Machine learning and convex optimization with submodular functions

Francis Bach

Sierra project-team, INRIA - Ecole Normale Supérieure

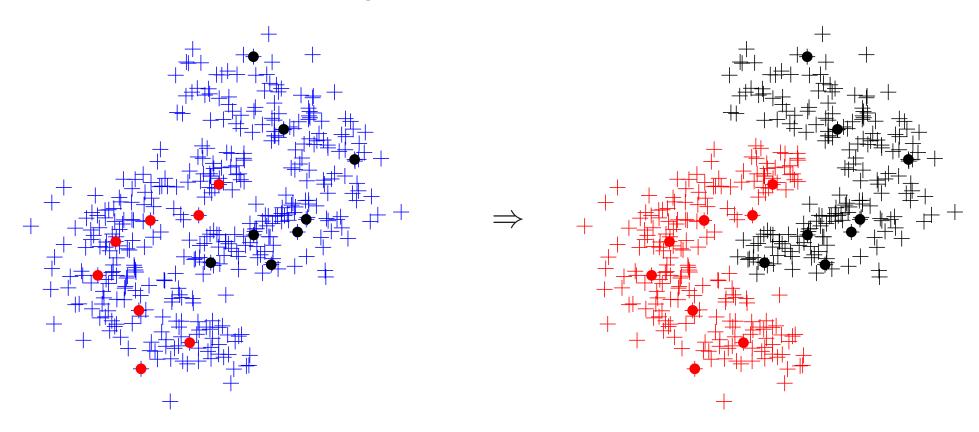
Workshop on combinatorial optimization - Cargese, 2013

Submodular functions - References

- References based on combinatorial optimization
 - Submodular Functions and Optimization (Fujishige, 2005)
 - Discrete convex analysis (Murota, 2003)
- Tutorial paper based on convex optimization (Bach, 2011b)
 - www.di.ens.fr/~fbach/submodular_fot.pdf
- Slides for this lecture
 - www.di.ens.fr/~fbach/fbach_cargese_2013.pdf

Submodularity (almost) everywhere Clustering

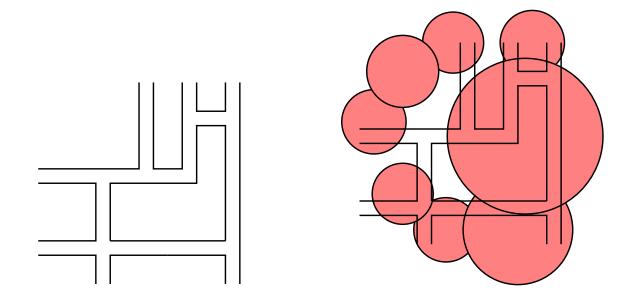
• Semi-supervised clustering



• Submodular function minimization

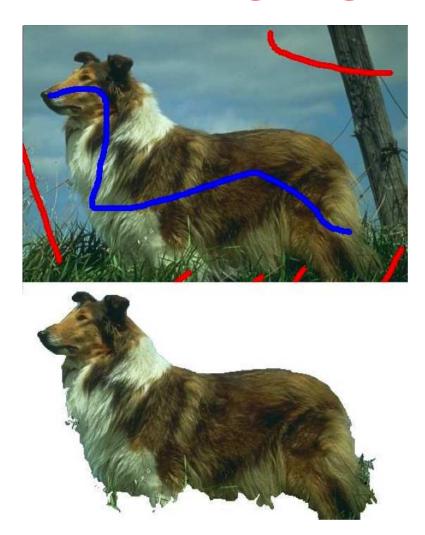
Submodularity (almost) everywhere Sensor placement

- Each sensor covers a certain area (Krause and Guestrin, 2005)
 - Goal: maximize coverage



- Submodular function maximization
- Extension to experimental design (Seeger, 2009)

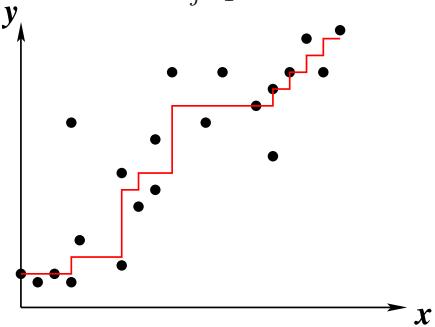
Submodularity (almost) everywhere Graph cuts and image segmentation



Submodular function minimization

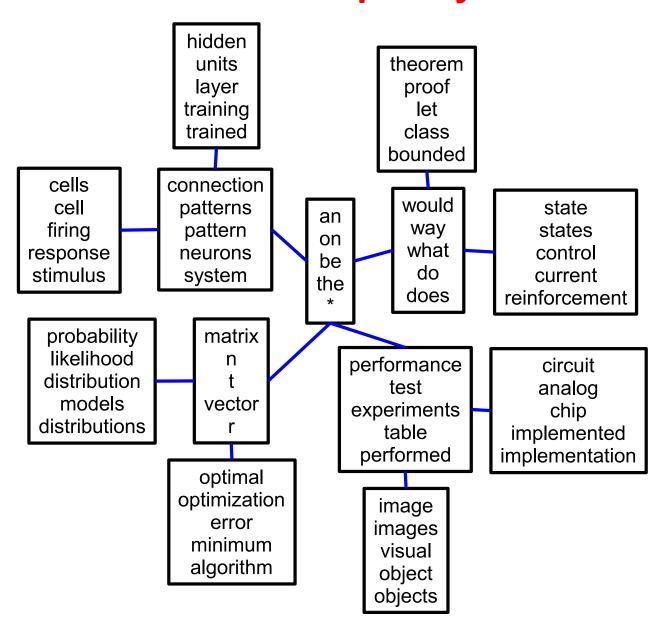
Submodularity (almost) everywhere Isotonic regression

- Given real numbers x_i , $i = 1, \ldots, p$
 - Find $y \in \mathbb{R}^p$ that minimizes $\frac{1}{2} \sum_{j=1}^p (x_i y_i)^2$ such that $\forall i, y_i \leqslant y_{i+1}$



Submodular convex optimization problem

Submodularity (almost) everywhere Structured sparsity - I

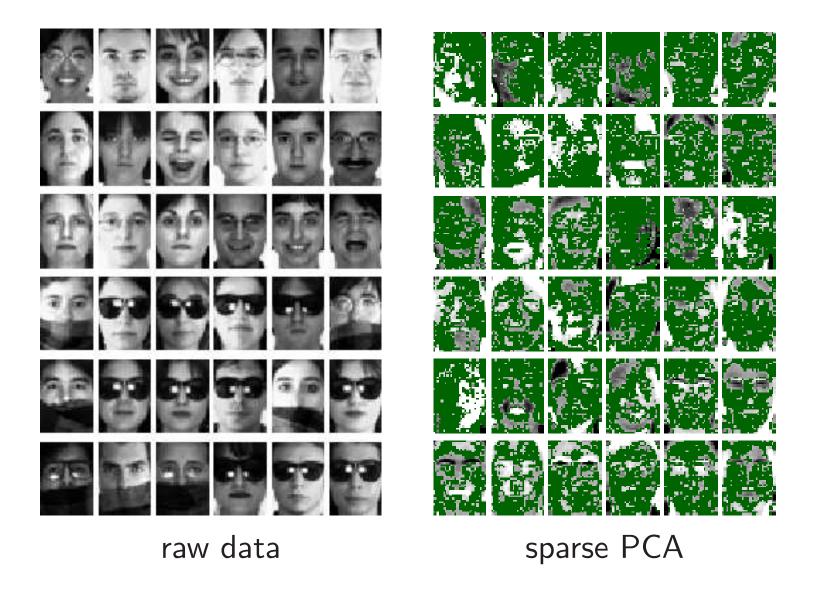


Submodularity (almost) everywhere Structured sparsity - II



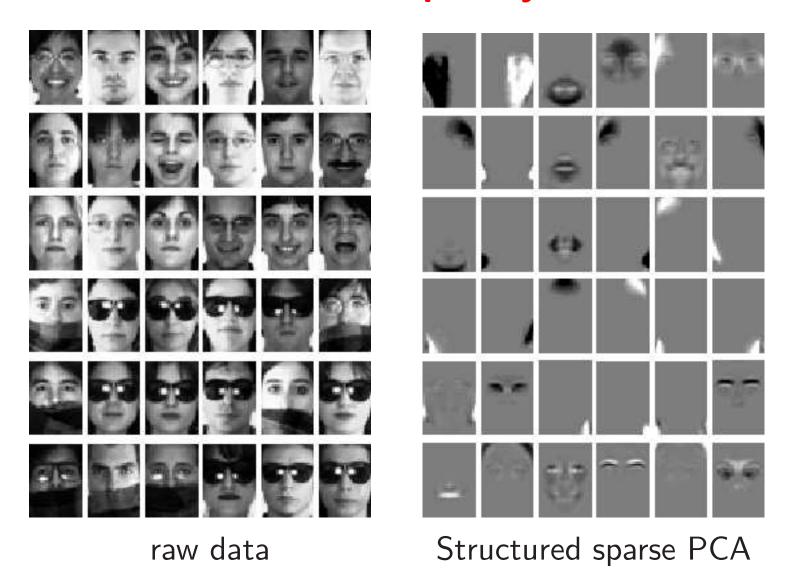
No structure: many zeros do not lead to better interpretability

Submodularity (almost) everywhere Structured sparsity - II



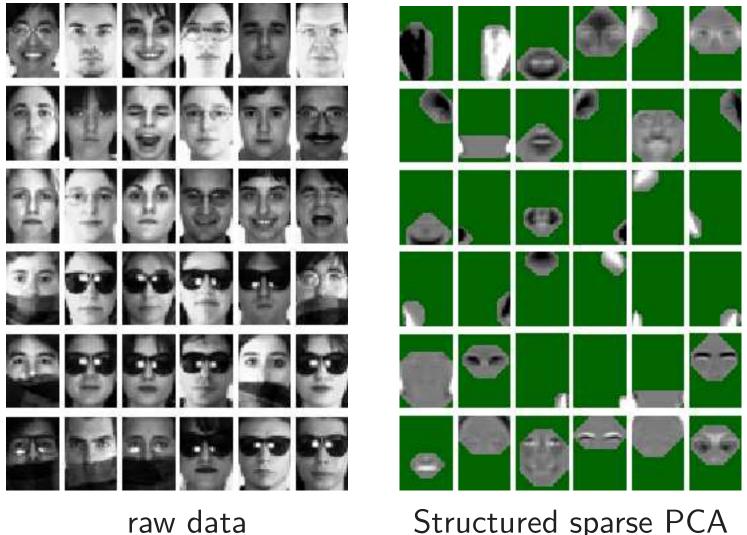
No structure: many zeros do not lead to better interpretability

Submodularity (almost) everywhere Structured sparsity - II



• Submodular convex optimization problem

Submodularity (almost) everywhere Structured sparsity - II



Structured sparse PCA

Submodular convex optimization problem

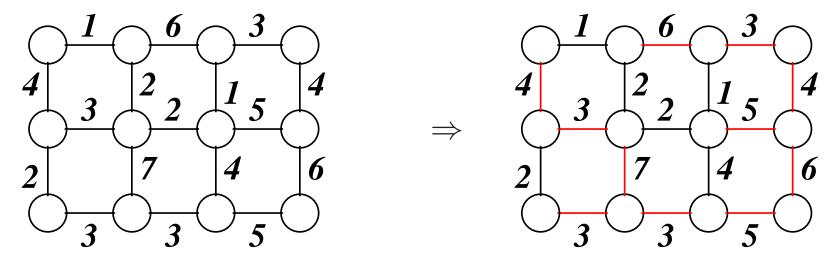
Submodularity (almost) everywhere Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem

Submodularity (almost) everywhere Maximum weight spanning trees

- Given an undirected graph G = (V, E) and weights $w : E \mapsto \mathbb{R}_+$
 - find the maximum weight spanning tree



Greedy algorithm for submodular polyhedron - matroid

Submodularity (almost) everywhere Combinatorial optimization problems

- Set $V = \{1, ..., p\}$
- ullet Power set $2^V=$ set of all subsets, of cardinality 2^p
- Minimization/maximization of a set function $F: 2^V \to \mathbb{R}$.

