
Verification of Imperative Programs through
Transformation of Constraint Logic Programs

Emanuele De Angelis1, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1University of Chieti-Pescara ‘G. d’Annunzio’, Italy
2University of Rome ‘Tor Vergata’, Italy

3CNR - Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy

LSV-ENS Cachan, Feb 12, 2014

Proving Partial Correctness of Imperative Programs

Given the program prog :

x =0; y =0;
while (x<n) {x =x+1; y =y+2}

and the specification:

{n≥1} prog {y>x}

Generate the verification conditions (VCs):

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Initialization
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n) Loop invariant
3. P(x , y , n) ∧∧ x≥n → y>x Exit

and prove they are satisfiable, i.e., we can find an interpretation for
P that makes the VCs true.

Proving Partial Correctness of Imperative Programs

Given the program prog :

x =0; y =0;
while (x<n) {x =x+1; y =y+2}

and the specification:

{n≥1} prog {y>x}

Generate the verification conditions (VCs):

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Initialization
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n) Loop invariant
3. P(x , y , n) ∧∧ x≥n → y>x Exit

and prove they are satisfiable, i.e., we can find an interpretation for
P that makes the VCs true.

Proving Satisfiability of Verification Conditions

The interpretation

P(x , y , n) ≡ (x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x

makes the VCs true

1’. x =0 ∧∧ y =0 ∧∧ n≥1 → (x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x
2’. ((x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x) ∧∧ x<n

→ (x + 1=0 ∧∧ y + 2=0 ∧∧ n≥1) ∨∨ y + 2>x + 1
3’. ((x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x) ∧∧ x≥n → y>x

and hence the specification {n≥1} prog {y>x} is valid.

Problem: How to find the interpretation for P automatically?

Proving Satisfiability of Verification Conditions

The interpretation

P(x , y , n) ≡ (x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x

makes the VCs true

1’. x =0 ∧∧ y =0 ∧∧ n≥1 → (x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x
2’. ((x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x) ∧∧ x<n

→ (x + 1=0 ∧∧ y + 2=0 ∧∧ n≥1) ∨∨ y + 2>x + 1
3’. ((x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x) ∧∧ x≥n → y>x

and hence the specification {n≥1} prog {y>x} is valid.

Problem: How to find the interpretation for P automatically?

Methods Based on Horn Clauses with Constraints (CLP)

The VCs are a set of Horn clauses with constraints

or, equivalently, a constraint logic program:

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n)
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

VCs satisfiable iff false not in the least model of V .
Methods for proving the satisfiability of VCs in the framework
of CHC/CLP:

CounterExample Guided Abstraction Refinement,
Interpolation, Satisfiability Modulo Theories [McMillan,
Rybalchenko, Björner, Poppea et al.]
Symbolic execution of CLP [Jaffar, Navas, Santosa et al.]
Static Analysis and Transformation of CLP [Gallagher, Albert,
DFPP et al.]

Methods Based on Horn Clauses with Constraints (CLP)

The VCs are a set of Horn clauses with constraints
or, equivalently, a constraint logic program:

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n)
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

VCs satisfiable iff false not in the least model of V .

Methods for proving the satisfiability of VCs in the framework
of CHC/CLP:

CounterExample Guided Abstraction Refinement,
Interpolation, Satisfiability Modulo Theories [McMillan,
Rybalchenko, Björner, Poppea et al.]
Symbolic execution of CLP [Jaffar, Navas, Santosa et al.]
Static Analysis and Transformation of CLP [Gallagher, Albert,
DFPP et al.]

Methods Based on Horn Clauses with Constraints (CLP)

The VCs are a set of Horn clauses with constraints
or, equivalently, a constraint logic program:

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n)
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

VCs satisfiable iff false not in the least model of V .
Methods for proving the satisfiability of VCs in the framework
of CHC/CLP:

CounterExample Guided Abstraction Refinement,
Interpolation, Satisfiability Modulo Theories [McMillan,
Rybalchenko, Björner, Poppea et al.]
Symbolic execution of CLP [Jaffar, Navas, Santosa et al.]
Static Analysis and Transformation of CLP [Gallagher, Albert,
DFPP et al.]

A Transformation-based Method

Apply to V transformations that preserve the least model:

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Constrained fact
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.

Problem: How to transform V into V ′ automatically?

Some transformation strategies for programs over integers
[PEPM-13] and arrays [VMCAI-14].

A Transformation-based Method

Apply to V transformations that preserve the least model:

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Constrained fact
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.

Problem: How to transform V into V ′ automatically?

