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Proving Partial Correctness

Given the program prog :

x =0; y =0;
while (x<n) {x =x+1; y =y+2}

and the specification:

{n≥1} prog {y>x}

Generate the verification conditions (VCs):

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Initialization
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n) Loop invariant
3. P(x , y , n) ∧∧ x≥n → y>x Exit

and prove they are satisfiable, i.e., we can find an interpretation for
P that makes the VCs true.
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. . . Proving Partial Correctness

The interpretation

P(x , y , n) ≡ (x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x

makes the VCs true

1’. x =0 ∧∧ y =0 ∧∧ n≥1 → (x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x
2’. ((x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x) ∧∧ x<n

→ (x + 1=0 ∧∧ y + 2=0 ∧∧ n≥1) ∨∨ y + 2>x + 1
3’. ((x =0 ∧∧ y =0 ∧∧ n≥1) ∨∨ y>x) ∧∧ x≥n → y>x

and hence the specification {n≥1} prog {y>x} is valid.

Problem: How to find the interpretation for P automatically?
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Proving Satisfiability of Verification Conditions

The VCs are a set of Horn clauses with constraints
or, equivalently, a constraint logic program V :

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Constrained fact
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n) Rule
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false Query

The VCs are satisfiable iff false not in the least model of V .
Methods for proving the satisfiability of VCs within CHC/CLP:

CounterExample Guided Abstraction Refinement,
Interpolation, Satisfiability Modulo Theories
Symbolic execution of CLP
Static Analysis and Transformation of CLP



Proving Satisfiability of Verification Conditions

The VCs are a set of Horn clauses with constraints
or, equivalently, a constraint logic program V :

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n) Constrained fact
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n) Rule
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false Query

The VCs are satisfiable iff false not in the least model of V .
Methods for proving the satisfiability of VCs within CHC/CLP:

CounterExample Guided Abstraction Refinement,
Interpolation, Satisfiability Modulo Theories
Symbolic execution of CLP
Static Analysis and Transformation of CLP



A Transformation-based Method

Apply transformations that preserve the least model to V :

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n)
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.
Problem: How to transform V into V ′ automatically?
Some work done for programs over integers [De Angelis et al.
PEPM-13].
This work: Design automatic transformation strategies of VCs
for programs over arrays.



A Transformation-based Method

Apply transformations that preserve the least model to V :

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n)
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.
Problem: How to transform V into V ′ automatically?
Some work done for programs over integers [De Angelis et al.
PEPM-13].
This work: Design automatic transformation strategies of VCs
for programs over arrays.



A Transformation-based Method

Apply transformations that preserve the least model to V :

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n)
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.
Problem: How to transform V into V ′ automatically?
Some work done for programs over integers [De Angelis et al.
PEPM-13].
This work: Design automatic transformation strategies of VCs
for programs over arrays.



A Transformation-based Method

Apply transformations that preserve the least model to V :

1. x =0 ∧∧ y =0 ∧∧ n≥1 → P(x , y , n)
2. P(x , y , n) ∧∧ x<n → P(x + 1, y + 2, n)
4. P(x , y , n) ∧∧ x≥n ∧∧ y≤x → false

and derive the equisatisfiable V ′:

5. Q(x , y , n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x , y , n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

No constrained facts: V ′ satisfiable with Q(x , y , n) ≡ false.
Problem: How to transform V into V ′ automatically?
Some work done for programs over integers [De Angelis et al.
PEPM-13].
This work: Design automatic transformation strategies of VCs
for programs over arrays.



Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program (integer and array variables)
the semantics of the imperative language (i.e., the interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving unfold/fold rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

The verification method at work: Sequence Array Initialization
Experimental evaluation



Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program (integer and array variables)
the semantics of the imperative language (i.e., the interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving unfold/fold rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

The verification method at work: Sequence Array Initialization
Experimental evaluation



Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program (integer and array variables)
the semantics of the imperative language (i.e., the interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving unfold/fold rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

The verification method at work: Sequence Array Initialization
Experimental evaluation



Outline of the Talk

Constraint Logic Programming as a metalanguage for
representing

the imperative program (integer and array variables)
the semantics of the imperative language (i.e., the interpreter)
the property to be verified

