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- Establish a correspondence between 
  Theorem Proving and Program Transformation

- Exploit this correspondence for performing 
  software verification
  by means of 
  program transformers, program specializers, ...

Goals of this work



Truth-preserving Rules:

- modus ponens
- generalization
- resolution

Semantics-preserving Rules:

- unfold
- fold
- replacement

Strategies (or Tactics)
to construct proofs:

Strategies (or Tactics)
to derive "better" programs:

- depth-first
- breadth-first
- case analysis
- generalization
- induction

- specialization
- tupling
- composition (deforestation)
- generalization
- accumulation

Theorem Proving  vs  Program Transformation



Can we establish a more formal correspondence?

Theorem
Proving

Program 
Transformation

proofs as programs

Theorem
Proving

Program 
Transformation

proofs of properties
by transformation

Manna-Waldinger, Constable, Bundy

McCarthy, Kott, Courcelle, Pettorossi-Proietti, Roychoudury et al., Leuschel

Theorem Proving and Program Transformation



- Kott ’85:

- Courcelle ’86: completeness results, 
  equivalence of polynomial systems (~ tree automata) by unfold/fold

- Recursion induction (Mc Carthy ’63): proving properties by rewriting + 
   termination proofs

- Proofs by consistency or inductionless induction (Musser ’80, 
   Huet-Hullot ’82, Jouannaud-Kounalis ’86): finding minimal 
  counterexamples by rewriting and well-founded orderings

Previous Work (Functional Programs)

t

termination preserving 
unfold/fold

termination preserving 
unfold/fold

t1       =       t2



LHM(P) |= ∀x (∃y g1(x,y) ↔ ∃z g2(x,z) )

newp1(x) ← g1(x,y) newp2(x) ← g2(x,z)

termination preserving 
unfold/fold

termination preserving 
unfold/fold

P2P1 =
newp1/newp2

- Pettorossi-Proietti ’94-’99: proving the equivalence of definite programs 
  (no negation) by unfold/fold

- Roychoudury et al. ’99: as P-P, but using a more powerful folding 
  rule (verification of parameterized finite state systems)

- Leuschel et al. ’99: Using partial deduction (= partial evaluation of LP) 
  for the verification of infinite state systems (Petri nets)

Previous Work  (Logic Programs)



Associativity of list concatenation

P: a([ ],Y,Y) ←
a([H|X],Y,[H|Z])  ← a(X,Y,Z)

LHM(P) |= ∀A ∀B ∀C ∀D  
                       (∃X (a(A,B,X) ∧ a(X,C,D)) ↔ ∃Y (a(B,C,Y) ∧ a(A,Y,D)) )

newp1(A,B,C,D) ← a(A,B,X) ∧ a(X,C,D)

newp2(A,B,C,D) ← a(B,C,Y) ∧ a(A,Y,D) unfold ; fold

=
newp1/newp2

(A @ B) @ C = D A @ (B @ C) = D

 unfold ; fold

newp2([ ],B,C,D) ← a(B,C,D)
newp2([ H|A],B,C,[H|D]) ← 
                              newp2(A,B,C,D)

newp1([ ],B,C,D) ← a(B,C,D)
newp1([ H|A],B,C,[H|D]) ← 
                              newp1(A,B,C,D)



This work: Proving properties of 
general logic programs

Given   - a general logic program P with perfect model M(P)
             - a closed first order formula ϕ in the language of P

Prove      M(P) |= ϕ

Example        even(0) ←                               nat(0) ←
       even(s(X)) ← ¬even(X)         nat(s(X)) ← nat(X)
       odd(s(X)) ← ¬odd(X)

prove   M(P) |= ∀X (nat(X) → (even(X) ∨ odd(X)))

For ensuring the existence of M(P) we consider locally stratified 
programs: no recursion through negation in ground clauses

P:



Overview of the Unfold/Fold Proof Method

Step 1.   Introduce the statement        f ← ϕ

Cls(f,ϕ)

such that:     - P ∪ Cls(f,ϕ) is locally stratified

                     - M(P) |= ϕ   iff   f ∈ M(P ∪ Cls(f,ϕ))