Some transformation strategies for programs over integers
[PEPM-13] and arrays [VMCAI-14].

A Transformation-based Method

Apply to V transformations that preserve the least model:

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Constrained fact
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.

Problem: How to transform V into V ′ automatically?

Some transformation strategies for programs over integers
[PEPM-13] and arrays [VMCAI-14].

A Transformation-based Method

Apply to V transformations that preserve the least model:

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Constrained fact
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.

Problem: How to transform V into V ′ automatically?

Some transformation strategies for programs over integers
[PEPM-13] and arrays [VMCAI-14].

Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program
the semantics of the imperative language (interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving transformation rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

Improving precision via iterated VC transformation
Verifying array programs via constraint replacement
Recursively defined properties
Experimental evaluation: The VeriMAP system

Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program
the semantics of the imperative language (interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving transformation rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

Improving precision via iterated VC transformation
Verifying array programs via constraint replacement
Recursively defined properties
Experimental evaluation: The VeriMAP system

Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program
the semantics of the imperative language (interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving transformation rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

Improving precision via iterated VC transformation

Verifying array programs via constraint replacement
Recursively defined properties
Experimental evaluation: The VeriMAP system

Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program
the semantics of the imperative language (interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving transformation rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

Improving precision via iterated VC transformation
Verifying array programs via constraint replacement

Recursively defined properties
Experimental evaluation: The VeriMAP system

Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program
the semantics of the imperative language (interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving transformation rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

Improving precision via iterated VC transformation
Verifying array programs via constraint replacement
Recursively defined properties

Experimental evaluation: The VeriMAP system

Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program
the semantics of the imperative language (interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving transformation rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

Improving precision via iterated VC transformation
Verifying array programs via constraint replacement
Recursively defined properties
Experimental evaluation: The VeriMAP system

CLP with integer constraints

A CLP clause is an implication c ∧∧ G→ H, written as:
H :- c, G.

where H is an atom, c is a constraint, and G is a conjunction
of atoms

A constraint is a conjunction of linear equalities/inequalities
over integers (p1 =p2, p1≥p2, p1>p2)

A CLP program is a set of CLP clauses

Semantics: least model of the program with the fixed
interpretation of constraints.

CLP with integer constraints

A CLP clause is an implication c ∧∧ G→ H, written as:
H :- c, G.

where H is an atom, c is a constraint, and G is a conjunction
of atoms

A constraint is a conjunction of linear equalities/inequalities
over integers (p1 =p2, p1≥p2, p1>p2)

A CLP program is a set of CLP clauses

Semantics: least model of the program with the fixed
interpretation of constraints.

CLP with integer constraints

A CLP clause is an implication c ∧∧ G→ H, written as:
H :- c, G.

where H is an atom, c is a constraint, and G is a conjunction
of atoms

A constraint is a conjunction of linear equalities/inequalities
over integers (p1 =p2, p1≥p2, p1>p2)

A CLP program is a set of CLP clauses

Semantics: least model of the program with the fixed
interpretation of constraints.

CLP with integer constraints

A CLP clause is an implication c ∧∧ G→ H, written as:
H :- c, G.

where H is an atom, c is a constraint, and G is a conjunction
of atoms

A constraint is a conjunction of linear equalities/inequalities
over integers (p1 =p2, p1≥p2, p1>p2)

A CLP program is a set of CLP clauses

Semantics: least model of the program with the fixed
interpretation of constraints.

Imperative Programs over Integers

We consider an imperative language with integer variables,
assignment, if-else, while-loop, and goto.

Program increase:

while(x < n){
x=x+1;
y=x+y;

}

Partial Correctness Specification

{x = 0 ∧ y = 0} increase {x ≤ y}

Encoding of an Imperative Program into CLP

A program is represented as a set of atoms at(label, command).

Program increase:

`0 : while(x < n){
`1 : x=x+1;
`2 : y=x+y;
`3 : }

CLP encoding of increase:

at(`0, ite(less(int(x), int(n)), `1, `h)).
at(`1, asgn(int(x), plus(int(x), int(1)))).
at(`2, asgn(int(y), plus(int(x), int(y)))).
at(`3, goto(`0)).
at(`h, halt).

