Verification of Imperative Programs through Transformation of Constraint Logic Programs

Emanuele De Angelis¹, Fabio Fioravanti¹, Alberto Pettorossi², and <u>Maurizio Proietti³</u>

¹University of Chieti-Pescara 'G. d'Annunzio', Italy ²University of Rome 'Tor Vergata', Italy ³CNR - Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy

LSV-ENS Cachan, Feb 12, 2014

Given the *program prog*:

$$x=0; y=0;$$

while $(x < n) \{x=x+1; y=y+2\}$

and the *specification*:

 $\{n\!\geq\!1\} \operatorname{prog} \{y\!>\!x\}$

Given the *program prog*:

$$x=0; y=0;$$

while $(x < n) \{x=x+1; y=y+2\}$

and the *specification*:

$$\{n \ge 1\} prog \{y > x\}$$

Generate the *verification conditions* (VCs):

1.
$$x=0 \land y=0 \land n \ge 1 \rightarrow P(x, y, n)$$
Initialization2. $P(x, y, n) \land x < n \rightarrow P(x+1, y+2, n)$ Loop invariant3. $P(x, y, n) \land x \ge n \rightarrow y > x$ Exit

and prove they are *satisfiable*, i.e., we can find an interpretation for P that makes the VCs true.

Proving Satisfiability of Verification Conditions

The interpretation

$$P(x, y, n) \equiv (x=0 \land y=0 \land n \ge 1) \lor y > x$$

makes the VCs true

1'.
$$x=0 \land y=0 \land n \ge 1 \rightarrow (x=0 \land y=0 \land n \ge 1) \lor y > x$$

2'. $((x=0 \land y=0 \land n \ge 1) \lor y > x) \land x < n$
 $\rightarrow (x+1=0 \land y+2=0 \land n \ge 1) \lor y+2>x+1$
3'. $((x=0 \land y=0 \land n \ge 1) \lor y>x) \land x \ge n \rightarrow y>x$

and hence the specification $\{n \ge 1\}$ prog $\{y > x\}$ is valid.

Proving Satisfiability of Verification Conditions

The interpretation

$$P(x, y, n) \equiv (x=0 \land y=0 \land n \ge 1) \lor y > x$$

makes the VCs true

1'.
$$x=0 \land y=0 \land n \ge 1 \rightarrow (x=0 \land y=0 \land n \ge 1) \lor y > x$$

2'. $((x=0 \land y=0 \land n \ge 1) \lor y > x) \land x < n$
 $\rightarrow (x+1=0 \land y+2=0 \land n \ge 1) \lor y+2>x+1$
3'. $((x=0 \land y=0 \land n \ge 1) \lor y>x) \land x \ge n \rightarrow y>x$

and hence the specification $\{n \ge 1\} prog \{y > x\}$ is *valid*.

Problem: How to find the interpretation for P automatically?

Methods Based on Horn Clauses with Constraints (CLP)

• The VCs are a set of Horn clauses with constraints

Methods Based on Horn Clauses with Constraints (CLP)

- The VCs are a set of Horn clauses with constraints
- or, equivalently, a *constraint logic program*:

1.
$$x=0 \land y=0 \land n \ge 1 \rightarrow P(x, y, n)$$

2. $P(x, y, n) \land x < n \rightarrow P(x+1, y+2, n)$
4. $P(x, y, n) \land x \ge n \land y \le x \rightarrow false$

VCs *satisfiable* iff *false not* in the *least model* of V.

Methods Based on Horn Clauses with Constraints (CLP)

- The VCs are a set of Horn clauses with constraints
- or, equivalently, a *constraint logic program*:

1.
$$x=0 \land y=0 \land n \ge 1 \rightarrow P(x, y, n)$$

2. $P(x, y, n) \land x < n \rightarrow P(x+1, y+2, n)$
4. $P(x, y, n) \land x \ge n \land y \le x \rightarrow false$

VCs *satisfiable* iff *false not* in the *least model* of V.

- Methods for proving the satisfiability of VCs in the framework of CHC/CLP:
 - CounterExample Guided Abstraction Refinement, Interpolation, Satisfiability Modulo Theories [McMillan, Rybalchenko, Björner, Poppea et al.]
 - Symbolic execution of CLP [Jaffar, Navas, Santosa et al.]
 - Static Analysis and *Transformation of CLP* [Gallagher, Albert, DFPP et al.]