Step 2.    Apply unfold/fold transformation rules that preserve M( )

P ∪ Cls(f,ϕ) Q. . .

if the clause  f ←  belongs to  Q  then  M(P) |= ϕ
if no clause for  f   belongs to  Q  then  M(P) |= ¬ϕ

The unfold/fold rules should be applied according to a strategy

Lloyd-Topor transformation

such that   f ∈ M(P ∪ Cls(f,ϕ))   iff   f ∈ M(Q)



Plan

- Locally stratified programs and perfect models

- Lloyd-Topor transformation

- Unfold/fold transformation rules

- Transformation strategy

- Decision procedures via the UF proof method

- Program synthesis via the UF proof method



General Logic Programs

• An atom is a formula p(t1,...,tk) where p is a predicate and t1,...,tk are 
   terms. A literal is either an atom or a negated atom. A clause is a formula  

   H ← L1 ∧ . . . ∧ Ln, where H is an atom and L1,...,Ln are literals. H is the 

   head and  L1 ∧ . . . ∧ Ln is the body. A (general logic) program is a set of clauses. 

• Unlike definite programs (no negation in bodies) some programs have no 
   least Herbrand model. For instance:
                                                   p ← ¬q
   has two minimal models:  {p}  and  {q}

• We can associate a program with a unique model (possibly not least)
   by ordering the atoms: q < p.
   We compute the model bottom-up wrt < :
   1. The least model of the clauses with head q is ∅  and q is false in ∅.
   2. Assuming that q is false, the least model of p ← ¬q  is {p}.



Locally Stratified Programs

• A stratification is a function 

                                                     σ: BL → W

   where BL is the set of all ground atoms in the first order language  L 
   used for writing programs and W is the set of countable ordinals

• A ground clause     H ← A1 ∧ . . . ∧ Am ∧ ¬Am+1 ∧ . . . ∧ ¬An

   is locally stratified wrt σ iff σ(H) ≥ σ(Ai)  for i=1,...,m

                                                σ(H) > σ(Ai)  for i=m+1,...,n
                                                no recursion through negation

• A program P is locally stratified  iff  there exists a stratification σ such 
   that every ground instance of a clause of P is locally stratified wrt σ



Locally Stratified Programs: Examples

• p ← ¬p  is not locally stratified: there is no stratification σ such that
   σ(p) > σ(p)

• odd(s(X)) ← ¬odd(X)   is locally stratified

   every clause is locally stratified wrt   σ(odd(s
n
(0))) = n

   ground instances:          odd(s(0)) ← ¬odd(0)
odd(s(s(0))) ← ¬odd(s(0))
. . .



Perfect Model

• Interpretation:  a subset ℑ of BL  (i.e. ℑ∈℘(BL))
   ℑ |= A  iff  A ∈ ℑ  and  ℑ |= ¬A iff A ∉ ℑ

• For every ordinal  α∈W, TP,α is a continuous operator on the lattice 

   ℘(BL) of all interpretations. The perfect model of P is defined as:

M(P) = ∪α∈W lfp(TP,α)

TP,α(ℑ) = {A | A ← L1 ∧ . . . ∧ Ln is a ground instance of a clause in P,
                            σ(A)=α,  and for i = 1,...,n  if  σ(Li)=α then ℑ |= Li 

                                                      else if  σ(Li)=β<α then lfp(TP,β) |= Li}

TP,α(ℑ) is the set of atoms in stratum α that are one-step consequences 

(using the clauses in P) of the literals that are true in ℑ and of the literals 
that are true in any stratum β<α

• Immediate consequence operator   TP,α: ℘(BL) → ℘(BL)
   where P is a locally stratified program and α∈W is an ordinal