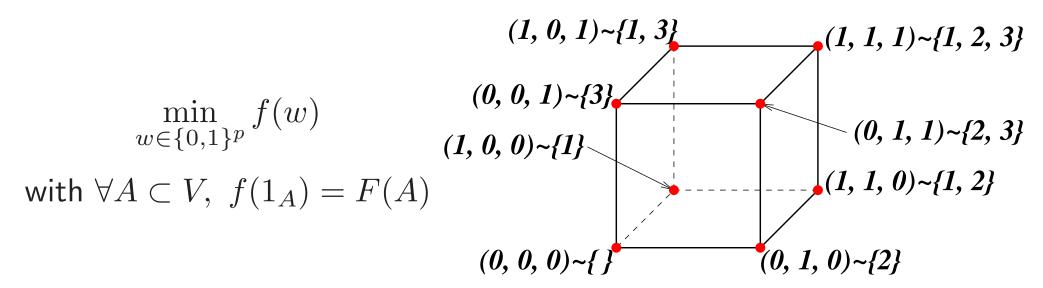
$$\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$$

Submodularity (almost) everywhere Combinatorial optimization problems

- Set $V = \{1, ..., p\}$
- ullet Power set $2^V=$ set of all subsets, of cardinality 2^p
- Minimization/maximization of a set function $F: 2^V \to \mathbb{R}$.

$$\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$$

Reformulation as (pseudo) Boolean function



Submodularity (almost) everywhere Convex optimization with combinatorial structure

- Supervised learning / signal processing
 - Minimize regularized empirical risk from data (x_i, y_i) , $i = 1, \ldots, n$:

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \Omega(f)$$

- $-\mathcal{F}$ is often a vector space, formulation often convex
- Introducing discrete structures within a vector space framework
 - Trees, graphs, etc.
 - Many different approaches (e.g., stochastic processes)
- Submodularity allows the incorporation of discrete structures

Outline

1. Submodular functions

- Review and examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular minimization

- Non-smooth convex optimization
- Parallel algorithm for special case

3. Structured sparsity-inducing norms

- Relaxation of the penalization of supports by submodular functions
- Extensions (symmetric, ℓ_q -relaxation)

Submodular functions Definitions

• **Definition**: $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

$$\forall A, B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B)$$

- NB: equality for modular functions
- Always assume $F(\varnothing) = 0$

Submodular functions Definitions

ullet Definition: $F:2^V \to \mathbb{R}$ is submodular if and only if

$$\forall A, B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B)$$

- NB: equality for modular functions
- Always assume $F(\varnothing) = 0$

• Equivalent definition:

 $\forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A)$ is non-increasing

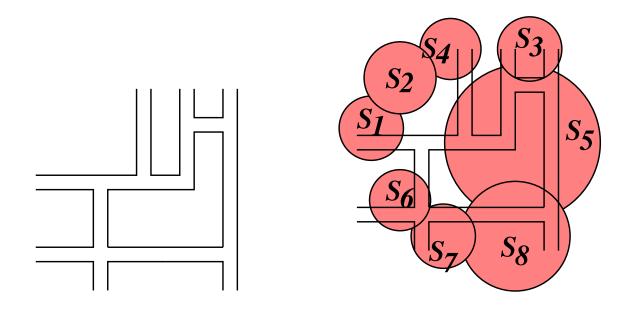
$$\Leftrightarrow \forall A \subset B, \ \forall k \notin A, \ F(A \cup \{k\}) - F(A) \geqslant F(B \cup \{k\}) - F(B)$$

"Concave property": Diminishing return property

Examples of submodular functionsCardinality-based functions

- Notation for modular function: $s(A) = \sum_{k \in A} s_k$ for $s \in \mathbb{R}^p$
 - If $s = 1_V$, then s(A) = |A| (cardinality)
- **Proposition**: If $s \in \mathbb{R}^p_+$ and $g : \mathbb{R}_+ \to \mathbb{R}$ is a concave function, then $F : A \mapsto g(s(A))$ is submodular
- **Proposition 2**: If $F:A\mapsto g(s(A))$ is submodular for all $s\in\mathbb{R}^p_+$, then g is concave
- Classical example:
 - -F(A)=1 if |A|>0 and 0 otherwise
 - May be rewritten as $F(A) = \max_{k \in V} (1_A)_k$

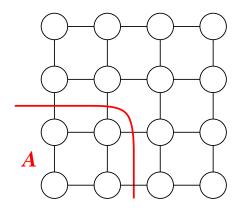
Examples of submodular functions Covers



- Let W be any "base" set, and for each $k \in V$, a set $S_k \subset W$
- Set cover defined as $F(A) = |\bigcup_{k \in A} S_k|$
- Proof of submodularity ⇒ homework

Examples of submodular functions Cuts

- ullet Given a (un)directed graph, with vertex set V and edge set E
 - -F(A) is the total number of edges going from A to $V \setminus A$.



• Generalization with $d: V \times V \to \mathbb{R}_+$

$$F(A) = \sum_{k \in A, j \in V \setminus A} d(k, j)$$

Proof of submodularity ⇒ homework

Examples of submodular functions Entropies

- ullet Given p random variables X_1,\ldots,X_p with finite number of values
 - Define F(A) as the joint entropy of the variables $(X_k)_{k\in A}$
 - − F is submodular
- Proof of submodularity using data processing inequality (Cover and Thomas, 1991): if $A \subset B$ and $k \notin B$,

$$F(A \cup \{k\}) - F(A) = H(X_A, X_k) - H(X_A) = H(X_k | X_A) \ge H(X_k | X_B)$$

- Symmetrized version $G(A)=F(A)+F(V\backslash A)-F(V)$ is mutual information between X_A and $X_{V\backslash A}$
- Extension to continuous random variables, e.g., Gaussian: $F(A) = \log \det \Sigma_{AA}$, for some positive definite matrix $\Sigma \in \mathbb{R}^{p \times p}$

Examples of submodular functions Flows

- Net-flows from multi-sink multi-source networks (Megiddo, 1974)
- See details in Fujishige (2005); Bach (2011b)
- Efficient formulation for set covers

Examples of submodular functions Matroids

- The pair (V, \mathcal{I}) is a matroid with \mathcal{I} its family of independent sets, iff:
- (a) $\varnothing \in \mathcal{I}$
- (b) $I_1 \subset I_2 \in \mathcal{I} \Rightarrow I_1 \in \mathcal{I}$
- (c) for all $I_1, I_2 \in \mathcal{I}$, $|I_1| < |I_2| \Rightarrow \exists k \in I_2 \backslash I_1, \ I_1 \cup \{k\} \in \mathcal{I}$
- Rank function of the matroid, defined as $F(A) = \max_{I \subset A, A \in \mathcal{I}} |I|$ is submodular (direct proof)

Graphic matroid

- V edge set of a certain graph G = (U, V)
- $-\mathcal{I}=$ set of subsets of edges which do not contain any cycle
- F(A) = |U| minus the number of connected components of the subgraph induced by A

Outline

1. Submodular functions

- Review and examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular minimization

- Non-smooth convex optimization
- Parallel algorithm for special case

3. Structured sparsity-inducing norms

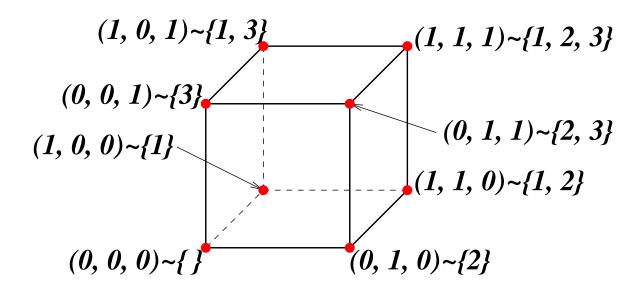
- Relaxation of the penalization of supports by submodular functions
- Extensions (symmetric, ℓ_q -relaxation)

Choquet integral (Choquet, 1954) - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^p$
- Given any set-function F and w such that $w_{j_1} \geqslant \cdots \geqslant w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k} [F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

$$= \sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$



Choquet integral (Choquet, 1954) - Lovász extension Properties

$$f(w) = \sum_{k=1}^{p} w_{j_k} [F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

$$= \sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$

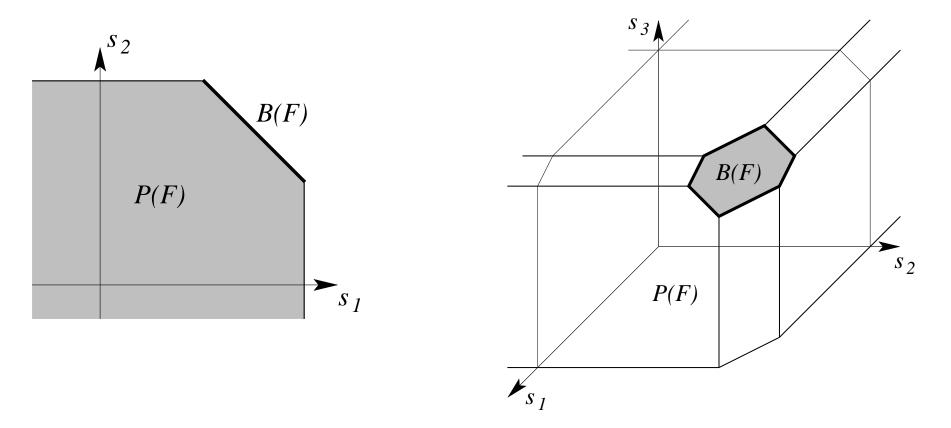
- ullet For any set-function F (even not submodular)
 - -f is piecewise-linear and positively homogeneous
 - If $w=1_A$, $f(w)=F(A)\Rightarrow$ extension from $\{0,1\}^p$ to \mathbb{R}^p

Submodular functions Links with convexity (Edmonds, 1970; Lovász, 1982)

- Theorem (Lovász, 1982): F is submodular if and only if f is convex
- Proof requires additional notions from Edmonds (1970):
 - Submodular and base polyhedra

Submodular and base polyhedra - Definitions

- Submodular polyhedron: $P(F) = \{s \in \mathbb{R}^p, \ \forall A \subset V, \ s(A) \leqslant F(A)\}$
- Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$



ullet Property: P(F) has non-empty interior

Submodular and base polyhedra - Properties

- Submodular polyhedron: $P(F) = \{s \in \mathbb{R}^p, \ \forall A \subset V, \ s(A) \leqslant F(A)\}$
- Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$
- Many facets (up to 2^p), many extreme points (up to p!)

Submodular and base polyhedra - Properties

- Submodular polyhedron: $P(F) = \{s \in \mathbb{R}^p, \ \forall A \subset V, \ s(A) \leqslant F(A)\}$
- Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$
- Many facets (up to 2^p), many extreme points (up to p!)
- \bullet Fundamental property (Edmonds, 1970): If F is submodular, maximizing linear functions may be done by a "greedy algorithm"
 - Let $w \in \mathbb{R}^p_+$ such that $w_{j_1} \geqslant \cdots \geqslant w_{j_p}$
 - Let $s_{j_k} = F(\{j_1, \dots, j_k\}) F(\{j_1, \dots, j_{k-1}\})$ for $k \in \{1, \dots, p\}$
 - Then $f(w) = \max_{s \in P(F)} w^{\top} s = \max_{s \in B(F)} w^{\top} s$
 - Both problems attained at s defined above
- Simple proof by convex duality

Submodular functions Links with convexity

• Theorem (Lovász, 1982): If F is submodular, then

$$\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) = \min_{w \in [0,1]^p} f(w)$$

- Consequence: Submodular function minimization may be done in polynomial time (through ellipsoid algorithm)
- Representation of f(w) as a support function (Edmonds, 1970):

$$f(w) = \max_{s \in B(F)} s^{\top} w$$

- Maximizer s may be found efficiently through the greedy algorithm

Outline

1. Submodular functions

- Review and examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular minimization

- Non-smooth convex optimization
- Parallel algorithm for special case

3. Structured sparsity-inducing norms

- Relaxation of the penalization of supports by submodular functions
- Extensions (symmetric, ℓ_q -relaxation)

Submodular function minimization Dual problem

- Let $F: 2^V \to \mathbb{R}$ be a submodular function (such that $F(\varnothing) = 0$)
- Convex duality (Edmonds, 1970):

$$\min_{A \subset V} F(A) = \min_{w \in [0,1]^p} f(w)
= \min_{w \in [0,1]^p} \max_{s \in B(F)} w^{\top} s
= \max_{s \in B(F)} \min_{w \in [0,1]^p} w^{\top} s = \max_{s \in B(F)} s_{-}(V)$$