• Apply to V transformations that *preserve the least model*:

1.
$$x=0 \land y=0 \land n \ge 1 \rightarrow P(x, y, n)$$
 Constrained fact
2. $P(x, y, n) \land x < n \rightarrow P(x+1, y+2, n)$
4. $P(x, y, n) \land x \ge n \land y \le x \rightarrow false$

and derive the *equisatisfiable* V':

5.
$$Q(x, y, n) \land x < n \land x > y \land y \ge 0 \rightarrow Q(x + 1, y + 2, n)$$

6. $Q(x, y, n) \land x \ge n \land x \ge y \land y \ge 0 \land n \ge 1 \rightarrow false$

• Apply to V transformations that *preserve the least model*:

1.
$$x=0 \land y=0 \land n \ge 1 \rightarrow P(x, y, n)$$
 Constrained fact
2. $P(x, y, n) \land x < n \rightarrow P(x+1, y+2, n)$
4. $P(x, y, n) \land x \ge n \land y \le x \rightarrow false$

and derive the *equisatisfiable* V':

5.
$$Q(x, y, n) \land x < n \land x > y \land y \ge 0 \rightarrow Q(x + 1, y + 2, n)$$

6. $Q(x, y, n) \land x \ge n \land x \ge y \land y \ge 0 \land n \ge 1 \rightarrow false$

No constrained facts: V' satisfiable with $Q(x, y, n) \equiv$ false.

- Apply to V transformations that preserve the least model:
 - 1. $x=0 \land y=0 \land n \ge 1 \rightarrow P(x, y, n)$ Constrained fact 2. $P(x, y, n) \land x < n \rightarrow P(x+1, y+2, n)$ 4. $P(x, y, n) \land x \ge n \land y \le x \rightarrow false$

and derive the *equisatisfiable* V':

5. $Q(x, y, n) \land x < n \land x > y \land y \ge 0 \rightarrow Q(x + 1, y + 2, n)$ 6. $Q(x, y, n) \land x \ge n \land x \ge y \land y \ge 0 \land n \ge 1 \rightarrow false$

No constrained facts: V' satisfiable with $Q(x, y, n) \equiv$ false.

• Problem: How to transform V into V' automatically?

- Apply to V transformations that preserve the least model:
 - 1. $x=0 \land y=0 \land n \ge 1 \rightarrow P(x, y, n)$ Constrained fact 2. $P(x, y, n) \land x < n \rightarrow P(x+1, y+2, n)$ 4. $P(x, y, n) \land x \ge n \land y \le x \rightarrow false$

and derive the *equisatisfiable* V':

5. $Q(x, y, n) \land x < n \land x > y \land y \ge 0 \rightarrow Q(x + 1, y + 2, n)$ 6. $Q(x, y, n) \land x \ge n \land x \ge y \land y \ge 0 \land n \ge 1 \rightarrow false$

No constrained facts: V' satisfiable with $Q(x, y, n) \equiv$ false.

- Problem: How to transform V into V' automatically?
- Some transformation strategies for programs over integers [PEPM-13] and arrays [VMCAI-14].

- Constraint Logic Programming as a *metalanguage* for representing
 - the imperative program
 - the semantics of the imperative language (*interpreter*)
 - the property to be verified

- Constraint Logic Programming as a *metalanguage* for representing
 - the imperative program
 - the semantics of the imperative language (*interpreter*)
 - the property to be verified
- Verification method based on CLP program transformation
 - Semantics-preserving transformation rules and strategies
 - VC generation by specialization of the interpreter
 - VC transformation by propagation of the property to be verified

- Constraint Logic Programming as a *metalanguage* for representing
 - the imperative program
 - the semantics of the imperative language (*interpreter*)
 - the property to be verified
- Verification method based on CLP program transformation
 - Semantics-preserving transformation rules and strategies
 - VC generation by specialization of the interpreter
 - VC transformation by propagation of the property to be verified
- Improving precision via *iterated* VC transformation

- Constraint Logic Programming as a *metalanguage* for representing
 - the imperative program
 - the semantics of the imperative language (*interpreter*)
 - the property to be verified
- Verification method based on CLP program transformation
 - Semantics-preserving transformation rules and strategies
 - VC generation by specialization of the interpreter
 - VC transformation by propagation of the property to be verified
- Improving precision via *iterated* VC transformation
- Verifying array programs via *constraint replacement*

- Constraint Logic Programming as a *metalanguage* for representing
 - the imperative program
 - the semantics of the imperative language (*interpreter*)
 - the property to be verified
- Verification method based on CLP program transformation
 - Semantics-preserving transformation rules and strategies
 - VC generation by specialization of the interpreter
 - VC transformation by propagation of the property to be verified
- Improving precision via *iterated* VC transformation
- Verifying array programs via *constraint replacement*
- Recursively defined properties

- Constraint Logic Programming as a *metalanguage* for representing
 - the imperative program
 - the semantics of the imperative language (*interpreter*)
 - the property to be verified
- Verification method based on CLP program transformation
 - Semantics-preserving transformation rules and strategies
 - VC generation by specialization of the interpreter
 - VC transformation by propagation of the property to be verified
- Improving precision via *iterated* VC transformation
- Verifying array programs via *constraint replacement*
- Recursively defined properties
- Experimental evaluation: The VeriMAP system

CLP with integer constraints

• A CLP *clause* is an implication $c \land G \rightarrow H$, written as:

where ${\rm H}$ is an atom, ${\rm c}$ is a constraint, and ${\rm G}$ is a conjunction of atoms