Perfect Model: An Example

P:     p ← ¬odd(X)
         odd(s(X)) ← ¬odd(X)

stratification:               σ(p) = ω

                                    σ(odd(s
n
(0))) = n

1.  odd(s(0)) ← ¬odd(0)
2.  odd(s(s(0))) ← ¬odd(s(0))
      . . .
ω.  p ← ¬odd(0)
ω.  p ← ¬odd(s(0))
      . . .

   ground instances:          

M(P) = lfp(TP,0) ∪   lfp(TP,1)    ∪ . . . ∪ lfp(TP,ω)
          =      ∅      ∪ {odd(s(0))} ∪ . . . ∪ {p}



Plan

- Locally stratified programs and perfect models

Lloyd-Topor transformation

- Unfold/fold transformation rules

- Transformation strategy

- Decision procedures via the UF proof method

- Program synthesis via the UF proof method

⇒



Lloyd-Topor Transformation

• Given a locally stratified program P and a closed first order formula ϕ 
   using ¬, ∧, ∃, and the predicate symbols occurring in P,
   introduce the statement: f ← ϕ, where f is a new predicate symbol

                                                           f ← ϕ

Cls(f,ϕ)

such that:     - P ∪ Cls(f,ϕ) is locally stratified

                     - M(P) |= ϕ   iff   f ∈ M(P ∪ Cls(f,ϕ))

Lloyd-Topor transformation



. . . Lloyd-Topor Transformation

Apply as long as possible the following transformations 
(C[ψ] denotes a formula of the form:  ... ∧ ψ ∧ ...)

H ← C[¬¬ψ] ⇒ H ← C[ψ]

H ← C[¬ ∃X ψ] ⇒ H ← C[¬newp(X1,...,Xk)]

newp(X1,...,Xk) ← ψ{
where X1,...,Xk are the free variables of ψ

H ← C[∃X ψ] ⇒ H ← C[ψ{X/Y}] where Y is a new variable

H ← C[¬(ψ1∧ψ2)] H ← C[¬newp(X1,...,Xk)]

newp(X1,...,Xk) ← ψ1∧ψ2 
⇒

where X1,...,Xk are the free variables of ψ1∧ψ2

{



g ← nat(N)  ∧ ¬ N≤s(N)

LT Transformation: Less-or-Equal Example

 f ← ¬ ∃N( nat(N)  ∧ ¬ N≤s(N) )  

Rewrite ϕ as: ¬∃N(nat(N)  ∧ ¬N≤s(N))

f ← ¬ g
Locally stratifiedCls(f,ϕ):

nat(0) ←
nat(s(X)) ← nat(X)

ϕ:        ∀N (nat(N) → N≤s(N))

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2

P:

{

Introduce the statement:

Note:
∀N (g ← nat(N)  ∧ ¬ N≤s(N))  ≡  g ← ∃N(nat(N)  ∧ ¬ N≤s(N))



Limitations of SLDNF-resolution

g ← nat(N)  ∧ ¬ N≤s(N)
f ← ¬ g

Cls(f,ϕ):

SLDNF-resolution does not terminate

f

¬ g g

nat(N)  ∧ ¬ s(N)≤s(s(N))¬ 0≤s(0)

nat(N)  ∧ ¬ s(s(N))≤s(s(s(N)))

failure

failure

∞

¬ s(0)≤s(s(0))

{

We need to prove that, for all natural numbers N, ¬ N≤s(N) fails

nat(N)  ∧ ¬ N≤s(N)



Plan

- Locally stratified programs and perfect models

- Lloyd-Topor transformation

Unfold/fold transformation rules

- Transformation strategy

- Decision procedures via the UF proof method

- Program synthesis via the UF proof method

⇒



Overview of the Unfold/Fold Proof Method

Step 1.   Introduce the statement        f ← ϕ

Cls(f,ϕ)

such that:    - M(P ∪ Cls(f,ϕ)) is locally stratified

                    - M(P) |= ϕ   iff   f ∈ M(P ∪ Cls(f,ϕ))

Step 2.    Apply unfold/fold transformation rules that preserve M( )

