Software Verification and Synthesis by Program Transformation

Maurizio Proietti*

joint work with Fabio Fioravanti* and Alberto Pettorossi**

{fioravanti,adp,proietti}@iasi.rm.cnr.it

(*) IASI-CNR Viale Manzoni 30 00185 Rome, Italy (**) DISP - Universita' di Roma Tor Vergata Via del Politecnico 00133 Rome, Italy

Goals of this work

- Establish a correspondence between
 Theorem Proving and Program Transformation
- Exploit this correspondence for performing software verification by means of program transformers, program specializers, ...

Theorem Proving vs Program Transformation

Truth-preserving **Rules**:

- modus ponens
- generalization
- resolution

Strategies (or Tactics)

to construct proofs:

- depth-first
- breadth-first
- case analysis
- generalization
- induction

Semantics-preserving Rules:

- unfold
- fold
- replacement

Strategies (or Tactics)

to derive "better" programs:

- specialization
- tupling
- composition (deforestation)
- generalization
- accumulation

Theorem Proving and Program Transformation

Can we establish a more formal correspondence?

McCarthy, Kott, Courcelle, Pettorossi-Proietti, Roychoudury et al., Leuschel

Previous Work (Functional Programs)

- Recursion induction (Mc Carthy '63): proving properties by rewriting + termination proofs
- Proofs by consistency or inductionless induction (Musser '80, Huet-Hullot '82, Jouannaud-Kounalis '86): finding minimal counterexamples by rewriting and well-founded orderings

- Courcelle '86: completeness results, equivalence of polynomial systems (~ tree automata) by unfold/fold

Previous Work (Logic Programs)

- Pettorossi-Proietti '94-'99: proving the equivalence of definite programs (no negation) by unfold/fold

- Roychoudury et al. '99: as P-P, but using a more powerful folding rule (verification of parameterized finite state systems)
- Leuschel et al. '99: Using partial deduction (= partial evaluation of LP) for the verification of infinite state systems (Petri nets)

Associativity of list concatenation

$$P: \quad a([\],Y,Y) \leftarrow \\ \quad a([H|X],Y,[H|Z]) \leftarrow a(X,Y,Z)$$

$$LHM(P) \models \forall A \ \forall B \ \forall C \ \forall D \\ \quad (\exists X \underbrace{(a(A,B,X) \land a(X,C,D))}_{\quad (A \ @ \ B) \ @ \ C = D} \qquad A \ @ \ (B \ @ \ C) = D$$

$$newp_1(A,B,C,D) \leftarrow \underbrace{a(A,B,X) \land a(X,C,D)}_{\quad unfold \ ; \ fold} \qquad \underbrace{newp_2(A,B,C,D)}_{\quad unfold \ ; \ fold} \qquad \underbrace{a(B,C,Y) \land a(A,Y,D)}_{\quad unfold \ ; \ fold} \qquad \underbrace{unfold \ ; \ fold}_{\quad newp_1([\],B,C,D) \leftarrow a(B,C,D)} \qquad \underbrace{newp_2([\],B,C,D) \leftarrow a(B,C,D)}_{\quad newp_2([\ H|A],B,C,[H|D]) \leftarrow \qquad \underbrace{newp_2([\ H|A],B,C,[H|D]) \leftarrow \qquad \underbrace{newp_2([\ H|A],B,C,[H|D]) \leftarrow \qquad \underbrace{newp_2(A,B,C,D)}_{\quad newp_2(A,B,C,D)}}$$

This work: Proving properties of general logic programs

```
Given - a general logic program P with perfect model M(P)
```

- a closed first order formula φ in the language of P

Prove
$$M(P) = \varphi$$

Example P:
$$even(0) \leftarrow nat(0) \leftarrow even(s(X)) \leftarrow \neg even(X) \quad nat(s(X)) \leftarrow nat(X) \\ odd(s(X)) \leftarrow \neg odd(X)$$

prove $M(P) \models \forall X \ (nat(X) \rightarrow (even(X) \lor odd(X)))$

For ensuring the existence of M(P) we consider locally stratified programs: no recursion through negation in ground clauses

Overview of the Unfold/Fold Proof Method

```
Step 1. Introduce the statement f \leftarrow \phi
\downarrow Lloyd\text{-Topor transformation}
Cls(f,\phi)
such that: -P \cup Cls(f,\phi) is locally stratified
-M(P) \models \phi \quad \text{iff} \quad f \in M(P \cup Cls(f,\phi))
```