CLP with integer constraints

• A CLP *clause* is an implication $c \land G \rightarrow H$, written as:

H :- c, G.

where ${\rm H}$ is an atom, ${\rm c}$ is a constraint, and ${\rm G}$ is a conjunction of atoms

 A constraint is a conjunction of linear equalities/inequalities over integers (p₁=p₂, p₁≥p₂, p₁>p₂)

CLP with integer constraints

• A CLP *clause* is an implication $c \land G \rightarrow H$, written as:

H :- c, G.

where ${\rm H}$ is an atom, ${\rm c}$ is a constraint, and ${\rm G}$ is a conjunction of atoms

- A constraint is a conjunction of linear equalities/inequalities over integers (p₁=p₂, p₁≥p₂, p₁>p₂)
- A CLP program is a set of CLP clauses

• A CLP *clause* is an implication $c \land G \rightarrow H$, written as:

H :- c, G.

where ${\rm H}$ is an atom, ${\rm c}$ is a constraint, and ${\rm G}$ is a conjunction of atoms

- A constraint is a conjunction of linear equalities/inequalities over integers (p₁=p₂, p₁≥p₂, p₁>p₂)
- A CLP *program* is a set of CLP clauses
- Semantics: *least model* of the program with the fixed interpretation of constraints.

Imperative Programs over Integers

- We consider an imperative language with integer variables, assignment, if-else, while-loop, and goto.
- Program increase:

```
while(x < n){
    x=x+1;
    y=x+y;
}</pre>
```

• Partial Correctness Specification

 $\{x=0 \land y=0\}$ increase $\{x \leq y\}$

A program is represented as a set of atoms at(*label*, *command*).

Program *increase*:

CLP encoding of increase:

 $\begin{array}{l} \texttt{at}(\ell_0, \texttt{ite}(\texttt{less}(\texttt{int}(\texttt{x}), \texttt{int}(\texttt{n})), \ell_1, \ell_{\mathsf{h}})). \\ \texttt{at}(\ell_1, \texttt{asgn}(\texttt{int}(\texttt{x}), \texttt{plus}(\texttt{int}(\texttt{x}), \texttt{int}(1)))). \\ \texttt{at}(\ell_2, \texttt{asgn}(\texttt{int}(\texttt{y}), \texttt{plus}(\texttt{int}(\texttt{x}), \texttt{int}(\texttt{y})))). \\ \texttt{at}(\ell_3, \texttt{goto}(\ell_0)). \\ \texttt{at}(\ell_{\mathsf{h}}, \texttt{halt}). \end{array}$

A transition semantics is defined by:

- a set of *configurations*, i.e., a CLP term: cf(C,S) where:
 - C is a labeled *command*

S is a store,
 i.e., a list of [variable identifier, value] pairs:
 [[int(x), 2], [int(y), 3]]

• a transition relation: tr(cf(C,S), cf(C1,S1))

L: Id=Expr	<pre>tr(cf(cmd(L,asgn(Id,Expr)),</pre>	<pre>,S), cf(cmd(L1,C1),S1)):- evaluate expression update store next label next command</pre>
L: if (Expr) { tr(cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :-		
•	beval(Expr,S),	expression is true
goto L1:	at(L1,C).	next command
} else	<pre>tr(cf(cmd(L,ite(Expr,L1,L2))</pre>)),S), cf(C,S)):-
	<pre>beval(not(Expr),S),</pre>	expression is false
goto L2	at(<mark>L2</mark> ,C).	next command
}		
L: goto L1	<pre>tr(cf(cmd(L,goto(L1)),S), c</pre>	cf(C,S)) :- at(L1,C). next command

(2)

CLP encoding of (in)correctness

Given the specification $\{\varphi_{\textit{init}}\}\ \textit{prog}\ \{\psi\}$ define $\varphi_{\textit{error}}\equiv\neg\psi$

Definition (Program Incorrectness)

A program *prog* is *incorrect* w.r.t. φ_{init} and φ_{error} if from an initial configuration satisfying φ_{init} it is possible to reach a final configuration satisfying φ_{error} . Otherwise, program *prog* is *correct*.

CLP encoding of (in)correctness

Given the specification $\{\varphi_{\textit{init}}\}\ \textit{prog}\ \{\psi\}$ define $\varphi_{\textit{error}}\equiv\neg\psi$

Definition (Program Incorrectness)

A program *prog* is *incorrect* w.r.t. φ_{init} and φ_{error} if from an initial configuration satisfying φ_{init} it is possible to reach a final configuration satisfying φ_{error} . Otherwise, program *prog* is *correct*.

Definition (CLP encoding of incorrectness: The interpreter Int)

CLP encoding of (in)correctness

Given the specification $\{\varphi_{\textit{init}}\}\ \textit{prog}\ \{\psi\}$ define $\varphi_{\textit{error}}\equiv\neg\psi$

Definition (Program Incorrectness)

A program *prog* is *incorrect* w.r.t. φ_{init} and φ_{error} if from an initial configuration satisfying φ_{init} it is possible to reach a final configuration satisfying φ_{error} . Otherwise, program *prog* is *correct*.

