Software Verification and Synthesis via Program Transformation A Case Study: Monadic Second Order Logic

Fabio Fioravanti*, Alberto Pettorossi**, Maurizio Proietti*

{fioravanti,adp,proietti}@iasi.rm.cnr.it

(*) IASI-CNR Viale Manzoni 30 00185 Rome, Italy (**) DISP - Universita' di Roma Tor Vergata Via del Politecnico 00133 Rome, Italy

Waseda University, Tokyo, Japan

March 4th, 2003

Goals of this work

- Establish a correspondence between *Theorem Proving* and *Program Transformation*
- Exploit this correspondence for performing software verification
 by means of program transformers, program specializers, ...

Long term goal: Design of a uniform framework based on unfold/fold transformations for software development (synthesis, verification, transformation, specialization).

A Case Study: Monadic Second Order Logics

Monadic second order (MSO) logics are logics of membership to sets of strings. Very expressive, decidable. [Büchi 60, Thatcher-Wright 68, Rabin 69]

MSO logics are useful for the automatic verification of finite state systems. [MONA, Klarlund et al. 96]

We will propose methods based on unfold/fold transformations for:

- proving WS1S formulas (a fragment of MSO), thereby yielding a 'completeness' result for unfold/fold transformations w.r.t. WS1S;
- synthesizing definite logic programs from WS1S specifications.

Modelling a multiprocess system

The number of processes of the system may change dynamically.
A process is identified by a natural number.
A state S of the system is represented by a pair ⟨W,U⟩ of sets of processes:
(1) the set W of processes waiting for a resource
(2) the set U of processes using a resource

```
reach(S) \leftarrow init(S)
reach(S) \leftarrow create(S1,S) \land reach(S1)
reach(S) \leftarrow use(S1,S) \land reach(S1)
reach(S) \leftarrow release(S1,S) \land reach(S1)
```

where init, create, use, release represent the transition relation and are specified by WS1S formulas.

The Transition Relation

Initial state:

 $init(\langle W,U \rangle) \equiv empty(W) \land empty(U)$

Create a new process:

 $cre(\langle W,U \rangle, \langle W1,U1 \rangle) \equiv \\ \exists Z (Z = W \cup U \land \\ ((empty(Z) \land W1 = \{0\}) \lor \\ (\neg empty(Z) \land \exists M (max(Z,M) \land W1 = W \cup \{M+1\})))) \land \\ U1 = U$

Use the resource:

 $use(\langle W,U \rangle, \langle W1,U1 \rangle) \equiv \\ \exists N \ (N \in W \land \exists Z \ (Z = W \cup U \land min(Z,N)) \land W1 = W - \{N\} \land \\ U1 = U \cup \{N\})$

Release the resource:

 $rel(\langle W,U \rangle, \langle W1,U1 \rangle) \equiv$ $W1=W \land$ $\exists N (N \in U \land U1=U-\{N\})$

Verification and Synthesis Examples

We will present automatic methods based on unfold/fold transformations for

- proving WS1S formulas, such as:

 $\forall W \forall U \forall W1 \forall U1 (use(\langle W,U \rangle, \langle W1,U1 \rangle) \rightarrow \neg empty(U1))$

- <u>synthesizing</u> terminating definite logic programs from WS1S specifications, such as init, create, use, release:

 $use(\langle W,U \rangle, \langle W1,U1 \rangle) \equiv \\ \exists N (N \in W \land \exists Z (Z = W \cup U \land min(Z,N)) \land W1 = W \cdot \{N\} \land U1 = U \cup \{N\})$

Also empty, \cup , -, min, have WS1S specifications.

Overview

- Weak monadic second order theory of one successor (WS1S)
- Encoding WS1S into stratified logic programs
- The unfold/fold proof method:
 - transformation rules
 - transformation strategy
- Termination of the strategy
- The unfold/fold synthesis method
- Optimizations: Discarding useless types, Determinization, Minimization, Deletion of useless clauses
- Implementation

WS1S: Syntax

The Weak Monadic Second Order theory of one successor (WS1S) is the theory of membership to finite sets of natural numbers.