P ∪ Cls(f,ϕ) Q. . .

if the clause  f ←  belongs to  Q  then  M(P) |= ϕ
if no clause for  f   belongs to  Q  then  M(P) |= ¬ϕ

The unfold/fold rules should be applied according to a strategy

Lloyd-Topor transformation

such that   f ∈ M(P ∪ Cls(f,ϕ))   iff   f ∈ M(Q)



The Unfold/Fold Transformation Rules 

• Construct a transformation sequence, that is, a sequence of programs

   where Pk+1 is derived from Pk by applying a transformation rule

P0 . . . Pn

• The transformation rules preserve the Perfect Model   

• Transformation Rules:
   - R1. Definition Introduction
   - R2. Unfolding (w.r.t. positive or negative literals)
   - R3. Folding
   - R4. Tautologies

where Defsn is the set of new clauses introduced by the Definition 
Introduction rule

M(P0 ∪ Defsn) = M(Pn) 



Definition Introduction: Less-or-Equal Example

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)

P0:

δ2: f ← ¬g

δ1:Definition Introduction (twice): g ← nat(N) ∧ ¬ N≤s(N)

Defs2 = {δ1,δ2}0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)

P2:

δ1: g ← nat(N) ∧ ¬ N≤s(N)
δ2: f ← ¬g



R1. Definition Introduction

Introduce a new definition, that is, a clause 

where:
  •  newp is a new predicate symbol

  •  X1 , . . . ,Xh are distinct variables occurring in L1∧ . . . ∧Ln

  •  the predicate symbols of L1∧ . . . ∧Ln occur in Pk

Pk+1 = Pk ∪ {δ}

δ:  newp(X1 , . . . ,Xh) ← L1∧ . . .∧Ln

No recursive definitions, no multiple clause definitions

[Tamaki-Sato 84, Seki 91]

Defsk is the set of definitions introduced up to step k



Unfolding δ1 wrt  nat(N)

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← ¬ 0≤s(0)
g ← nat(X) ∧ ¬ s(X)≤s(s(X)) 
f ← ¬g

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)

Positive Unfolding: Less-or-Equal Example

P2:

Defs3 = {δ1,δ2}

δ1: g ← nat(N) ∧ ¬ N≤s(N)

f ← ¬g

{N/0}

{N/s(X)}

P3:

λ1:
λ2:

replace



(H ←  G1 ∧ Bodym ∧ G2) θm

(H ←  G1 ∧ Body1  ∧ G2) θ1

Hm ←  BodymH1  ←  Body1

Pk+1 = (Pk \ {λ}) ∪ . . .{ }

R2+. Positive Unfolding

Given a clause in Pk  

λ:  H ← G1 ∧ A ∧ G2

and replace λ by all its resolvents w.r.t. the atom A

take all clauses in Pk whose head Hi unifies with A via an mgu θi

. . .

[Tamaki-Sato 84, Seki 91]

If m=0 then delete λ from Pk  



0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← ¬ 0≤s(0)
g ← nat(X) ∧ ¬ s(X)≤s(s(X)) 
f ← ¬g

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← ¬ 0≤s(0)
g ← nat(X) ∧ ¬ X≤s(X) 
f ← ¬g

Negative Unfolding: Less-or-Equal  Example

P3:

Unfolding λ1 wrt  ¬ 0≤s(0)  and 
                  λ2 wrt ¬ s(X)≤s(s(X)) 

λ1:
λ2:

P4:

λ3:
{N/0}
{N1/X, N2/X}

replace

Defs4 = {δ1,δ2}



Pk+1 = (Pk \ {λ}) ∪ {H ← Q1 ,  . . . , H ← Qr } 

λ:  H ← G1 ∧ ¬A ∧ G2

Hm ←  BodymH1  ←  Body1

then take the disjunctive normal form

take all clauses in Pk whose head Hi unifies with A via an mgu θi

. . .

R2-. Negative Unfolding

If m=0 then delete ¬A from the body of λ;  if Aθ ← is a clause in Pk then delete  λ. 