Definition (CLP encoding of incorrectness: The interpreter Int)

```
incorrect := initConf(X), reach(X).
reach(X) := tr(X,Y), reach(Y). | reachability
reach(X) := errorConf(X). |
initConf(X) = X is a configuration satisfying \varphi_{init}
errorConf(X) = X is a configuration satisfying \varphi_{error}
```

Theorem (Correctness of Encoding)

prog is correct iff incorrect $\notin M(Int)$ (the least model of Int)

(Cont'	d)
--------	----

Partial Correctness Specification

$\{\mathtt{x}=\mathtt{0}\land \mathtt{y}=\mathtt{0}\}$	arphiinit
increase	
$\{\mathtt{x} \leq \mathtt{y}\}$	ψ
$\{\mathtt{x} > \mathtt{y}\}$	$arphi_{\mathit{error}} \equiv \neg \psi$

Partial Correctness Specification	Partial	Correctness	Specification
-----------------------------------	---------	-------------	---------------

$\{\mathtt{x}=\mathtt{0}\land \mathtt{y}=\mathtt{0}\}$	arphiinit
increase	
$\{\mathtt{x} \leq \mathtt{y}\}$	ψ
$\{\mathtt{x} > \mathtt{y}\}$	$arphi_{\it error}\equiv \neg\psi$

Initial and Error Configurations

(Cont'd)

The Transformation-based Verification Method

- prog correct if no constrained facts appear in the VCs.
- prog incorrect if the fact incorrect. appears in the VCs.

Unfold/Fold Program Transformation

[Burstall-Darlington 77, Tamaki-Sato 84, Etalle-Gabbrielli 96]

• transformation *rules*: $R \in \{ \text{ Definition}, \\ \text{Unfolding}, \\ \text{Folding}, \\ \text{Clause Removal} \}$

Unfold/Fold Program Transformation

[Burstall-Darlington 77, Tamaki-Sato 84, Etalle-Gabbrielli 96]

- transformation *rules*: $R \in \{ \text{ Definition,} \\ \text{Unfolding,} \\ \text{Folding,} \\ \text{Clause Removal} \}$
- the transformation rules *preserve the least model*:

 $incorrect \in M(P)$ iff $incorrect \in M(TransfP)$

Unfold/Fold Program Transformation

[Burstall-Darlington 77, Tamaki-Sato 84, Etalle-Gabbrielli 96]

- transformation *rules*: $R \in \{ \text{ Definition,} \\ \text{Unfolding,} \\ \text{Folding,} \\ \text{Clause Removal} \}$
- the transformation rules *preserve the least model*:

 $incorrect \in M(P)$ iff $incorrect \in M(TransfP)$

• the rules must be guided by a *strategy*.

Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant) newp(X) :- c, A
Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant) newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given	H :- c, <u>A</u> , G
	$\underline{\mathbf{A}} := \mathbf{d}_1, \mathbf{G}_1, \ldots, \underline{\mathbf{A}} := \mathbf{d}_m, \mathbf{G}_m$
derive	$\texttt{H}:=\texttt{c},\texttt{d}_1,\texttt{G}_1,\texttt{G},\ \ldots,\ \texttt{H}:=\texttt{c},\texttt{d}_\texttt{m},\texttt{G}_\texttt{m},\texttt{G}$

Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant) newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given $H := c, \underline{A}, G$ $\underline{A} := d_1, G_1, \dots, \underline{A} := d_m, G_m$

derive $H := c, d_1, G_1, G, \ldots, H := c, d_m, G_m, G$

R3. Folding. Matching a predicate definition (e.g., a loop invariant)

 $\begin{array}{lll} \text{given} & \text{H}:=-\operatorname{d},\underline{A},\text{G}\\ & & \texttt{newp}(X):=-\operatorname{c},\underline{A} & \text{and} & \operatorname{d}\to\operatorname{c} \end{array}$ derive $\text{H}:=\operatorname{d}, \texttt{newp}(X),\text{G}$

・ロマ・山・山・山川・山市・ショー もくの

Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant) newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given H :- c, \underline{A} , G \underline{A} :- d₁, G₁, ..., \underline{A} :- d_m, G_m

derive $H := c, d_1, G_1, G, \ldots, H := c, d_m, G_m, G$

R3. Folding. Matching a predicate definition (e.g., a loop invariant)

 $\begin{array}{lll} \mbox{given} & \mbox{H}:=-\ d, \underline{A}, G & & \\ & \mbox{newp}(X):=-\ c, \underline{A} & \mbox{and} & \ d \rightarrow c & \\ \mbox{derive} & \mbox{H}:=-\ d, \mbox{newp}(X), G & & \end{array}$

R4. Clause Removal. Removal of clauses with unsatisfiable constraint or subsumed by others