Syntax (2-sorted)

Individual variables:	N in Ivars
Set variables:	S in Svars
Function symbols:	0, s(_)
Predicate symbols:	E
Individual terms:	$\mathbf{n} ::= 0 \mid \mathbf{N} \mid \mathbf{s}(\mathbf{n})$
Formulas:	$\phi ::= n \in S \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \exists N \phi \mid \exists S \phi$

We also use \lor , \rightarrow , \leftrightarrow , \forall as abbreviations.

We consider a first order presentation. For a second order presentation, write S(n) instead of $n \in S$.

WS1S: Semantics

Semantics

Interpretation 3

- <u>Domain of</u> \Im : Nat \cup P_{fin}(Nat) where Nat = {0, 1, 2, ...}
- 0 is interpreted as the <u>zero</u> of Nat
 s(_) is interpreted as the <u>successor function</u> +1
 ∈ is interpreted as the <u>membership relation on Nat × P_{fin}(Nat)</u>

•
$$|=_{WS1S} \varphi$$
 iff $\Im |= \varphi$

 $|=_{WS1S} \varphi$ is <u>decidable</u> [Büchi 60, by using automata-theory]

WS1S

WS1S specifications (i.e. open formulas)

set equality: $S1=S2 \equiv \forall N \ (N \in S1 \leftrightarrow N \in S2)$ order over numbers: $N1 \le N2 \equiv \forall S \ (N2 \in S \land \forall N3 \ (s(N3) \in S \rightarrow N3 \in S) \rightarrow N1 \in S)$

WS1S properties (i.e. closed formulas)

Every finite set of natural numbers has a maximum element:

 $\forall S \exists N(N \in S \land \neg \exists N1 (N1 \in S \land \neg N1 \leq N))$

There exists no finite set which is nonempty and 'upward' closed: $\neg \exists S (\exists N1 (N1 \in S) \land \forall N2 (N2 \in S \rightarrow s(N2) \in S))$

Encoding WS1S into LP (1)

Natural numbers: 0, s(0), s(s(0)), . . .

Finite sets: $[b_0, b_1, \dots, b_n]$ where b_i in $\{t, f\}$ $s^k(0)$ belongs to $[b_1, \dots, b_n]$ iff $0 \le k \le m$ and $b_k = t$

 $\{0,3,4\}$ is represented by [t,f,f,t,t] and also by [t,f,f,t,t,f]

 \emptyset is represented by [] and also by $[f, \ldots, f]$

Program Natset	
$nat(0) \leftarrow$	$0 \le N \leftarrow$
$nat(s(N)) \leftarrow nat(N)$	$s(N1) \le s(N2) \leftarrow N1 \le N2$
$set([]) \leftarrow$	$0 \in [t S] \leftarrow$
$set([t S]) \leftarrow set(S)$	$s(N) \in \ [B S] \leftarrow N \in \ S$
$set([f S]) \leftarrow set(S)$	

Encoding WS1S into LP (2)

Given the WS1S formula:

$$\varphi \equiv \forall N1 \exists N2 N1 \leq N2$$

Rewrite as:

$$\psi \equiv \neg \exists N1 \neg \exists N2 \ N1 \leq N2$$

Apply the Lloyd-Topor transformation starting from the statement $f \leftarrow \psi$

Semantics of Definite Logic Programs

- Every definite logic program (no negation in bodies) has a least Herbrand model.
- B_L : the set of all ground atoms in the first order language L used for writing programs and formulas
- Interpretation: a subset \Im of B_L (i.e. $\Im \in 2^{B_L}$) $\Im \models A$ iff $A \in \Im$ and $\Im \models \neg A$ iff $A \notin \Im$
- Immediate consequence operator: $T_P: 2^{B_L} \rightarrow 2^{B_L}$

 $T_{P}(\mathfrak{I}) = \{A \mid A \leftarrow L_{1} \land ... \land L_{n} \text{ is a ground instance of a clause in P,} \\ \text{and, for } i = 1, ..., n, \ \mathfrak{I} \models L_{i} \}$

• T_P is a continuous operator on the lattice 2^{B_L} of all interpretations. The least Herbrand model of P is: $M(P) = lfp(T_P) = T_P^{\omega}(\emptyset)$.