Step 2. Apply unfold/fold transformation rules that preserve M()

$$P \cup Cls(f,\phi) \longrightarrow \cdots \longrightarrow Q$$
 such that $f \in M(P \cup Cls(f,\phi))$ iff $f \in M(Q)$ if the clause $f \leftarrow$ belongs to Q then $M(P) \models \phi$ if no clause for f belongs to Q then $M(P) \models \neg \phi$

The unfold/fold rules should be applied according to a strategy

Plan

- Locally stratified programs and perfect models
- Lloyd-Topor transformation
- Unfold/fold transformation rules
- Transformation strategy
- Decision procedures via the UF proof method
- Program synthesis via the UF proof method

General Logic Programs

- An atom is a formula p(t₁,...,t_k) where p is a predicate and t₁,...,t_k are terms. A literal is either an atom or a negated atom. A clause is a formula H ← L₁ ∧ ∧ L_n, where H is an atom and L₁,...,L_n are literals. H is the head and L₁ ∧ ∧ L_n is the body. A (general logic) program is a set of clauses.
- Unlike definite programs (no negation in bodies) some programs have no least Herbrand model. For instance:

$$p \leftarrow \neg q$$
 has two minimal models: {p} and {q}

- We can associate a program with a unique model (possibly not least) by ordering the atoms: q < p.
 We compute the model bottom-up wrt < :
 - 1. The least model of the clauses with head q is \emptyset and q is false in \emptyset .
 - 2. Assuming that q is false, the least model of $p \leftarrow \neg q$ is $\{p\}$.

Locally Stratified Programs

• A stratification is a function

$$\sigma: B_L \to W$$

where B_L is the set of all ground atoms in the first order language L used for writing programs and W is the set of countable ordinals

- A ground clause $H \leftarrow A_1 \land \ldots \land A_m \land \neg A_{m+1} \land \ldots \land \neg A_n$ is locally stratified wrt σ iff $\sigma(H) \ge \sigma(A_i)$ for $i=1,\ldots,m$ $\sigma(H) > \sigma(A_i) \text{ for } i=m+1,\ldots,n$ no recursion through negation
- A program P is locally stratified iff there exists a stratification σ such that every ground instance of a clause of P is locally stratified wrt σ

Locally Stratified Programs: Examples

• $odd(s(X)) \leftarrow \neg odd(X)$ is locally stratified

ground instances: $odd(s(0)) \leftarrow \neg odd(0)$ $odd(s(s(0))) \leftarrow \neg odd(s(0))$

every clause is locally stratified wrt $\sigma(\text{odd}(s^n(0))) = n$

• p $\leftarrow \neg p$ is not locally stratified: there is no stratification σ such that $\sigma(p) > \sigma(p)$

Perfect Model

- Interpretation: a subset \Im of B_L (i.e. $\Im \in \wp(B_L)$) $\Im \models A$ iff $A \in \Im$ and $\Im \models \neg A$ iff $A \notin \Im$
- Immediate consequence operator $T_{P,\alpha}$: $\wp(B_L) \to \wp(B_L)$ where P is a locally stratified program and $\alpha \in W$ is an ordinal

$$T_{P,\alpha}(\mathfrak{I}) = \{A \mid A \leftarrow L_1 \wedge \ldots \wedge L_n \text{ is a ground instance of a clause in P,}$$

$$\sigma(A) = \alpha, \text{ and for } i = 1, ..., n \text{ if } \sigma(L_i) = \alpha \text{ then } \mathfrak{I} \mid = L_i$$
 else if
$$\sigma(L_i) = \beta < \alpha \text{ then lfp}(T_{P,\beta}) \mid = L_i \}$$

 $T_{P,\alpha}(\mathfrak{I})$ is the set of atoms in stratum α that are one-step consequences (using the clauses in P) of the literals that are true in \mathfrak{I} and of the literals that are true in any stratum $\beta < \alpha$

• For every ordinal $\alpha \in W$, $T_{P,\alpha}$ is a continuous operator on the lattice $\mathcal{D}(B_L)$ of all interpretations. The perfect model of P is defined as:

$$M(P) = \bigcup_{\alpha \in W} lfp(T_{P,\alpha})$$

Perfect Model: An Example

P:
$$p \leftarrow \neg odd(X)$$
 $odd(s(X)) \leftarrow \neg odd(X)$

ground instances: 1. $odd(s(0)) \leftarrow \neg odd(0)$
2. $odd(s(s(0))) \leftarrow \neg odd(s(0))$
...
 ω . $p \leftarrow \neg odd(0)$

$$\omega$$
. $p \leftarrow \neg odd(s(0))$

stratification: $\sigma(p) = \omega$ $\sigma(odd(s^{n}(0))) = n$

$$\begin{split} M(P) &= lfp(T_{P,0}) \cup \ lfp(T_{P,1}) \ \cup \ldots \cup \ lfp(T_{P,\omega}) \\ &= \ \varnothing \ \cup \{odd(s(0))\} \cup \ldots \cup \{p\} \end{split}$$

