
Software Verification and Synthesis
via Program Transformation

A Case Study: Monadic Second Order Logic

(*) IASI-CNR
Viale Manzoni 30
00185 Rome, Italy

(**) DISP - Universita’ di Roma Tor Vergata
Via del Politecnico
00133 Rome, Italy

{fioravanti,adp,proietti}@iasi.rm.cnr.it

Waseda University, Tokyo, Japan March 4th, 2003

Fabio Fioravanti*, Alberto Pettorossi**, Maurizio Proietti*



- Establish a correspondence between 
  Theorem Proving and Program Transformation

- Exploit this correspondence for performing 
  software verification
  by means of 
  program transformers, program specializers, ...

Goals of this work

Long term goal: Design of a uniform framework based on unfold/fold 
transformations for software development (synthesis, verification, 
transformation, specialization).



- proving WS1S formulas (a fragment of MSO),  thereby yielding a 
   ’completeness’ result for unfold/fold transformations w.r.t. WS1S;

- synthesizing definite logic programs from WS1S specifications.

Monadic second order (MSO) logics are logics of membership to sets 
of strings. Very expressive, decidable. [Büchi 60, Thatcher-Wright 68, Rabin 69] 

MSO logics are useful for the automatic verification of finite state 
systems. [MONA, Klarlund et al. 96]

A Case Study: Monadic Second Order Logics

We will propose methods based on unfold/fold transformations for:



The number of processes of the system may change dynamically.
A process is identified by a natural number.
A state S of the system is represented by a pair 〈W,U〉 of sets of processes: 
(1) the set W of processes waiting for a resource
(2) the set U of processes using a resource

reach(S) ← init(S)

reach(S) ← create(S1,S) ∧ reach(S1)

reach(S) ← use(S1,S) ∧ reach(S1)

reach(S) ← release(S1,S) ∧ reach(S1)

where  init, create, use, release  represent the transition relation and
are specified by WS1S formulas.

Modelling a multiprocess system



use(〈W,U〉,〈W1,U1〉) ≡ 
      ∃N (N∈W ∧ ∃Z (Z =W∪U ∧ min(Z,N)) ∧ W1=W-{N} ∧ 

      U1=U∪{N})

init(〈W,U〉)  ≡ empty(W)  ∧ empty(U)

cre(〈W,U〉,〈W1,U1〉) ≡   
      ∃Z (Z =W∪U ∧ 

      ((empty(Z) ∧ W1={0}) ∨
       (¬empty(Z) ∧  ∃M (max(Z,M) ∧ W1=W∪{M+1})))) ∧
      U1=U

rel(〈W,U〉,〈W1,U1〉) ≡ 
      W1=W ∧
      ∃N (N∈U ∧  U1=U-{N})

The Transition Relation

Initial state:

Create a new process:

Use the resource:

Release the resource:



- synthesizing terminating definite logic programs from WS1S 
   specifications,  such as init, create, use, release:

We will present automatic methods based on unfold/fold 
transformations for

- proving WS1S formulas, such as:

∀W ∀U ∀W1 ∀U1 (use(〈W,U〉,〈W1,U1〉) → ¬empty(U1))

use(〈W,U〉,〈W1,U1〉) ≡ 
   ∃N (N∈W ∧ ∃Z (Z =W∪U ∧ min(Z,N)) ∧ W1=W-{N} ∧ U1=U∪{N})

Also empty, ∪, -, min, have WS1S specifications. 

Verification and Synthesis Examples



Overview

• Weak monadic second order theory of one successor (WS1S)

• Encoding WS1S into stratified logic programs

• The unfold/fold proof method:
   - transformation rules
   - transformation strategy

• Termination of the strategy

• The unfold/fold synthesis method

• Optimizations: Discarding useless types, Determinization, 
   Minimization, Deletion of useless clauses

• Implementation



WS1S: Syntax

The Weak Monadic Second Order theory of one successor (WS1S) is
the theory of membership to finite sets of natural numbers.