Nonmonotonicity and Semantics of Negation

 For general logic programs (with negated atoms in bodies) T_P is nonmonotonic and some programs have no least Herbrand model. For instance:

 $p \leftarrow \neg q$ has two minimal models: {p} and {q}

- We can associate a program with a unique model (possibly not least) by ordering the atoms: q < p.
 We compute the model bottom-up wrt < :
 - 1. The least model of the clauses with head q is \emptyset and q is false in \emptyset .
 - 2. Assuming that q is false, the least model of $p \leftarrow \neg q$ is $\{p\}$.

Stratified Logic Programs

- A level mapping is a function σ: B_L → ω where ω is the set of natural numbers. σ(¬A)=σ(A)
- A clause $H \leftarrow L_1 \land \ldots \land L_n$ is stratified wrt σ iff for i=1,...,n, if L_i is an atom then $\sigma(H) \ge \sigma(L_i)$ if L_i is a negated atom then $\sigma(H) > \sigma(L_i)$ (no recursion through negation)
- A program P is stratified iff there exists a level mapping σ such that every clause of P is stratified wrt σ
- P: $p \leftarrow \neg q$ is stratified (wrt any level mapping σ such that $\sigma(p) > \sigma(q)$) $q \leftarrow q$
- $p \leftarrow \neg p$ is not stratified: there is no level mapping σ such that $\sigma(p) > \sigma(p)$

Perfect Model

• Immediate consequence operator $T_{P,n}$: $\mathcal{D}(B_L) \to \mathcal{D}(B_L)$ where P is a stratified program and $n \in \omega$

$$\begin{split} T_{P,n}(\mathfrak{S}) &= \{A \mid A \leftarrow L_1 \land \ldots \land L_n \text{ is a ground instance of a clause in P,} \\ \sigma(A) &= n, \text{ and for } i = 1, \dots, n \text{ if } \sigma(L_i) = n \text{ then } \mathfrak{S} \mid = L_i \\ & \text{else if } \sigma(L_i) = m < n \text{ then } lfp(T_{P,m}) \mid = L_i \} \end{split}$$

 $T_{P,n}(\mathfrak{I})$ is the set of atoms at level n that are one-step consequences (using the clauses in P) of the literals that are true in \mathfrak{I} and of the literals that are true at any level m<n

• For every ordinal $n \in \omega$, $T_{P,n}$ is a continuous operator on the lattice 2^{B_L} . The perfect model of P is defined as:

 $M(P) = \bigcup_{n \in \omega} lfp(T_{P,n})$

• P: $p \leftarrow \neg q$ $M(P)=\{p\}$ $q \leftarrow q$

Lloyd-Topor Transformation

Apply as long as possible the following transformations $(C[\psi] \text{ denotes a formula of the form: } ... \land \psi \land ...)$

 $H \leftarrow C[\neg \neg \psi] \qquad \Rightarrow \quad H \leftarrow C[\psi]$ $H \leftarrow C[\neg(\psi_1 \land \psi_2)] \implies \begin{cases} H \leftarrow C[\neg newp(X_1, ..., X_k)] \\ newp(X_1, ..., X_k) \leftarrow \psi_1 \land \psi_2 \end{cases}$ where $X_1, ..., X_k$ are the free variables of $\psi_1 \land \psi_2$ $H \leftarrow C[\neg \exists X \psi] \implies \begin{cases} H \leftarrow C[\neg newp(X_1, ..., X_k)] \\ newp(X_1, X_k) \leftarrow \psi \end{cases}$ where $X_1,...,X_k$ are the free variables of ψ where Y is a new variable $H \leftarrow C[\exists X \psi]$ \Rightarrow H \leftarrow C[ψ {X/Y}]

Addition of Types

Limitations of Tabled Resolution (XSB)

The Unfold/Fold Proof Method

Let $\boldsymbol{\phi}$ be a closed WS1S formula.

Step 1. (Encoding into stratified LP)

 $\phi \longrightarrow Cls(f,\phi)$

Lloyd-Topor transformation + type addition

 $|=_{WS1S} \phi$ iff M(Natset \cup Cls(f, ϕ)) |= f

 Step 2. (Unfold/fold transformations)

 Natset ∪ Cls(f,φ) → ··· → T

 unfolding and folding rules applied according to a strategy

 M(Natset ∪ Cls(f,φ)) |= f iff f ← belongs to T

Rule-based Program Transformation

- We consider <u>stratified</u> normal logic programs with the Perfect Model (= Standard Model) semantics.
- **Program transformation:** Construct a sequence of programs

$$P_0 \rightarrow \dots \rightarrow P_n$$

where P_{k+1} is derived from P_k by applying a transformation rule.