Plan

- Locally stratified programs and perfect models

- **⇒** Lloyd-Topor transformation
 - Unfold/fold transformation rules
 - Transformation strategy
 - Decision procedures via the UF proof method
 - Program synthesis via the UF proof method

Lloyd-Topor Transformation

• Given a locally stratified program P and a closed first order formula φ using \neg , \wedge , \exists , and the predicate symbols occurring in P, introduce the statement: $f \leftarrow \varphi$, where f is a new predicate symbol

... Lloyd-Topor Transformation

Apply as long as possible the following transformations $(C[\psi]$ denotes a formula of the form: ... $\wedge \psi \wedge ...)$

LT Transformation: Less-or-Equal Example

P:
$$0 \le N \leftarrow \text{nat}(0) \leftarrow s(N1) \le s(N2) \leftarrow N1 \le N2 \text{nat}(s(X)) \leftarrow \text{nat}(X)$$

$$\varphi$$
: $\forall N (nat(N) \rightarrow N \leq s(N))$

Rewrite
$$\varphi$$
 as: $\neg \exists N(\text{nat}(N) \land \neg N \leq s(N))$

Introduce the statement:

$$f \leftarrow \neg \exists N (nat(N) \land \neg N \leq s(N))$$

$$Cls(f,\phi): \begin{cases} f \leftarrow \neg g \\ g \leftarrow nat(N) \land \neg N \leq s(N) \end{cases}$$

Locally stratified

Note:

 $\forall N (g \leftarrow nat(N) \land \neg N \leq s(N)) \equiv g \leftarrow \exists N(nat(N) \land \neg N \leq s(N))$

Limitations of SLDNF-resolution

Cls(f,
$$\varphi$$
):
$$\begin{cases} f \leftarrow \neg g \\ g \leftarrow \text{nat}(N) \land \neg N \leq s(N) \end{cases}$$

We need to prove that, for all natural numbers N, $\neg N \le s(N)$ fails

Plan

- Locally stratified programs and perfect models
- Lloyd-Topor transformation
- ⇒ Unfold/fold transformation rules
 - Transformation strategy
 - Decision procedures via the UF proof method
 - Program synthesis via the UF proof method

Overview of the Unfold/Fold Proof Method

```
Step 1. Introduce the statement f \leftarrow \phi \downarrow Lloyd\text{-Topor transformation} Cls(f,\phi) \text{such that: } -M(P \cup Cls(f,\phi)) \text{ is locally stratified} -M(P) \models \phi \text{ iff } f \in M(P \cup Cls(f,\phi))
```

Step 2. Apply unfold/fold transformation rules that preserve M()

$$P \cup Cls(f, \phi) \longrightarrow \cdots \longrightarrow Q$$
 such that $f \in M(P \cup Cls(f, \phi))$ iff $f \in M(Q)$ if the clause $f \leftarrow$ belongs to Q then $M(P) \models \phi$ if no clause for f belongs to Q then $M(P) \models \neg \phi$

The unfold/fold rules should be applied according to a strategy

The Unfold/Fold Transformation Rules

• Construct a transformation sequence, that is, a sequence of programs

$$P_0 \rightarrow \cdots \rightarrow P_n$$

where P_{k+1} is derived from P_k by applying a transformation rule

• Transformation Rules:

- R1. Definition Introduction
- R2. Unfolding (w.r.t. positive or negative literals)
- R3. Folding
- R4. Tautologies
- The transformation rules preserve the Perfect Model

$$M(P_0 \cup Defs_n) = M(P_n)$$

where Defs_n is the set of new clauses introduced by the Definition Introduction rule

Definition Introduction: Less-or-Equal Example

```
P_0: \quad 0 \le N \leftarrow
s(N1) \le s(N2) \leftarrow N1 \le N2
nat(0) \leftarrow
nat(s(X)) \leftarrow nat(X)
```

 $\begin{array}{cl} \text{Definition Introduction (twice): } \delta_1 \!\!: & g \leftarrow \text{nat}(N) \land \neg \ N \!\! \leq \!\! s(N) \\ \delta_2 \!\!: & f \leftarrow \neg g \end{array}$

$$P_2: \quad 0 \le N \leftarrow \\ s(N1) \le s(N2) \leftarrow N1 \le N2 \\ nat(0) \leftarrow \\ nat(s(X)) \leftarrow nat(X) \\ \delta_1: \quad g \leftarrow nat(N) \land \neg N \le s(N) \\ \delta_2: \quad f \leftarrow \neg g$$

$$Defs_2 = \{\delta_1,\!\delta_2\}$$

R1. Definition Introduction

[Tamaki-Sato 84, Seki 91]

