

Verification of Time-Aware
Business Processes

using Constrained Horn Clauses

E. De Angelis (1), F. Fioravanti (1), M.C. Meo (1)

 A. Pettorossi (2), M. Proietti (3)

(1) DEC, University ”G. d’Annunzio” of Chieti-Pescara, Italy
(2) DICII, University of Rome Tor Vergata, Roma, Italy

(3) CNR-IASI, Roma, Italy

LOPSTR 2016 – Edinburgh (UK)

Talk Outline

● Business Process Model and Notation (BPMN)
● Semantics of time-aware BPMN
● Verification method

– CHC encoding of the interpreter I
● BPMN model, semantics, property

– CHC specialization of I (unfold/fold)

– Predicate equivalence

– CHC satisfiability checking using SMT solvers

● Experimental evaluation

● Graphical language for modeling organizational
processes: activities, events, and their
composition (OMG standard)

● Tasks
– atomic units of work

● Events
– something that ‘happens’

● Gateways
– model flow branching / merging

● Sequence flow
– specifies the order of execution

Business Process Modeling and Notation

start end

Branch Gateways

● single incoming flow / multiple outgoing flows

● exclusive branch gateway (XOR)

– upon activation
of the incoming flow
exactly one outgoing flow
is activated

● parallel branch gateway (AND)

– upon activation
of the incoming flow
all outgoing flows
are activated

Merge Gateways

● multiple incoming flows / single outgoing flow

● exclusive merge gateway (XOR)

– the outgoing flow is activated
upon activation of
one of the incoming flows

● parallel merge gateway (AND)

– the outgoing flow is activated
upon activation
of all the incoming flows

Well-formed BPMN models

● the start and end events are unique
● all flow objects are on some path from start to

end
● | Preds(start) | = 0 and | Succs(start) | = 1

– similar constraints for the end event, tasks and
gateways

● on every cyclic path there is at least one
occurrence of a task
– no cycles through gateways only

Purchase Order process (PO)

● A customer adds one or more items to the
shopping cart and pays.

● Then, the invoice is sent and the order is
delivered.

Time-aware BPMN model

● Tasks have a duration
– a positive integer, with upper and lower bounds
– for simplicity, events and gateways are instantaneous

● CHC specification

– duration(x,d) ← d
min

 ≤ d ≤ d
max

 .

x is a task of duration d

– task(x). x is a task

– par_branch(y). y is a parallel branch gw

– seq(x,y). sequence flow from x to y

● BPMN Meta-model
– Well-formedness and disjointness of elements

CHC encoding of the
Purchase Order process

Events start(start). end(end).
Gateways exc_merge(g1). exc_branch(g2). ...
Tasks task(a). task(p). ...
Sequence flow seq(start,g1). seq(g1,a). ...
Task durations duration(a, D):- D>=1, D=<6. % add item

duration(p, D):- D>=1, D=<2. % pay
...
duration(X, D):- not_task(X), D=0.

% gateways and events

Semantics of time-aware BPMN

● Transition relation → between states <F,t>
● t time point integer

● F set of fluents properties that hold at time point t

– begins(x): x begins its execution (enactment)

– enacting(x,r): x is enacting,
 r residual time to completion

– completes(x): x has completed its execution

– enables(x,y): x has completed its execution
 and enables its successor y

● x,y denote flow objects (tasks, or events, or gateways)

Semantics of time-aware BPMN

Semantics of time-aware BPMN

Semantics of time-aware BPMN

● Time elapses

CHC Encoding of the Semantics

● The predicate tr encodes the operational semantics
S1. tr(s(F,T), s(FU,T)):- member(begins(X),F), duration(X,D),

update(F,[begins(X)],[enacting(X,D)],FU).

S2. tr(s(F,T), s(FU,T)):- member(completes(X),F), par_branch(X),
findall(enables(X,S),(seq(X,S)),Enbls),
update(F,[completes(X)],Enbls,FU).

S3. tr(s(F,T), s(FU,T)):- member(completes(X),F),
not_par_branch(X), seq(X,S),
update(F,[completes(X)],[enables(X,S)],FU).

...

● The predicate reach encodes reachability
R1. reach(S,S).