(1) A = H1 θ1 = . . . = Hm θm   (A is an instance of  H1, . . . , Hm)

(2) Body1 , . . . , Bodym    have no existential variables

if

Given a clause in Pk  

[Pettorossi-Proietti 00]

Q1 ∨ . . . ∨  Qr   =  DNF ( G1 ∧ ¬(Body1 θ1 ∨ . . . ∨ Bodym θm) ∧ G2 )



0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← g 
f ← ¬g

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← nat(X) ∧ ¬ X≤s(X) 
f ← ¬g

Folding: Less-or-Equal Example

P4:

λ3:

P5:

λ4:

replace folding λ3 wrt nat(X) ∧ ¬ X≤s(X)

δ2: f ← ¬g
δ1: g ← nat(N) ∧ ¬ N≤s(N)Defs4:



Pk+1 = (Pk \ {λ}) ∪ {H ← G1 ∧ Newp θ ∧ G3} 

λ:  H ← G1 ∧ G2θ ∧ G3

R3. Folding

Given a clause in Pk  

and a definition in Defsk δ:

if (1) θ = θ1  θ2 where:

     - θ1 and  θ2 share no variables

     - θ2 is a renaming of the existential variables of δ 

and (2) δ has been (or will be) unfolded w.r.t. a positive literal

then 

Similar to [Tamaki-Sato 84, Seki 91], except for (*)

(*)

Newp ← G2



Folding: Condition (2)

p(X) ← p(X)
p(X) ← q
q ← fail

 
P0:

newp ← ¬ p(X)

newp ← ¬ p(X) ∧ ¬ q

newp ← newp ∧ ¬ q

P1:

P2:

P3:

definition introduction

unfolding wrt ¬ p(X)

folding

newp ∈ M(P0 ∪ Defs3) = M(P1) newp ∉ M(P3)and 



Tautologies: Less-or-Equal Example

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← g 
f ← ¬g

P5:

H ← H ∧ G   is a tautology 

Finally, by unfolding f ← ¬g we get (there is no clause for g):

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
f ←

P7:

f ← belongs to P7    

⇒    f ∈ M(P7)    

⇒   M(P0) |= ∀N (nat(N) → N≤s(N))



Tautologies

Pk+1 = (Pk \ Cs) ∪ Ds

where Cs ⇒ Ds is an instance of one of the following rewritings:

{H ← A ∧ ¬A ∧ G} ⇒        ∅
{H ← H ∧ G} ⇒        ∅
{H ← G1 ∧ L1 ∧ L2 ∧ G2} ⇒        {H ← G1 ∧ L2 ∧ L1 ∧ G2}

{H ← L ∧ L ∧ G} ⇒        {H ← L ∧ G}

{H ← G1, 
  H ← G1 ∧ G2}

⇒        {H ← G1}

{H ← A ∧ G1 ∧ G2,  
  H ← ¬A ∧ G1}

⇒        {H ← G1 ∧ G2,
              H ← ¬A ∧ G1}



if  p ∉ M(Pk)   then   Pk+1 = (Pk \ Dp)

if  p ∈ M(Pk)   then   Pk+1 = (Pk \ Dp) ∪ {p ← }

Suppose that in Pk a predicate p depends on nullary predicates only.
Then  p ∈ M(Pk) is decidable and,by unfolding and tautologies,

A Derived Rule: Propositional Simplification

where Dp is the set of clauses in Pk with head p



Correctness of the Unfold/Fold rules

Theorem: Let P0, . . . , Pn be a transformation sequence. Let Defsn be the 
set of definitions introduced in that sequence. Then

 
M(P0 ∪ Defsn) = M(Pn) 

 



Plan

- Locally stratified programs and perfect models

- Lloyd-Topor transformation

- Unfold/fold transformation rules

Transformation strategy

- Decision procedures via the UF proof method

- Program synthesis via the UF proof method

⇒



P ∪ Cls(f,ϕ) = S0 ∪ . . . ∪ Sk is a finite partition into levels where:

-  S0 = P

-  the predicates in Si depend only on predicates in S0 ∪ . . . ∪ Si-1

InDefs  :=  Si

InDefs 
 = ∅?