• The transformation rules preserve the Perfect Model.

$$\mathbf{M}(\mathbf{P}_0 \cup \mathbf{Defs}_n) = \mathbf{M}(\mathbf{P}_n)$$

where $Defs_n$ is the set of <u>new definitions introduced during</u> program transformation.

The Unfold/Fold Transformation Rules

• Construct a transformation sequence, that is, a sequence of programs

 $P_0 \rightarrow \cdots \rightarrow P_n$

where P_{k+1} is derived from P_k by applying a transformation rule

• Transformation Rules:

- R1. Definition Introduction
- R2. Unfolding (w.r.t. positive or negative literals)
- R3. Folding
- R4. Tautologies

LT Transformation: Less-or-Equal Example

P: $0 \le N \leftarrow$ $nat(0) \leftarrow$ $s(N1) \le s(N2) \leftarrow N1 \le N2$ $nat(s(X)) \leftarrow nat(X)$

 φ : \forall N N \leq s(N)

Rewrite φ as: $\neg \exists N \neg N \leq s(N)$

Introduce the statement:
$$f \leftarrow \neg \exists N \neg N \leq s(N)$$

 \downarrow LT transformation + type addition
 $Cls(f,\phi): \begin{cases} f \leftarrow \neg g \\ g \leftarrow nat(N) \land \neg N \leq s(N) \end{cases}$ Locally stratified

Note:

 $\forall N (g \leftarrow nat(N) \land \neg N \leq s(N)) \equiv g \leftarrow \exists N(nat(N) \land \neg N \leq s(N))$

Definition Introduction: Less-or-Equal Example

 $\begin{array}{ll} P_0 & 0 \leq N \leftarrow & \\ & s(N1) \leq s(N2) \leftarrow N1 \leq N2 \\ & nat(0) \leftarrow & \\ & nat(s(X)) \leftarrow nat(X) \end{array}$

Defs₂ = { δ_1, δ_2 }

 $\begin{array}{lll} P_2 \colon & 0 \leq N \leftarrow & \\ & s(N1) \leq s(N2) \leftarrow N1 \leq N2 & \\ & nat(0) \leftarrow & \\ & nat(s(X)) \leftarrow nat(X) & \\ \delta_1 \colon & g \leftarrow nat(N) \land \neg N \leq s(N) & \\ & \delta_2 \colon & f \leftarrow \neg g & \end{array}$

R1. Definition Introduction

Introduce a new definition, that is, a clause

δ: newp(X₁,...,X_h)
$$\leftarrow$$
 L₁ \land ... \land L_n

where:

- newp is a new predicate symbol
- $X_1, ..., X_h$ are distinct variables occurring in $L_1 \land ... \land L_n$
- the predicate symbols of $L_1 \land \ldots \land L_n$ occur in P_k

 $P_{k+1} = P_k \cup \{\delta\}$

 $Defs_k$ is the set of definitions introduced up to step k

No recursive definitions, no multiple clause definitions

Positive Unfolding: Less-or-Equal Example

R2⁺. Positive Unfolding

Given a clause in P_k

$$\lambda: H \leftarrow G_1 \land A \land G_2$$

take all clauses in P_k whose head H_i unifies with A via an mgu θ_i

$$\textbf{H}_1 \leftarrow \textbf{Body}_1 \quad \dots \quad \textbf{H}_m \leftarrow \textbf{Body}_m$$

and replace λ by all its resolvents w.r.t. the atom A

$$\begin{split} P_{k+1} = (P_k \setminus \{\lambda\}) \cup \left\{ \begin{matrix} (H \leftarrow G_1 \land Body_1 \land G_2) \ \theta_1 \\ \ddots \\ (H \leftarrow G_1 \land Body_m \land G_2) \ \theta_m \end{matrix} \right\} \end{split}$$

