
Program Transformation and

Its Applications to

Software Synthesis and Verification

Joint work with:

Fabio Fioravanti (Univ. D'Annunzio, Pescara, Italy),

Alberto Pettorossi (Univ. Tor Vergata, Rome, Italy),

Valerio Senni (Univ. Tor Vergata, Rome, Italy)

IASI – 1 Ottobre 2010

Maurizio Proiett i

2

Correctness of Software

Safety and business-critical applications need dependable software.

Traditional validation and testing methodologies are not always adequate:
they do not guarantee that software artifacts meet their specifications in all
cases.

Logic-based methods aim at mechanically proving the correctness of
software wrt formal specifications.

3

Overview

• Program Verification: proof of program properties

• Program Synthesis: automatic derivation of programs from first order
 logic specifications

• Program Transformation: automatic improvement of programs

4

A Bit of History

Leibniz [1666] Calculus ratiocinator, Lingua characteristica universalis
Frege [1879] First Order Logic
Hilbert's program [early '900] Formalization of mathematics,
 prove the consistency of Arithmetics by finitist methods,

 the decision problem for FOL
Presburger [1929] Decision procedure for the FO theory of addition

Gödel [1931], Church-Turing [1936-7] Undecidability of Arithmetics and FOL

Tarski [1951] First order theory of real numbers is decidable
Rabin [1969] Monadic Second Order Logic
Description logics [1990's] Ontologies, Semantic Web

Robinson [1965] Resolution
Kowalski [1974] Logic Programming
Jaffar-Lassez [1987] Constraint Logic Programming
CADE 2009: The Vampire resolution-based theorem prover solves 181/200
problems of the annual competition

Automated Theorem Proving

Decidable theories

General methods (based on application strategies)

5

A Bit of History

Turing [1936] Undecidability of the Halting Problem

Floyd [1967] Inductive assertions for flowchart programs
Hoare [1969] FOL axiomatization of the correctness of ALGOL programs
Pnueli [1977] Temporal logics for the verification of concurrent programs
Clarke-Emerson [1980] Model Checking

VerificationVerificationVerification

Synthesis

Waldinger [1969] Using resolution for synthesis of LISP programs
Clark-Hogger [1977-81] Synthesis of logic programs
Clarke-Emerson [1981] Synthesis of concurrent programs

Transformation

[1960's] Equivalence of flowchart schemas
Paterson-Hewitt [1970] Recursive schemas are more expressive than flowcharts
Burstall-Darlington [1977] Rule-based transformation of functional programs
[Hogger 1981,Tamaki-Sato 1984] Rule-based transformation of logic programs

6

Program Transformation

7

• Program transformation separates the correctness and the efficiency
concerns during program development.

• P0 can easily be proved correct wrt a given specification and
semantics M.

• Each rule application preserves the semantics:
M(P0) = M(P1) = ∙∙∙ = M(Pn)

• The application of the rules is guided by a strategy which guarantees
that Pn is more efficient than P0.

Initial
program

Final
programP0 → P1 → ∙∙∙ → Pn

where '→' is an application of a transformation rule.

Rule-based Program Transformation

8

An Example: Approximate Matching

S:
P

Given two lists of integers P=[x1,...,xn] and S, and an integer K, match(P,S,K)
iff there exists a subsequence Q=[y1,...,yn] of S s.t., for i=1,...,n, |xi-yi| ≤ K.

Classical matching: L R

Approximate matching:

S: 5 0 4 1 4 3 3 0 3 6 5 1 4

 P: 2 0

Q
max-diff(P,Q) ≤ 2

Constraint logic program for approximate matching:

Match:
 match(P,S,K) :- append(L,Q,A), append(A,R,S), max-diff(P,Q,K).
 append([],S,S).
 append([X|S],T,[X|U]) :- append(S,T,U).
 max-diff([],[],K).
 max-diff([X|S],[Y|T],K) :- |X-Y|≤K, max-diff(S,T,K).

S = L :: Q :: R

9

• Suppose that we want to use the Match program for queries of the form:

 match([2, 0], S, 2)

• Add a new clause to Match:

 C: sp_match(S) :- match([2, 0], S, 2).

• {C} ∪ Match has a generate and test behaviour: subsequences Q of S are
generated and then the test diff([2,0],Q,2) is performed.