CLP encoding of the operational semantics (1)

A transition semantics is defined by:
a set of configurations, i.e., a CLP term: cf(C, S)
where:

C is a labeled command

S is a store,
i.e., a list of [variable identifier, value] pairs:

[[int(x), 2], [int(y), 3]]

a transition relation: tr(cf(C, S), cf(C1, S1))

CLP encoding of the operational semantics (2)

L: Id = Expr tr(cf(cmd(L,asgn(Id,Expr)),S), cf(cmd(L1,C1),S1)) :-
aeval(Expr,S,V), evaluate expression
update(Id,V,S,S1), update store
nextlabel(L,L1), next label
at(L1,C1). next command

L: if (Expr) { tr(cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :-
beval(Expr,S), expression is true

goto L1: at(L1,C). next command
} else tr(cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :-

beval(not(Expr),S), expression is false
goto L2 at(L2,C). next command

}

L: goto L1 tr(cf(cmd(L,goto(L1)),S), cf(C,S)) :- at(L1,C).
at(L1,C). next command

CLP encoding of (in)correctness
Given the specification {ϕinit} prog {ψ} define ϕerror ≡ ¬ψ

Definition (Program Incorrectness)
A program prog is incorrect w.r.t. ϕinit and ϕerror if from an initial
configuration satisfying ϕinit it is possible to reach a final
configuration satisfying ϕerror .
Otherwise, program prog is correct.

Definition (CLP encoding of incorrectness: The interpreter Int)
incorrect :- initConf(X), reach(X).
reach(X) :- tr(X,Y), reach(Y). | reachability
reach(X) :- errorConf(X). |
initConf(X) ≡ X is a configuration satisfying ϕinit
errorConf(X) ≡ X is a configuration satisfying ϕerror

Theorem (Correctness of Encoding)
prog is correct iff incorrect 6∈ M(Int) (the least model of Int)

CLP encoding of (in)correctness
Given the specification {ϕinit} prog {ψ} define ϕerror ≡ ¬ψ

Definition (Program Incorrectness)
A program prog is incorrect w.r.t. ϕinit and ϕerror if from an initial
configuration satisfying ϕinit it is possible to reach a final
configuration satisfying ϕerror .
Otherwise, program prog is correct.

Definition (CLP encoding of incorrectness: The interpreter Int)
incorrect :- initConf(X), reach(X).
reach(X) :- tr(X,Y), reach(Y). | reachability
reach(X) :- errorConf(X). |
initConf(X) ≡ X is a configuration satisfying ϕinit
errorConf(X) ≡ X is a configuration satisfying ϕerror

Theorem (Correctness of Encoding)
prog is correct iff incorrect 6∈ M(Int) (the least model of Int)

CLP encoding of (in)correctness
Given the specification {ϕinit} prog {ψ} define ϕerror ≡ ¬ψ

Definition (Program Incorrectness)
A program prog is incorrect w.r.t. ϕinit and ϕerror if from an initial
configuration satisfying ϕinit it is possible to reach a final
configuration satisfying ϕerror .
Otherwise, program prog is correct.

Definition (CLP encoding of incorrectness: The interpreter Int)
incorrect :- initConf(X), reach(X).
reach(X) :- tr(X,Y), reach(Y). | reachability
reach(X) :- errorConf(X). |
initConf(X) ≡ X is a configuration satisfying ϕinit
errorConf(X) ≡ X is a configuration satisfying ϕerror

Theorem (Correctness of Encoding)
prog is correct iff incorrect 6∈ M(Int) (the least model of Int)

Running Example: increase (Cont’d)

Partial Correctness Specification
{x = 0 ∧ y = 0} ϕinit
increase
{x ≤ y} ψ

{x > y} ϕerror ≡ ¬ψ

Initial and Error Configurations
initConf(cf(cmd(0,ite(...)), [[int(x),X],[int(y),Y],[int(n),N]]))

:- X=0, Y=0. ϕinit
errorConf(cf(cmd(h,halt), [[int(x),X],[int(y),Y],[int(n),N]]))

:- X>Y. ϕerror

Running Example: increase (Cont’d)

Partial Correctness Specification
{x = 0 ∧ y = 0} ϕinit
increase
{x ≤ y} ψ

{x > y} ϕerror ≡ ¬ψ

Initial and Error Configurations
initConf(cf(cmd(0,ite(...)), [[int(x),X],[int(y),Y],[int(n),N]]))

:- X=0, Y=0. ϕinit
errorConf(cf(cmd(h,halt), [[int(x),X],[int(y),Y],[int(n),N]]))

:- X>Y. ϕerror

The Transformation-based Verification Method

Interpreter: Int

Verification Conditions: VCs

?

prog correct prog incorrect

Specialize Int w.r.t. prog (removal of the interpreter)

Propagate ϕinit or ϕerror

prog correct if no constrained facts appear in the VCs.
prog incorrect if the fact incorrect. appears in the VCs.