If m=0 then delete λ from P_k

Negative Unfolding: Less-or-Equal Example

R2⁻. Negative Unfolding

Given a clause in P_k λ : $H \leftarrow G_1 \land \neg A \land G_2$

take all clauses in P_k whose head H_i unifies with A via an mgu θ_i

$$H_1 \leftarrow Body_1 \quad \dots \quad H_m \leftarrow Body_m$$

if (1) $A = H_1 \theta_1 = \ldots = H_m \theta_m$ (A is an instance of H_1, \ldots, H_m) (2) $Body_1, \ldots, Body_m$ have no existential variables

then take the disjunctive normal form

If m=0 then delete $\neg A$ from the body of λ ; if $A\theta \leftarrow$ is a clause in Pk then delete λ .

Negative Unfolding: Example

Folding: Less-or-Equal Example

$$\begin{array}{c} P_4: \ 0 \leq N \leftarrow \\ s(N1) \leq s(N2) \leftarrow N1 \leq N2 \\ nat(0) \leftarrow \\ nat(s(X)) \leftarrow nat(X) \\ \hline \lambda_3: \ g \leftarrow \underline{nat}(X) \land \neg X \leq \underline{s}(X) \\ f \leftarrow \neg g \end{array}$$

$$\begin{array}{c} \text{Defs}_4: \ \delta_1: \underline{g} \leftarrow \underline{nat}(N) \land \neg N \leq \underline{s}(N) \\ \delta_2: \ f \leftarrow \neg g \end{array}$$

$$\begin{array}{c} \text{replace} \qquad \qquad \text{folding } \lambda_3 \text{ wrt} \underline{nat}(X) \land \neg X \leq \underline{s}(X) \\ P_5: \ 0 \leq N \leftarrow \\ s(N1) \leq s(N2) \leftarrow N1 \leq N2 \\ nat(0) \leftarrow \\ nat(s(X)) \leftarrow nat(X) \\ \hline \lambda_4: \ g \leftarrow \underline{g} \\ f \leftarrow \neg g \end{array}$$

R3. Folding

Given a clause in P_k λ : $H \leftarrow G_1 \land G_2 \theta \land G_3$

and a definition in $Defs_k$ δ : $Newp \leftarrow G_2$

if (1) $\theta = \theta_1 \circ \theta_2$ where: - θ_1 and θ_2 share no variables - θ_2 is a renaming of the existential variables of δ and (2) δ has been (or will be) unfolded w.r.t. a positive literal (*) then $P_{k+1} = (P_k \setminus {\lambda}) \cup {H \leftarrow G_1 \land Newp \ \theta \land G_3}$

Similar to [Tamaki-Sato 84, Seki 91], except for (*)

Folding: Condition (2)

 $\begin{array}{ll} P_0: & p(X) \leftarrow p(X) \\ & p(X) \leftarrow q \\ & q \leftarrow fail \end{array}$

P₁: newp
$$\leftarrow \neg p(X)$$
 definition introduction

$$P_2: \quad \text{newp} \leftarrow \neg p(X) \land \neg q$$

unfolding wrt \neg p(X)

$$P_3: newp \leftarrow newp \land \neg q \qquad folding$$

newp $\in M(P_0 \cup Defs_3) = M(P_1)$ and newp $\notin M(P_3)$

Tautologies: Less-or-Equal Example

Finally, by unfolding $f \leftarrow \neg g$ we get (there is no clause for g):

 $\begin{array}{ll} P_7: & 0 \leq N \leftarrow & \\ & s(N1) \leq s(N2) \leftarrow N1 \leq N2 \\ & nat(0) \leftarrow & \\ & nat(s(X)) \leftarrow nat(X) \\ & f \leftarrow & \end{array}$

 $f \leftarrow belongs to P_7$

 $\iff \ f\in \ M(P_7)$

 $\Leftrightarrow M(P_0) \models \forall N (nat(N) \rightarrow N \leq s(N))$

Tautologies

$$P_{k+1} = (P_k \setminus Cs) \cup Ds$$

where $Cs \Rightarrow Ds$ is an instance of one of the following rewritings:

A Derived Rule: Propositional Simplification

Suppose that in P_k a predicate p depends on nullary predicates only. Then $p \in M(P_k)$ is decidable and, by unfolding and tautologies,

if
$$p \in M(P_k)$$
 then $P_{k+1} = (P_k \setminus D_p) \cup \{p \leftarrow \}$
if $p \notin M(P_k)$ then $P_{k+1} = (P_k \setminus D_p)$

where D_p is the set of clauses in P_k with head p

Correctness of the Unfold/Fold rules

Theorem: Let P_0, \ldots, P_n be a transformation sequence. Let $Defs_n$ be the set of definitions introduced in that sequence. Then

 $M(P_0 \cup Defs_n) = M(P_n)$

The Unfold/Fold Transformation Strategy

- $P \cup Cls(f,\phi) = S_0 \cup \ldots \cup S_k$ is a finite partition into levels where:
 - $S_0 = P$
 - the predicates in S_i depend only on predicates in $S_0 \cup \ldots \cup S_{i\text{-}1}$

Termination

Theorem. For all WS1S formulas φ , the unfold/fold strategy Natset \cup Cls(f, φ) terminates and the final program T contains either f \leftarrow or no clause for f.

Proof. Only a <u>finite number of new definitions</u> are generated (no generalization is needed).

By construction, all clauses in T are definite clauses of the form:

 $p(t_1, \ldots, t_k) \leftarrow q_1(X_1, \ldots, X_u) \land \ldots \land q_r(X_v, \ldots, X_w)$ where: $t_i := 0 | s(N) | [] | [B|S]$ and

 $X_1, \ldots, X_i, \ldots, X_j, \ldots, X_s$ are distinct variables occurring in t_1, \ldots, t_k

In particular, if p is 0-ary, then we derive a set of propositional clauses for p, and by the propositional simplification the final program T contains either $p \leftarrow or$ no clause for p.

The Transformation Strategy (Example 1)

$$\begin{array}{ll} f \leftarrow \neg g & \mbox{level 3} \\ s \leftarrow nat(N1) \land \neg h(N1) & \mbox{level 2} \\ h(N1) \leftarrow nat(N1) \land nat(N2) \land N1 \leq N2 & \mbox{level 1} \end{array}$$

Bottom up over levels:

$$h(N1) \leftarrow nat(N1) \land nat(N2) \land N1 \le N2$$
 level 1

$$\begin{array}{l} h(0) \leftarrow \\ h(s(N1)) \leftarrow nat(N1) \land nat(N2) \land N1 \leq N2 \end{array} \end{array} \begin{array}{l} \textbf{unfolding} \end{array}$$

$$h(0) \leftarrow \\ h(s(N)) \leftarrow h(N)$$

folding

 $|=_{WS1S} \varphi$

Program Synthesis from WS1S Formulas

Example (Maximum of a set).

$$\varphi \equiv \underline{N \in S} \land \neg \exists N1 \ (N1 \in \underline{S} \land \neg N1 \leq \underline{N})$$

free variables

Apply the Lloyd-Topor transformation starting from the statement:

$$\max(S,N) \leftarrow N \in S \land \neg \exists N1 (N1 \in S \land \neg N1 \leq N)$$

and add types

Cls(max,φ):

 $\max(S,N) \leftarrow \underline{set(S)} \land \underline{nat(N)} \land N \in S \land \neg \underline{newp(S,N)}$ $newp(S,N) \leftarrow \underline{set(S)} \land \underline{nat(N)} \land \underline{nat(N1)} \land N1 \in S \land \neg N1 \leq N$

... Program Synthesis from WS1S Formulas

Apply the unfold/fold transformation strategy starting from:

Natset \cup Cls(max, ϕ)

and derive a program for computing the maximum of a set:

 $max([t|S],0) \leftarrow new1(S)$ $max([t|S],s(N)) \leftarrow max(S,N)$ $max([f|S],s(N)) \leftarrow max(S,N)$ $new1([]) \leftarrow$ $new1([f|S]) \leftarrow new1(S)$

The Unfold/Fold Synthesis Method

Let φ be a WS1S formula with free variables X_1, \ldots, X_n .