• Derive an efficient program by applying a sequence of transformation rules
according to a transformation strategy:

 {C} ∪ Match → ∙∙∙ → Sp_Match

Approximate Matching (2)

10

Sp_Match:

sp_match(S) :- p1(S).

p1([X|S]) :- 0≤X≤4, p2(S).
p1([X|S]) :- (X<0 ∨ X>4), p1(S).

p2([X|S]) :- -2≤X≤2, p3(S).
p2([X|S]) :- 2<X≤4, p2(S).
p2([X|S]) :- (X < -2 ∨ X>4), p1(S).

p3(S).

p1 p2 p3

Sp_Match has a O(|S|) running time for an input sequence S and
corresponds to a deterministic finite automaton

0≤X≤4

X<0 ∨ X>4

-2≤X≤2

2<X≤4

X < -2 ∨ X>4

Specialized Approximate Matching

11

Correctness of the Transformation Rules

• The transformation rules (e.g., unfolding, folding, constraint
replacement, clause replacement) replace a set of clauses by an
equivalent one.

p :- p.

q.

r.
M(P0) = {p,q,r} M(P1) = {q,r}

M(P0) |= q ↔ p

≠

p :- q.
q :- r.

r.

p :- r.
q.

r.

P0: P1:

M(P0) = {p,q,r} M(P1) = {p,q,r}

M(P0) |= q ↔ r

=

P0: p :- q.
q :- r.

r.

P1:

● In general, replacement does not preserve the least model semantics:

12

Correctness of theTransformation Rules

Replacement of equivalent formulas is partially correct (or sound):

 M(P0) ⊇ M(P1) ⊇ ∙∙∙ ⊇ M(Pn)

if (i) P is a definite program (no negative literals in the premises)

 (ii) M(P) is the least model of P

Correctness Issues

• Sufficient conditions for total correctness:

 M(P0) = M(P1) = ∙∙∙ = M(Pn)

• General programs (negative literals in the premises)

• Various semantics: least model, perfect model, stable model, ...

13

Transformation Strategies

Transformation strategies are directed by syntactical features of programs

• Avoding multiple visits of data structures and repeated computations by
eliminating multiple occurrences of variables from bodies of clauses

• Avoiding the computation of unnecessary values by eliminating
existential variables (variables occurring in the body and not in the
head)

• Reducing nondeterminism by avoiding multiple clauses for the same
predicate definition

• Specializing programs to the context of use by pre-computing partially
instantiated literals

14

sp_match(S) :- match([2, 0], S, 2).

match(P,S,K) :- append(L,Q,A), append(A,R,S), diff(P,Q,K).

sp_match(S) :- p1(S).

p1([X|S]) :- 0≤X≤4, p2(S).
p1([X|S]) :- (X<0 ∨ X>4), p1(S).

p2([X|S]) :- -2≤X≤2, p3(S).
p2([X|S]) :- 2<X≤4, p2(S).
p2([X|S]) :- (X < -2 ∨ X>4), p1(S).

p3(S).

Partially instantiated literal

Existential and multiple occurrences of list variables

No multiple occurrence of list variables.
No existential variables.
Clauses are mutually exclusive.

Initial program {C} ∪ Match:

Final program Sp_Match:

Approximate String Matching Revisited

15

Transformation strategies face undecidability limitations, e.g., the problem of
checking whether or not from a given program we can derive a program
without existential variables is undecidable.

Issues about Strategies

• In general, transformation strategies are based on heuristics and are
evaluated in an experimental way

• For specific classes of programs the transformation strategies can be
proved successful in terms of transformation times and speed-up.

Power of Strategies

16

• Many transformation rules and strategies are implemented in the MAP
system: http://www.iasi.cnr.it/~proietti/system.html

• Experimental results on matching and parsing problems

Program Query Transformation Speedup
Time (s)

String Matching match([aab],S) 0.07 6.8 x 103

Multi Matching mmatch([[aaa],[aab]],S,N) 0.28 6.8 x 103

Reg.Expr. Matching re_match(aa*b,S) 0.21 3.0 x 106

Context Free Parsing parse(g,[s],W) 1.62 87.1

Approximate Matching match([2,0,4], S, 2) 1.89 46

Approx. Multi Matching mmatch([[1,1],[1,2]], S, 1) 2.11 45

Experimental Evaluation of Strategies

17

Program Synthesis by

Transformation

18

The Transformational Synthesis Method

Program Synthesis: Given a logic program P and a first order formula ϕ[X], derive a
logic program Q defining a predicate r(X) such that, for all ground terms t:

M(P) ⊨ ϕ[t] iff M(Q) ⊨ r(t)

Maximum of a nonempty list:

P: member(X,[Y|L]) :- X=Y.

member(X,[Y|L]) :- member(X,L).