Unfold/Fold Program Transformation

[Burstall-Darlington 77,Tamaki-Sato 84, Etalle-Gabbrielli 96]
P

P1

P2

TransfP

R

R

R

R

• transformation rules:
R ∈ { Definition,

Unfolding,
Folding,
Clause Removal}

• the transformation rules preserve the least model:

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

• the rules must be guided by a strategy.

Unfold/Fold Program Transformation

[Burstall-Darlington 77,Tamaki-Sato 84, Etalle-Gabbrielli 96]
P

P1

P2

TransfP

R

R

R

R

• transformation rules:
R ∈ { Definition,

Unfolding,
Folding,
Clause Removal}

• the transformation rules preserve the least model:

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

• the rules must be guided by a strategy.

Unfold/Fold Program Transformation

[Burstall-Darlington 77,Tamaki-Sato 84, Etalle-Gabbrielli 96]
P

P1

P2

TransfP

R

R

R

R

• transformation rules:
R ∈ { Definition,

Unfolding,
Folding,
Clause Removal}

• the transformation rules preserve the least model:

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

• the rules must be guided by a strategy.

Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant)

newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given H :- c, A, G
A :- d1, G1, . . . , A :- dm, Gm

derive H :- c, d1, G1, G, . . . , H :- c, dm, Gm, G

R3. Folding. Matching a predicate definition (e.g., a loop invariant)

given H :- d, A, G
newp(X) :- c, A and d→ c

derive H :- d, newp(X), G

R4. Clause Removal. Removal of clauses with unsatisfiable constraint or
subsumed by others

Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant)

newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given H :- c, A, G
A :- d1, G1, . . . , A :- dm, Gm

derive H :- c, d1, G1, G, . . . , H :- c, dm, Gm, G

R3. Folding. Matching a predicate definition (e.g., a loop invariant)

given H :- d, A, G
newp(X) :- c, A and d→ c

derive H :- d, newp(X), G

R4. Clause Removal. Removal of clauses with unsatisfiable constraint or
subsumed by others

Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant)

newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given H :- c, A, G
A :- d1, G1, . . . , A :- dm, Gm

derive H :- c, d1, G1, G, . . . , H :- c, dm, Gm, G

R3. Folding. Matching a predicate definition (e.g., a loop invariant)

given H :- d, A, G
newp(X) :- c, A and d→ c

derive H :- d, newp(X), G

R4. Clause Removal. Removal of clauses with unsatisfiable constraint or
subsumed by others

Rules for Transforming CLP Programs

R1. Definition. Introducing a new predicate (e.g., a loop invariant)

newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given H :- c, A, G
A :- d1, G1, . . . , A :- dm, Gm

derive H :- c, d1, G1, G, . . . , H :- c, dm, Gm, G

R3. Folding. Matching a predicate definition (e.g., a loop invariant)

given H :- d, A, G
newp(X) :- c, A and d→ c

derive H :- d, newp(X), G

R4. Clause Removal. Removal of clauses with unsatisfiable constraint or
subsumed by others

The Transformation Strategy

Transform(P)
TransfP = ∅;
Defs = {incorrect :- initConf(X), reach(X)};
while ∃cl ∈ Defs do

Cls = Unfold(cl);
Cls = ClauseRemoval(Cls);
Defs = (Defs − {cl}) ∪ Define(Cls);
TransfP = TransfP ∪ Fold(Cls, Defs);

od

Theorem (Termination and Correctness of the Transformation Strategy)

Transform(P) terminates for all P;

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

The Transformation Strategy

Transform(P)
TransfP = ∅;
Defs = {incorrect :- initConf(X), reach(X)};
while ∃cl ∈ Defs do

Cls = Unfold(cl);
Cls = ClauseRemoval(Cls);
Defs = (Defs − {cl}) ∪ Define(Cls);
TransfP = TransfP ∪ Fold(Cls, Defs);

od

Theorem (Termination and Correctness of the Transformation Strategy)

Transform(P) terminates for all P;

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

Generalization Strategies

The most critical transformation step during the unfold/fold
transformation strategy is the introduction of new predicate
definitions to be used for folding.

Given p(X) :- c(X,Y), q(Y).

Introduce newp(Y) :- d(Y), q(Y).

where c(X, Y)→ d(Y) (d(Y) is a generalization of c(X,Y))

and fold: p(X) :- c(X,Y), newp(Y).

Generalization strategies based on widening and convex-hull of
linear constraints.

Generalization Strategies

The most critical transformation step during the unfold/fold
transformation strategy is the introduction of new predicate
definitions to be used for folding.