Syntax    (2-sorted)

Individual variables:    N in Ivars  
Set variables:               S in Svars 
Function symbols:      0,   s(_)
Predicate symbols:      ∈
Individual terms:         n ::=  0  |  N  |  s(n)
Formulas:                    ϕ ::=  n∈S  |  ¬ϕ  |  ϕ1 ∧ ϕ2  |  ∃N ϕ  |  ∃S ϕ

We consider a first order presentation.  
For a second order presentation, write  S(n)  instead of  n∈S.

We also use ∨, →, ↔, ∀ as abbreviations.



0  is interpreted as the zero of  Nat
s(_)  is interpreted as the successor function  +1
∈  is interpreted as the membership relation on  Nat × Pfin(Nat)   

Semantics

WS1S: Semantics

Interpretation ℑ

Domain of  ℑ: Nat ∪ Pfin(Nat)  where Nat = {0, 1, 2, . . .}

|=WS1S ϕ   iff   ℑ |= ϕ 

•

•

•

|=WS1S ϕ is decidable  [Büchi 60, by using automata-theory] 



WS1S

WS1S specifications (i.e. open formulas)

Every finite set of natural numbers has a maximum element:

set equality:

WS1S properties (i.e. closed formulas)

order over numbers:

S1=S2 ≡ ∀N (N∈S1 ↔ N∈S2)

N1≤N2 ≡ ∀S (N2∈S ∧ ∀N3 (s(N3)∈S → N3∈S) → N1∈S)

S is ’downward’ closed

∀S ∃N(N∈S ∧ ¬∃N1 (N1∈S ∧ ¬N1≤N))

There exists no finite set which is nonempty and ’upward’ closed:

¬∃S (∃N1 (N1∈S) ∧ ∀N2 (N2∈S → s(N2)∈S))



Encoding WS1S into LP  (1)

Natural numbers: 0, s(0), s(s(0)), . . .

Finite sets:  [b0,b1, . . . , bn]   where bi in {t,f}

                    sk(0) belongs to [b1, . . . , bn]    iff    0≤k≤m and bk=t

{0,3,4}  is represented by   [t,f,f,t,t]   and also by  [t,f,f,t,t,f]

∅  is represented by   [ ]   and also by  [f,...,f]

nat(0) ←
nat(s(N)) ← nat(N)

set([ ]) ←
set([t|S]) ← set(S)

set([f|S]) ← set(S)

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2

0 ∈ [t|S] ←
s(N) ∈ [B|S] ← N ∈ S

Program Natset



g ← nat(N1) ∧ ¬ h(N1)

Encoding WS1S into LP (2)

Given the WS1S formula: ϕ ≡ ∀N1 ∃N2 N1≤N2

Apply the Lloyd-Topor transformation starting from the statement f ← ψ  

Rewrite as: ψ ≡ ¬∃N1¬∃N2 N1≤N2

f ← ¬ ∃N1¬ ∃N2 N1≤N2

f ← ¬ g
g ← ¬ h(N1)

h(N1) ← N1≤N2

Add types f ← ¬ g

h(N1) ← nat(N1) ∧ nat(N2) ∧ N1≤N2

Stratified
program

Cls(f,ϕ):

f>g>h



Semantics of Definite Logic Programs

• Every definite logic program (no negation in bodies) has a least Herbrand 
   model.

• BL: the set of all ground atoms in the first order language  L used for writing 
   programs and formulas

• Interpretation:  a subset ℑ of BL  (i.e. ℑ ∈ 2BL)
   ℑ |= A  iff  A ∈ ℑ  and  ℑ |= ¬A iff A ∉ ℑ

• Ιmmediate consequence operator: TP: 2BL → 2BL

      TP(ℑ) = {A | A ← L1 ∧ ... ∧ Ln is a ground instance of a clause in P,

                            and, for i = 1,...,n,  ℑ |= Li}

• TP is a continuous operator on the lattice 2BL of all interpretations. The 

   least Herbrand model of P is: M(P) = lfp(TP) = T
ω
P (∅).