Exact submodular function minimization Combinatorial algorithms

- Algorithms based on $\min_{A \subset V} F(A) = \max_{s \in B(F)} s_{-}(V)$
- ullet Output the subset A and a base $s \in B(F)$ as a certificate of optimality
- Best algorithms have polynomial complexity (Schrijver, 2000; Iwata et al., 2001; Orlin, 2009) (typically $O(p^6)$ or more)
- Update a sequence of convex combination of vertices of B(F) obtained from the greedy algorithm using a specific order:
 - Based only on function evaluations
- Recent algorithms using efficient reformulations in terms of generalized graph cuts (Jegelka et al., 2011)

Approximate submodular function minimization

- For most machine learning applications, no need to obtain exact minimum
 - For convex optimization, see, e.g., Bottou and Bousquet (2008)

$$\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) = \min_{w \in [0,1]^p} f(w)$$

Approximate submodular function minimization

- For most machine learning applications, no need to obtain exact minimum
 - For convex optimization, see, e.g., Bottou and Bousquet (2008)

$$\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) = \min_{w \in [0,1]^p} f(w)$$

- ullet Important properties of f for convex optimization
 - Polyhedral function
 - Representation as maximum of linear functions

$$f(w) = \max_{s \in B(F)} w^{\top} s$$

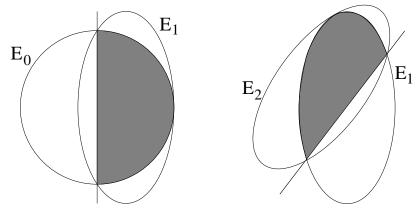
• Stability vs. speed vs. generality vs. ease of implementation

Projected subgradient descent (Shor et al., 1985)

- \bullet Subgradient of $f(w) = \max_{s \in B(F)} s^\top w$ through the greedy algorithm
- Using projected subgradient descent to minimize f on $[0,1]^p$
 - Iteration: $w_t = \prod_{[0,1]^p} \left(w_{t-1} \frac{C}{\sqrt{t}} s_t \right)$ where $s_t \in \partial f(w_{t-1})$
 - Convergence rate: $f(w_t) \min_{w \in [0,1]^p} f(w) \leq \frac{\sqrt{p}}{\sqrt{t}}$ with primal/dual guarantees (Nesterov, 2003)
- Fast iterations but slow convergence
 - need $O(p/\varepsilon^2)$ iterations to reach precision ε
 - need $O(p^2/\varepsilon^2)$ function evaluations to reach precision ε

Ellipsoid method (Nemirovski and Yudin, 1983)

 Build a sequence of minimum volume ellipsoids that enclose the set of solutions



- ullet Cost of a single iteration: p function evaluations and $O(p^3)$ operations
- Number of iterations: $2p^2 \left(\max_{A \subset V} F(A) \min_{A \subset V} F(A) \right) \log \frac{1}{\varepsilon}$.
 - $O(p^5)$ operations and $O(p^3)$ function evaluations
- Slow in practice (the bound is "tight")

Analytic center cutting planes (Goffin and Vial, 1993)

Center of gravity method

- improves the convergence rate of ellipsoid method
- cannot be computed easily
- Analytic center of a polytope defined by $a_i^\top w \leqslant b_i$, $i \in I$

$$\min_{w \in \mathbb{R}^p} - \sum_{i \in I} \log(b_i - a_i^\top w)$$

- Analytic center cutting planes (ACCPM)
 - Each iteration has complexity $O(p^2|I|+|I|^3)$ using Newton's method
 - No linear convergence rate
 - Good performance in practice

Simplex method for submodular minimization

- Mentioned by Girlich and Pisaruk (1997); McCormick (2005)
- Formulation as linear program: $s \in B(F) \Leftrightarrow s = S^{\top} \eta$, $S \in \mathbb{R}^{d \times p}$

$$\begin{split} \max_{s \in B(F)} s_{-}(V) &= \max_{\eta \geqslant 0, \ \eta^{\top} 1_d = 1} \sum_{i=1}^p \min\{(S^{\top} \eta)_i, 0\} \\ &= \max_{\eta \geqslant 0, \ \alpha \geqslant 0, \ \beta \geqslant 0} -\beta^{\top} 1_p \text{ such that } S^{\top} \eta - \alpha + \beta = 0, \ \eta^{\top} 1_d = 1. \end{split}$$

- ullet Column generation for simplex methods: only access the rows of S by maximizing linear functions
 - no complexity bound, may get global optimum if enough iterations

Separable optimization on base polyhedron

• Optimization of convex functions of the form $\Psi(w) + f(w)$ with f Lovász extension of F, and $\Psi(w) = \sum_{k \in V} \psi_k(w_k)$

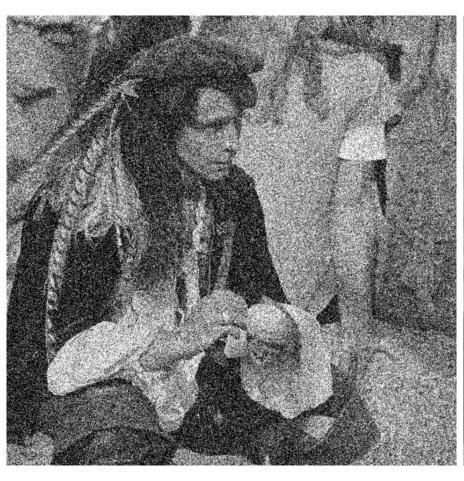
Structured sparsity

- Total variation denoising isotonic regression
- Regularized risk minimization penalized by the Lovász extension

Total variation denoising (Chambolle, 2005)

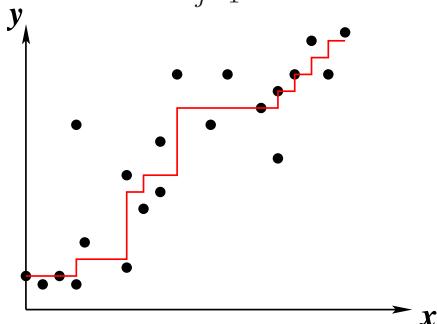
•
$$F(A) = \sum_{k \in A, j \in V \setminus A} d(k, j)$$
 \Rightarrow $f(w) = \sum_{k, j \in V} d(k, j)(w_k - w_j)_+$

• d symmetric $\Rightarrow f = \text{total variation}$



Isotonic regression

- Given real numbers x_i , $i = 1, \ldots, p$
 - Find $y \in \mathbb{R}^p$ that minimizes $\frac{1}{2} \sum_{j=1}^p (x_i y_i)^2$ such that $\forall i, y_i \leqslant y_{i+1}$



- For a directed chain, f(y) = 0 if and only if $\forall i, y_i \leq y_{i+1}$
- Minimize $\frac{1}{2} \sum_{j=1}^{p} (x_i y_i)^2 + \lambda f(y)$ for λ large

Separable optimization on base polyhedron

• Optimization of convex functions of the form $\Psi(w) + f(w)$ with f Lovász extension of F, and $\Psi(w) = \sum_{k \in V} \psi_k(w_k)$

Structured sparsity

- Total variation denoising isotonic regression
- Regularized risk minimization penalized by the Lovász extension

Separable optimization on base polyhedron

• Optimization of convex functions of the form $\boxed{\Psi(w)+f(w)}$ with f Lovász extension of F, and $\Psi(w)=\sum_{k\in V}\psi_k(w_k)$

Structured sparsity

- Total variation denoising isotonic regression
- Regularized risk minimization penalized by the Lovász extension
- Proximal methods (see second part)
 - Minimize $\Psi(w)+f(w)$ for smooth Ψ as soon as the following "proximal" problem may be obtained efficiently

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w - z||_2^2 + f(w) = \min_{w \in \mathbb{R}^p} \sum_{k=1}^p \frac{1}{2} (w_k - z_k)^2 + f(w)$$

• Submodular function minimization

Separable optimization on base polyhedron Convex duality

- Let $\psi_k : \mathbb{R} \to \mathbb{R}$, $k \in \{1, \dots, p\}$ be p functions. Assume
 - Each ψ_k is strictly convex
 - $-\sup_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=+\infty \text{ and }\inf_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=-\infty$
 - Denote ψ_1^*,\ldots,ψ_p^* their Fenchel-conjugates (then with full domain)

Separable optimization on base polyhedron Convex duality

- Let $\psi_k : \mathbb{R} \to \mathbb{R}$, $k \in \{1, \dots, p\}$ be p functions. Assume
 - Each ψ_k is strictly convex
 - $-\sup_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=+\infty \text{ and }\inf_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=-\infty$
 - Denote $\psi_1^*, \ldots, \psi_p^*$ their Fenchel-conjugates (then with full domain)

$$\min_{w \in \mathbb{R}^{p}} f(w) + \sum_{j=1}^{p} \psi_{i}(w_{j}) = \min_{w \in \mathbb{R}^{p}} \max_{s \in B(F)} w^{\top} s + \sum_{j=1}^{p} \psi_{j}(w_{j})$$

$$= \max_{s \in B(F)} \min_{w \in \mathbb{R}^{p}} w^{\top} s + \sum_{j=1}^{p} \psi_{j}(w_{j})$$

$$= \max_{s \in B(F)} - \sum_{j=1}^{p} \psi_{j}^{*}(-s_{j})$$

Separable optimization on base polyhedron Equivalence with submodular function minimization

- For $\alpha \in \mathbb{R}$, let $A^{\alpha} \subset V$ be a minimizer of $A \mapsto F(A) + \sum_{j \in A} \psi'_j(\alpha)$
- Let w^* be the unique minimizer of $w \mapsto f(w) + \sum_{j=1}^p \psi_j(w_j)$
- Proposition (Chambolle and Darbon, 2009):
 - Given A^{α} for all $\alpha \in \mathbb{R}$, then $\forall j, \ w_j^* = \sup(\{\alpha \in \mathbb{R}, \ j \in A^{\alpha}\})$
 - Given w^* , then $A\mapsto F(A)+\sum_{j\in A}\psi_j'(\alpha)$ has minimal minimizer $\{w^*>\alpha\}$ and maximal minimizer $\{w^*\geqslant\alpha\}$
- Separable optimization equivalent to a sequence of submodular function minimizations
 - NB: extension of known results from parametric max-flow

Equivalence with submodular function minimization Proof sketch (Bach, 2011b)

• Duality gap for $\min_{w \in \mathbb{R}^p} f(w) + \sum_{j=1}^p \psi_i(w_j) = \max_{s \in B(F)} - \sum_{j=1}^p \psi_j^*(-s_j)$

$$f(w) + \sum_{j=1}^{p} \psi_{i}(w_{j}) - \sum_{j=1}^{p} \psi_{j}^{*}(-s_{j})$$

$$= f(w) - w^{\top}s + \sum_{j=1}^{p} \left\{ \psi_{j}(w_{j}) + \psi_{j}^{*}(-s_{j}) + w_{j}s_{j} \right\}$$

$$= \int_{-\infty}^{+\infty} \left\{ (F + \psi'(\alpha))(\{w \geqslant \alpha\}) - (s + \psi'(\alpha))_{-}(V) \right\} d\alpha$$

 Duality gap for convex problems = sums of duality gaps for combinatorial problems

Separable optimization on base polyhedron Quadratic case

- Let F be a submodular function and $w \in \mathbb{R}^p$ the unique minimizer of $w \mapsto f(w) + \frac{1}{2}||w||_2^2$. Then:
- (a) s=-w is the point in B(F) with minimum ℓ_2 -norm
- (b) For all $\lambda \in \mathbb{R}$, the maximal minimizer of $A \mapsto F(A) + \lambda |A|$ is $\{w \geqslant -\lambda\}$ and the minimal minimizer of F is $\{w > -\lambda\}$

Consequences

- Threshold at 0 the minimum norm point in B(F) to minimize F (Fujishige and Isotani, 2011)
- Minimizing submodular functions with cardinality constraints (Nagano et al., 2011)

From convex to combinatorial optimization

- Solving $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$ to solve $\min_{A \subset V} F(A)$
 - Thresholding solutions w at zero if $\forall k \in V, \psi'_k(0) = 0$
 - For quadratic functions $\psi_k(w_k) = \frac{1}{2}w_k^2$, equivalent to projecting 0 on B(F) (Fujishige, 2005)

From convex to combinatorial optimization and vice-versa...