Verification method based on CLP program transformation
Semantics-preserving unfold/fold rules and strategies
VC generation by specialization of the interpreter
VC transformation by propagation of the property to be verified

The verification method at work: Sequence Array Initialization
Experimental evaluation



CLP with integer and array constraints

A CLP clause is an implication c ∧∧ G→ H, written as:
H :- c, G.

where H is an atom, c is a constraint, and G is a conjunction
of atoms
A constraint is a conjunction of:

equalities/inequalities over integers (p1 =p2, p1≥p2, p1>p2)
array constraints:

read(a, i, v) (the i-th element of array a is v)
write(a, i, v, b)
(array b is equal to array a except that its i-th element is v)
dim(a, n) (the dimension of a is n)

A CLP program is a set of CLP clauses
Semantics: least model of the program with the fixed
interpretation of constraints.
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Running Example: Array Initialization

Program SeqInit
i=1;
while(i < n) {

a[i]=a[i-1]+1;
i=i+1;

}

An Execution
[4,_,_,_] =⇒ [4, 5,_,_] =⇒ [4, 5, 6,_] =⇒ [4, 5, 6, 7]

Partial Correctness Specification
{i≥0 ∧∧ n=dim(a) ∧∧ n≥1}
SeqInit
{∀j (0≤ j ∧∧ j + 1<n → a[j]<a[j+1])}
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CLP encoding of imperative programs

Program SeqInit
i=1;
while(i < n) {

a[i]=a[i-1]+1;
i=i+1;

}

CLP encoding of program SeqInit
A set of at(label, command) facts. while commands are replaced
by ite and goto. elem(a,i) stands for a[i].

at(`0, asgn(i, 1))).
at(`1, ite(less(i, n), `2, `h)).
at(`2, asgn(elem(a, i), plus(elem(a, minus(i, 1)), 1))).
at(`3, asgn(i, plus(i, 1))).
at(`4, goto(`1)).
at(`h, halt).
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CLP encoding of the operational semantics (1)

A transition semantics for the imperative language is defined by:
a set of configurations, i.e., a CLP term: cf(C, D)
where:

C is a command

D is an environment,
i.e., a list of [variable identifier, value] pairs:

[[int(i), 4], [array(a), [4, 5, 6, 7]]]

a transition relation: tr(cf(C, D), cf(C1, D1))



CLP encoding of the operational semantics (2)

The transition for array assignment

command: L : a[ie] = e
environment: D

transition:
tr(cf(cmd(L,asgn(elem(A,IE),E)),D), source configuration

cf(cmd(L1,C),D1)) :- target configuration
eval(IE,D,I), evaluate index expr
eval(E,D,V), evaluate expression
lookup(D,array(A),FA), get array from env
write(FA,I,V,FA1), update array
update(D,array(A),FA1,D1), update environment
nextlab(L,L1), next label
at(L1,C). next command



CLP encoding of (in)correctness
Given the Specification {ϕinit} prog {ψ} define ϕerror ≡ ¬ψ

Definition (Partial Correctness)
A program prog is correct w.r.t. ϕinit and ϕerror if

from any initial configuration satisfying ϕinit
no final configuration satisfying ϕerror can be reached.

Otherwise, program P is incorrect.

Definition (CLP encoding of incorrectness)
incorrect :- errorConf(X), reach(X). incorrectness
reach(Y) :- tr(X,Y), reach(X). reachability
reach(Y) :- initConf(Y).
errorConf(X) ≡ X is a configuration satisfying ϕerror
initConf(Y) ≡ Y is a configuration satisfying ϕinit

Theorem (Correctness of Encoding)
prog is correct iff incorrect 6∈ M(Int) (the least model of Int)
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Running Example: Array Initialization (Cont’d)

Partial Correctness Specification
{i≥0 ∧∧ n=dim(a) ∧∧ n≥1} ϕinit
SeqInit
{∀j (0≤ j ∧∧ j + 1<n → a[j]<a[j+1])} ¬ϕerror
{∃j (0≤ j ∧∧ j + 1<n ∧∧ a[j]≥a[j+1])} ϕerror

CLP encoding of ϕinit and ϕerror

phiInit(I, N, A) :- I≥0, dim(A, N), N≥1.
phiError(N, A) :- J≥0, J+1<N, J1=J+1, AJ≥AJ1,

read(A, J, AJ), read(A, J1, AJ1).