Given p(X) :- c(X,Y), q(Y).

Introduce newp(Y) :- d(Y), q(Y).

where c(X, Y)→ d(Y) (d(Y) is a generalization of c(X,Y))

and fold: p(X) :- c(X,Y), newp(Y).

Generalization strategies based on widening and convex-hull of
linear constraints.

Generalization Strategies

The most critical transformation step during the unfold/fold
transformation strategy is the introduction of new predicate
definitions to be used for folding.

Given p(X) :- c(X,Y), q(Y).

Introduce newp(Y) :- d(Y), q(Y).

where c(X, Y)→ d(Y) (d(Y) is a generalization of c(X,Y))

and fold: p(X) :- c(X,Y), newp(Y).

Generalization strategies based on widening and convex-hull of
linear constraints.

Generating Verification Conditions via Specialization

The specialization of Int w.r.t. prog removes all references to:
tr (i.e., the operational semantics of the imperative language)
at (i.e., the encoding of prog)

The Specialized Interpreter for increase (Verification Conditions)
incorrect :- X=0, Y=0, new1(X, Y, N).
new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).
new1(X,Y,N) :- X≥N, X>Y.

New predicates correspond to a subset of the program points:
new1(X,Y,N) :- reach(cf(cmd(0,ite(...)),

[[int(x),X],[int(y),Y],[int(n),N]])).

The fact incorrect. is not in VCs: we cannot infer that increase is
incorrect.
A constrained fact is in VCs: we cannot infer that increase is correct.

Generating Verification Conditions via Specialization

The specialization of Int w.r.t. prog removes all references to:
tr (i.e., the operational semantics of the imperative language)
at (i.e., the encoding of prog)

The Specialized Interpreter for increase (Verification Conditions)
incorrect :- X=0, Y=0, new1(X, Y, N).
new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).
new1(X,Y,N) :- X≥N, X>Y.

New predicates correspond to a subset of the program points:
new1(X,Y,N) :- reach(cf(cmd(0,ite(...)),

[[int(x),X],[int(y),Y],[int(n),N]])).

The fact incorrect. is not in VCs: we cannot infer that increase is
incorrect.
A constrained fact is in VCs: we cannot infer that increase is correct.

Generating Verification Conditions via Specialization

The specialization of Int w.r.t. prog removes all references to:
tr (i.e., the operational semantics of the imperative language)
at (i.e., the encoding of prog)

The Specialized Interpreter for increase (Verification Conditions)
incorrect :- X=0, Y=0, new1(X, Y, N).
new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).
new1(X,Y,N) :- X≥N, X>Y.

New predicates correspond to a subset of the program points:
new1(X,Y,N) :- reach(cf(cmd(0,ite(...)),

[[int(x),X],[int(y),Y],[int(n),N]])).

The fact incorrect. is not in VCs: we cannot infer that increase is
incorrect.
A constrained fact is in VCs: we cannot infer that increase is correct.

Generating Verification Conditions via Specialization

The specialization of Int w.r.t. prog removes all references to:
tr (i.e., the operational semantics of the imperative language)
at (i.e., the encoding of prog)

The Specialized Interpreter for increase (Verification Conditions)
incorrect :- X=0, Y=0, new1(X, Y, N).
new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).
new1(X,Y,N) :- X≥N, X>Y.

New predicates correspond to a subset of the program points:
new1(X,Y,N) :- reach(cf(cmd(0,ite(...)),

[[int(x),X],[int(y),Y],[int(n),N]])).

The fact incorrect. is not in VCs: we cannot infer that increase is
incorrect.
A constrained fact is in VCs: we cannot infer that increase is correct.

Propagation of ϕinit

The verification conditions VCs are specialized w.r.t. the initial
configuration.

Specialized Verification Conditions for increase
. . . propagating the constraint X=0, Y=0.

incorrect :- N>0, X1=1, Y1=1, new2(X1, Y1, N).
new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N) :- X1≥1, Y1≥X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y≥1, N>0, X≥N, X>Y.

The fact incorrect. is not in VCs: we cannot infer that increase is
incorrect.
A constrained fact is in VCs: we cannot infer that increase is correct.

Introduction of new definitions by generalization

1. incorrect :- X=0, Y=0, new1(X,Y,N).

2. new2(X,Y,N) :- X=1, Y=1, N>0, new1(X,Y,N).

Candidate new definition:
new3(Xr,Yr,Nr) :- Xr=1, Yr=1, X=2, Y=3, N>1, new1(X,Y,N).