Step 1. (Encoding into stratified LP)

 $\phi \rightarrow Cls(f,\phi)$ Lloyd-Topor transformation + type addition

for all ground terms t_1, \ldots, t_n ,

 $|=_{ws_{1s}} \varphi\{X_1/t_1, \ldots, X_n/t_n\} \quad \text{iff} \quad M(Natset \cup Cls(f, \phi)) \mid = f(t_1, \ldots, t_n)$

Step 2. (Unfold/fold transformations)Natset \cup Cls(f, ϕ) \rightarrow \cdots \rightarrow Tunfold/fold strategyfor all ground terms t_1, \ldots, t_n ,M(Natset \cup Cls(f, ϕ)) |= f(t_1, \ldots, t_n)iffM(T) |= f(t_1, \ldots, t_n)

Optimizations: (1) Discarding useless types

Some type atoms can be discarded.

Example:

$$\phi \equiv N \in S \land \neg \exists N1 \ (N1 \in S \land \neg N1 \leq N)$$

Cls(max,φ):

 $\begin{aligned} \max(S,N) \leftarrow set(S) \land nat(N) \land N \in S \land \neg newp(S,N) \\ newp(S,N) \leftarrow set(S) \land nat(N) \land nat(N1) \land N1 \in S \land \neg N1 \leq N \end{aligned}$

because $M(Natset) \models \forall N \forall S (N \in S \rightarrow nat(N))$

Optimizations: (2) Determinization

The program derived by the u/f strategy may be nondeterministic

 $p(s(X)) \leftarrow q(X)$ $p(s(X)) \leftarrow r(X)$ $q(0) \leftarrow$ $q(s(X)) \leftarrow r(X)$ $r(s(X)) \leftarrow q(X)$

 $new(X) \leftarrow q(X)$ $new(X) \leftarrow r(X)$

multiple clause definition

 $new(0) \leftarrow$ $new(s(X)) \leftarrow r(X)$ $new(s(X)) \leftarrow q(X)$

unfolding

 $\begin{array}{ll} new(0) \leftarrow & multiple clause \\ new(s(X)) \leftarrow new(X) & folding \end{array}$

Optimizations: (3) Minimization

The programs derived during the unfold/fold strategy may contain equivalent predicates.

 $p(0) \leftarrow q(X)$ $q(0) \leftarrow q(S(X)) \leftarrow p(X)$

p and q have the same definition modulo predicate names.

 $M(P) \models \forall X(p(X) \leftrightarrow q(X))$

$$p(0) \leftarrow p(s(X)) \leftarrow p(X) \qquad \text{goal replacements}$$
$$q(0) \leftarrow q(s(X)) \leftarrow q(X)$$

Deletion of Useless Clauses

Suppose that P is a definite program.

$$\begin{array}{ccc} P_k & \rightarrow & Prop(P_k) \\ p(...) \leftarrow q(...) & p \leftarrow q \end{array}$$

if $p \notin M(\operatorname{Prop}(P_k))$ then $P_{k+1} = (P_k \setminus D_p)$

where D_p is the set of clauses in P_k with head p

Example:
$$P_k$$
 \rightarrow $Prop(P_k)$ $p(s(X)) \leftarrow q(X)$ $p \leftarrow q$ $q(s(X)) \leftarrow p(X)$ $q \leftarrow p$

the clauses for p and q can be deleted

Incremental Verification

To prove the WS1S formula:

 $\forall W \forall U \forall W1 \forall U1 (use(\langle W,U \rangle, \langle W1,U1 \rangle) \rightarrow \neg empty(U1))$

where:

 $use(\langle W,U \rangle, \langle W1,U1 \rangle) \equiv \\ \exists N \ (N \in W \land \exists Z \ (Z = W \cup U \land \min(Z,N)) \land W1 = W - \{N\} \land U1 = U \cup \{N\})$

Synthesize programs for:

- set union
- min
- set difference
- singleton
- empty set
- use

Add the synthesized programs to Natset and prove the WS1S formula in the derived program

Implementation

The unfold/fold proof and synthesis methods have been implemented on the MAP transformation system, available at http://www.iasi.rm.cnr.it/~proietti/system.html

Reasonable efficiency for small formulas.