Nonmonotonicity and Semantics of Negation

• For general logic programs (with negated atoms in bodies) TP is 
   nonmonotonic and some programs have no least Herbrand model. 
   For instance:
                                                   p ← ¬q
   has two minimal models:  {p}  and  {q}

• We can associate a program with a unique model (possibly not least)
   by ordering the atoms: q < p.
   We compute the model bottom-up wrt < :
   1. The least model of the clauses with head q is ∅  and q is false in ∅.
   2. Assuming that q is false, the least model of p ← ¬q  is {p}.



Stratified Logic Programs

• A level mapping is a function σ: BL → ω where ω is the set of natural 
   numbers. σ(¬A)=σ(A)

• A clause     H ← L1 ∧ . . . ∧ Ln is stratified wrt σ iff   
   for  i=1,...,n,  if Li is an atom then σ(H) ≥ σ(Li)

                          if Li is a negated atom then σ(H) > σ(Li)   
                          (no recursion through negation)

• A program P is stratified  iff  there exists a level mapping σ such 
   that every clause of P is stratified wrt σ

• P:     p ← ¬q   is stratified (wrt any level mapping σ such that σ(p) > σ(q))
            q ← q

• p ← ¬p  is not stratified: there is no level mapping σ such that σ(p) > σ(p)



Perfect Model

• For every ordinal  n∈ω, TP,n is a continuous operator on the lattice 

   2BL. The perfect model of P is defined as:

M(P) = ∪n∈ω lfp(TP,n)

TP,n(ℑ) = {A | A ← L1 ∧ . . . ∧ Ln is a ground instance of a clause in P,
                            σ(A)=n,  and for i = 1,...,n  if  σ(Li)=n then ℑ |= Li 

                                                      else if  σ(Li)=m<n then lfp(TP,m) |= Li}

TP,n(ℑ) is the set of atoms at level n that are one-step consequences 
(using the clauses in P) of the literals that are true in ℑ and of the literals 
that are true at any level m<n

• Immediate consequence operator   TP,n: ℘(BL) → ℘(BL)
   where P is a stratified program and n∈ω

•  P:   p ← ¬q
           q ← q

M(P)={p}



Lloyd-Topor Transformation

Apply as long as possible the following transformations 
(C[ψ] denotes a formula of the form:  ... ∧ ψ ∧ ...)

H ← C[¬¬ψ] ⇒ H ← C[ψ]

H ← C[¬ ∃X ψ] ⇒ H ← C[¬newp(X1,...,Xk)]

newp(X1,...,Xk) ← ψ{
where X1,...,Xk are the free variables of ψ

H ← C[∃X ψ] ⇒ H ← C[ψ{X/Y}] where Y is a new variable

H ← C[¬(ψ1∧ψ2)] H ← C[¬newp(X1,...,Xk)]

newp(X1,...,Xk) ← ψ1∧ψ2 
⇒

where X1,...,Xk are the free variables of ψ1∧ψ2

{



Addition of Types

H ← A1 ∧ ... ∧ An

H ← nat(N1) ∧ ... ∧ nat(Nk) ∧ 
         set(S1) ∧ ... ∧ set(Sm) ∧ 
         A1 ∧ ... ∧ An

Individual variables occurring in 
H ← A1 ∧ ... ∧ An

Set variables occurring in 
H ← A1 ∧ ... ∧ An



Correctness of the Encoding

Theorem

|=WS1S ϕ   iff   M(Natset ∪ Cls(f,ϕ)) |= f 

Perfect (= Standard = Stable = Well-founded) model



Limitations of SLDNF-resolution (Prolog)

g ← nat(N1) ∧ ¬ h(N1)
f ← ¬ g

h(N1) ← nat(N1) ∧ nat(N2) ∧ N1≤N2

Cls(f,ϕ):

SLDNF-resolution does not terminate

f

¬ g g

nat(N1)  ∧ ¬ h(N1)

nat(N1)  ∧ ¬ h(s(N1))¬ h(0)

nat(N1)  ∧ ¬ h(s(s(N1)))

failure

failure

∞

¬ h(s(0))



Limitations of Tabled Resolution (XSB)

g ← nat(N1) ∧ ¬ h(N1)
f ← ¬ g

h(N1) ← nat(N1) ∧ nat(N2) ∧ N1≤N2

Cls(f,ϕ):