The transformation strategy might introduce infinitely many new
definitions. Generalization is needed.

Generalization (based on widening):
3. new3(X,Y,N) :- X≥1, Y≥1, N>0, new1(X,Y,N).

Program Reversal

P:
incorrect :- a(X), p(X).
p(X) :- c(X,Y), p(Y).
p(X) :- b(X).

Reversal

RevP:
incorrect :- b(X), p(X).
p(Y) :- c(X,Y), p(X).
p(X) :- a(X).

incorrect ∈ M(P) iff incorrect ∈ M(RevP)

Propagation of ϕerror

Specialized Verification Conditions for increase
incorrect :- N>0, X1=1, Y1=1, new2(X1, Y1, N).
new2(X, Y, N):- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N):- X1≥1, Y1≥X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y≥1, N>0, X≥N, X>Y.

Reversed VCs
incorrect :- Y≥1, N>0, X≥N, X>Y, new3(X, Y, N).
new3(X1, Y1, N) :- X1≥1, Y1≥X1, X<N, X1=X+1, Y1=X1+Y, new3(X, Y, N).
new3(X1, Y1, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new2(X, Y, N).
new2(X1, Y1, N) :- N>0, X1=1, Y1=1.

Specialized VCs
by propagating the constraint Y≥1, N>0, X≥N, X>Y.
incorrect :- Y≥1, N>0, X≥N, X>Y, new4(X, Y, N).

No constrained facts: increase is correct.

VeriMAP

The VeriMAP tool http://map.uniroma2.it/VeriMAP
[DFPP PEPM 2013, VMCAI 2014, TACAS 2014]

C-to-CLP
Translator

Unfold/Fold
Transformer Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint
Solvers

Unfolding
Operators

Verification
Conditions
Generator

http://map.uniroma2.it/VeriMAP

Experimental Evaluation
216 examples taken from: DAGGER, TRACER, InvGen, and TACAS 2013
Software Verification Competition.

VeriMAP ARMC HSF(C) TRACER
1 correct answers 185 138 160 103
2 safe problems 154 112 138 85
3 unsafe problems 31 26 22 18
4 incorrect answers 0 9 4 14
5 false alarms 0 8 3 14
6 missed bugs 0 1 1 0
7 errors 0 18 0 22
8 timed-out problems 31 51 52 77
9 total score 339 (0) 210 (-40) 278 (-20) 132 (-56)

10 total time 10717.34 15788.21 15770.33 23259.19
11 average time 57.93 114.41 98.56 225.82

ARMC [Podelski, Rybalchenko PADL 2007]
HSF(C) [Grebenshchikov et al. TACAS 2012]
TRACER [Jaffar, Murali, Navas, Santosa CAV 2012]

Improving Precision by Iteration

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

y
(c

u
m

u
la

ti
v
e

p
re

ci
si

o
n

)

x (iterations)

VeriMAP(GenPH)

VeriMAP(GenP)

VeriMAP(GenMH)

VeriMAP(GenM)

Verifying Array Programs

An Example: Array Initialization.

Program SeqInit
i=1;
while(i < n) {

a[i]=a[i-1]+1;
i=i+1;

}

An Execution
[4,_,_,_] =⇒ [4, 5,_,_] =⇒ [4, 5, 6,_] =⇒ [4, 5, 6, 7]

Partial Correctness Specification
{i≥0 ∧∧ n=dim(a) ∧∧ n≥1}
SeqInit
{∀j (0≤ j ∧∧ j + 1<n → a[j]<a[j+1])}

Verifying Array Programs

An Example: Array Initialization.

Program SeqInit
i=1;
while(i < n) {

a[i]=a[i-1]+1;
i=i+1;

}

An Execution
[4,_,_,_] =⇒ [4, 5,_,_] =⇒ [4, 5, 6,_] =⇒ [4, 5, 6, 7]

Partial Correctness Specification
{i≥0 ∧∧ n=dim(a) ∧∧ n≥1}
SeqInit
{∀j (0≤ j ∧∧ j + 1<n → a[j]<a[j+1])}

Verifying Array Programs

An Example: Array Initialization.