Program Verification using CLP

Given a locally stratified **CLP(D)** program P and a first order formula φ

Check whether or not $\mathbf{M}(\mathbf{P}) \models \varphi$

1. Apply Lloyd-Topor transformation starting from : $\label{eq:formation} \mathbf{f} \leftarrow \boldsymbol{\phi}$

and derive a locally stratified program $Cls(f,\phi)$

s. t. $\mathbf{M}(\mathbf{P}) \models \phi$ iff $\mathbf{M}(\mathbf{P} \cup \mathbf{Cls}(\mathbf{f}, \phi)) \models \mathbf{f}$

2. Apply rules according to a strategy: $\mathbf{P} \cup \operatorname{Cls}(\mathbf{f}, \varphi) \xrightarrow{\operatorname{rules}} \mathbf{T}$ s.t. either $\mathbf{f} \leftarrow \operatorname{is in } \mathbf{T}$ (in which case $\mathbf{M}(\mathbf{P}) \models \varphi$) or no clause for \mathbf{f} is in \mathbf{T} (in which case $\mathbf{M}(\mathbf{P}) \not\models \varphi$)

Verifying a Semaphore

Program P:

- **1.** down(X1) \leftarrow X1=X+1 $\land \neg$ down(X)
- **2.** $up(0, 0) \leftarrow$
- **3.** $up(X1, 0) \leftarrow X1=X+1 \land down(X)$
- 4. $up(X1, Y1) \leftarrow X1=X+1 \land Y1=Y+1 \land X>Y \land up(X1,Y)$

$\phi: \forall X, Y \ (X > Y \land X2 = X + 2 \land up(X, Y) \rightarrow up(X2, 0))$

up	0,0		2,0	2,1		4,0	4,1	4,2	4,3		6,0	••	6, 5	5	8,	0
down		1			3					5				7		•••

We start from :

 $\mathbf{f} \leftarrow \forall \mathbf{X}, \mathbf{Y} \ (\mathbf{X} \succ \mathbf{Y} \land \mathbf{X2} = \mathbf{X} + 2 \land \mathbf{up}(\mathbf{X}, \mathbf{Y}) \rightarrow \mathbf{up}(\mathbf{X2}, \mathbf{0}))$

After Lloyd-Topor we get :

6.
$$\mathbf{f} \leftarrow \neg \mathbf{g}$$

7. $\mathbf{g} \leftarrow \mathbf{X} > \mathbf{Y} \land \mathbf{X} \mathbf{2} = \mathbf{X} + 2 \land \mathbf{up}(\mathbf{X}, \mathbf{Y}) \land \neg \mathbf{up}(\mathbf{X} \mathbf{2}, \mathbf{0})$

Program Synthesis

Given a locally stratified **CLP(D)** program P and a first order formula φ[X]

Derive an efficient program S defining s(X) s.t. \forall ground term t $M(P) \models \phi[t]$ iff $M(S) \models s(t)$

Apply Lloyd-Topor transformation starting from :

 s(X) ← φ[X]
 and derive a possibly inefficient, locally stratified program Cls(s,φ)
 s.t. ∀ ground term t, M(P) ⊨φ[t] iff M(P ∪ Cls(s,φ)) ⊨ s(t)

2. Apply rules according to a strategy: $P \cup Cls(s,\phi) \xrightarrow{rules} S$

[Kowalski's Festschrift 2002]

Program P:

list([]) ←
 list([X|Xs]) ← list(Xs)
 member(X, [A|As]) ← X = A
 member(X, [A|As]) ← member(X,As)

 $\phi[\textbf{L,M}]:\ list(L) \land member(M,L) \land \forall X\ (member(X,L) \rightarrow X \underline{<} M)$

We start from : $\max(L,M) \leftarrow list(L) \land member(M,L) \land \forall X(member(X,L) \rightarrow X \leq M)$

After Lloyd-Topor we get :

6. max(L,M) ← list(L) ∧ member(M,L) ∧ ¬ new1(L,M) 7. new1(L,M) ← member(X,L) ∧ ¬ X≤M

Synthesized Program:

- **16.** $\max([A|As], M) \leftarrow new2(A, As, M)$
- **17.** new2(A, [], M) \leftarrow M = A
- **21.** new2(A, [B|As], M) \leftarrow B \leq A \land new2(A, As, M)
- 22. new2(A, [B|As], M) \leftarrow A \leq B \land new2(B, As, M)