Introduce a new definition, that is, a clause

δ:
$$newp(X_1,...,X_h) \leftarrow L_1 \land ... \land L_n$$

where:

- newp is a new predicate symbol
- $X_1,...,X_h$ are distinct variables occurring in $L_1 \wedge ... \wedge L_n$
- the predicate symbols of $L_1 \wedge ... \wedge L_n$ occur in P_k

$$P_{k+1} = P_k \cup \{\delta\}$$

Defs_k is the set of definitions introduced up to step k

No recursive definitions, no multiple clause definitions

Positive Unfolding: Less-or-Equal Example

R2⁺. Positive Unfolding

[Tamaki-Sato 84, Seki 91]

Given a clause in P_k

$$\lambda: H \leftarrow G_1 \land A \land G_2$$

take all clauses in P_k whose head H_i unifies with A via an mgu θ_i

$$H_1 \leftarrow Body_1 \quad \dots \quad H_m \leftarrow Body_m$$

and replace λ by all its resolvents w.r.t. the atom A

$$P_{k+1} = (P_k \setminus \{\lambda\}) \cup \left\{ \begin{matrix} (H \leftarrow \ G_1 \land \boxed{Body_1} \land G_2) \ \theta_1 \\ \cdots \\ (H \leftarrow \ G_1 \land \boxed{Body_m} \land G_2) \ \theta_m \end{matrix} \right\}$$

If m=0 then delete λ from P_k

Negative Unfolding: Less-or-Equal Example

```
0 \le N \leftarrow
          P<sub>3</sub>:
                    s(N1) \le s(N2) \leftarrow N1 \le N2
                     nat(0) \leftarrow
                     nat(s(X)) \leftarrow nat(X)
           \lambda_1: g \leftarrow \neg 0 \le s(0)
           \lambda_2: g \leftarrow nat(X) \land \neg s(X) \leq s(s(X))
                    f \leftarrow \neg g
                                               Unfolding \lambda_1 wrt \neg 0 \le s(0) and
replace
                                                                 \lambda_2 wrt \neg s(X) \leq s(s(X))
          P_4: 0 \le N \leftarrow
                                                                                                   Defs_4 = \{\delta_1, \delta_2\}
                     s(N1) \le s(N2) \leftarrow N1 \le N2
                     nat(0) \leftarrow
                     nat(s(X)) \leftarrow nat(X)
                                                                            \{N/0\}
                     g \leftarrow +0 \leq s(0)
           \lambda_3: g \leftarrow nat(X) \land \neg X \leq s(X)
                                                                            \{N1/X, N2/X\}
                    f \leftarrow \neg g
```

R2. Negative Unfolding

[Pettorossi-Proietti 00]

Given a clause in
$$P_k$$
 λ : $H \leftarrow G_1 \land \neg A \land G_2$

take all clauses in P_k whose head H_i unifies with A via an mgu θ_i

$$H_1 \leftarrow Body_1 \qquad \dots \qquad H_m \leftarrow Body_m$$

- if (1) $A = H_1 \theta_1 = ... = H_m \theta_m$ (A is an instance of $H_1, ..., H_m$)
 - (2) Body₁,..., Body_m have no existential variables

then take the disjunctive normal form

$$\boxed{\textbf{Q}_1 \lor \ldots \lor \textbf{Q}_m} \ = \ DNF \ (\ G_1 \land \neg (\boxed{Body_1} \theta_1 \lor \ldots \lor \boxed{Body_m} \ \theta_m) \land G_2 \)$$

$$P_{k+1} = (P_k \setminus \{\lambda\}) \cup \{H \leftarrow \mathbf{Q_1}, ..., H \leftarrow \mathbf{Q_1}\}$$

If m=0 then delete $\neg A$ from the body of λ ; if $A\theta \leftarrow$ is a clause in P_k then delete λ .