The Transformation Strategy

Transform(P)

```
\begin{split} & \text{TransfP} = \emptyset; \\ & \text{Defs} = \{ \texttt{incorrect} := \texttt{initConf}(X), \texttt{reach}(X) \}; \\ & \textbf{while} \; \exists \textit{cl} \in \texttt{Defs} \; \textit{do} \\ & \texttt{Cls} = \texttt{Unfold}(\textit{cl}); \\ & \texttt{Cls} = \texttt{ClauseRemoval}(\texttt{Cls}); \\ & \texttt{Defs} = (\texttt{Defs} - \{\textit{cl}\}) \cup \texttt{Define}(\texttt{Cls}); \\ & \texttt{TransfP} = \texttt{TransfP} \cup \texttt{Fold}(\texttt{Cls}, \texttt{Defs}); \\ & \textbf{od} \end{split}
```

Transform(P)

```
\begin{split} & \text{TransfP} = \emptyset; \\ & \text{Defs} = \{ \texttt{incorrect} := \texttt{initConf}(\texttt{X}), \texttt{reach}(\texttt{X}) \}; \\ & \textbf{while} \; \exists \textit{cl} \in \texttt{Defs} \; \textit{do} \\ & \texttt{Cls} = \texttt{Unfold}(\textit{cl}); \\ & \texttt{Cls} = \texttt{ClauseRemoval}(\texttt{Cls}); \\ & \texttt{Defs} = (\texttt{Defs} - \{\textit{cl}\}) \cup \texttt{Define}(\texttt{Cls}); \\ & \texttt{TransfP} = \texttt{TransfP} \cup \texttt{Fold}(\texttt{Cls}, \texttt{Defs}); \\ & \textbf{od} \end{split}
```

Theorem (Termination and Correctness of the Transformation Strategy)

- Transform(P) terminates for all P;
- incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

• The most critical transformation step during the unfold/fold transformation strategy is the *introduction of new predicate definitions* to be used for folding.

- The most critical transformation step during the unfold/fold transformation strategy is the *introduction of new predicate definitions* to be used for folding.
- Given p(X) := c(X,Y), q(Y).

Introduce newp(Y) := d(Y), q(Y).

where $c(X, Y) \rightarrow d(Y)$ (d(Y) is a *generalization* of c(X, Y))

and fold: p(X) := c(X,Y), newp(Y).

- The most critical transformation step during the unfold/fold transformation strategy is the *introduction of new predicate definitions* to be used for folding.
- Given p(X) := c(X,Y), q(Y).

Introduce newp(Y) := d(Y), q(Y).

where $c(X, Y) \rightarrow d(Y)$ (d(Y) is a *generalization* of c(X, Y))

and fold: p(X) := c(X,Y), newp(Y).

Generalization strategies based on *widening* and *convex-hull* of linear constraints.

The *specialization* of *Int* w.r.t. *prog* removes all references to:

- tr (i.e., the operational semantics of the imperative language)
- at (i.e., the encoding of prog)

The *specialization* of *Int* w.r.t. *prog* removes all references to:

- tr (i.e., the operational semantics of the imperative language)
- at (i.e., the encoding of prog)

The Specialized Interpreter for *increase* (Verification Conditions)

The *specialization* of *Int* w.r.t. *prog* removes all references to:

- tr (i.e., the operational semantics of the imperative language)
- at (i.e., the encoding of prog)

The Specialized Interpreter for *increase* (Verification Conditions)

• New predicates correspond to a subset of the program points: new1(X,Y,N) :- reach(cf(cmd(0,ite(...)), [[int(x),X],[int(y),Y],[int(n),N]])).

The *specialization* of *Int* w.r.t. *prog* removes all references to:

- tr (i.e., the operational semantics of the imperative language)
- at (i.e., the encoding of prog)

The Specialized Interpreter for *increase* (Verification Conditions)

- New predicates correspond to a subset of the program points: new1(X,Y,N) :- reach(cf(cmd(0,ite(...)), [[int(x),X],[int(y),Y],[int(n),N]])).
- The fact incorrect. is not in VCs: we cannot infer that *increase* is incorrect.

A constrained fact is in VCs: we cannot infer that *increase* is correct.

• • = • • = •

The verification conditions VCs are specialized w.r.t. the initial configuration.

Specialized Verification Conditions for increase

... propagating the constraint X = 0, Y = 0.

incorrect :- N > 0, X1 = 1, Y1 = 1, new2(X1, Y1, N). new2(X, Y, N) :- X = 1, Y = 1, N > 1, X1 = 2, Y1 = 3, new3(X1, Y1, N). $new3(X, Y, N) :- X1 \ge 1$, $Y1 \ge X1$, X < N, X1 = X + 1, Y1 = X1 + Y, new3(X1, Y1, N). $new3(X, Y, N) :- Y \ge 1$, N > 0, $X \ge N$, X > Y.

The fact incorrect. is not in VCs: we cannot infer that *increase* is incorrect.

A constrained fact is in VCs: we cannot infer that *increase* is correct.

