
generates infinite computation paths: 
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Computational Tree Logic

● Properties are expressed in CTL, a propositional logic 
augmented with: 

– quantifiers over paths: E (Exists), A (All), and 
– temporal operators along paths: X (Next, in the next 

state in the path), F (Future, there exists a state in the 
path), G (Globally, for all states of the path).

● CTL Model Checking:  decide whether or not K,s |= φ 

– decidable in polynomial time for finite state systems
– undecidable for infinite state systems 



  

Computational Tree Logic

Let Κ be a Kripke structure (S,I,R,L), s a state, and Elem a set of el. prop.
where S set of states, I  ⊆ S initial states, R  ⊆ SxS transition relation, 
L: S → P(Elem) labeling function.

Let π be an infinite list [s0 ,...,sk,...] of states and d, φ, ψ be CTL formulas
Κ   s |=   d iff    d  L(s) 

Κ   s  |=    φ       iff    Κ, s  |= φ  does not hold
Κ   s  |= φ ∧ ψ      iff    Κ, s  |= φ  and  Κ, s |=  ψ 

Κ   s  |  EX φ         iff      π = [s0,s1,... ],  s=s0,  and  Κ, s1 |  φ

Κ   s  |  EU(φ ψ       iff     π = [s0,s1,... ]  s.t.  s=s0  and  n ≥ 0  
      ((k, 0 ≤ k < n,  Κ,sk |= φ) and  Κ,sn |  ψ )

Κ   s  |  AF φ   iff     π = [s0,s1,... ]  if  s=s0  then  n ≥ 0  s.t.  Κ, sn |  ψ



  

The Bakery Protocol (Lamport)

Each process has:  control state: s  ∈ {think,wait,use}  and  counter: n N∈

System:  A || B  
Path: <think,0,think,0>→ <wait,1,think,0> →<wait,1,wait,2>→ <use,1,wait,2>→ ---

Mutual Exclusion:  <think,0,think,0> |=    EF unsafe
where, for all n
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Temporal Properties as 
Constraint Logic Programs

A system S and the temporal logic are encoded by a CLP program.

- the transition relation is encoded by a binary predicate tr, like f.e.:

tr(<think,A,S,B>,<wait,A1,S,B>) :- A1=B+1.

tr(<wait,A,S,B>,<use,A,S,B>) :- A<B.

tr(<wait,A,S,B>,<use,A,S,B>) :- B=0.

tr(<use,A,S,B>,<think,A1,S,B>) :- A1=0. 

+ similar clauses for process B
- the initial states:   initial(<think, A, think, B>) :- A=0, B=0.

- the elementary properties: elem(<use,A,use,B>,unsafe). 
  



  

Temporal Properties as 
Constraint Logic Programs

The satisfaction relation  |=  is encoded by a binary predicate sat
sat(X, F) :- elem(X,F)
sat(X, not(F)) :-  \+ sat(X,F)
sat(X, and(F1,F2))   :-  sat(X,F1), sat(X,F2)
sat(X, ex(F)) :-  tr(X,Y), sat (Y,F)
sat(X, eu(F1,F2))  :-  sat(X,F2)
sat(X, eu(F1,F2)) :-  sat(X,F1), tr(X,Y), sat(Y,eu(F1,F2))
sat(X, af(F)) :- sat(X,F)
sat(X, af(F)) :-  ts(X,Ys), sat_all(Ys,af(F))
sat_all([ ],F).
sat_all([X|Xs],F) :- sat(X,F), sat_all(Xs,F)

where ts(X,Ys) holds iff Ys is a list of all the successor states of X 



  

Temporal Properties as 
Constraint Logic Programs

The property to be verified is defined by a predicate prop.
s.t.   prop ≡def X(initial(X) → sat(X,φ))∀

    ∃ X(initial(X)   ∧   sat(X,φ))

encoded as follows
 g1 : prop :- \+ negprop
 g2 : negprop :- initial(X), \+ sat(X,φ)



  

Correctness of the Encoding

Let PS be the set of clauses defining predicates sat, tr, ts, sat_all, 
prop, negprop.  PS is locally stratified, and thus it has a unique 
perfect model.
     Theorem 1. Let K be a Kripke structure, let I be the set of initial 
states of K, and let φ be a CTL formula. Then,
 (for all states s I,  K,s|=φ)   iff    prop M(∈ ∈ PS).
But...
● Bottom-up construction of M(PS) from facts may not terminate

because M(PS) is infinite.