No repeated goal:
tabled resolution does not terminate

f

¬ g g

nat(N1)  ∧ ¬ h(N1)

nat(N1)  ∧ ¬ h(s(N1))¬ h(0)

nat(N1)  ∧ ¬ h(s(s(N1)))

failure

failure

∞

¬ h(s(0))



g ← nat(N1) ∧ ¬ h(N1)

 . . . Proving WS1S via Program Transformation

level 2

unfoldingg ← nat(N1) ∧ ¬ h(N1)

g ← g folding

f ← ¬ g level 3

f ←

tautology

unfolding

⇒  M(Natset ∪ Cls(f,ϕ)) |= f    

⇒  by the correctness of the encoding and the correctness of the 
transformations, 

|=WS1S ϕ



The Unfold/Fold Proof Method

Let ϕ be a closed WS1S formula.

Step 1. (Encoding into stratified LP)

Lloyd-Topor transformation + type addition

ϕ Cls(f,ϕ)

|=WS1S ϕ   iff   M(Natset ∪ Cls(f,ϕ)) |= f 

Step 2. (Unfold/fold transformations)

Natset ∪ Cls(f,ϕ) T. . .

unfolding and folding rules applied according to a strategy

M(Natset ∪ Cls(f,ϕ)) |= f    iff    f ← belongs to T



Rule-based Program Transformation

• The transformation rules preserve the Perfect Model.

   
M(P0 ∪ Defsn) = M(Pn) 

• Program transformation: Construct a sequence of programs

    where Pk+1 is derived from Pk by applying a transformation rule.

We consider stratified normal logic programs with the Perfect
Model (= Standard Model) semantics. 

• 

where Defsn is the set of new definitions introduced during 
program transformation.

P0 . . . Pn



The Unfold/Fold Transformation Rules 

• Construct a transformation sequence, that is, a sequence of programs

   where Pk+1 is derived from Pk by applying a transformation rule

P0 . . . Pn

• Transformation Rules:
   - R1. Definition Introduction
   - R2. Unfolding (w.r.t. positive or negative literals)
   - R3. Folding
   - R4. Tautologies



g ← nat(N)  ∧ ¬ N≤s(N)

LT Transformation: Less-or-Equal Example

 f ← ¬ ∃N¬ N≤s(N)

Rewrite ϕ as: ¬∃N ¬N≤s(N)

f ← ¬ g
Locally stratifiedCls(f,ϕ):

nat(0) ←
nat(s(X)) ← nat(X)

ϕ:        ∀N N≤s(N)

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2

P:

{

Introduce the statement:

Note:
∀N (g ← nat(N)  ∧ ¬ N≤s(N))  ≡  g ← ∃N(nat(N)  ∧ ¬ N≤s(N))

LT transformation + type addition 



Definition Introduction: Less-or-Equal Example

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)

P0:

δ2: f ← ¬g

δ1:Definition Introduction (twice): g ← nat(N) ∧ ¬ N≤s(N)

Defs2 = {δ1,δ2}0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)

P2:

δ1: g ← nat(N) ∧ ¬ N≤s(N)
δ2: f ← ¬g



R1. Definition Introduction

Introduce a new definition, that is, a clause 

where:
  •  newp is a new predicate symbol

  •  X1 , . . . ,Xh are distinct variables occurring in L1∧ . . . ∧Ln

  •  the predicate symbols of L1∧ . . . ∧Ln occur in Pk

Pk+1 = Pk ∪ {δ}

δ:  newp(X1 , . . . ,Xh) ← L1∧ . . .∧Ln

No recursive definitions, no multiple clause definitions

Defsk is the set of definitions introduced up to step k



Unfolding δ1 wrt  nat(N)

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← ¬ 0≤s(0)
g ← nat(X) ∧ ¬ s(X)≤s(s(X)) 
f ← ¬g

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)

Positive Unfolding: Less-or-Equal Example

P2:

Defs3 = {δ1,δ2}

δ1: g ← nat(N) ∧ ¬ N≤s(N)

f ← ¬g

{N/0}

{N/s(X)}

P3:

λ1:
λ2:

replace



(H ←  G1 ∧ Bodym ∧ G2) θm

(H ←  G1 ∧ Body1  ∧ G2) θ1

Hm ←  BodymH1  ←  Body1

Pk+1 = (Pk \ {λ}) ∪ . . .{ }

R2+. Positive Unfolding

Given a clause in Pk  

λ:  H ← G1 ∧ A ∧ G2

and replace λ by all its resolvents w.r.t. the atom A

take all clauses in Pk whose head Hi unifies with A via an mgu θi

. . .