- 1. incorrect :- X=0, Y=0, new1(X,Y,N).
- 2. new2(X,Y,N) :- X=1, Y=1, N>0, new1(X,Y,N).

Candidate new definition:

new3(Xr,Yr,Nr):-Xr=1,Yr=1,X=2,Y=3,N>1,new1(X,Y,N).

The transformation strategy might introduce infinitely many new definitions. Generalization is needed.

Generalization (based on widening):

3. new3(X,Y,N) :- $X \ge 1$, $Y \ge 1$, N>0, new1(X,Y,N).

Program Reversal

 $\texttt{incorrect} \in M(\mathsf{P}) \texttt{ iff incorrect} \in M(\mathsf{RevP})$

Specialized Verification Conditions for increase

 $\begin{array}{l} \text{incorrect}:=N>0, \ X1=1, \ Y1=1, \ new2(X1,Y1,N).\\ new2(X,Y,N):=X=1, \ Y=1, \ N>1, \ X1=2, \ Y1=3, \ new3(X1,Y1,N).\\ \hline new3(X,Y,N):=X1\geq1, \ Y1\geq X1, \ X<N, \ X1=X+1, \ Y1=X1+Y, \ \underline{new3(X1,Y1,N)}.\\ \hline new3(X,Y,N):=Y\geq1, \ N>0, \ X\geq N, \ X>Y. \end{array}$

Reversed VCs

 $\begin{array}{l} \text{incorrect} := Y \geq 1, \ N > 0, \ X \geq N, \ X > Y, \ \texttt{new3}(X, Y, N). \\ \underline{\texttt{new3}(X1, Y1, N)} := X1 \geq 1, \ Y1 \geq X1, \ X < N, X1 = X + 1, \ Y1 = X1 + Y, \ \underline{\texttt{new3}(X, Y, N)}. \\ \underline{\texttt{new3}(X1, Y1, N)} := X = 1, \ Y = 1, \ N > 1, \ X1 = 2, \ Y1 = 3, \ \underline{\texttt{new2}(X, Y, N)}. \\ \underline{\texttt{new2}(X1, Y1, N)} := N > 0, \ X1 = 1, \ Y1 = 1. \end{array}$

(日)

Specialized VCs

by propagating the constraint $Y \ge 1$, N > 0, $X \ge N$, X > Y. incorrect :- $Y \ge 1$, N > 0, $X \ge N$, X > Y, new4(X,Y,N).

No constrained facts: increase is correct.

The VeriMAP tool http://map.uniroma2.it/VeriMAP [DFPP PEPM 2013, VMCAI 2014, TACAS 2014]

Experimental Evaluation

216 examples taken from: DAGGER, TRACER, InvGen, and TACAS 2013 Software Verification Competition.

		VeriMAP	ARMC	HSF(C)	TRACER
1	correct answers	185	138	160	103
2	safe problems	154	112	138	85
3	unsafe problems	31	26	22	18
4	incorrect answers	0	9	4	14
5	false alarms	0	8	3	14
6	missed bugs	0	1	1	0
7	errors	0	18	0	22
8	timed-out problems	31	51	52	77
9	total score	339 (0)	210 (-40)	278 (-20)	132 (-56)
10	total time	10717.34	15788.21	15770.33	23259.19
11	average time	57.93	114.41	98.56	225.82

- ARMC [Podelski, Rybalchenko PADL 2007]
- HSF(C) [Grebenshchikov et al. TACAS 2012]
- TRACER [Jaffar, Murali, Navas, Santosa CAV 2012]

Improving Precision by Iteration

ロトメ母トメミトメミト ヨーのへで

Verifying Array Programs

An Example: Array Initialization.

æ

Program SeqInit

```
i=1;
while(i < n) {
    a[i]=a[i-1]+1;
    i=i+1;
}
```

Verifying Array Programs

An Example: Array Initialization.

Program SeqInit

```
i=1;
while(i < n) {
    a[i]=a[i-1]+1;
    i=i+1;
}
```

An Execution

$$[4,_,_,_] \Longrightarrow [4,5,_,_] \Longrightarrow [4,5,6,_] \Longrightarrow [4,5,6,7]$$

Verifying Array Programs

An Example: Array Initialization.

Program SeqInit

```
i=1;
while(i < n) {
    a[i]=a[i-1]+1;
    i=i+1;
}
```

An Execution

$$[4,_,_,_] \Longrightarrow [4,5,_,_] \Longrightarrow [4,5,6,_] \Longrightarrow [4,5,6,7]$$

Partial Correctness Specification

$$\{i \ge 0 \land n = \dim(a) \land n \ge 1 \}$$
SeqInit
$$\{\forall j \ (0 \le j \land j + 1 < n \rightarrow a[j] < a[j+1]) \}$$