Folding: Less-or-Equal Example

```
Defs<sub>4</sub>: \delta_1: g \leftarrow nat(N) \land \neg N \leq s(N)
            P_4: 0 \le N \leftarrow
                    s(N1) \le s(N2) \leftarrow N1 \le N2
                                                                                     \delta_2: f \leftarrow \neg g
                    nat(0) \leftarrow
                    nat(s(X)) \leftarrow nat(X)
            \lambda_3: g \leftarrow nat(X) \land \neg X \leq s(X)
                    f \leftarrow \neg g
                                         folding \lambda_3 wrt nat(X) \land \neg X \leq s(X)
replace
            P_5: 0 \le N \leftarrow
                    s(N1) \le s(N2) \leftarrow N1 \le N2
                    nat(0) \leftarrow
                    nat(s(X)) \leftarrow nat(X)
```

R3. Folding

$$\lambda: H \leftarrow G_1 \land G_2 \theta \land G_3$$

and a definition in Defsk

$$\delta$$
: Newp \leftarrow G_2

if (1) $\theta = \theta_1 \circ \theta_2$ where:

- θ_1 and θ_2 share no variables
- θ_2 is a renaming of the existential variables of δ

and (2) δ has been (or will be) unfolded w.r.t. a positive literal (*)

$$P_{k+1} = (P_k \setminus \{\lambda\}) \cup \{H \leftarrow G_1 \land \text{Newp } \theta \land G_3\}$$

Similar to [Tamaki-Sato 84, Seki 91], except for (*)

Folding: Condition (2)

$$P_0: \quad p(X) \leftarrow p(X)$$
$$p(X) \leftarrow q$$
$$q \leftarrow fail$$

$$P_1$$
: newp $\leftarrow \neg p(X)$

 P_2 : newp $\leftarrow \neg p(X) \land \neg q$

 P_3 : newp \leftarrow newp $\land \neg q$

definition introduction

unfolding wrt $\neg p(X)$

folding

 $newp \in M(P_0 \cup Defs_3) = M(P_1)$ and $newp \notin M(P_3)$

Tautologies: Less-or-Equal Example

P₅:
$$0 \le N \leftarrow$$
 $s(N1) \le s(N2) \leftarrow N1 \le N2$
 $nat(0) \leftarrow$
 $nat(s(X)) \leftarrow nat(X)$
 $g \leftarrow g$
 $f \leftarrow \neg g$

$$\mathbf{H} \leftarrow \mathbf{H} \wedge \mathbf{G}$$
 is a tautology

Finally, by unfolding $f \leftarrow \neg g$ we get (there is no clause for g):

```
\begin{array}{ll} P_7 \colon \ 0 \leq N \leftarrow \\ & s(N1) \leq s(N2) \leftarrow N1 \leq N2 \\ & nat(0) \leftarrow \\ & nat(s(X)) \leftarrow nat(X) \\ & f \leftarrow \\ & \Rightarrow \ \ f \in M(P_7) \\ & f \leftarrow \\ & \Rightarrow \ \ M(P_0) \mid = \forall N \ (nat(N) \rightarrow N \leq s(N)) \end{array}
```

Tautologies

$$P_{k+1} = (P_k \setminus Cs) \cup Ds$$

where $Cs \Rightarrow Ds$ is an instance of one of the following rewritings:

$$\{H \leftarrow A \land \neg A \land G\} \qquad \Rightarrow \qquad \emptyset$$

$$\{H \leftarrow H \land G\} \qquad \Rightarrow \qquad \emptyset$$

$$\{H \leftarrow G_1 \land L_1 \land L_2 \land G_2\} \Rightarrow \qquad \{H \leftarrow G_1 \land L_2 \land L_1 \land G_2\}$$

$$\{H \leftarrow L \land L \land G\} \qquad \Rightarrow \qquad \{H \leftarrow L \land G\}$$

$$\{H \leftarrow G_1, \qquad \Rightarrow \qquad \{H \leftarrow G_1\}$$

$$\{H \leftarrow G_1, \qquad \Rightarrow \qquad \{H \leftarrow G_1\}$$

$$\{H \leftarrow G_1, \qquad \Rightarrow \qquad \{H \leftarrow G_1\}$$

$$\{H \leftarrow G_1, \qquad \Rightarrow \qquad \{H \leftarrow G_1\}$$

$$\{H \leftarrow G_1, \qquad \Rightarrow \qquad \{H \leftarrow G_1\}$$

$$\{H \leftarrow G_1, \qquad \Rightarrow \qquad \{H \leftarrow G_1\} \}$$

$$\{H \leftarrow G_1, \qquad \Rightarrow \qquad \{H \leftarrow G_1\} \}$$

A Derived Rule: Propositional Simplification

Suppose that in P_k a predicate p depends on nullary predicates only. Then $p \in M(P_k)$ is decidable and, by unfolding and tautologies,

$$\label{eq:poisson} \begin{array}{ll} \text{if} \ p \in M(P_k) & \text{then} \ \left[P_{k+1} = (P_k \setminus D_p) \cup \{p \leftarrow \} \right] \\ \\ \text{if} \ p \not \in M(P_k) & \text{then} \ \left[P_{k+1} = (P_k \setminus D_p) \right] \end{array}$$

where D_p is the set of clauses in P_k with head p

Correctness of the Unfold/Fold rules

Theorem: Let P_0, \ldots, P_n be a transformation sequence. Let $Defs_n$ be the set of definitions introduced in that sequence. Then

$$M(P_0 \cup Defs_n) = M(P_n)$$

Plan

- Locally stratified programs and perfect models
- Lloyd-Topor transformation
- Unfold/fold transformation rules