YES

NO

Define and Fold

Unfold & Tautologies

Propositional
Simplification

Final Program
for level i

For i=1, . . . , k

fold all non-unit clauses if possible;
introduce new definitions in InDefs 
otherwise

unfold all clauses in InDefs w.r.t. all 
positive and negative literals

The Unfold/Fold Transformation Strategy



Even-Odd Example

even(0) ←                            nat(0) ←
even(s(X)) ← ¬even(X)       nat(s(X)) ← nat(X)
odd(s(X)) ← ¬odd(X)

We want to prove   
ϕ:    ∀X (nat(X) → (even(X) ∨ odd(X)))

f ← ¬g
g ← nat(X) ∧ ¬even(X) ∧ ¬odd(X)

Step 1. (LT-transformation) 
 
Introduce the statement:            f ← ¬ ∃X (nat(X) ∧ ¬even(X) ∧ ¬odd(X))

Definition Introduction: level 2
level 1

Lloyd-Topor Transformation

P:   



Even-Odd Example

Step 2. (Transformation Strategy)

Unfold wrt
nat(X), ¬even(X), ¬odd(X) g ← nat(X) ∧ even(X) ∧ odd(X)

Level 1. g ← nat(X) ∧ ¬even(X) ∧ ¬odd(X)

Define &Fold h ← nat(X) ∧ even(X) ∧ odd(X)
g ← h

Unfold wrt
nat(X), even(X), odd(X)

h ← nat(X) ∧ ¬even(X) ∧ ¬odd(X)
g ← h

Fold h ← g
g ← h

Propositional Simplification h ← g
g ← h

Level 2. f ← ¬g

Unfold  wrt ¬g f ←

M({h ← g,  g ← h}) = ∅



The Transformation Strategy ...

may not terminate because at each loop one or more new definitions may be
introduced. 

For restricted classes of programs and formulas it always terminates



Plan

- Locally stratified programs and perfect models

- Lloyd-Topor transformation

- Unfold/fold transformation rules

- Transformation strategy

Decision procedures via the UF proof method

- Program synthesis via the UF proof method

⇒



Tree-typed Formulas

ϕ  ::=  p(X)  |  ¬ϕ  |  ϕ1∧ϕ2  |  ∃X (r(X) ∧ ϕ)  

where r is defined by a tree program and p(X) is defined by a Monadic 
Regular program. 

A set of clauses of the form:

r0(t(X1,...,Xn)) ← r1(X1) ∧ . . . ∧ rn(Xn)

where t is a function symbol

n≥0

Tree-typed formulas:• 

Tree programs:• 



Monadic Regular Programs

MR programs have clauses of the form:

p0(t(X1,...,Xn)) ← p1(Y1) ∧ ... ∧ pk(Yk) ∧ ¬pk+1(Yk+1) ∧ ... ∧ ¬pm(Ym)

m,n≥0where t is a function symbol and  {Y1,...,Yn} ⊆ {X1,...,Xn}

Theorem: For a tree-typed formula ϕ and an MR program P the
unfold/fold transformation strategy terminates on the input P ∪ Cls(f,ϕ).
Moreover, if Q is the output program, 
                           either the clause f ← belongs to Q 
                           or no clause for  f  belongs to  Q
Thus, the UF proof method is a decision procedure for M(P) |= ϕ

MR programs are locally stratified

• 

• 

• 



Tree-typed Formulas and MR Programs: Examples

even(0) ←                            
even(s(X)) ← ¬even(X)       
odd(s(X)) ← ¬odd(X)

∀X (nat(X) → (even(X) ∨ odd(X)))Tree-typed formula:

nat(0) ←
nat(s(X)) ← nat(X)

Tree program:

MR program:

Tree automata can be expressed as MR programs. Membership, 
complementation, intersection, containment, and equivalence of
tree automata can be expressed as tree-typed formulas.