The Transformation-based Verification Method

Interpreter: Int

Verification Conditions: V

?

prog correct prog incorrect

Specialize Int w.r.t. prog (removal of the interpreter)

Propagate ϕinit or ϕerror

prog correct if no constrained facts appear in the VCs.
prog incorrect if the fact incorrect. appears in the VCs.



Unfold/Fold Program Transformation

P

P1

P2

TransfP

R

R

R

R

• transformation rules:
R ∈ { Definition,

Unfolding,
Folding,
Clause Removal,
Constraint Replacement}

• the transformation rules preserve the semantics:

incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

• the rules must be guided by a strategy.
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Rules for Transforming CLP Programs (1)

R1. Definition. Introducing a new predicate (e.g., a loop invariant)

newp(X) :- c, A

R2. Unfolding. A symbolic evaluation step (resolution)

given H :- c, A, G
A :- d1, G1, . . . , A :- dm, Gm

derive H :- c, d1, G1, G, . . . , H :- c, dm, Gm, G

R3. Folding. Matching a predicate definition (e.g., a loop invariant)

given H :- d, A, G
newp(X) :- c, A and d→ c

derive H :- d, newp(X), G

R4. Clause Removal. Removal of clauses with unsatisfiable constraint or
subsumed by others
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Rules for Transforming CLP Programs (2)

R5. Constraint Replacement :

If A |= ∀ (c0↔(c1 ∨∨ . . . ∨∨ cn)), where A is the Theory of Arrays with
dimension

Then replace H :- c0, d, G
by H :- c1, d, G, ..., H :- cn, d, G



The Unfold/Fold Transformation strategy

Transform(P)
TransfP = ∅;
Defs = {incorrect :- errorConf(X), reach(X)};
while ∃q ∈ Defs do

Cls = Unfold(q);
Cls = ConstraintReplacement(Cls);
Cls = ClauseRemoval(Cls);
Defs = (Defs − {q}) ∪ Define(Cls);
TransfP = TransfP ∪ Fold(Cls, Defs);

od

Theorem (Correctness of the Transformation Strategy)
incorrect ∈ M(P) iff incorrect ∈ M(TransfP)
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Generating Verification Conditions via Specialization

The specialization of Int w.r.t. prog removes all references to:
tr (i.e., the operational semantics of the imperative language)
at (i.e., the encoding of prog)

The Specialized Interpreter for SeqInit (Verification Conditions V)
incorrect :- J≥0, J+1<N, J1=J+1, AJ≥AJ1, N≤I,

read(A, J, AJ), read(A, J1, AJ1), p(I, N, A).
p(I1, N, B) :- 1≤I, I<N, D=I−1, I1=I+1, V=U+1,

read(A, D, U), write(A, I, V, B), p(I, N, A).
p(I, N, A) :- I=1, N≥1.

A constrained fact is present: we cannot conclude that the program is
correct.
The fact incorrect. is not present: we cannot conclude that the
program is incorrect.
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The Specialized Interpreter for SeqInit (Verification Conditions V)
incorrect :- J≥0, J+1<N, J1=J+1, AJ≥AJ1, N≤I,

read(A, J, AJ), read(A, J1, AJ1), p(I, N, A).
p(I1, N, B) :- 1≤I, I<N, D=I−1, I1=I+1, V=U+1,

read(A, D, U), write(A, I, V, B), p(I, N, A).
p(I, N, A) :- I=1, N≥1.

A constrained fact is present: we cannot conclude that the program is
correct.
The fact incorrect. is not present: we cannot conclude that the
program is incorrect.



Propagating the Error Property by Unfold/Fold
Transformation

The Unfold/Fold transformation strategy propagates the error
property with the goal of

either removing all constrained facts from V
or deriving the fact incorrect.

The Output of the U/F Strategy for SeqInit
incorrect :- J1=J+1, J≥0, J1<I, AJ≥AJ1, D=I−1, N=I+1, Y=X+1,

read(A, J, AJ), read(A, J1, AJ1), read(A, D, X), write(A, I, Y, B),
new1(I, N, A).

new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2,
I≥1, Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

new2(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

No constrained facts: the program SeqInit is correct.