ϕ[L,M]: member(M,L) ∀X (member(X,L) → X ≤ M)

… but inefficient: generate an element M in L and test M is an upper bound [O(|L|2)]

P ∪ CF is correct: For all L, M, M(P) ⊨ ϕ[L,M] iff M(P ∪ CF) ⊨ r(L,M)

Clause form of ϕ[L,M]:

CF: r(L,M) :- member(M,L), greater(L,M).

greater(L,M) :- member(X,L), X > M. Perfect model

19

The Transformational Synthesis Method (2)

Derive an efficient program by (i) eliminating multiple and existential variables and
 (ii) eliminating negation

CF: r(L,M) :- member(M,L), greater(L,M).
greater(L,M) :- member(X,L), X > M.

… and efficient: while visiting the list, keep the maximum so far [O(| L |)]

Q is correct: For all L, M, M(P) ⊨ ϕ[L,M] iff M(Q) ⊨ r(L,M)

Q: r([X|L],M) :- s(X,L,M).
s(X,[],M) :- M=A.
s(X,[Y|L],M) :- Y ≤ X, s(X,L,M).
s(X,[Y|L],M) :- X ≤ Y, s(Y,L,M).

Elimination of multiple and existential variables
Elimination of negation

20

Issues in Transformational Synthesis

● Find suitable synthesis strategies based on heuristics (e.g., by composing
several transformation strategies)

● Find specific classes of programs where the synthesis strategies can be
proved successful in terms of synthesis times and speed-up.

21

• Weak monadic second order theory of 1 successor (WS1S) [Buchi ’60]

 n ::= N | 0 | succ(n)
 φ ::= n1>n2 | n1=n2 | n S | S∈ 1=S2 | ¬φ | φ1 φ∧ 2 | N φ | S φ∃ ∃

 where N is a variable ranging over natural numbers and S is a variable
 ranging over finite sets of natural numbers.

• WS1S is decidable in time complexity, for some d>0.

• For every WS1S formula the transformational method synthesizes a
 program with linear time complexity.

• The transformation strategy has worst case time complexity.

Power of Transformational Synthesis

 dn

2

n2
...

{

 dn

2

2
...

{
n

22

Verification of Program Properties

by Program Transformation

23

elimination of existential variables

clause form
φ

 CF

 Q

Closed formula

Propositional program
defining a predicate r

Theorem Proving by ProgramTransformation

Given a program P and a closed first order formula ϕ, check whether or not

M(P) ⊨ ϕ

The transformational proof method:

M(P) ⊨ ϕ iff M(Q) ⊨ rsuch that:

M(Q) ⊨ r is decidable in O(|Q|) time

24

Given a program

P: member(X,[Y|L]) :- X=Y.

 member(X,[Y|L]) :- member(X,L).

and a closed first order formula (“every list of numbers has an upper
bound”)

ϕ: ∀L (list(L) → ∃U ∀X (member(X,L) → X ≤ U))

we want to prove:

M(P) ⊨ ϕ

The Transformational Proof Method

25

a
b
c

Program with existential variables

Step 1. Clause-Form Transformation

ϕ: ∀L (list(L) → ∃U ∀X (member(X,L) → X ≤ U))

Clause-Form:

 CF: r :- a.

a :-list(L), b(L).

b(L) :- list(L), c(L,U).

c(L,U) :-X > U,list(L),member(X,L).

r ≡ L(list(L) U X (member(X,L) X ≤ U))

M(P) ⊨ ϕ iff M(P ∪ CF) ⊨ r

26

s.t. M(P) ⊨ ϕ iff M(Q) ⊨ r

Step 2. Elimination of Existential Variables

Q: r :- ¬ a.

a :- d.

d :- d.

The strategy for the elimination of existential variables returns:

27

Step 3. Computation of the Perfect Model

Q: r :- ¬ a. S2: stratum 2
a :- d.
d :- d.

1. Compute the least model of S1:

{ } { }
TS1

{ } is the least fixpoint of TS1 , hence M(S1) = { }

where TS1 is the immediate consequence operator
 (= one-step deduction)

2. Transform S2 using M(S1):

r.

S1: stratum 1

M(Q) = (M({r.}) ∪ M(S1)) = {r}

 ⇒ M(Q) ⊨ r ⇒ M(P) ⊨ ϕ

28

Power of the Proof Method

Examples run by the MAP transformation system
(www.iasi.cnr.it/~proietti/system.html)

Constraints are handled using the clp(R) module of SICStus Prolog
(implementing a variant of Fourier-Motzkin variable elimination)

Time
(PM 1.73)Property

 16 ms∀L ∀M ∀X ∀Y ((leqlist(L,M) sumlist(L,X) sumlist(M,Y)) → X ≤ Y)

 16 ms∀L ∀M ∀N ((ord(L) ord(M) sumzip(L,M,N)) → ord(N))

 15 ms∀L ∀Y ((sumlist(L,Y) Y > 0) → ∃X (member(X,L) → X > 0))

 31 ms∀L ∃U ∀Y (member(Y,L) → Y ≤ U)

The transformational proof method is a decision procedure for WS1S.