•

•

∀T (tree(T) → (a(T) ↔ b(T)))

For instance, the equivalence of two tree automata a and b can be
expressed as:



Natset-typed Formulas

ϕ  ::=  p(t1,...,tn)  |  ¬ϕ  |  ϕ1∧ϕ2  |  
           ∃N (nat(N) ∧ ϕ)  |  ∃S (set(S) ∧ ϕ)  

where nat(X) and set(X) are defined by:

Natset-typed formulas:• 

and p is defined by a natset-typed program.

nat(0) ←
nat(s(N)) ← nat(N)

set([ ]) ←
set([t|S]) ← set(S)
set([f|S]) ← set(S)

 

Terms:                  t ::=  n  |  s
Natural numbers: n ::=  0  |  N  |  s(n)
Sets:                      s ::=  [ ]  |  S  |  [t|S]  |  [f|S]

• 

A set of natural numbers is represented by a list [b0,...,bm]

sk(0)∈ [b0,...,bm]   iff   0≤k≤m  and  bk=t

A natural number k is represented by sk(0)



Natset-typed Programs

Head terms:   h ::=  0  |  s(N)  |  [ ]  |  [t|S]  |  [f|S]

Natset-typed clauses:

C ::=  p1(h1,...,hk) ←  |  p1(h1,...,hk) ← p2(X1,...,Xm)

where: p1(h1,...,hk) is a linear atom (each variable occurs at least once),  

Xi ::= N | S, and X1,...,Xm are distinct variables occurring in p1(h1,...,hk)

•

Natset-typed programs are sets of natset-typed clauses.•

•

Theorem: For a natset-typed formula ϕ and a natset-typed program P the
unfold/fold transformation strategy terminates on the input P ∪ Cls(f,ϕ).
Moreover, if Q is the output program, 
                           either the clause f ← belongs to Q 
                           or no clause for  f  belongs to  Q
Thus, the UF proof method is a decision procedure for M(P) |= ϕ

• 



WS1S

WS1S, the weak monadic second order theory of 1 successor [Buchi ’60]
can be decided by the unfold/fold proof method

WS1S Formulas:  ϕ ::=  n∈S  |  ¬ϕ  |  ϕ1 ∧ ϕ2  |  

                                        ∃N(nat(N) ∧ ϕ)  |  ∃S(set(S) ∧ ϕ)

0 ∈ [t|S] ←
s(N) ∈ [B|S] ← N ∈ S

Member:

where n∈S is defined by the natset-typed program:

WS1S expresses properties of the membership of finite sets of natural 
numbers

•

•

•



WS1S: Examples

Every finite set of natural numbers has a maximum element:

Set equality:

Order over numbers:

S1=S2 ≡ ∀N (nat(N) → N∈S1 ↔ N∈S2)

N1≤N2 ≡ ∀S (set(S)  → (N2∈S ∧ ∀N3 (nat(N3) → s(N3)∈S → N3∈S) → N1∈S))

S is ‘downward’ closed

∀S (set(S)  →  ∃N(nat(N) ∧ N∈S ∧ ¬∃N1 (nat(N1) ∧ N1∈S ∧ ¬N1≤N)))

There exixts no finite set which is nonempty and upwards closed:

¬∃S (set(S) ∧ ∃N1 (nat(N1)  ∧ N1∈S) ∧ ∀N2 (nat(N2)  ∧ N2∈S → s(N2)∈S))

More complex examples: Verification of finite state systems 
[Basin-Klarlund 98, Klarlund et al.96]



More Decision Procedures

By extending the encoding of the WS1S theory we can decide:

- WSkS, the monadic second order theory of k successors (membership

   to finite sets of strings over a k-symbol alphabet)

- CTL, the computational tree logic (a branching time temporal logic used

   for verifying finite state transition systems)