The transition for array assignment

- command: L:a[ie] = e
- *store*: S
- transition:

```
tr(cf(cmd(L,asgn(elem(A,IE),E)),S),
    cf(cmd(L1,C),S1)) :-
        eval(IE,S,I),
        eval(E,S,V),
        lookup(S,array(A),FA),
        write(FA,I,V,FA1),
        update(S,array(A),FA1,S1),
        nextlab(L,L1),
        at(L1,C).
```

source configuration target configuration evaluate index expr evaluate expression get array from store update array update store next label next command

Partial Correctness Specification

CLP encoding of incorrectness

Cont

Array constraints

- $\bullet \ \texttt{read}(\texttt{a},\texttt{i},\texttt{v}) \quad (\texttt{the i-th element of array a is }\texttt{v})$
- write(a, i, v, b) (array b is equal to array a except that its i-th element is v)
- dim(a, n) (the dimension of a is n)

Theory of Arrays \mathcal{A}

Array congruence

$$(\mathsf{AC}) \ \mathsf{I} \!=\! \mathsf{J}, \ \mathtt{read}(\mathsf{A},\mathsf{I},\mathsf{U}), \ \mathtt{read}(\mathsf{A},\mathsf{J},\mathsf{V}) \ \rightarrow \ \mathsf{U} \!=\! \mathsf{V}$$

Read-over-Write

 R5. Constraint Replacement:

If $\mathcal{A} \models \forall (c_0 \leftrightarrow (c_1 \lor \ldots \lor c_n))$, where \mathcal{A} is the *Theory of Arrays* Then replace $H := c_0$, d, G by $H := c_1$, d, G, ..., $H := c_n$, d, G

Array congruence

 $(\mathsf{AC}) \quad \mathtt{I} \!=\! \mathtt{J}, \; \mathtt{read}(\mathtt{A}, \mathtt{I}, \mathtt{U}), \; \mathtt{read}(\mathtt{A}, \mathtt{J}, \mathtt{V}) \; \rightarrow \; \mathtt{U} \!=\! \mathtt{V}$

Read-over-Write

(RoW1)	$I = J, \ \texttt{write}(\texttt{A}, \texttt{I}, \texttt{U}, \texttt{B}),$	$\texttt{read}(\texttt{B},\texttt{J},\texttt{V}) \ \rightarrow$	$\mathbf{U} = \mathbf{V}$
(RoW2)	$I \neq J$, write(A, I, U, B),	$\texttt{read}(\texttt{B},\texttt{J},\texttt{V}) \rightarrow$	read(A, J, V)

[RoW1]	replace:	I = J, write(A, I, U, B), read(B, J, V)
	by:	I = J, write(A, I, U, B), $U = V$

[RoW2]	replace:	$I\!\neq\!J,$	write(A, I, U, B),	read(B, J, V)
	by:	$\mathtt{I}\!\neq\!\mathtt{J},$	write(A,I,U,B),	read(A, J, V)

The Transformation Strategy with Constraint Replacement

Transform(P)

```
\begin{split} & \text{TransfP} = \emptyset; \\ & \text{Defs} = \{ \texttt{incorrect} := \texttt{initConf}(X), \texttt{reach}(X) \}; \\ & \textbf{while} \; \exists \textit{cl} \in \texttt{Defs} \; \textbf{do} \\ & \texttt{Cls} = \texttt{Unfold}(\textit{cl}); \\ & \texttt{Cls} = \texttt{ConstraintReplacement}(\texttt{Cls}); \\ & \texttt{Cls} = \texttt{ClauseRemoval}(\texttt{Cls}); \\ & \texttt{Defs} = (\texttt{Defs} - \{\textit{cl}\}) \cup \texttt{Define}(\texttt{Cls}); \\ & \texttt{TransfP} = \texttt{TransfP} \cup \texttt{Fold}(\texttt{Cls}, \texttt{Defs}); \\ & \textbf{od} \end{split}
```

The Transformation Strategy with Constraint Replacement

Transform(P)

```
\begin{split} & \text{TransfP} = \emptyset; \\ & \text{Defs} = \{ \texttt{incorrect} := \texttt{initConf}(X), \texttt{reach}(X) \}; \\ & \text{while} \; \exists \textit{cl} \in \texttt{Defs} \; \text{do} \\ & \texttt{Cls} = \texttt{Unfold}(\textit{cl}); \\ & \texttt{Cls} = \texttt{ConstraintReplacement}(\texttt{Cls}); \\ & \texttt{Cls} = \texttt{ClauseRemoval}(\texttt{Cls}); \\ & \texttt{Defs} = (\texttt{Defs} - \{\textit{cl}\}) \cup \texttt{Define}(\texttt{Cls}); \\ & \texttt{TransfP} = \texttt{TransfP} \cup \texttt{Fold}(\texttt{Cls}, \texttt{Defs}); \\ & \texttt{od} \end{split}
```

Theorem (Termination and Correctness of the Transformation Strategy)

- Transform(P) terminates for all P;
- incorrect $\in M(P)$ iff incorrect $\in M(TransfP)$

Generation of Verification Conditions;

Reversal;

Propagation of the Error Property.