Program SeqInit
i=1;
while(i < n) {

a[i]=a[i-1]+1;
i=i+1;

}

An Execution
[4,_,_,_] =⇒ [4, 5,_,_] =⇒ [4, 5, 6,_] =⇒ [4, 5, 6, 7]

Partial Correctness Specification
{i≥0 ∧∧ n=dim(a) ∧∧ n≥1}
SeqInit
{∀j (0≤ j ∧∧ j + 1<n → a[j]<a[j+1])}

CLP encoding of the operational semantics (3)

The transition for array assignment

command: L : a[ie] = e

store: S

transition:
tr(cf(cmd(L,asgn(elem(A,IE),E)),S), source configuration

cf(cmd(L1,C),S1)) :- target configuration
eval(IE,S,I), evaluate index expr
eval(E,S,V), evaluate expression
lookup(S,array(A),FA), get array from store
write(FA,I,V,FA1), update array
update(S,array(A),FA1,S1), update store
nextlab(L,L1), next label
at(L1,C). next command

Running Example: Array Initialization (Cont’d)

Partial Correctness Specification
{i≥0 ∧∧ n=dim(a) ∧∧ n≥1} ϕinit
SeqInit
{∀j (0≤ j ∧∧ j + 1<n → a[j]<a[j+1])} ψ
{∃j (0≤ j ∧∧ j + 1<n ∧∧ a[j]≥a[j+1])} ϕerror ≡ ¬ψ

CLP encoding of incorrectness
incorrect :- initConf(X), reach(X).
reach(Y) :- tr(X,Y), reach(X).
reach(Y) :- errorConf(Y).
initConf(cf(firstCmd, [[int(i), I], [int(n), N], [array(a), A]])

:- I≥0, dim(A, N), N≥1. | ϕinit
errorConf(cf(haltCmd, [[int(i), I], [int(n), N], [array(a), A]])

:- 0≤J, J+1<N, J1=J+1, AJ≥AJ1, | ϕerror
read(A, J, AJ), read(A, J1, AJ1). |

CLP with array constraints

Array constraints

read(a, i, v) (the i-th element of array a is v)
write(a, i, v, b)
(array b is equal to array a except that its i-th element is v)
dim(a, n) (the dimension of a is n)

Theory of Arrays A

Array congruence

(AC) I=J, read(A, I, U), read(A, J, V) → U=V

Read-over-Write
(RoW1) I=J, write(A, I, U, B), read(B, J, V) → U=V
(RoW2) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

The Constraint Replacement Rule

R5. Constraint Replacement :

If A |= ∀ (c0↔(c1 ∨∨ . . . ∨∨ cn)), where A is the Theory of Arrays

Then replace H :- c0, d, G
by H :- c1, d, G, ..., H :- cn, d, G

Constraint Replacements using the Theory of Arrays (1)

Array congruence

(AC) I=J, read(A, I, U), read(A, J, V) → U=V

[AC1] replace: I=J, read(A, I, U), read(A, J, V)
by: I=J, read(A, I, U), U=V

[AC2] replace: U 6=V, read(A, I, U), read(A, J, V)
by: U 6=V, read(A, I, U), read(A, J, V), I 6=J

Constraint Replacements using the Theory of Arrays (2)

Read-over-Write
(RoW1) I=J, write(A, I, U, B), read(B, J, V) → U=V
(RoW2) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

[RoW1] replace: I=J, write(A, I, U, B), read(B, J, V)
by: I=J, write(A, I, U, B), U=V

[RoW2] replace: I 6=J, write(A, I, U, B), read(B, J, V)
by: I 6=J, write(A, I, U, B), read(A, J, V)

[RoW12] replace: write(A, I, U, B), read(B, J, V)
by: I=J, write(A, I, U, B), U=V
and I 6=J, write(A, I, U, B), read(A, J, V)

The Transformation Strategy with Constraint Replacement

Transform(P)
TransfP = ∅;
Defs = {incorrect :- initConf(X), reach(X)};
while ∃cl ∈ Defs do

Cls = Unfold(cl);
Cls = ConstraintReplacement(Cls);
Cls = ClauseRemoval(Cls);
Defs = (Defs − {cl}) ∪ Define(Cls);
TransfP = TransfP ∪ Fold(Cls, Defs);

od

Theorem (Termination and Correctness of the Transformation Strategy)

Transform(P) terminates for all P;

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

The Transformation Strategy with Constraint Replacement

Transform(P)
TransfP = ∅;
Defs = {incorrect :- initConf(X), reach(X)};
while ∃cl ∈ Defs do

Cls = Unfold(cl);
Cls = ConstraintReplacement(Cls);
Cls = ClauseRemoval(Cls);
Defs = (Defs − {cl}) ∪ Define(Cls);
TransfP = TransfP ∪ Fold(Cls, Defs);

od

Theorem (Termination and Correctness of the Transformation Strategy)

Transform(P) terminates for all P;

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

Applying the Transformation Strategy

Generation of Verification Conditions;
Reversal;
Propagation of the Error Property.