R2. reach(S,S2) :- tr(S,S1), reach(S1,S2).

CHC Encoding of the Semantics

S4. tr(s(F,T), s(FU,T)) :- member(enables(_,_),F), par_merge(X),
findall(enables(P,X),(seq(P,X)),Enbls),
sublist(Enbls,F),
update(F,Enbls,[begins(X)],FU).

S5. tr(s(F,T), s(FU,T)):- member(enables(P,X),F), not_par_merge(X),
update(F,[enables(P,X)],[begins(X)],FU).

S6. tr(s(F,T), s(FU,T)):- member(enacting(X,R),F), R=0,
update(F,[enacting(X,R)],[completes(X)],FU).

S7. tr(s(F,T), s(FU,TU)) :- no_other_premises(F),
member(enacting(_,_),F),
findall(Y,(Y=enacting(X,R),member(Y,F)),Enacts),
mintime(Enacts,M), M>0,

decrease_residual_times(Enacts,M,EnactsU),
update(F,Enacts,EnactsU,FU), TU=T+M.

Verification of the PO process

● Property to be verified

● CHC encoding of the (negation of the) property
NP. false :- Ts=0, Te>Tp+9,
 reach(s([begins(start)],Ts), s([completes(p)],Tp)),

reach(s([completes(p)],Tp), s([completes(e)],Te)).

● The property holds iff
the set I = {S1-S7,R1-R2,PO,NP} of clauses is satisfiable.

Program transformation

● Cannot check satisfiability of I using SMT solvers
– lists, terms, findall predicate

● CLP systems do not terminate
– recursive reach predicate

● Removal of the interpreter
– Rule-based transformation strategies

(unfolding, definition, folding,
useless/subsumed clauses removal)

– Enables the use of CHC/SMT solvers

● Predicate equivalence
– Possibly reduces the number of predicates

Removal of the interpreter

● From I derive an equisatisfiable set of clauses I
sp

– I satisfiable iff I
sp

 satisfiable

● I
sp

 contains

– no references to the CHC encoding of the business
process and of the semantics

– no lists, no terms, no findall

– Clauses of the form
new21(A,B,C) :- A=0, D=<3, D>=1, new10(D,B,C).

● We can can apply CHC/SMT solvers for
checking the satisfiability of I

sp

Removal of the Interpreter

false :- A=0, B>=1, B=<2, C>=1, C=<6,
D>=3, D=<5, E>0, F-E>9,

 new1(C,A,E), new2(B,D,E,F).

new1(A,B,C) :- A=0, D=<6, D>=1, new1(D,B,C).
new1(A,B,C) :- A=0, D=<2, D>=1, new44(D,B,C).
new1(A,B,C) :- D=0, E=A+B, A>0, new1(D,E,C).

new44(A,B,C) :- A=0, B=C.
new44(A,B,C) :- D=0, E=A+B, A>0, new44(D,E,C).

...

Predicate Equivalence

● Decidable predicate equivalence test

– based on predicate renaming and constraint
equivalence

● Discovers classes of equivalent predicates
– {{new17, new11},{new6, new7}}

new17(A,B,C) :- A=0, B=C.
new17(A,B,C) :- D=0, E=A+B, A>0, new17(D,E,C).
new6(A,B,C,D) :- B=0, new17(A,C,D).

new11(A,B,C) :- A=0, B=C.
new11(A,B,C) :- D=0, E=A+B, A>0, new11(D,E,C).
new7(A,B,C,D) :- B=0, new11(A,C,D).

Experimental evaluation

● Similar results using EldaRICA

Conclusions

● Flexible framework for reasoning about BP
– Parametric w.r.t. the semantics and property

– Satisfiability-preserving program transformations
● enables the use of state-of-the-art SMT solvers

● Future developments
– different semantics of time, different properties

– data (Montali, Deutsch, ...)

– ontologies (Proietti&Smith)

– VeriMAP system
● http://www.map.uniroma2.it/VeriMAP/

http://www.map.uniroma2.it/VeriMAP/

The end

Thank you!

1. PO

● % Q1.1 (paper running example)

% after payment is completed, the process takes at most 9 time units to
complete

r_clause(incorrect1, [reachable(s([begins(start)],T1),s([completes(p)],T2)),
T1=0, reachable(s([completes(p)],T2), s([completes(end)],T3)), T2>T1, T3-
T2>9]).