⇒ Transformation strategy

- Decision procedures via the UF proof method
- Program synthesis via the UF proof method

The Unfold/Fold Transformation Strategy

 $P \cup Cls(f, \phi) = S_0 \cup \ldots \cup S_k$ is a finite partition into levels where:

- $S_0 = P$
- the predicates in S_i depend only on predicates in $S_0 \cup \ldots \cup S_{i-1}$

Even-Odd Example

$$\begin{array}{ll} P\colon \ even(0) \leftarrow & nat(0) \leftarrow \\ even(s(X)) \leftarrow \neg even(X) & nat(s(X)) \leftarrow nat(X) \\ odd(s(X)) \leftarrow \neg odd(X) & \end{array}$$

We want to prove

$$\varphi \colon \forall X (nat(X) \to (even(X) \lor odd(X)))$$

Step 1. (LT-transformation)

Introduce the statement:
$$f \leftarrow \neg \exists X (nat(X) \land \neg even(X) \land \neg odd(X))$$

Lloyd-Topor Transformation

$$\begin{array}{ll} \textbf{Definition Introduction:} & f \leftarrow \neg g & \textbf{level 2} \\ & g \leftarrow nat(X) \land \neg even(X) \land \neg odd(X) \textbf{level 1} \\ \end{array}$$

Even-Odd Example

Step 2. (Transformation Strategy)

Level 1.

$$g \leftarrow nat(X) \land \neg even(X) \land \neg odd(X)$$

Unfold wrt nat(X), $\neg even(X)$, $\neg odd(X)$

$$g \leftarrow nat(X) \land even(X) \land odd(X)$$

$$h \leftarrow nat(X) \land even(X) \land odd(X)$$

$$\mathbf{g} \leftarrow \mathbf{h}$$

Unfold wrt nat(X), even(X), odd(X)

$$\begin{aligned} h &\leftarrow nat(X) \land \neg even(X) \land \neg odd(X) \\ g &\leftarrow h \end{aligned}$$

Fold

$$\begin{aligned} \mathbf{h} &\leftarrow \mathbf{g} \\ \mathbf{g} &\leftarrow \mathbf{h} \end{aligned}$$

Propositional Simplification

$$M(\{\mathbf{h} \leftarrow \mathbf{g}, \ \mathbf{g} \leftarrow \mathbf{h}\}) = \emptyset$$

Level 2.

$$\mathbf{f} \leftarrow \neg \mathbf{g}$$

Unfold wrt
$$\neg g$$

$$\mathbf{f} \leftarrow$$

The Transformation Strategy ...

may not terminate because at each loop one or more new definitions may be introduced.

For restricted classes of programs and formulas it always terminates

Plan

- Locally stratified programs and perfect models
- Lloyd-Topor transformation
- Unfold/fold transformation rules
- Transformation strategy
- ⇒ Decision procedures via the UF proof method
 - Program synthesis via the UF proof method

Tree-typed Formulas

• Tree-typed formulas:

$$\varphi ::= p(X) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \exists X (r(X) \land \varphi)$$

where r is defined by a tree program and p(X) is defined by a Monadic Regular program.

• Tree programs:

A set of clauses of the form:

$$r_0(t(X_1,...,X_n)) \leftarrow r_1(X_1) \land \ldots \land r_n(X_n) \qquad n \ge 0$$

where t is a function symbol

Monadic Regular Programs

• MR programs have clauses of the form:

$$p_0(t(X_1,...,X_n)) \leftarrow p_1(Y_1) \wedge ... \wedge p_k(Y_k) \wedge \neg p_{k+1}(Y_{k+1}) \wedge ... \wedge \neg p_m(Y_m)$$
 where t is a function symbol and $\{Y_1,...,Y_n\} \subseteq \{X_1,...,X_n\}$
$$m,n \ge 0$$

- MR programs are locally stratified
- Theorem: For a tree-typed formula φ and an MR program P the unfold/fold transformation strategy terminates on the input P \cup Cls(f, φ). Moreover, if Q is the output program,

either the clause $f \leftarrow$ belongs to Q

or no clause for f belongs to Q

Thus, the UF proof method is a decision procedure for $M(P) \models \phi$

Tree-typed Formulas and MR Programs: Examples

• Tree-typed formula: $\forall X (nat(X) \rightarrow (even(X) \lor odd(X)))$

Tree program: $nat(0) \leftarrow$

 $nat(s(X)) \leftarrow nat(X)$

MR program: even(0) \leftarrow

 $even(s(X)) \leftarrow \neg even(X)$

 $odd(s(X)) \leftarrow \neg odd(X)$

• Tree automata can be expressed as MR programs. Membership, complementation, intersection, containment, and equivalence of tree automata can be expressed as tree-typed formulas.