- Solving $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$ to solve $\min_{A \subset V} F(A)$
 - Thresholding solutions w at zero if $\forall k \in V, \psi_k'(0) = 0$
 - For quadratic functions $\psi_k(w_k)=\frac{1}{2}w_k^2$, equivalent to projecting 0 on B(F) (Fujishige, 2005)
- Solving $\min_{A\subset V}F(A)-t(A)$ to solve $\min_{w\in\mathbb{R}^p}\sum_{k\in V}\psi_k(w_k)+f(w)$
 - General decomposition strategy (Groenevelt, 1991)
 - Efficient only when submodular minimization is efficient

Solving
$$\min_{A\subset V}F(A)-t(A)$$
 to solve $\min_{w\in\mathbb{R}^p}\sum_{k\in V}\psi_k(w_k)+f(w)$

- General recursive divide-and-conquer algorithm (Groenevelt, 1991)
- NB: Dual version of Fujishige (2005)
 - 1. Compute minimizer $t \in \mathbb{R}^p$ of $\sum_{j \in V} \psi_j^*(-t_j)$ s.t. t(V) = F(V)
 - 2. Compute minimizer A of F(A) t(A)
 - 3. If A = V, then t is optimal. Exit.
 - 4. Compute a minimizer s_A of $\sum_{j\in A} \psi_j^*(-s_j)$ over $s\in B(F_A)$ where $F_A:2^A\to\mathbb{R}$ is the restriction of F to A, i.e., $F_A(B)=F(A)$
 - 5. Compute a minimizer $s_{V\setminus A}$ of $\sum_{j\in V\setminus A}\psi_j^*(-s_j)$ over $s\in B(F^A)$ where $F^A(B)=F(A\cup B)-F(A)$, for $B\subset V\setminus A$
 - 6. Concatenate s_A and $s_{V \setminus A}$. Exit.

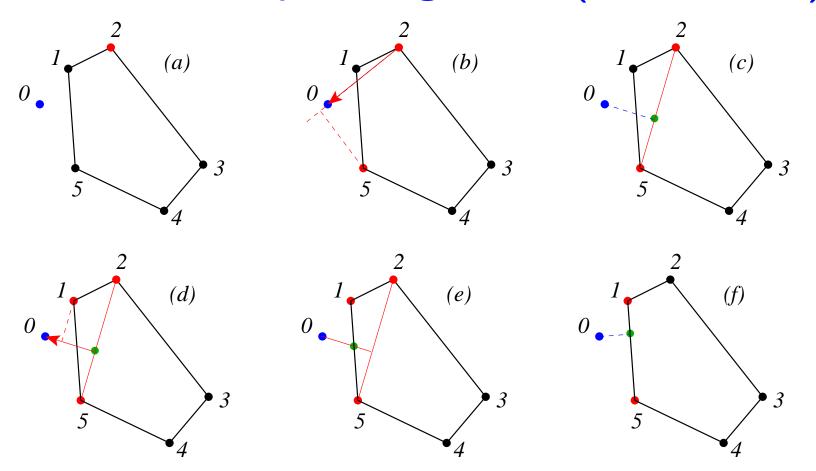
Solving
$$\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$$
 to solve $\min_{A \subset V} F(A)$

- Dual problem: $\max_{s \in B(F)} \sum_{j=1}^{p} \psi_j^*(-s_j)$
- Constrained optimization when linear functions can be maximized
 - Frank-Wolfe algorithms
- Two main types for convex functions

• Goal:
$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w\|_2^2 + f(w) = \max_{s \in B(F)} -\frac{1}{2} \|s\|_2^2$$

- ullet Can only maximize linear functions on B(F)
- Two types of "Frank-wolfe" algorithms
- 1. Active set algorithm (⇔ min-norm-point)
 - Sequence of maximizations of linear functions over B(F) + overheads (affine projections)
 - Finite convergence, but no complexity bounds

Minimum-norm-point algorithm (Wolfe, 1976)



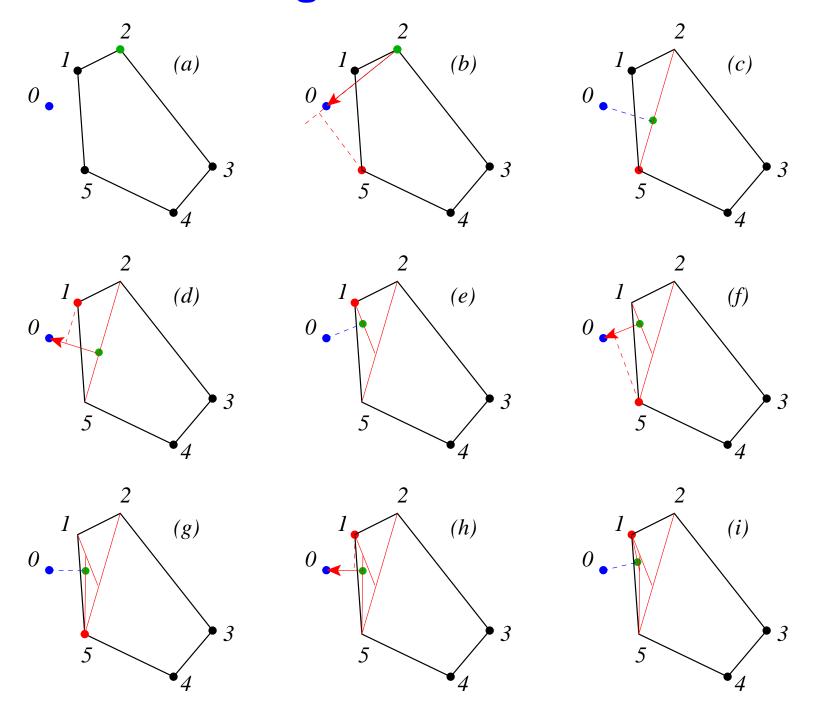
• Goal:
$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w\|_2^2 + f(w) = \max_{s \in B(F)} -\frac{1}{2} \|s\|_2^2$$

- ullet Can only maximize linear functions on B(F)
- Two types of "Frank-wolfe" algorithms
- 1. Active set algorithm (⇔ min-norm-point)
 - Sequence of maximizations of linear functions over B(F) + overheads (affine projections)
 - Finite convergence, but no complexity bounds

• 2. Conditional gradient

- Sequence of maximizations of linear functions over B(F)
- Approximate optimality bound

Conditional gradient with line search



• **Proposition**: t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} ||w_t||_2^2 - \text{OPT} \leqslant f(w_t) + \frac{1}{2} ||w_t||_2^2 + \frac{1}{2} ||s_t||_2^2 \leqslant \frac{2D^2}{t}$$

• **Proposition**: t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} ||w_t||_2^2 - \text{OPT} \leqslant f(w_t) + \frac{1}{2} ||w_t||_2^2 + \frac{1}{2} ||s_t||_2^2 \leqslant \frac{2D^2}{t}$$

- Improved primal candidate through isotonic regression
 - -f(w) is linear on any set of w with fixed ordering
 - May be optimized using isotonic regression ("pool-adjacent-violator") in O(n) (see, e.g., Best and Chakravarti, 1990)
 - Given $w_t = -s_t$, keep the ordering and reoptimize

• **Proposition**: t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} ||w_t||_2^2 - \text{OPT} \leqslant f(w_t) + \frac{1}{2} ||w_t||_2^2 + \frac{1}{2} ||s_t||_2^2 \leqslant \frac{2D^2}{t}$$

- Improved primal candidate through isotonic regression
 - -f(w) is linear on any set of w with fixed ordering
 - May be optimized using isotonic regression ("pool-adjacent-violator") in O(n) (see, e.g. Best and Chakravarti, 1990)
 - Given $w_t = -s_t$, keep the ordering and reoptimize
- Better bound for submodular function minimization?

From quadratic optimization on B(F) to submodular function minimization

- **Proposition**: If w is ε -optimal for $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w||_2^2 + f(w)$, then at least a levet set A of w is $\left(\frac{\sqrt{\varepsilon p}}{2}\right)$ -optimal for submodular function minimization
- If $\varepsilon=\frac{2D^2}{t}$, $\frac{\sqrt{\varepsilon p}}{2}=\frac{Dp^{1/2}}{\sqrt{2t}}\Rightarrow$ no provable gains, but:
 - Bound on the iterates A_t (with additional assumptions)
 - Possible thresolding for acceleration

From quadratic optimization on B(F) to submodular function minimization

• **Proposition**: If w is ε -optimal for $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w||_2^2 + f(w)$, then at least a levet set A of w is $\left(\frac{\sqrt{\varepsilon p}}{2}\right)$ -optimal for submodular function minimization

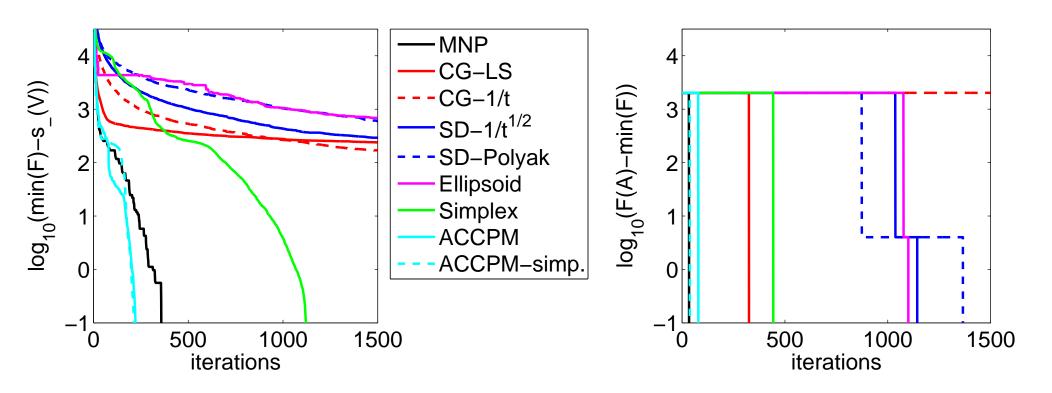
• If
$$\varepsilon=\frac{2D^2}{t}$$
, $\frac{\sqrt{\varepsilon p}}{2}=\frac{Dp^{1/2}}{\sqrt{2t}}\Rightarrow$ no provable gains, but:

- Bound on the iterates A_t (with additional assumptions)
- Possible thresolding for acceleration
- Lower complexity bound for SFM
 - Conjecture: no algorithm that is based only on a sequence of greedy algorithms obtained from linear combinations of bases can improve on the subgradient bound (after p/2 iterations).

Simulations on standard benchmark "DIMACS Genrmf-wide", p = 430

Submodular function minimization

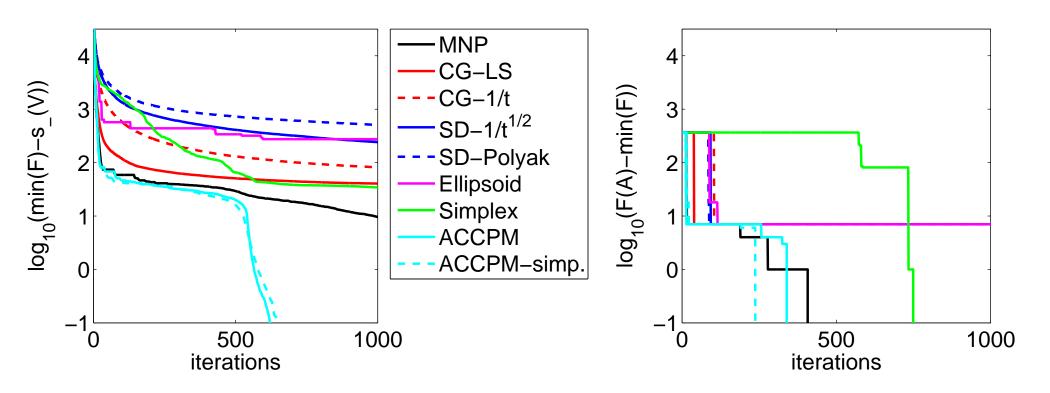
- (Left) dual suboptimality
- (Right) primal suboptimality



Simulations on standard benchmark "DIMACS Genrmf-long", p = 575

Submodular function minimization

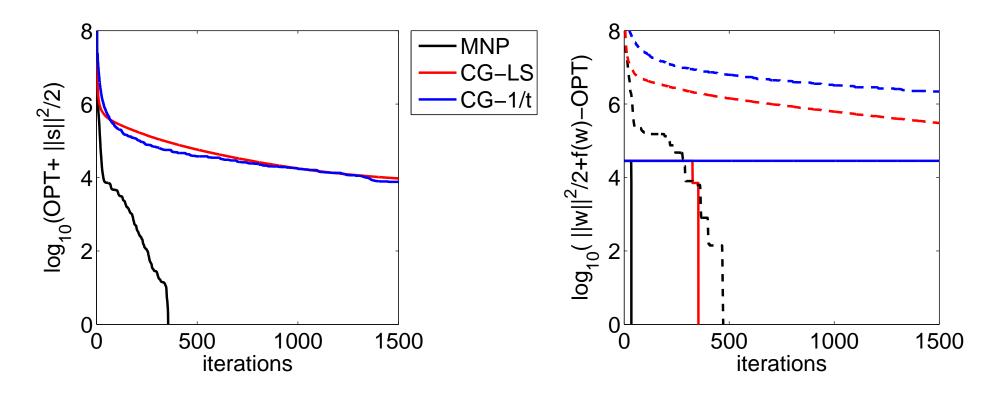
- (Left) dual suboptimality
- (Right) primal suboptimality