Plan

- Locally stratified programs and perfect models

- Lloyd-Topor transformation

- Unfold/fold transformation rules

- Transformation strategy

- Decision procedures via the UF proof method

Program synthesis via the UF proof method⇒



newp(S,N) ← set(S) ∧ nat(N) ∧ nat(N1) ∧ N1∈S ∧ ¬N1≤N

max(S,N) ← set(S) ∧ nat(N) ∧ N∈S ∧ ¬ newp(S,N)

Program Synthesis

max(S,N) ← nat(N) ∧ set(S) ∧ N∈S ∧ ¬ ∃N1 (nat(N1) ∧ N1∈S ∧ ¬N1≤N)

Example (Maximum of a set).

ϕ ≡ nat(N) ∧ set(S) ∧ N∈S ∧ ¬∃N1 (nat(N1) ∧ N1∈S ∧ ¬N1≤N)

Step 1. Apply the Lloyd-Topor transformation starting from the statement:

Cls(max,ϕ): 

Apply the Unfold/Fold proof method starting from open formulas.

N and S are free variables

N and S are free variables

•

•



Set Maximum Example

Step 2. Apply the unfold/fold transformation strategy starting from:

Member ∪ Cls(max, ϕ)

and derive a program for computing the maximum of a set:

max([t|S],0) ← new1(S)
max([t|S],s(N)) ← max(S,N)
max([f|S],s(N)) ← max(S,N)
new1([ ]) ←
new1([f|S]) ← new1(S)



The Unfold/Fold Synthesis Method

Step 1.   Introduce the statement   f(X1,...,Xn) ← ϕ

Cls(f,ϕ)

Step 2.    Apply unfold/fold transformation rules that preserve M( )

P ∪ Cls(f,ϕ) Q. . .

The unfold/fold rules should be applied according to a strategy

Lloyd-Topor transformation

such that   f(t1, . . . , tn) ∈ M(P ∪ Cls(f,ϕ))   iff   f(t1, . . . , tn) ∈ M(Q)

Let ϕ be a first order formula with free variables X1, . . . , Xn.

such that, for all ground terms t1,...,tn,

                            M(Member) |= ϕ{X1/t1,...,Xn/tn}   
                                                    iff   
                          M(Member ∪ Cls(f,ϕ)) |= f(t1,...,tn)



The program derived by the u/f strategy may be nondeterministic.

p(s(X)) ← q(X)
p(s(X)) ← r(X)
q(0) ←
q(s(X)) ← r(X)
r(s(X)) ← q(X)

new(X) ← q(X)
new(X) ← r(X)

new(0) ←
new(s(X)) ← r(X)
new(s(X)) ← q(X)

new(0) ←
new(s(X)) ← new(X)

multiple clause 
definition

unfolding

multiple clause 
folding

Optimizations of synthesized programs:
Determinization



Optimizations of synthesized programs:
Minimization

p(0) ←
p(s(X)) ← q(X)
q(0) ←
q(s(X)) ← p(X)

The programs derived during the unfold/fold strategy may contain
equivalent predicates.

p and q have the same definition modulo predicate names.

M(P) |= ∀X(p(X) ↔ q(X)) 

p(0) ←
p(s(X)) ← p(X)
q(0) ←
q(s(X)) ← q(X)

goal replacement

if we are interested to p only 
we can delete the clauses for q



Conclusions

Theorem Proving and Program Synthesis can be done via Program 
Transformation 

Robust Software Construction requires several tasks: synthesis from 
specifications, verification, optimizing transformations, specialization.
All of them can be performed in systems based on program transformers.

There are theoretical connection between decision procedures for logical
theories and termination of program transformation strategies

The unfold/fold proof and synthesis methods from WS1S specifications
have been implemented on the MAP transformation system, available at
                    http://www.iasi.rm.cnr.it/~proietti/system.html

Reasonable efficiency for small formulas.

Ongoing work: 
- Theorem proving and synthesis via transformation of constraint logic 
   programs
-  Verification and synthesis of infinite state systems

• 

• 

• 

• 

• 