Transformed VCs for SeqInit

```
\begin{array}{l} \text{incorrect}:= J1 = J+1, \ J \geq 0, \ J1 < I, \ AJ \geq AJ1, \ D = I-1, \ N = I+1, \ Y = X+1, \\ \text{read}(A, J, AJ), \ \text{read}(A, J1, AJ1), \ \text{read}(A, D, X), \ \text{write}(A, I, Y, B), \\ \text{new1}(I, N, A). \\ \text{new1}(I1, N, B) := I1 = I+1, \ Z = W+1, \ Y = X+1, \ D = I-1, \ N \leq I+2, \\ I \geq 1, \ Z < I, \ Z \geq I, \ N > I, \ U \geq V, \ \text{read}(A, W, U), \ \text{read}(A, Z, V), \\ \text{read}(A, D, X), \ \text{write}(A, I, Y, B), \ \text{new2}(I, N, A). \\ \text{new2}(I1, N, B) := I1 = I+1, \ Z = W+1, \ Y = X+1, \ D = I-1, \ I \geq I, \\ Z < I, \ Z \geq I, \ N > I, \ U \geq V, \ \text{read}(A, W, U), \ \text{read}(A, Z, V), \\ \text{read}(A, D, X), \ \text{write}(A, I, Y, B), \ \textbf{new2}(I, N, A). \end{array}
```

No constrained facts: the program SeqInit is correct.

Experimental Evaluation: Array Programs

Program	Genw	Gen _{WD}	Gens	GensD
init	unknown	0.06	0.10	0.08
init-partial	unknown	0.06	0.07	0.08
init-non-constant	unknown	0.06	0.22	0.22
init-sequence	unknown	0.80	unknown	1.20
сору	unknown	0.27	0.33	0.29
copy-partial	unknown	0.29	0.34	0.34
copy-reverse	unknown	0.27	0.46	0.45
max	unknown	0.31	0.24	0.33
sum	unknown	0.68	1.14	1.12
difference	unknown	0.66	1.15	1.11
find	0.25	0.43	0.46	0.45
first-not-null	0.38	0.41	0.42	0.42
find-first-non-null	1.24	1.87	1.94	1.93
partition	0.06	0.11	0.14	0.12
insertionsort-inner	0.21	0.26	0.45	0.43
bubblesort-inner	2.46	2.71	2.45	2.75
selectionsort-inner	7.20	6.40	7.23	7.16
precision	7	17	16	17
total time	11.80	15.65	17.14	18.48
average time	1.69	0.92	1.07	1.09

The GCD Program

```
x=m; y=n;
while(x != y) {
    if(x > y) x=x-y;
    else    y=y-x;
}
z=x;
// z is the GCD of m and n
```

Initial and error properties

 $\varphi_{init}(m,n) \equiv m \geq 1 \wedge n \geq 1$

$$\varphi_{error}(m,n,z) \equiv \\ \exists d (gcd(m,n,d) \land d \neq z)$$

GCD property

CLP encoding of GCD

Generation of VCs; Reversal; Propagation of $\varphi_{error}(m,n,z)$

Transformed GCD

 $\begin{array}{l} \texttt{incorrect} := M \geq 1, N \geq 1, M > N, X1 = M - N, Z \neq D, \quad \texttt{new2}(M, N, X1, N, Z, D). \\ \texttt{incorrect} := M \geq 1, N \geq 1, M < N, Y1 = N - M, Z \neq D, \texttt{new2}(M, N, M, Y1, Z, D). \\ \texttt{new2}(M, N, X, Y, Z, D) := M \geq 1, N \geq 1, X > Y, X1 = X - Y, Z \neq D, \texttt{new2}(M, N, X1, Y, Z). \\ \texttt{new2}(M, N, X, Y, Z, D) := M \geq 1, N \geq 1, X < Y, Y1 = Y - X, Z \neq D, \texttt{new2}(M, N, X, Y1, Z). \end{array}$

No constrained fact: The gcd program is correct.

Why Use CLP Transformation for Verification?

• CLP transformation can be used both for *generating* VCs and for *proving* their satisfiability

Why Use CLP Transformation for Verification?

- CLP transformation can be used both for *generating* VCs and for *proving* their satisfiability
- CLP transformation is *parametric* with respect to:
 - programming language and its operational semantics
 - properties and proof rules
 - theory of data structures
Why Use CLP Transformation for Verification?

- CLP transformation can be used both for *generating* VCs and for *proving* their satisfiability
- CLP transformation is *parametric* with respect to:
 - programming language and its operational semantics
 - properties and proof rules
 - theory of data structures
- The input and the output of transformation are semantically equivalent CLP programs.
 - incremental verification
 - composition of transformations for refining verification

- Recursive functions
- More data structure theories (lists, heaps, etc.)
- Other programming languages, properties, proof rules

Thanks for your attention!

Try the VeriMAP tool http://map.uniroma2.it/VeriMAP

(ロト・国・・国・・国・ つんの