If m=0 then delete λ from Pk  



0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← ¬ 0≤s(0)
g ← nat(X) ∧ ¬ s(X)≤s(s(X)) 
f ← ¬g

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← ¬ 0≤s(0)
g ← nat(X) ∧ ¬ X≤s(X) 
f ← ¬g

Negative Unfolding: Less-or-Equal  Example

P3:

Unfolding λ1 wrt  ¬ 0≤s(0)  and 
                  λ2 wrt ¬ s(X)≤s(s(X)) 

λ1:
λ2:

P4:

λ3:
{N/0}
{N1/X, N2/X}

replace

Defs4 = {δ1,δ2}



R2-. Negative Unfolding

Pk+1 = (Pk \ {λ}) ∪ {H ← Q1 ,  . . . , H ← Qr } 

λ:  H ← G1 ∧ ¬A ∧ G2

Hm ←  BodymH1  ←  Body1

then take the disjunctive normal form

take all clauses in Pk whose head Hi unifies with A via an mgu θi

. . .

If m=0 then delete ¬A from the body of λ;  if Aθ ← is a clause in Pk then delete  λ. 

(1) A = H1 θ1 = . . . = Hm θm   (A is an instance of  H1, . . . , Hm)

(2) Body1 , . . . , Bodym    have no existential variables

if

Given a clause in Pk  

Q1 ∨ . . . ∨  Qr   =  DNF ( G1 ∧ ¬(Body1 θ1 ∨ . . . ∨ Bodym θm) ∧ G2 )



nat(X) ∧ ¬ (q1(X) ∨ (q2(s(X)) ∧ q3(s(X))))

h(X) ← nat(X) ∧ ¬ q1(X) ∧ ¬ q2(s(X))

h(X) ← nat(X) ∧ ¬ q1(X) ∧ ¬ q3(s(X))

Negative Unfolding: Example

 

 

h(X) ← nat(X) ∧ ¬ p(s(X))
p(0) ←
p(s(X)) ← q1(X)

p(X) ← q2(X) ∧ q3(X)

nat(X) ∧ ¬ q1(X) ∧ ¬ q2(s(X))  ∨
nat(X) ∧ ¬ q1(X) ∧ ¬ q3(s(X))

DNF



0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← g 
f ← ¬g

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← nat(X) ∧ ¬ X≤s(X) 
f ← ¬g

Folding: Less-or-Equal Example

P4:

λ3:

P5:

λ4:

replace folding λ3 wrt nat(X) ∧ ¬ X≤s(X)

δ2: f ← ¬g
δ1: g ← nat(N) ∧ ¬ N≤s(N)Defs4:



Pk+1 = (Pk \ {λ}) ∪ {H ← G1 ∧ Newp θ ∧ G3} 

λ:  H ← G1 ∧ G2θ ∧ G3

R3. Folding

Given a clause in Pk  

and a definition in Defsk δ:

if (1) θ = θ1  θ2 where:

     - θ1 and  θ2 share no variables

     - θ2 is a renaming of the existential variables of δ 

and (2) δ has been (or will be) unfolded w.r.t. a positive literal

then 

Similar to [Tamaki-Sato 84, Seki 91], except for (*)

(*)

Newp ← G2



Folding: Condition (2)

p(X) ← p(X)
p(X) ← q
q ← fail

 
P0:

newp ← ¬ p(X)

newp ← ¬ p(X) ∧ ¬ q

newp ← newp ∧ ¬ q

P1:

P2:

P3:

definition introduction

unfolding wrt ¬ p(X)

folding

newp ∈ M(P0 ∪ Defs3) = M(P1) newp ∉ M(P3)and 



Tautologies: Less-or-Equal Example

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
g ← g 
f ← ¬g

P5:

H ← H ∧ G   is a tautology 

Finally, by unfolding f ← ¬g we get (there is no clause for g):

0 ≤ N ←
s(N1) ≤ s(N2) ← N1 ≤ N2
nat(0) ←
nat(s(X)) ← nat(X)
f ←

P7:

f ← belongs to P7    

⇔    f ∈ M(P7)    

⇔   M(P0) |= ∀N (nat(N) → N≤s(N))



Tautologies

Pk+1 = (Pk \ Cs) ∪ Ds

where Cs ⇒ Ds is an instance of one of the following rewritings:

{H ← A ∧ ¬A ∧ G} ⇒        ∅
{H ← H ∧ G} ⇒        ∅
{H ← G1 ∧ L1 ∧ L2 ∧ G2} ⇒        {H ← G1 ∧ L2 ∧ L1 ∧ G2}

{H ← L ∧ L ∧ G} ⇒        {H ← L ∧ G}

{H ← G1, 
  H ← G1 ∧ G2}

⇒        {H ← G1}

{H ← A ∧ G1 ∧ G2,  
  H ← ¬A ∧ G1}

⇒        {H ← G1 ∧ G2,
              H ← ¬A ∧ G1}



if  p ∉ M(Pk)   then   Pk+1 = (Pk \ Dp)

if  p ∈ M(Pk)   then   Pk+1 = (Pk \ Dp) ∪ {p ← }

Suppose that in Pk a predicate p depends on nullary predicates only.
Then  p ∈ M(Pk) is decidable and,by unfolding and tautologies,

A Derived Rule: Propositional Simplification

where Dp is the set of clauses in Pk with head p



Correctness of the Unfold/Fold rules

Theorem: Let P0, . . . , Pn be a transformation sequence. Let Defsn be the 
set of definitions introduced in that sequence. Then

M(P0 ∪ Defsn) = M(Pn) 



P ∪ Cls(f,ϕ) = S0 ∪ . . . ∪ Sk is a finite partition into levels where:

-  S0 = P

-  the predicates in Si depend only on predicates in S0 ∪ . . . ∪ Si-1

InDefs  :=  Si

InDefs 
 = ∅?

YES

NO

Define and Fold

Unfold & Tautologies

Propositional
Simplification

Final Program
for level i

For i=1, . . . , k

fold all non-unit clauses if possible;
introduce new definitions in InDefs 
otherwise

unfold all clauses in InDefs w.r.t. all 
positive and negative literals

The Unfold/Fold Transformation Strategy



By construction, all clauses in T are definite clauses of the form: 

          p(t1, . . . , tk) ← q1(X1, . . . , Xu) ∧ . . . ∧ qr(Xv, . . . , Xw) 

where:  ti := 0 | s(N) | [ ] | [B|S]   and

X1, . . . , Xi, . . . , Xj, . . . , Xs are distinct variables occurring in t1, . . . , tk

Termination

Only a finite number of new definitions are generated (no
generalization is needed).

Theorem. For all WS1S formulas ϕ, the unfold/fold strategy 
Natset ∪ Cls(f,ϕ) terminates and the final program T contains either 
f ←  or no clause for f.

Proof.

In particular, if p is 0-ary, then we derive a set of propositional clauses  
for p,  and by the propositional simplification the final program T 
contains either p ←  or no clause for p.



h(0) ← 
h(s(N1)) ← nat(N1) ∧ nat(N2) ∧ N1≤N2

level 3

level 2

level 1

level 1

The Transformation Strategy (Example 1)

g ← nat(N1) ∧ ¬ h(N1)
f ← ¬ g

h(N1) ← nat(N1) ∧ nat(N2) ∧ N1≤N2

Cls(f,ϕ):

Bottom up over levels:

h(N1) ← nat(N1) ∧ nat(N2) ∧ N1≤N2

h(0) ← 
h(s(N)) ← h(N)

unfolding

folding



g ← nat(N1) ∧ ¬ h(N1)

The Transformation Strategy (Example 2)

level 2

unfoldingg ← nat(N1) ∧ ¬ h(N1)

g ← g folding

f ← ¬ g level 3

f ←

tautology

unfolding

⇒  M(Natset ∪ Cls(f,ϕ)) |= f    

⇒  by the correctness of the encoding and the correctness of the 
transformations, 

|=WS1S ϕ



max(S,N) ← N∈S ∧ ¬ ∃N1 (N1∈S ∧ ¬N1≤N)

Program Synthesis from WS1S Formulas

Example (Maximum of a set).