Transformed VCs for SeqInit
incorrect :- J1=J+1, J≥0, J1<I, AJ≥AJ1, D=I−1, N=I+1, Y=X+1,

read(A, J, AJ), read(A, J1, AJ1), read(A, D, X), write(A, I, Y, B),
new1(I, N, A).

new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2,
I≥1, Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

new2(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

No constrained facts: the program SeqInit is correct.

Experimental Evaluation: Array Programs

Program GenW GenWD GenS GenSD
init unknown 0.06 0.10 0.08
init-partial unknown 0.06 0.07 0.08
init-non-constant unknown 0.06 0.22 0.22
init-sequence unknown 0.80 unknown 1.20
copy unknown 0.27 0.33 0.29
copy-partial unknown 0.29 0.34 0.34
copy-reverse unknown 0.27 0.46 0.45
max unknown 0.31 0.24 0.33
sum unknown 0.68 1.14 1.12
difference unknown 0.66 1.15 1.11
find 0.25 0.43 0.46 0.45
first-not-null 0.38 0.41 0.42 0.42
find-first-non-null 1.24 1.87 1.94 1.93
partition 0.06 0.11 0.14 0.12
insertionsort-inner 0.21 0.26 0.45 0.43
bubblesort-inner 2.46 2.71 2.45 2.75
selectionsort-inner 7.20 6.40 7.23 7.16

precision 7 17 16 17
total time 11.80 15.65 17.14 18.48

average time 1.69 0.92 1.07 1.09

Proving recursively defined properties (1)

The GCD Program
x=m; y=n;
while(x != y) {

if(x > y) x=x-y;
else y=y-x;

}
z=x;
// z is the GCD of m and n

Initial and error properties
ϕinit(m,n) ≡ m≥1 ∧∧ n≥1

ϕerror (m,n,z) ≡
∃d (gcd(m, n, d) ∧∧ d 6=z)

GCD property
gcd(X, Y, D) :- X>Y, X1=X−Y, gcd(X1, Y, D).
gcd(X, Y, D) :- X<Y, Y1=Y−X, gcd(X, Y1, D).
gcd(X, Y, D) :- X=Y, Y=D.

Proving recursively defined properties (2)

CLP encoding of GCD
incorrect :- initConf(X), reach(X).
reach(Y) :- tr(X,Y), reach(X).
reach(Y) :- errorConf(Y).
initConf(cf(cmd(0, asgn(int(x), int(m))),

[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]])) :-
M≥1, N≥1. ϕinit(m,n)

errorConf(cf(cmd(h, halt),
[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]])) :-
gcd(M, N, D), D 6=Z. ϕerror (m,n,z)

Generation of VCs; Reversal; Propagation of ϕerror (m,n,z)

Transformed GCD
incorrect :- M≥1, N≥1, M>N, X1=M−N, Z 6=D, new2(M, N, X1, N, Z, D).
incorrect :- M≥1, N≥1, M<N, Y1=N−M, Z 6=D, new2(M, N, M, Y1, Z, D).
new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X>Y, X1=X−Y, Z 6=D, new2(M, N, X1, Y, Z).
new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X<Y, Y1=Y−X, Z 6=D, new2(M, N, X, Y1, Z).

No constrained fact: The gcd program is correct.

Why Use CLP Transformation for Verification?

CLP transformation can be used both for generating VCs and
for proving their satisfiability

CLP transformation is parametric with respect to:
programming language and its operational semantics
properties and proof rules
theory of data structures

The input and the output of transformation are semantically
equivalent CLP programs.

incremental verification
composition of transformations for refining verification

Why Use CLP Transformation for Verification?

CLP transformation can be used both for generating VCs and
for proving their satisfiability

CLP transformation is parametric with respect to:
programming language and its operational semantics
properties and proof rules
theory of data structures

The input and the output of transformation are semantically
equivalent CLP programs.

incremental verification
composition of transformations for refining verification

Why Use CLP Transformation for Verification?

CLP transformation can be used both for generating VCs and
for proving their satisfiability

CLP transformation is parametric with respect to:
programming language and its operational semantics
properties and proof rules
theory of data structures

The input and the output of transformation are semantically
equivalent CLP programs.

incremental verification
composition of transformations for refining verification

Future Work

Recursive functions
More data structure theories (lists, heaps, etc.)
Other programming languages, properties, proof rules

Thanks for your attention!

Try the VeriMAP tool http://map.uniroma2.it/VeriMAP

http://map.uniroma2.it/VeriMAP