Simulations on standard benchmark

Separable quadratic optimization

- (Left) dual suboptimality
- (Right) primal suboptimality
 (in dashed, before the pool-adjacent-violator correction)



Outline

1. Submodular functions

- Review and examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular minimization

- Non-smooth convex optimization
- Parallel algorithm for special case

3. Structured sparsity-inducing norms

- Relaxation of the penalization of supports by submodular functions
- Extensions (symmetric, ℓ_q -relaxation)

From submodular minimization to proximal problems

- Summary: several optimization problems
 - Discrete problem: $\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w)$
 - Continuous problem: $\min_{w \in [0,1]^p} f(w)$
 - Proximal problem (P): $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w||_2^2 + f(w)$
- ullet Solving (P) is equivalent to minimizing $F(A) + \lambda |A|$ for all λ

$$-\arg\min_{A\subseteq V} F(A) + \lambda |A| = \{k, w_k \geqslant -\lambda\}$$

- Much simpler problem but no gains in terms of (provable) complexity
 - See Bach (2011a)

Decomposable functions

 \bullet F may often be decomposed as the sum of r "simple" functions:

$$F(A) = \sum_{j=1}^{r} F_j(A)$$

- Each F_i may be minimized efficiently
- Example: 2D grid = vertical chains + horizontal chains
- Komodakis et al. (2011); Kolmogorov (2012); Stobbe and Krause (2010); Savchynskyy et al. (2011)
 - Dual decomposition approach but slow non-smooth problem

Decomposable functions and proximal problems (Jegelka, Bach, and Sra, 2013)

Dual problem

$$\min_{w \in \mathbb{R}^p} f_1(w) + f_2(w) + \frac{1}{2} \|w\|_2^2$$

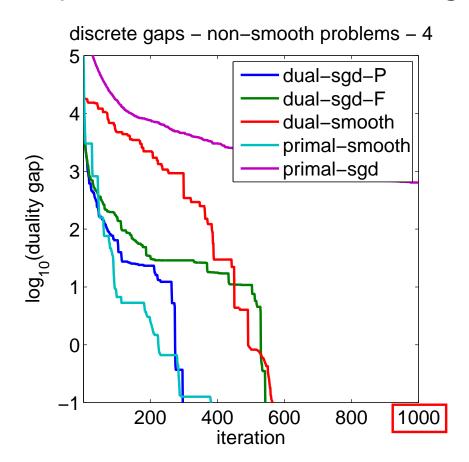
$$= \min_{w \in \mathbb{R}^p} \max_{s_1 \in B(F_1)} s_1^\top w + \max_{s_2 \in B(F_2)} s_2^\top w + \frac{1}{2} \|w\|_2^2$$

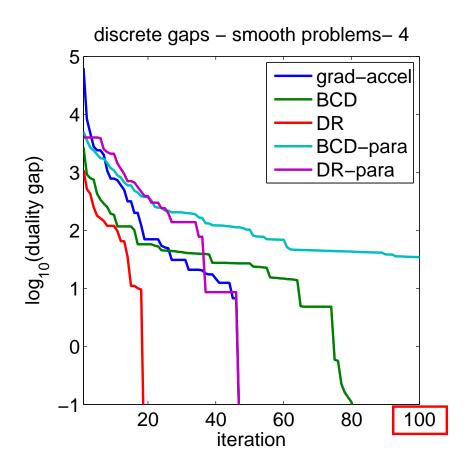
$$= \max_{s_1 \in B(F_1), \ s_2 \in B(F_2)} -\frac{1}{2} \|s_1 + s_2\|^2$$

- Finding the closest point between two polytopes
 - Several alternatives: Block coordinate ascent, Douglas Rachford splitting (Bauschke et al., 2004)
 - (a) no parameters, (b) parallelizable

Experiments

 \bullet Graph cuts on a 500×500 image

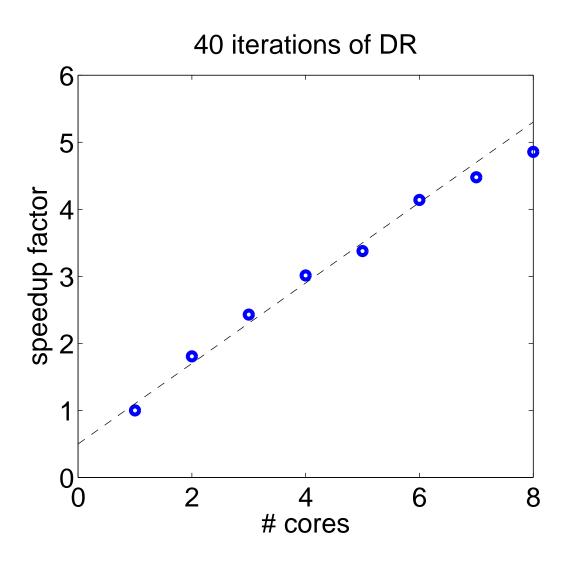




- Matlab/C implementation 10 times slower than C-code for graph cut
 - Easy to code and parallelizable

Parallelization

• Multiple cores



Outline

1. Submodular functions

- Review and examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular minimization

- Non-smooth convex optimization
- Parallel algorithm for special case

3. Structured sparsity-inducing norms

- Relaxation of the penalization of supports by submodular functions
- Extensions (symmetric, ℓ_q -relaxation)

Structured sparsity through submodular functions References and Links

References on submodular functions

- Submodular Functions and Optimization (Fujishige, 2005)
- Tutorial paper based on convex optimization (Bach, 2011b)
 www.di.ens.fr/~fbach/submodular_fot.pdf

Structured sparsity through convex optimization

- Algorithms (Bach, Jenatton, Mairal, and Obozinski, 2011) www.di.ens.fr/~fbach/bach_jenatton_mairal_obozinski_FOT.pdf
- Theory/applications (Bach, Jenatton, Mairal, and Obozinski, 2012)
 www.di.ens.fr/~fbach/stat_science_structured_sparsity.pdf
- Matlab/R/Python codes: http://www.di.ens.fr/willow/SPAMS/
- Slides: www.di.ens.fr/~fbach/fbach_cargese_2013.pdf

Sparsity in supervised machine learning

- Observed data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \ldots, n$
 - Response vector $y = (y_1, \dots, y_n)^{\top} \in \mathbb{R}^n$
 - Design matrix $X = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \left[\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w) \right]$$

- Norm Ω to promote sparsity
 - square loss + ℓ_1 -norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
 - Proxy for interpretability
 - Allow high-dimensional inference: $\log p = O(n)$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1, \dots, w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1, \dots, w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Only responses are observed ⇒ Dictionary learning
 - Learn $X=(x^1,\ldots,x^p)\in\mathbb{R}^{n\times p}$ such that $\forall j,\ \|x^j\|_2\leqslant 1$

$$\min_{X=(x^1,...,x^p)} \min_{w^1,...,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
 (2009a)
- sparse PCA: replace $||x^j||_2 \leqslant 1$ by $\Theta(x^j) \leqslant 1$

Sparsity in signal processing

• Multiple responses/signals $x = (x^1, \dots, x^k) \in \mathbb{R}^{n \times k}$

$$\min_{\alpha^1, \dots, \alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Only responses are observed ⇒ Dictionary learning
 - Learn $D=(d^1,\ldots,d^p)\in\mathbb{R}^{n\times p}$ such that $\forall j,\ \|d^j\|_2\leqslant 1$

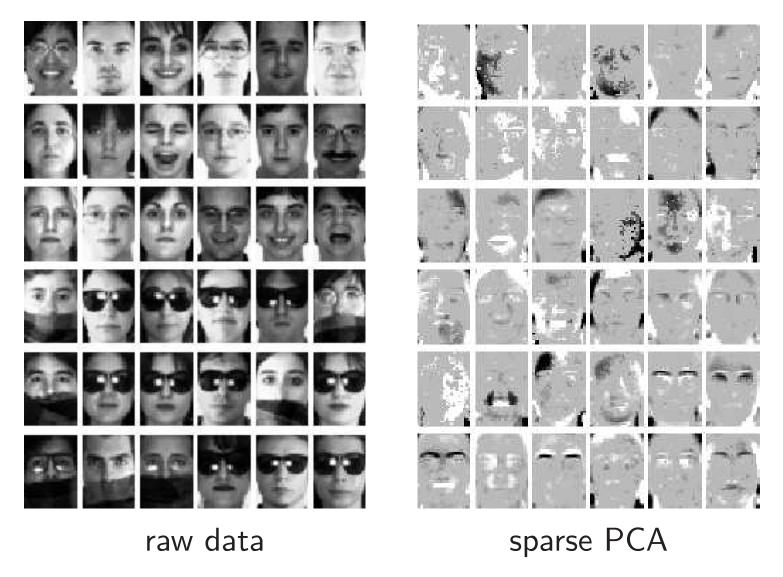
$$\min_{D=(d^1,\dots,d^p)} \min_{\alpha^1,\dots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al. (2009a)
- sparse PCA: replace $||d^j||_2 \leqslant 1$ by $\Theta(d^j) \leqslant 1$

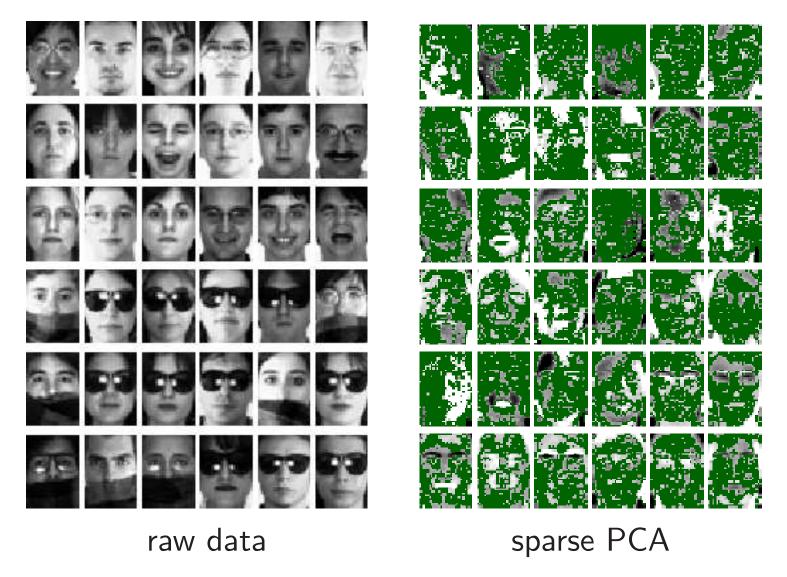
Why structured sparsity?