Experimental evaluation

29

Model Checking

Infinite State Systems by

Program Transformation

30

• The behaviour of a concurrent system can represented as a state transition
system which generates infinite computation paths:

• Properties are expressed in the Temporal Logic CTL, a propositional logic
augmented with:
(1) quantifiers over paths: E (Exists), A (All), and
(2) temporal operators along paths: F (Future, there exists a state in the path),
 G (Globally, for all states of the path).

• If the set of states is finite, then CTL is decidable in polynomial time.

• CTL is undecidable for: (1) infinite state systems (e.g., integer variables) and (2)
parameterized systems (families of finite-state systems).

. . .

. . .

. . .

s
0

s
1

s
3

s
2

s
4

s
5

Verification of Infinite State Systems

31

Process A think

wait

use

Each process has: control state: s∈{think,wait,use} and counter: n∈N

n
A

:= n
B
+1

If n
A
<n

B
or n

B
=0

n
A

:= 0

think

wait

use

n
B

:= n
A
+1

if n
B
<n

A
or n

A
=0

n
B

:= 0

Process B

System: A || B
<think,0,think,0> <wait,1,think,0> <wait,1,wait,2> <use,1,wait,2>

Mutual Exclusion: <think,0,think,0> |= ¬ EF unsafe
where, for all n

A
,n

B
: <use,n

A
,use,n

B
> |= unsafe

. . .

The Bakery Protocol (Lamport)

32

A system S and the temporal logic are encoded by a constraint logic program PS:

 - the transition relation is encoded by a binary predicate trans:

 trans(<think,A,S,B>,<wait,A1,S,B>) :- A1=B+1.
 trans(<wait,A,S,B>,<use,A,S,B>) :- A<B.
 trans(<wait,A,S,B>,<use,A,S,B>) :- B=0.
 trans(<wait,A,S,B>,<use,A1,S,B>) :- A1=0.

 - the satisfaction relation |= is encoded by a binary predicate holds:

 holds(<use,A,use,B>, unsafe).
 holds(S, not(P)) :- ¬ holds(S, P).
 holds(S, ef(P)) :- holds(S, P).
 holds(S, ef(P)) :- trans(S,T), holds(T, ef(P)).

 - the property to be verified is encoded by a predicate prop:

 prop :- holds(<think,0,think,0>, not(ef(unsafe))).

Temporal Properties as Constraint Logic Programs

33

• The encoding is correct:
<think,0,think,0> |= ¬ EF unsafe iff M(PS) |= prop

• Bottom-up construction of M(PS) from facts does not terminate
because M(PS) is infinite. Top-down evaluation of PS from prop does not
terminate due to infinite computation paths.

• Transformation-based Verification Method:

1) specialize PS to the query prop:

 PS → ∙∙∙ → Q s.t. M(PS) ⊨ prop iff M(Q) ⊨ prop

2) keep only the clauses dep(prop, Q) on which the predicate
 prop syntactically depends:

 prop ∈ M(Q) iff prop ∈ M(dep(prop, Q))

3) construct bottom-up the model of dep(prop, Q).

Protocol Verification Via Program Transformation

34

Protocol Property Time (s)

Bakery (mutual exclusion) safety: ¬EF unsafe 0.05
liveness: AG(wait → AF use) 0.13

Ticket (mutual exclusion) safety: ¬EF unsafe 0.04
 liveness: AG(wait → AF use) 0.10

Sleeping Barber safety 0.03

Office Light Control safety 0.10

Petri Net safety 0.08

Berkeley RISC (cache coherence) safety 0.07

Xerox Dragon (cache coherence) safety 0.07

DEC Firefly (cache coherence) safety 0.05

Illinois Univ. (cache coherence) safety 0.06

MESI (cache coherence) safety 0.07

MOESI (cache coherence) safety 0.08

Synapse N+1 (cache coherence) safety 0.04

IEEE Futurebus+ (cache coherence) safety 0.22

Experimental Results Using the MAP System

35

Ongoing Work

• More expressive logics for path properties:

- LTL / CTL* [PPS09]
- ω-regular languages [PPS10]

• Proving properties of logic programs on infinite structures
 (some work already in [PPS10] for infinite lists)

• Synthesis of reactive systems (e.g., protocols)

• Modelling and verification of Business Processes

 [joint work with Missikoff, Smith]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