For instance, the equivalence of two tree automata a and b can be expressed as:

$$\forall T (tree(T) \rightarrow (a(T) \leftrightarrow b(T)))$$

Natset-typed Formulas

• Terms: $t := n \mid s$ Natural numbers: $n := 0 \mid N \mid s(n)$ Sets: $s := [] \mid S \mid [t|S] \mid [f|S]$

A natural number k is represented by $s^{k}(0)$

A set of natural numbers is represented by a list [b₀,...,b_m]

$$s^k(0) \in [b_0,...,b_m]$$
 iff $0 \le k \le m$ and $b_k = t$

• Natset-typed formulas: $\phi ::= p(t_1,...,t_n) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid$ $\exists N \ (nat(N) \land \phi) \mid \exists S \ (set(S) \land \phi)$

where nat(X) and set(X) are defined by:

$$\begin{array}{ll} nat(0) \leftarrow & set([\]) \leftarrow \\ nat(s(N)) \leftarrow nat(N) & set([\ \textbf{t}|S]) \leftarrow set(S) \\ set([\ \textbf{f}|S]) \leftarrow set(S) \end{array}$$

and p is defined by a natset-typed program.

Natset-typed Programs

- Head terms: h := 0 | s(N) | [] | [t|S] | [f|S]
- Natset-typed clauses:

$$C ::= p_1(h_1,...,h_k) \leftarrow | p_1(h_1,...,h_k) \leftarrow p_2(X_1,...,X_m)$$

where: $p_1(h_1,...,h_k)$ is a linear atom (each variable occurs at least once), $X_i := N \mid S$, and $X_1,...,X_m$ are distinct variables occurring in $p_1(h_1,...,h_k)$

- Natset-typed programs are sets of natset-typed clauses.
- Theorem: For a natset-typed formula φ and a natset-typed program P the unfold/fold transformation strategy terminates on the input $P \cup Cls(f,\varphi)$. Moreover, if Q is the output program,

either the clause $f \leftarrow$ belongs to Q or no clause for f belongs to Q

Thus, the UF proof method is a decision procedure for $M(P) = \varphi$

WS1S

• WS1S, the weak monadic second order theory of 1 successor [Buchi '60] can be decided by the unfold/fold proof method

• WS1S Formulas:
$$\varphi := n \in S \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid$$

 $\exists N(nat(N) \land \varphi) \mid \exists S(set(S) \land \varphi)$

where $n \in S$ is defined by the natset-typed program:

Member:
$$0 \in [t|S] \leftarrow$$

 $s(N) \in [B|S] \leftarrow N \in S$

 WS1S expresses properties of the membership of finite sets of natural numbers

WS1S: Examples

Set equality: $S1=S2 \equiv \forall N \text{ (nat(N))} \rightarrow N \in S1 \leftrightarrow N \in S2$)

Order over numbers:

$$N1 \leq N2 \equiv \forall S \ (set(S) \ \rightarrow (N2 \in S \ \land \ \forall N3 \ (nat(N3) \rightarrow s(N3) \in S \rightarrow N3 \in S) \rightarrow N1 \in S))$$

S is 'downward' closed

Every finite set of natural numbers has a maximum element:

$$\forall S (set(S) \rightarrow \exists N(nat(N) \land N \in S \land \neg \exists N1 (nat(N1) \land N1 \in S \land \neg N1 \leq N)))$$

There exixts no finite set which is nonempty and upwards closed:

$$\neg \exists S (set(S) \land \exists N1 (nat(N1) \land N1 \in S) \land \forall N2 (nat(N2) \land N2 \in S \rightarrow s(N2) \in S))$$

More complex examples: Verification of finite state systems [Basin-Klarlund 98, Klarlund et al.96]

More Decision Procedures

By extending the encoding of the WS1S theory we can decide:

- WSkS, the monadic second order theory of k successors (membership to finite sets of strings over a k-symbol alphabet)
- CTL, the computational tree logic (a branching time temporal logic used for verifying finite state transition systems)