Interpretability

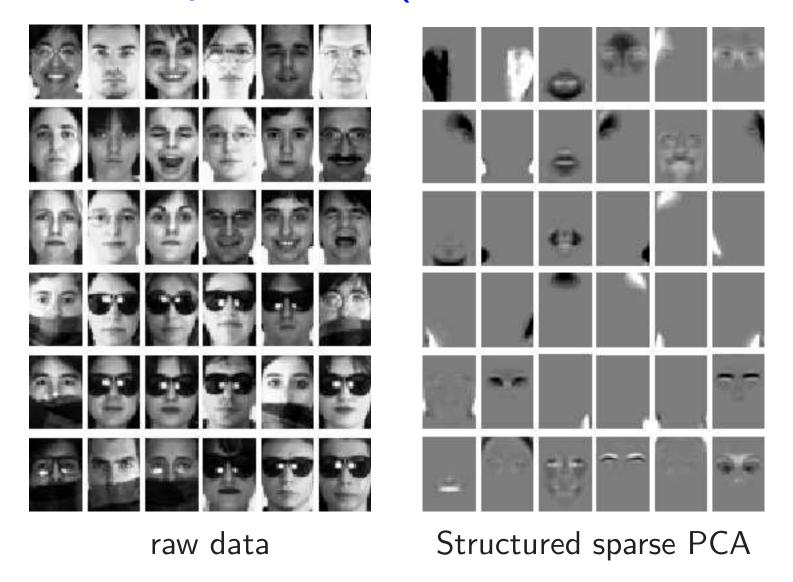
- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



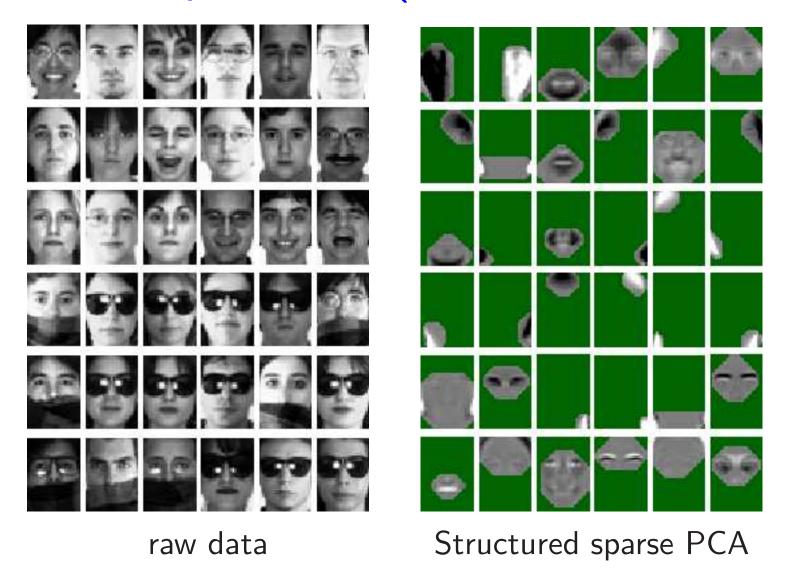
ullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability



ullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability



ullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification



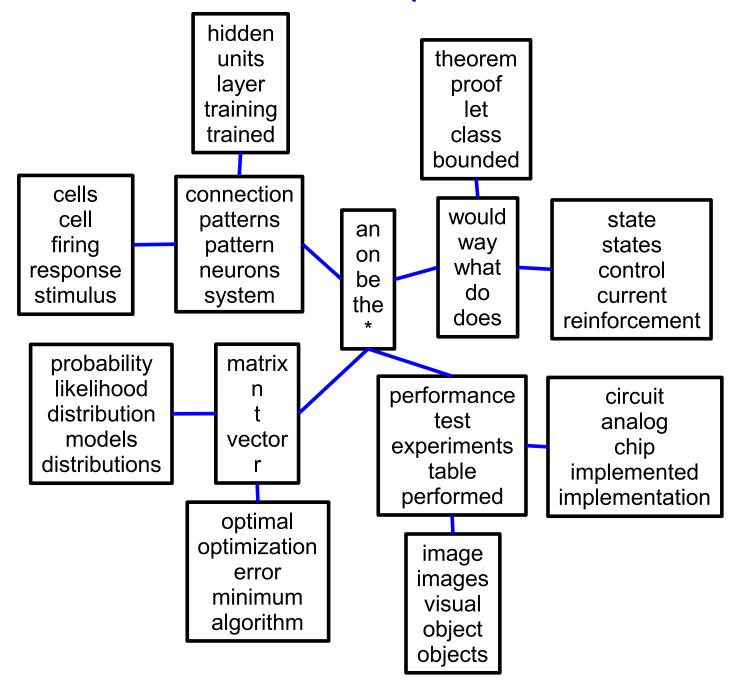
ullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

Why structured sparsity?

Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Modelling of text corpora (Jenatton et al., 2010)



Why structured sparsity?

Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Why structured sparsity?

Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Stability and identifiability

Prediction or estimation performance

When prior knowledge matches data (Haupt and Nowak, 2006;
 Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

Numerical efficiency

- Non-linear variable selection with 2^p subsets (Bach, 2008)

Classical approaches to structured sparsity

Many application domains

- Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
- Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al., 2011)
- Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

Non-convex approaches

Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al. (2009)

Convex approaches

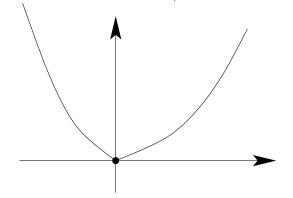
Design of sparsity-inducing norms

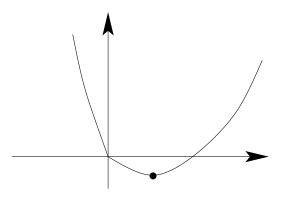
Why ℓ_1 -norms lead to sparsity?

Example 1: quadratic problem in 1D, i.e., $\left| \min_{x \in \mathbb{R}} \frac{1}{2} x^2 - xy + \lambda |x| \right|$

$$\min_{x \in \mathbb{R}} \frac{1}{2} x^2 - xy + \lambda |x|$$

- Piecewise quadratic function with a kink at zero
 - Derivative at $0+: g_+ = \lambda y$ and $0-: g_- = -\lambda y$





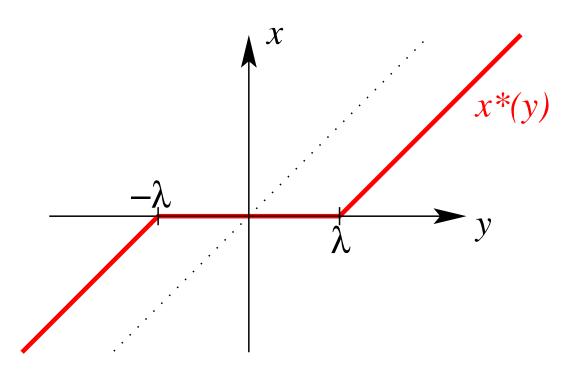
- -x=0 is the solution iff $g_{+}\geqslant 0$ and $g_{-}\leqslant 0$ (i.e., $|y|\leqslant \lambda$)
- $-x \geqslant 0$ is the solution iff $g_+ \leqslant 0$ (i.e., $y \geqslant \lambda$) $\Rightarrow x^* = y \lambda$
- $-x \leqslant 0$ is the solution iff $g_{-} \leqslant 0$ (i.e., $y \leqslant -\lambda$) $\Rightarrow x^* = y + \lambda$
- Solution $|x^* = \operatorname{sign}(y)(|y| \lambda)_+| = \operatorname{soft\ thresholding}$

Why ℓ_1 -norms lead to sparsity?

Example 1: quadratic problem in 1D, i.e., $\left| \min_{x \in \mathbb{R}} \frac{1}{2} x^2 - xy + \lambda |x| \right|$

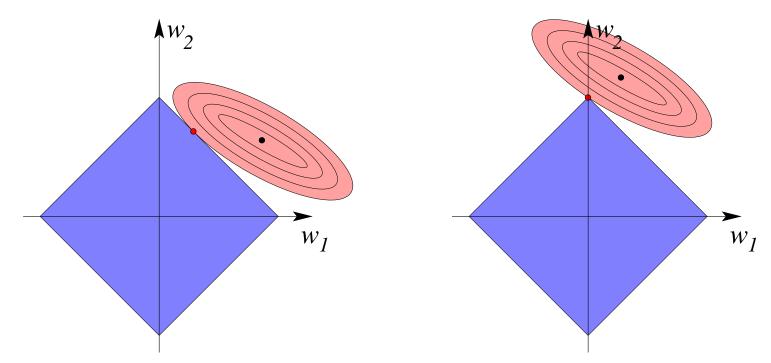
$$\min_{x \in \mathbb{R}} \frac{1}{2}x^2 - xy + \lambda |x|$$

- Piecewise quadratic function with a kink at zero
- Solution $|x^* = \operatorname{sign}(y)(|y| \lambda)_+| = \operatorname{soft\ thresholding}$



Why ℓ_1 -norms lead to sparsity?

- **Example 2**: minimize quadratic function Q(w) subject to $||w||_1 \leqslant T$.
 - coupled soft thresholding
- Geometric interpretation
 - NB: penalizing is "equivalent" to constraining



Non-smooth optimization!

Gaussian hare (ℓ_2) vs. Laplacian tortoise (ℓ_1)

- Smooth vs. non-smooth optimization
- See Bach, Jenatton, Mairal, and Obozinski (2011)

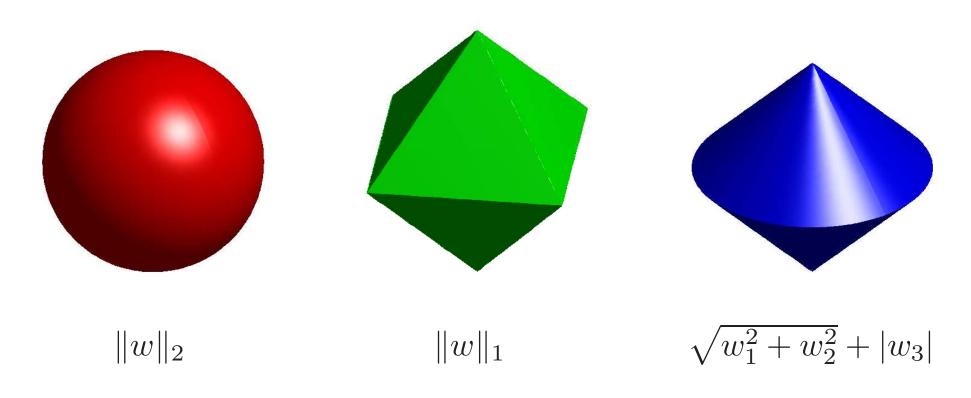
Sparsity-inducing norms

- Popular choice for Ω
 - The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} ||w_G||_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with \mathbf{H} a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)

Unit norm balls Geometric interpretation



Sparsity-inducing norms

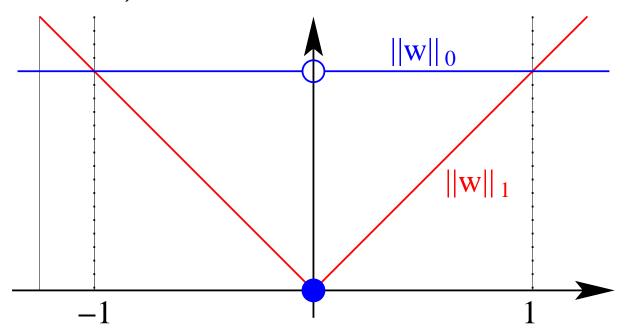
- Popular choice for Ω
 - The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} ||w_G||_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with \mathbf{H} a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)
- What if the set of groups H is not a partition anymore?
- Is there any systematic way?

ℓ_1 -norm = convex envelope of cardinality of support

- Let $w \in \mathbb{R}^p$. Let $V = \{1, \dots, p\}$ and $\mathrm{Supp}(w) = \{j \in V, \ w_j \neq 0\}$
- Cardinality of support: $||w||_0 = \operatorname{Card}(\operatorname{Supp}(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)



• ℓ_1 -norm = convex envelope of ℓ_0 -quasi-norm on the ℓ_∞ -ball $[-1,1]^p$

Convex envelopes of general functions of the support (Bach, 2010)

- Let $F: 2^V \to \mathbb{R}$ be a **set-function**
 - Assume F is **non-decreasing** (i.e., $A \subset B \Rightarrow F(A) \leqslant F(B)$)
 - Explicit prior knowledge on supports (Haupt and Nowak, 2006;
 Baraniuk et al., 2008; Huang et al., 2009)
- Define $\Theta(w) = F(\operatorname{Supp}(w))$: How to get its convex envelope?
 - 1. Possible if F is also **submodular**
 - 2. Allows unified theory and algorithm
 - 3. Provides **new** regularizers

Submodular functions and structured sparsity

- ullet Let $F:2^V o \mathbb{R}$ be a non-decreasing submodular set-function
- Proposition: the convex envelope of $\Theta: w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega: w \mapsto f(|w|)$ where f is the Lovász extension of F

Proof - I

- Notation: $g: w \mapsto F(\operatorname{supp}(w))$ defined on $[-1,1]^p$
- Computation of the Fenchel dual

$$\begin{split} g^*(s) &= \max_{\|w\|_{\infty} \leqslant 1} w^\top s - g(w) \\ &= \max_{\delta \in \{0,1\}^p} \max_{\|w\|_{\infty} \leqslant 1} (\delta \circ w)^\top s - f(\delta) \text{ by definition of } g \\ &= \max_{\delta \in \{0,1\}^p} \delta^\top |s| - f(\delta) \text{ by maximizing out } w \\ &= \max_{\delta \in [0,1]^p} \delta^\top |s| - f(\delta) \text{ because } F - |s| \text{ is submodular} \end{split}$$