● % Q1.2 the process takes at least 4 time units to complete

r_clause(incorrect2, [reachable(s([begins(start)],T1),s([completes(end)],T2)),
T2-T1=<3]).

● % Q1.3 - FALSE
% the task prepare order (o) and the task send invoice (s) cannot be
enacting simultaneously

r_clause(incorrect3, [reachable(s([begins(start)],T1),
 s([enacting(o,O),enacting(s,S)],T2)), S>=1, O>=1]).

2. RDOA

● Request Day-Off Approval
– Huai et al. Towards Trustworthy Composite Service

Through Business Process Model Verification UIC-
ATC 2010

● % Q2.1 - FALSE

● % After the employee submits the day-off request, a result is returned in less
than 120 time units.

● r_clause(incorrect1,
[reachable(s([begins(s)],T1),s([completes(return_result)],T2)), T2-T1>=120]).

3. STEMI: ST-segment Evaluation
Myocardial Infarction

● ED (Emergency Department) Admission
– Controllability in temporal Conceptual workflow

Schemata Combi et. al. BPM 2009

● % Q3.1

% since the completion of g1, the process takes at most 22 minutes to be completed

r_clause(incorrect1, [reachable(s([completes(g1)],T1),s([completes(g3)],T2)), T2-
T1>=23]).

● % Q3.2 - FALSE

% since the completion of T2, it takes at most 20 minutes to begin T3

r_clause(incorrect2, [reachable(s([completes(t2)],T1),s([completes(t3)],T2)), T2-
T1>=21]).

● % Q3.3 % the process takes at least 11 minutes to be completed

r_clause(incorrect3, [reachable(s([begins(start)],T1),s([completes(end)],T2)), T2-
T1=< 10]).

4. STEMI-CCU: ST-segment
Evaluation Myocardial Infarction

● ED (Emergency Department) Admission
+ CCU (Coronary Care Unit) Admission
– Combi et al.. Conceptual Modeling of Flexible

Temporal Workflows. ACM AAS 2012

● % Q4.1 % since the beginning of the admission to E.D. procedure, it takes at most
96 minutes for a patient to be admitted to the CCU

r_clause(incorrect1, [reachable(s([begins(t1)],T1),s([completes(t8)],T2)), T2-
T1>=97]).

● % Q4.2 % since the beginning of T8, it takes at least 35 minutes to complete T4

% Therefore, it satisfies (the lowerbound of) the constraint S_T8[45,70]E_T14

r_clause(incorrect2, [reachable(s([begins(t8)],T1),s([completes(t14)],T2)), T2-
T1=<34]).

● % Q4.3 - FALSE

% since the beginning of T10, it takes at most 60 minutes to complete T13

% Therefore, it violates (the upperbound of) the constraint S_T10[42,60]E_T13

r_clause(incorrect3, [reachable(s([begins(t10)],T1),s([completes(t13)],T2)), T2-
T1>=61]).

incorrect :- initConf(C),reach(C,C1),errorConf(C1).

● UNFOLDING (replace initConf(C) with the body of its definition)

incorrect :- X>=1,Y>=1, reach(cf(cmd(3,ite(neq(x,y)),4,h), [(x,X),(y,Y)],[]),
C1),
 errorConf(C1).

● UNFOLDING (wrt errorConf(C1))

incorrect :- X>=1,Y>=1, X1=<-1, reach(cf(cmd(3,ite(neq(x,y)),4,h),[(x,X),
(y,Y)],[]),
 cf(cmd(h,halt),[(x,X1),(y,Y1)],[]))).

● DEFINITION-INTRODUCTION (with constraint generalization)

new3(X,Y, X1,Y1) :- reach(cf(cmd(3,ite(neq(x,y)),4,h),[(x,X),(y,Y)],[]),
 cf(cmd(h,halt),[(x,X1),(y,Y1)],[]))).

● FOLDING (replace an instance of the body of a definition by its head)

incorrect :- X>=1,Y>=1,X1=<-1, new3(X,Y, X1,Y1).

Unfold/Fold program specialization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