Propagating the Error Property by Unfold/Fold
Transformation

The Unfold/Fold transformation strategy propagates the error
property with the goal of

either removing all constrained facts from V
or deriving the fact incorrect.

The Output of the U/F Strategy for SeqInit
incorrect :- J1=J+1, J≥0, J1<I, AJ≥AJ1, D=I−1, N=I+1, Y=X+1,

read(A, J, AJ), read(A, J1, AJ1), read(A, D, X), write(A, I, Y, B),
new1(I, N, A).

new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2,
I≥1, Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

new2(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

No constrained facts: the program SeqInit is correct.



Auxiliary Strategies (1)

Rewrite rules for Constraint Replacement based on the Theory of Arrays:

Array congruence

(AC) I=J, read(A, I, U), read(A, J, V) → U=V

[AC1] replace: I=J, read(A, I, U), read(A, J, V)
by: I=J, read(A, I, U), U=V

[AC2] replace: U 6=V, read(A, I, U), read(A, J, V)
by: U 6=V, read(A, I, U), read(A, J, V), I 6=J



Auxiliary Strategies (2)

Read-over-Write
(RoW1) I=J, write(A, I, U, B), read(B, J, V) → U=V
(RoW2) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

[RoW1] replace: I=J, write(A, I, U, B), read(B, J, V)
by: I=J, write(A, I, U, B), U=V

[RoW2] replace: I 6=J, write(A, I, U, B), read(B, J, V)
by: I 6=J, write(A, I, U, B), read(A, J, V)

[RoW12] replace: write(A, I, U, B), read(B, J, V)
by: I=J, write(A, I, U, B), U=V
and I 6=J, write(A, I, U, B), read(A, J, V)



Auxiliary Strategies (3)

The most critical transformation step within the unfold/fold
transformation strategy is the introduction of new predicate
definitions to be used for folding.

Given p(X) :- c(X,Y), q(Y).

Introduce newp(Y) :- d(Y), q(Y).

where c(X, Y)→ d(Y) (d(Y) is a generalization of c(X,Y))

and fold: p(X) :- c(X,Y), newp(Y).

Generalization strategies based on widening and convex-hull of
linear constraints.
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VeriMAP

The VeriMAP tool http://map.uniroma2.it/VeriMAP

C-to-CLP
Translator

Unfold/Fold
Transformer Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

http://map.uniroma2.it/VeriMAP


Experimental evaluation

Program GenW GenWD GenS GenSD
init unknown 0.06 0.10 0.08
init-partial unknown 0.06 0.07 0.08
init-non-constant unknown 0.06 0.22 0.22
init-sequence unknown 0.80 unknown 1.20
copy unknown 0.27 0.33 0.29
copy-partial unknown 0.29 0.34 0.34
copy-reverse unknown 0.27 0.46 0.45
max unknown 0.31 0.24 0.33
sum unknown 0.68 1.14 1.12
difference unknown 0.66 1.15 1.11
find 0.25 0.43 0.46 0.45
first-not-null 0.38 0.41 0.42 0.42
find-first-non-null 1.24 1.87 1.94 1.93
partition 0.06 0.11 0.14 0.12
insertionsort-inner 0.21 0.26 0.45 0.43
bubblesort-inner 2.46 2.71 2.45 2.75
selectionsort-inner 7.20 6.40 7.23 7.16

precision 7 17 16 17
total time 11.80 15.65 17.14 18.48

average time 1.69 0.92 1.07 1.09



What Can Transformation do for Verification?

Help build a verification framework which is parametric with
respect to:

programming language and its operational semantics
properties and proof rules
theory of data structures

PT can be used both for generating VCs (in the form of CLP)
and for proving their satisfiability
The input and the output of PT are semantically equivalent
CLP programs. This allows:

incremental verification
iteration for refining verification
easy interoperation with other verifiers that use Horn clause
format



Future Work

More experiments (e.g., nested loops)
Recursive functions
More theories (lists, heaps, etc.)
Other programming languages, properties, proof rules



Thanks for your attention!