● Top-down evaluation of PS from prop may not terminate due to infinite 
computation paths.



  

Two-phase Verification Method

● Phase 1: specialize PS w.r.t. the query prop:

PS →  ···  →  SpPS    s.t.    prop  M(∈ PS) iff prop  M(Sp∈ PS)

and keep only the clauses on which the predicate prop 
depends. SpPS is a stratified program.

Specialization is performed by using the rules + strategies 
program transformation approach

– '→' is an application of a transformation rule.

● Phase 2:  construct bottom-up the perfect model of  M(SpPS) 
(may not terminate)



  

Specialization strategy

● Input: The program PS
Output : A stratified program SpPS such that 

prop  M(∈ PS) iff prop  M(Sp∈ PS).

● SpPs := {g1}; InDefs := {g2};Defs := {};
● while (there exists a clause γ in InDefs) do

– Unfold(γ,Γ);
– Generalize&Fold(Defs, Γ, NewDefs, Φ); 
– SpPs := SpPs  Φ; InDefs := (InDefs − {γ})  NewDefs;∪ ∪

end-while



  

Termination of specialization 
(Phase 1)

● Local control
– Termination of the Unfold procedure 

● Global control
– Termination of the while loop
– We use constraint generalization techniques 



  

Generalization

● For limiting the number of clauses introduced by definition, 
sometimes we introduce definitions containing a generalized 
constraint

● Well quasi orderings: generalization is eventually applied

● Generalization operators: each definition can be generalized a 
finite number of times only

● Selecting a good generalization strategy is not trivial
– Too coarse -> unable to prove property
– Too fine-grained -> high verification times 



  

The constraint domain Link

● Link are linear inequations over k distinct 
variables X1,...,Xk

● Constraints of Link are conjunctions of atomic 
constraints of the form

– p ≤ 0 or p < 0

where p is a polynomial of the form 
– q0 +q1X1 +... + qkXk  

and qi 's are integers



  

Well-quasi orderings

● A well-quasi ordering on a set S is a reflexive, 
transitive, binary relation  ⪯ such that, 
for every infinite sequence e0,e1,... of elements 
of S, there exist i and j such that i < j and ei  ⪯ ej.



  

HomeoCoeff wqo

● HomeoCoeff compares sequences of absolute 
values of integer coefficients occurring in 
polynomials

(i) q0 +q1X1 +... + qkXk   ⪯ r0 +r1X1 +... + rkXk 
 iff there exist a permutation h of the indexes   

0,...,k  such that,    for i=0,...,k,    | q⟨ ⟩ i | ≤ | rh(i) |  
● Extended to atomic constraints and constraints

– for example q<0   ⪯  r<0   iff (i) holds



  

MaxCoeff and SumCoeff wqo's 

● MaxCoeff compares the maximum absolute 
value of coefficients occurring in polynomials

for any two atomic constraints q and r, we have 
that q⪯r  iff    max{|q0|,...,|qk|} ≤ max{|r0|,...,|rk|}
● SumCoeff compares the sum of the absolute 

value of coefficients occurring in polynomials
Similarly   q r   iff   |q⪯ 0|+...+|qk| ≤ |r0|+...+|rk|



  

Generalization operators

● Given a wqo  , ⪯ the generalization of a constraint c w.r.t. a 
constraint d is a constraint  c⊖d  such that

– d  ⊑ c⊖d
– c⊖d   ⪯  c 

● c⊖d can replace d in a candidate definition for folding
● every infinite sequence of constraints constructed by using 

the generalization operator eventually stabilizes (similar to 
the widening operator in abstract interpretation)

● In general,  ⊖ is not commutative  



  

Generalization operators

Let c = a1,...,am and d = b1,...,bn 
● Top: c⊖d is the constraint true
● Widen: c⊖d is the conjunction of all ai 's such 

that d  a⊑ i 

● WidenPlus: c⊖d is the conjunction of all ai 's 
such that d  a⊑ i  and of all bj 's such that bj  ⪯ c