ϕ ≡ N∈S ∧ ¬∃N1 (N1∈S ∧ ¬N1≤N)

Apply the Lloyd-Topor transformation starting from the statement:
free variables

max(S,N) ← set(S) ∧ nat(N) ∧ N∈S ∧ ¬ newp(S,N)

and add types

newp(S,N) ← set(S) ∧ nat(N) ∧ nat(N1) ∧ N1∈S ∧ ¬N1≤N
Cls(max,ϕ): 



. . . Program Synthesis from WS1S Formulas

Apply the unfold/fold transformation strategy starting from:

Natset ∪ Cls(max, ϕ)

and derive a program for computing the maximum of a set:

max([t|S],0) ← new1(S)
max([t|S],s(N)) ← max(S,N)
max([f|S],s(N)) ← max(S,N)
new1([ ]) ←
new1([f|S]) ← new1(S)



unfold/fold strategy

Let ϕ be a WS1S formula with free variables X1, . . . , Xn.

Step 1. (Encoding into stratified LP)

Lloyd-Topor transformation + type additionϕ Cls(f,ϕ)

|=WS1S ϕ{X1/t1, . . . , Xn/tn}   iff   M(Natset ∪ Cls(f,ϕ)) |= f(t1, . . . , tn)

Step 2. (Unfold/fold transformations)

Natset ∪ Cls(f,ϕ) T. . .

M(Natset ∪ Cls(f,ϕ)) |= f(t1, . . . , tn)    iff    M(T) |= f(t1, . . . , tn) 

for all ground terms t1, . . . , tn, 

for all ground terms t1, . . . , tn, 

The Unfold/Fold Synthesis Method



Optimizations: (1) Discarding useless types

Some type atoms can be discarded.

M(Natset) |= ∀N ∀S (N∈S → nat(N))

newp(S,N) ← set(S) ∧ nat(N) ∧ nat(N1) ∧ N1∈S ∧ ¬N1≤N

max(S,N) ← set(S) ∧ nat(N) ∧ N∈S ∧ ¬ newp(S,N)

ϕ ≡ N∈S ∧ ¬∃N1 (N1∈S ∧ ¬N1≤N)

Cls(max,ϕ): 

Example:

because



Optimizations: (2) Determinization

The program derived by the u/f strategy may be nondeterministic

p(s(X)) ← q(X)
p(s(X)) ← r(X)
q(0) ←
q(s(X)) ← r(X)
r(s(X)) ← q(X)

new(X) ← q(X)
new(X) ← r(X)

new(0) ←
new(s(X)) ← r(X)
new(s(X)) ← q(X)

new(0) ←
new(s(X)) ← new(X)

multiple clause 
definition

unfolding

multiple clause 
folding



Optimizations: (3) Minimization

p(0) ←
p(s(X)) ← q(X)
q(0) ←
q(s(X)) ← p(X)

The programs derived during the unfold/fold strategy may contain
equivalent predicates.

p and q have the same definition modulo predicate names.

M(P) |= ∀X(p(X) ↔ q(X)) 

p(0) ←
p(s(X)) ← p(X)
q(0) ←
q(s(X)) ← q(X)

goal replacements



if  p ∉ M(Prop(Pk))   then   Pk+1 = (Pk \ Dp)

Suppose that P is a definite program.