Plan

- Locally stratified programs and perfect models
- Lloyd-Topor transformation
- Unfold/fold transformation rules
- Transformation strategy
- Decision procedures via the UF proof method
- ⇒ Program synthesis via the UF proof method

Program Synthesis

- Apply the Unfold/Fold proof method starting from open formulas.
- Example (Maximum of a set).

$$\phi = \text{nat}(N) \land \text{set}(S) \land N \in S \land \neg \exists N1 \text{ (nat}(N1) \land N1 \in S \land \neg N1 \leq N)$$

N and S are free variables

Step 1. Apply the Lloyd-Topor transformation starting from the statement:

$$\max(S,N) \leftarrow \operatorname{nat}(N) \land \operatorname{set}(S) \land N \in S \land \neg \exists N1 \ (\operatorname{nat}(N1) \land N1 \in S \land \neg N1 \leq N)$$

N and S are free variables

$$\begin{array}{l} \text{Cls(max,} \phi) \colon & \\ \text{max(S,N)} \leftarrow \text{set(S)} \land \text{nat(N)} \land \text{N} \in S \land \neg \text{ newp(S,N)} \\ \text{newp(S,N)} \leftarrow \text{set(S)} \land \text{nat(N)} \land \text{nat(N1)} \land \text{N1} \in S \land \neg \text{N1} \leq \text{N} \end{array}$$

Set Maximum Example

Step 2. Apply the unfold/fold transformation strategy starting from:

Member \cup Cls(max, φ)

and derive a program for computing the maximum of a set:

```
\begin{aligned} & \max([\textbf{t}|S],0) \leftarrow \text{new1}(S) \\ & \max([\textbf{t}|S],s(N)) \leftarrow \max(S,N) \\ & \max([\textbf{f}|S],s(N)) \leftarrow \max(S,N) \\ & \text{new1}([\texttt{f}|S]) \leftarrow \\ & \text{new1}([\textbf{f}|S]) \leftarrow \text{new1}(S) \end{aligned}
```

The Unfold/Fold Synthesis Method

Let φ be a first order formula with free variables X_1, \ldots, X_n .

Step 2. Apply unfold/fold transformation rules that preserve M()

$$P \cup Cls(f, \varphi) \longrightarrow \cdots \longrightarrow Q$$
 such that $f(t_1, \ldots, t_n) \in M(P \cup Cls(f, \varphi))$ iff $f(t_1, \ldots, t_n) \in M(Q)$

The unfold/fold rules should be applied according to a strategy

Optimizations of synthesized programs: Determinization

The program derived by the u/f strategy may be nondeterministic.

$$p(s(X)) \leftarrow q(X)$$

$$p(s(X)) \leftarrow r(X)$$

$$q(0) \leftarrow$$

$$q(s(X)) \leftarrow r(X)$$

$$r(s(X)) \leftarrow q(X)$$

$$\begin{array}{l} \text{new}(X) \leftarrow \overline{q(X)} \\ \text{new}(X) \leftarrow \overline{r(X)} \end{array}$$

$$new(0) \leftarrow \\ new(s(X)) \leftarrow r(X) \\ new(s(X)) \leftarrow q(X)$$

$$\begin{array}{ll} \text{new}(0) \leftarrow & \text{multiple clause} \\ \text{new}(s(X)) \leftarrow \boxed{\text{new}(X)} & \text{folding} \end{array}$$

Optimizations of synthesized programs: Minimization

The programs derived during the unfold/fold strategy may contain equivalent predicates.

$$p(0) \leftarrow \\ p(s(X)) \leftarrow q(X) \\ q(0) \leftarrow \\ q(s(X)) \leftarrow p(X)$$

p and q have the same definition modulo predicate names.

$$M(P) \models \forall X(p(X) \leftrightarrow q(X))$$

$$p(0) \leftarrow \\ p(s(X)) \leftarrow p(X) \\ q(0) \leftarrow \\ q(s(X)) \leftarrow q(X)$$

goal replacement

if we are interested to p only we can delete the clauses for q

Conclusions

- Theorem Proving and Program Synthesis can be done via Program Transformation
- There are theoretical connection between decision procedures for logical theories and termination of program transformation strategies
- Robust Software Construction requires several tasks: synthesis from specifications, verification, optimizing transformations, specialization. All of them can be performed in systems based on program transformers.
- The unfold/fold proof and synthesis methods from WS1S specifications have been implemented on the MAP transformation system, available at http://www.iasi.rm.cnr.it/~proietti/system.html

Reasonable efficiency for small formulas.

- Ongoing work:
 - Theorem proving and synthesis via transformation of constraint logic programs
 - Verification and synthesis of infinite state systems