● CHWiden and  CHWidenPlus obtained by 
applying the Convex Hull operator



  

Experimental evaluation

● Experiments performed using the MAP transformation 
system

– http://www.iasi.cnr.it/~proietti/system.html
● Mutual exclusion protocols: 

– bakery2 (safety and liveness)
– bakery3 (safety)
– Mutast (safety)
– Peterson (safety for N processes)
– Ticket   (safety and liveness)



  

Experimental evaluation

● Parameterized cache coherence protocols
– Berkeley RISC,  DEC Firefly, IEEE Futurebus+, 

Illinois University, MESI, MOESI, 
Synapse N+1, and Xerox PARC Dragon.

● Used in shared-memory multiprocessing 
systems for guaranteeing data consistency of 
the local cache associated with every CPU



  

Experimental evaluation

● Other systems
– Parameterized barber problem with N 

customers
– Producer-consumer via Bounded and 

Unbounded buffer
– CSM a central server model
– Insertion and selection sort: check array bounds
– Office light control
– Reset Petri nets



  



  

Analysis 

● Precision (number of properties proved) and 
average verification time 

– SumCoeff &WidenPlus 23/23  (820 ms)
– MaxCoeff &WidenPlus 22/23  (730 ms)
– SumCoeff &CHWidenPlus 22/23  (2990 ms)

● Top and Widen are fast but not accurate
– information about the call can be lost



  

Comparison with other systems

● Action Language Verifier (Bultan 01)
– combines BDD-based symbolic manipulation for 

boolean and enumerated types, with a solver 
for linear constraints on integers

● DMC (Delzanno 01)
– computes (approximated) least and greatest 

models of CLP(R) programs
● HyTech (Henzinger 97)

– model checker for hybrid systems



  



  

Analysis 

● Precision (number of properties proved) and 
average verification time 

– MAP 23/23  (820 ms)
– DMC (with abstraction) 19/23  (820 ms)
– ALV (default option) 18/23  (8480 ms)
– HyTech (backwards) 17/23  (70 ms)



  

Analysis

● Bounded and Unbounded Buffer can be easily 
verified by backward reachability

– The specialization phase is redundant
– MAP slower than other systems

● Peterson and CSM examples
– The specialization phase pays off
– MAP much more efficient than other systems



  

Future work

● Use approximation methods during the bottom-
up computation of the perfect model (Phase 2)

● Apply specialization to concurrent systems 
specified in different languages, not necessarily 
(C)LP based



  

The end



  



  

Transformation rules

● Unfolding 
– basically a resolution step
– From p(X,Y) :- Y=0, q(X) 

q(X) :- X>2, r 
q(X) :- X<1, s

– To p(X,Y) :- Y=0, X>2, r 
p(X,Y) :- Y=0, X<1, s 
q(X) :- X>2, r 
q(X):- X<1, s



  

Transformation rules

● Constrained atomic definition 
● We add a new clause to the current program

– newpred(X) :- e(X), sat(X,φ)

where newpred is a fresh predicate symbol



  

Transformation rules

● Constrained atomic folding
– Inverse of unfolding
– From p(X) :- X=2, q(X)

newq(X) :- X>1, q(X)
– To  p(X) :- X=2, newq(X)

newq(X) :- X>1, q(X)
– Notice that X=2 implies X>1



  

Transformation rules

● Clause removal
● Remove clauses with unsatisfiable constraints 

– p(X) :- X=0, X=1.
● Remove clauses subsumed by other clauses of 

the form H :- c  where c is a contraint
– For example  q(Y) :- Y>2, p(X,Y) 

is subsumed by q(Y) :- Y>0.



  

Unfold procedure

● Unfold once, then unfold as long as in the body of a clause obtained 
by unfolding there is an atom of one of the following forms: 

– t(s1,s2), ts(s,ss)
– sat(s,e), where e is an elementary property,
– sat(s,not(ψ)), sat(s,and(ψ1,ψ2)),sat(s,ex(ψ1))
– sat_all(ss,ψ1), where ss is a non-variable list

● Clause removal
● We do not repeatedly unfold atoms sat(s,eu(ψ)) and sat(s,af(ψ))
● Unfold(γ,Γ) terminates for any clause γ with a ground CTL formula
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