Deletion of Useless Clauses

where Dp is the set of clauses in Pk with head p

         Pk              →        Prop(Pk)
p(...) ← q(...)                  p ← q

Example:

p(s(X)) ← q(X)
q(s(X)) ← p(X)

p ← q
q ← p

        Pk              →        Prop(Pk)

the clauses for p and q can be deleted



Incremental Verification

Synthesize programs for:
- set union
- min
- set difference
- singleton
- empty set
- use

To prove the WS1S formula:

∀W ∀U ∀W1 ∀U1 (use(〈W,U〉,〈W1,U1〉) → ¬empty(U1))

use(〈W,U〉,〈W1,U1〉) ≡ 
   ∃N (N∈W ∧ ∃Z (Z =W∪U ∧ min(Z,N)) ∧ W1=W-{N} ∧ U1=U∪{N})

where:

Add the synthesized programs to Natset and prove the WS1S formula in the
derived program



Implementation

The unfold/fold proof and synthesis methods have been implemented
on the MAP transformation system, available at
                    http://www.iasi.rm.cnr.it/~proietti/system.html

Reasonable efficiency for small formulas.



(in which case M(P)    ϕ)
P ∪ Cls(f,ϕ)               T

Check whether or not

Program Verification using CLP

Given a locally stratified CLP(D) program P and
            a first order formula ϕ

1. Apply Lloyd-Topor transformation starting from :  

2. Apply rules according to a strategy: rules *

f ← ϕ 
and derive a locally stratified program Cls(f,ϕ)

M(P)   ϕ

s. t. M(P)    ϕ   iff   M(P ∪ Cls(f,ϕ))    f|= |=

s.t. either  f ←   is in T

|=

|=
       or no clause for f is in T  (in which case M(P)    ϕ)|=



Verifying a Semaphore               1

1. down(X1) ← X1=X+1 ∧ ¬ down(X)
2. up(0, 0) ← 
3. up(X1, 0) ← X1=X+1 ∧ down(X)
4. up(X1, Y1) ← X1=X+1 ∧ Y1=Y+1 ∧ X>Y ∧ up(X1,Y)

ϕ : ∀X,Y (X>Y ∧ X2=X+2 ∧ up(X,Y) → up(X2, 0))

Program P :

After Lloyd-Topor we get :

6. f ← ¬ g
7. g ← X>Y ∧ X2=X+2 ∧ up(X,Y) ∧ ¬ up(X2, 0)

f ← ∀X,Y (X>Y ∧ X2=X+2 ∧ up(X,Y) → up(X2, 0))
We start from :

     up   0,0     2,0  2,1     4,0  4,1  4,2  4,3     6,0  ...  6,5      8,0 ...
down         1               3                             5                    7         ...



M(P)    ϕ[t]    iff     M(S)    s(t)|= |=

P ∪ Cls(s,ϕ)               S

Derive an efficient program S defining s(X) s.t.

Program Synthesis 

Given a locally stratified CLP(D) program P and
            a first order formula ϕ[X]

1. Apply Lloyd-Topor transformation starting from :  

2. Apply rules according to a strategy:

∀ ground term t

rules *

s(X) ← ϕ[X] 
and derive a possibly inefficient, locally stratified program Cls(s,ϕ)

[ Kowalski’s Festschrift 2002 ]

s.t. ∀ ground term t,  M(P)    ϕ[t]   iff  M(P ∪ Cls(s,ϕ))    s(t)|= |=



Synthesis of max                     1

1. list([ ]) ← 
2. list([X|Xs]) ← list(Xs)
3. member(X, [A|As]) ← X = A
4. member(X, [A|As]) ← member(X,As)

ϕ[L,M] :  list(L) ∧ member(M,L) ∧ ∀X (member(X,L) → X<M)

Program P :

After Lloyd-Topor we get :

6. max(L,M) ← list(L) ∧ member(M,L) ∧ ¬ new1(L,M)
7. new1(L,M) ← member(X,L) ∧ ¬ X<M

max(L,M) ← list(L) ∧ member(M,L) ∧∀X(member(X,L) → X<M)
We start from :



Synthesis of max                     2

16.  max([A|As], M) ← new2(A, As, M)
17.  new2(A, [ ], M) ← M = A
21.  new2(A, [B|As], M) ← B < A ∧ new2(A, As, M)
22.  new2(A, [B|As], M) ← A < B ∧ new2(B, As, M)

Synthesized Program :