Proof - II

• Notation: $g: w \mapsto F(\operatorname{supp}(w))$ defined on $[-1,1]^p$

• Fenchel dual: $g^*(s) = \max_{\delta \in [0,1]^p} \delta^\top |s| - f(\delta)$

Proof - II

- Notation: $g: w \mapsto F(\operatorname{supp}(w))$ defined on $[-1,1]^p$
- Fenchel dual: $g^*(s) = \max_{\delta \in [0,1]^p} \delta^\top |s| f(\delta)$
- Computation of the Fenchel bi-dual, for all w such that $||w||_{\infty} \leq 1$:

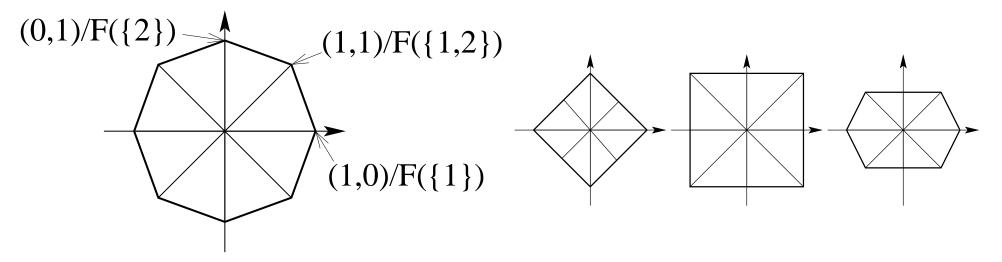
$$\begin{split} g^{**}(w) &= \max_{s \in \mathbb{R}^p} s^\top w - g^*(s) \\ &= \max_{s \in \mathbb{R}^p} \min_{\delta \in [0,1]^p} s^\top w - \delta^\top |s| + f(\delta) \\ &= \min_{\delta \in [0,1]^p} \max_{s \in \mathbb{R}^p} s^\top w - \delta^\top |s| + f(\delta) \text{ by strong duality} \\ &= \min_{\delta \in [0,1]^p, \delta \geqslant |w|} f(\delta) = f(|w|) \text{ because } F \text{ is nonincreasing} \end{split}$$

Submodular functions and structured sparsity

- ullet Let $F:2^V o \mathbb{R}$ be a non-decreasing submodular set-function
- Proposition: the convex envelope of $\Theta: w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega: w \mapsto f(|w|)$ where f is the Lovász extension of F

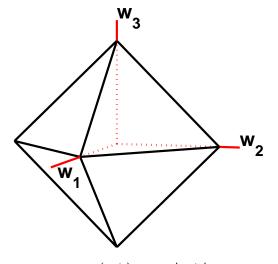
Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- Proposition: the convex envelope of $\Theta: w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega: w \mapsto f(|w|)$ where f is the Lovász extension of F
- ullet Sparsity-inducing properties: Ω is a polyhedral norm



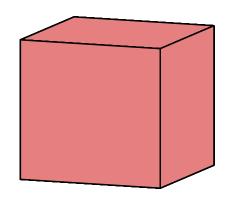
- A if stable if for all $B \supset A$, $B \neq A \Rightarrow F(B) > F(A)$
- With probability one, stable sets are the only allowed active sets

Polyhedral unit balls

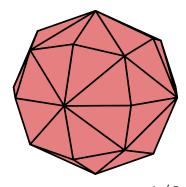


$$F(A) = |A|$$

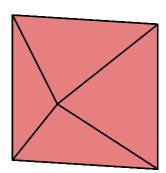
$$\Omega(w) = ||w||_1$$



 $F(A) = \min\{|A|, 1\}$ $\Omega(w) = ||w||_{\infty}$

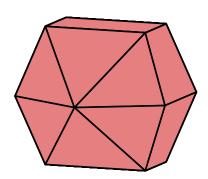


 $F(A) = |A|^{1/2}$ all possible extreme points



$$F(A) = 1_{\{A \cap \{1\} \neq \emptyset\}} + 1_{\{A \cap \{2,3\} \neq \emptyset\}}$$

$$\Omega(w) = |w_1| + ||w_{\{2,3\}}||_{\infty}$$



$$F(A) = 1_{\{A \cap \{1,2,3\} \neq \varnothing\}}$$

$$+1_{\{A \cap \{2,3\} \neq \varnothing\}} + 1_{\{A \cap \{3\} \neq \varnothing\}}$$

$$\Omega(w) = ||w||_{\infty} + ||w_{\{2,3\}}||_{\infty} + |w_{3}|$$

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with **overlapping** groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty}$$

- $-\ell_1$ - ℓ_∞ norm \Rightarrow sparsity at the group level
- Some w_G 's are set to zero for some groups G

$$\left(\operatorname{Supp}(w)\right)^c = \bigcup_{G \in \mathbf{H}'} G \text{ for some } \mathbf{H}' \subseteq \mathbf{H}$$

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with **overlapping** groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \implies F(A) = \operatorname{Card}(\{G \in \mathbf{H}, G \cap A \neq \emptyset\})$$

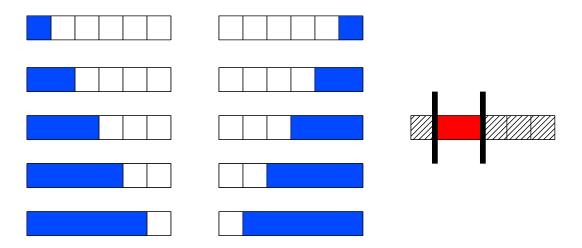
- $-\ell_1$ - ℓ_∞ norm \Rightarrow sparsity at the group level
- Some w_G 's are set to zero for some groups G

$$\left(\operatorname{Supp}(w)\right)^c = \bigcup_{G \in \mathbf{H}'} G \text{ for some } \mathbf{H}' \subseteq \mathbf{H}$$

Justification not only limited to allowed sparsity patterns

Selection of contiguous patterns in a sequence

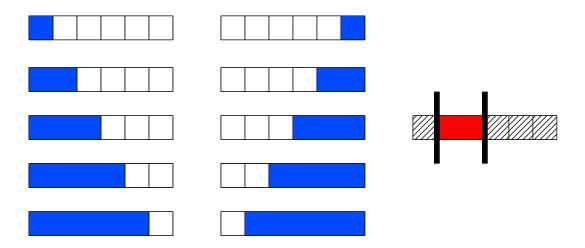
• Selection of contiguous patterns in a sequence



• H is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern**

Selection of contiguous patterns in a sequence

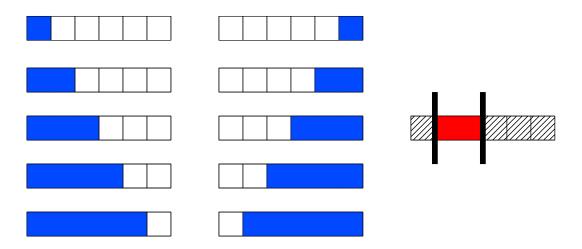
Selection of contiguous patterns in a sequence



- H is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern**
- $\sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \Rightarrow F(A) = p 2 + \operatorname{Range}(A) \text{ if } A \neq \emptyset$

Examples of set of groups H

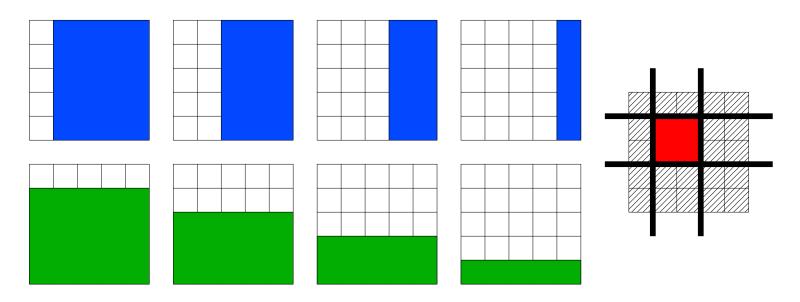
ullet Selection of contiguous patterns on a sequence, p=6



- H is the set of blue groups
- Any union of blue groups set to zero leads to the selection of a contiguous pattern

Examples of set of groups H

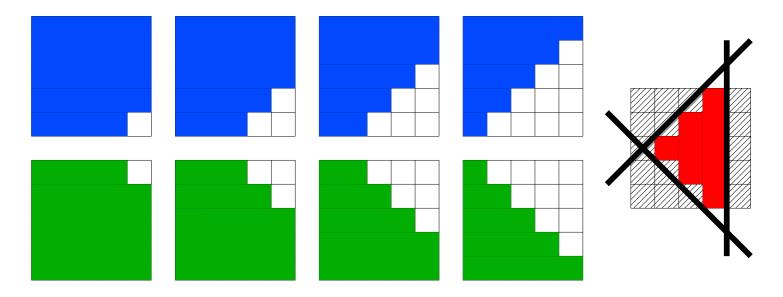
ullet Selection of rectangles on a 2-D grids, p=25



- H is the set of blue/green groups (with their not displayed complements)
- Any union of blue/green groups set to zero leads to the selection of a rectangle

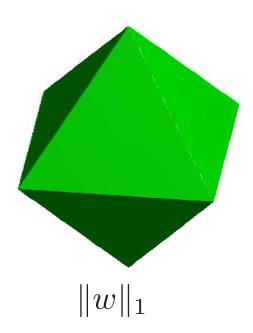
Examples of set of groups H

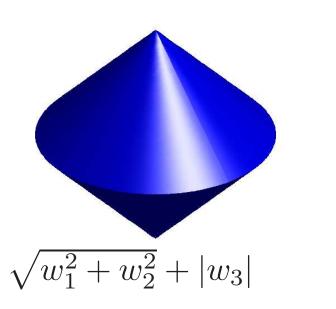
ullet Selection of diamond-shaped patterns on a 2-D grids, p=25.

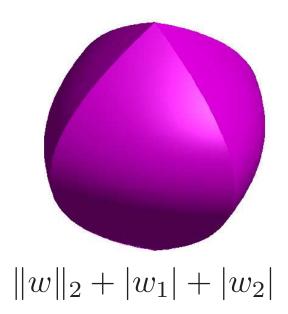


 It is possible to extend such settings to 3-D space, or more complex topologies

Unit norm balls Geometric interpretation







Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

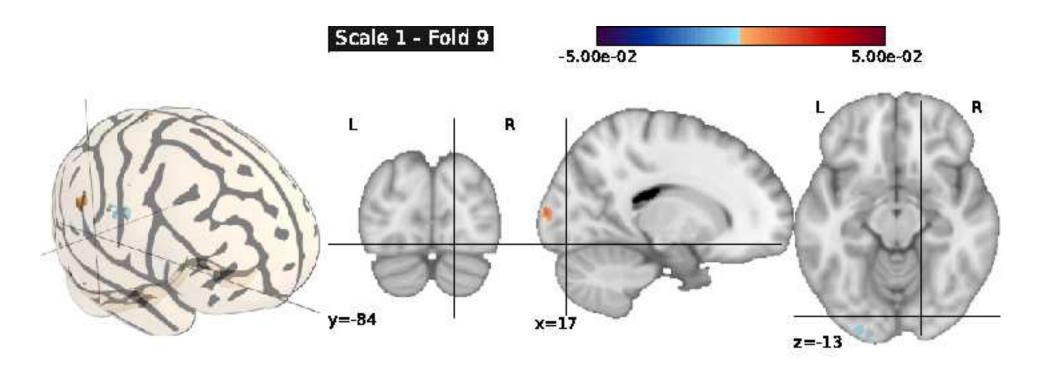
Input ℓ_1 -norm Structured norm

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ_1 -norm Structured norm

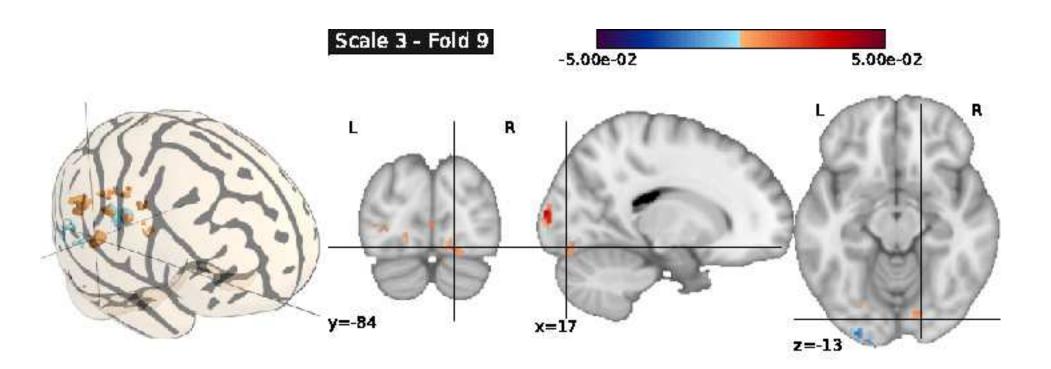
Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization



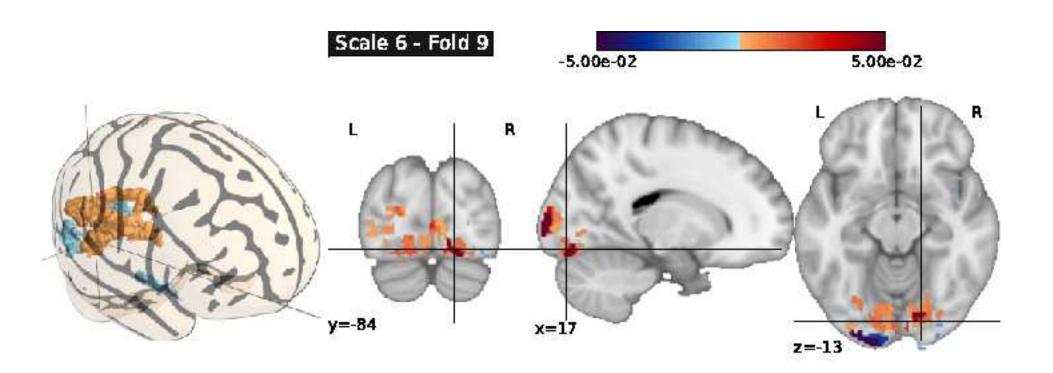
Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization



Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

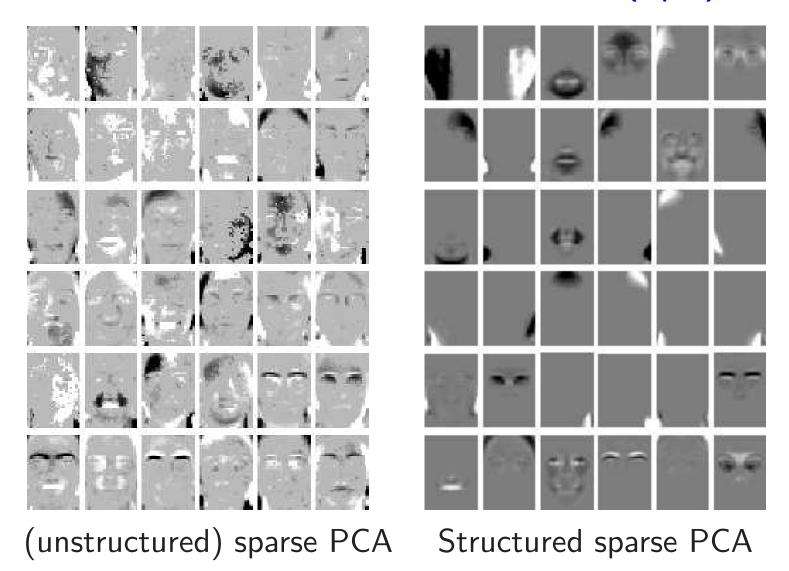


Sparse Structured PCA (Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

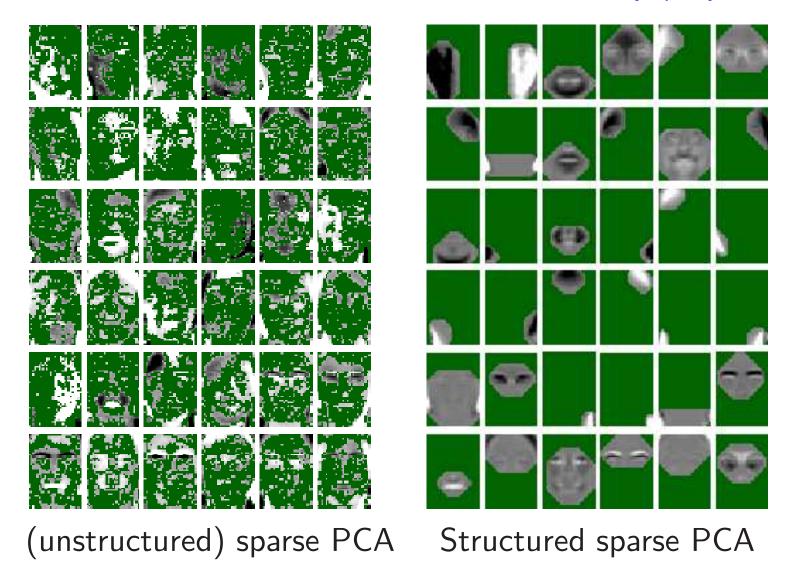
$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \sum_{j=1}^{p} \Omega(x^j) \text{ s.t. } \forall i, \ \|w^i\|_2 \leq 1$$

Application to face databases (2/3)



ullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

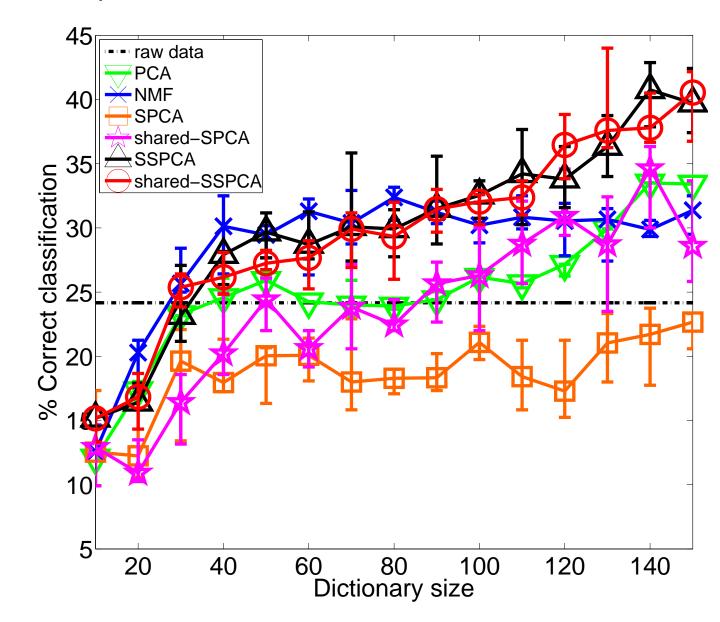
Application to face databases (2/3)



ullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (3/3)

• Quantitative performance evaluation on classification task



Dictionary learning vs. sparse structured PCA Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^n \|y^i - Xw^i\|_2^2 + \lambda \sum_{j=1}^k \Omega(x^j) \text{ s.t. } \forall i, \ \|w^i\|_2 \, \leq \, 1.$$

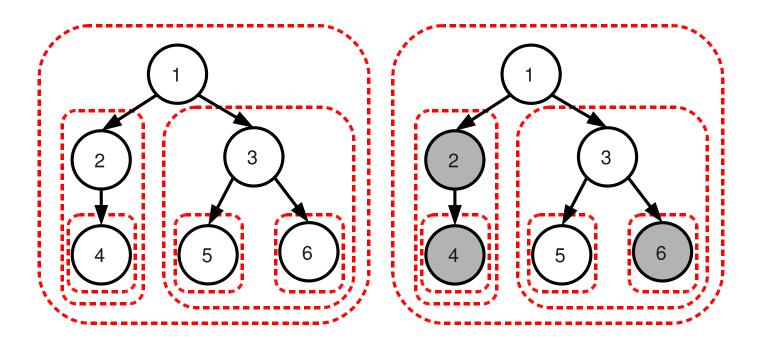
ullet Dictionary learning with **structured sparsity for codes** w:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \Omega(w^i) \text{ s.t. } \forall j, \ \|x^j\|_2 \, \leq \, 1.$$

- Optimization: proximal methods
 - Requires solving many times $\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y w\|_2^2 + \lambda \Omega(w)$
 - Modularity of implementation if proximal step is efficient (Jenatton et al., 2010; Mairal et al., 2010)

Hierarchical dictionary learning (Jenatton, Mairal, Obozinski, and Bach, 2010)

- Structure on codes w (not on dictionary X)
- Hierarchical penalization: $\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty}$ where groups G in \mathbf{H} are equal to set of descendants of some nodes in a tree

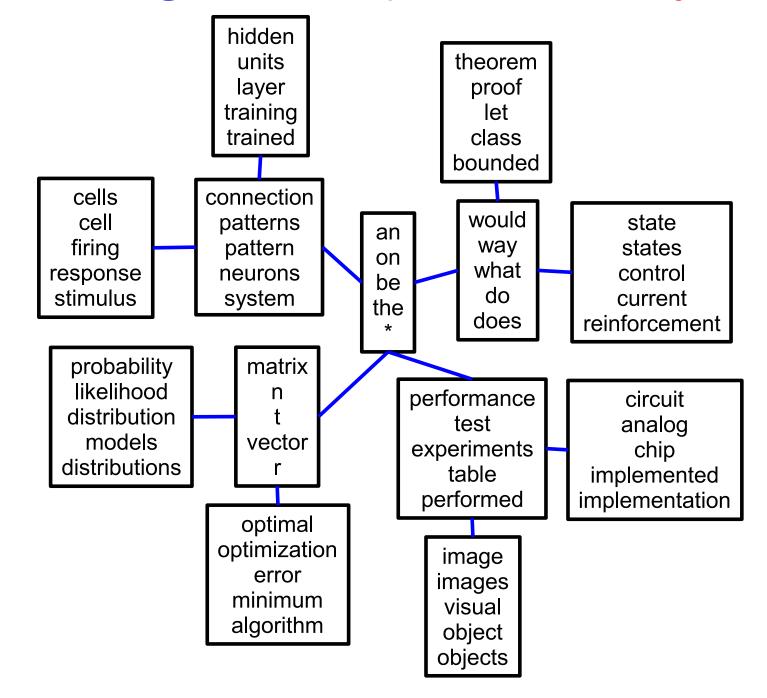


Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)

Hierarchical dictionary learning Modelling of text corpora

- Each document is modelled through word counts
- Low-rank matrix factorization of word-document matrix
- Probabilistic topic models (Blei et al., 2003)
 - Similar structures based on non parametric Bayesian methods (Blei et al., 2004)
 - Can we achieve similar performance with simple matrix factorization formulation?

Modelling of text corpora - Dictionary tree



Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with **overlapping** groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \Rightarrow F(A) = \operatorname{Card}(\{G \in \mathbf{H}, G \cap A \neq \emptyset\})$$

Justification not only limited to allowed sparsity patterns

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with **overlapping** groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \implies F(A) = \operatorname{Card}(\{G \in \mathbf{H}, G \cap A \neq \emptyset\})$$

- Justification not only limited to allowed sparsity patterns
- From F(A) to $\Omega(w)$: provides new sparsity-inducing norms
 - $-F(A) = g(\operatorname{Card}(A)) \Rightarrow \Omega$ is a combination of **order statistics**
 - Non-factorial priors for supervised learning: Ω depends on the eigenvalues of $X_A^{\top}X_A$ and not simply on the cardinality of A

Unified optimization algorithms

- Polyhedral norm with $O(3^p)$ faces and extreme points
 - Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
 - subgradient may be obtained in polynomial time ⇒ too slow

Unified optimization algorithms

- Polyhedral norm with $O(3^p)$ faces and extreme points
 - Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
 - subgradient may be obtained in polynomial time ⇒ too slow
- Proximal methods (e.g., Beck and Teboulle, 2009)
 - $-\min_{w\in\mathbb{R}^p} L(y,Xw) + \lambda\Omega(w)$: differentiable + non-differentiable
 - Efficient when (P): $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w v||_2^2 + \lambda \Omega(w)$ is "easy"
 - Fact: (P) is equivalent to submodular function minimization

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

Gradient descent as a proximal method (differentiable functions)

$$- w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^{\top} \nabla L(w_t) + \frac{B}{2} ||w - w_t||_2^2$$
$$- w_{t+1} = w_t - \frac{1}{B} \nabla L(w_t)$$

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$- w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^{\top} \nabla L(w_t) + \frac{B}{2} ||w - w_t||_2^2$$
$$- w_{t+1} = w_t - \frac{1}{B} \nabla L(w_t)$$

$$ullet$$
 Problems of the form: $\min_{w\in\mathbb{R}^p}L(w)+\lambda\Omega(w)$

$$- w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^{\top} \nabla L(w_t) + \lambda \Omega(w) + \frac{B}{2} ||w - w_t||_2^2$$

- $-\Omega(w) = ||w||_1 \Rightarrow$ Thresholded gradient descent
- Similar convergence rates than smooth optimization
 - Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

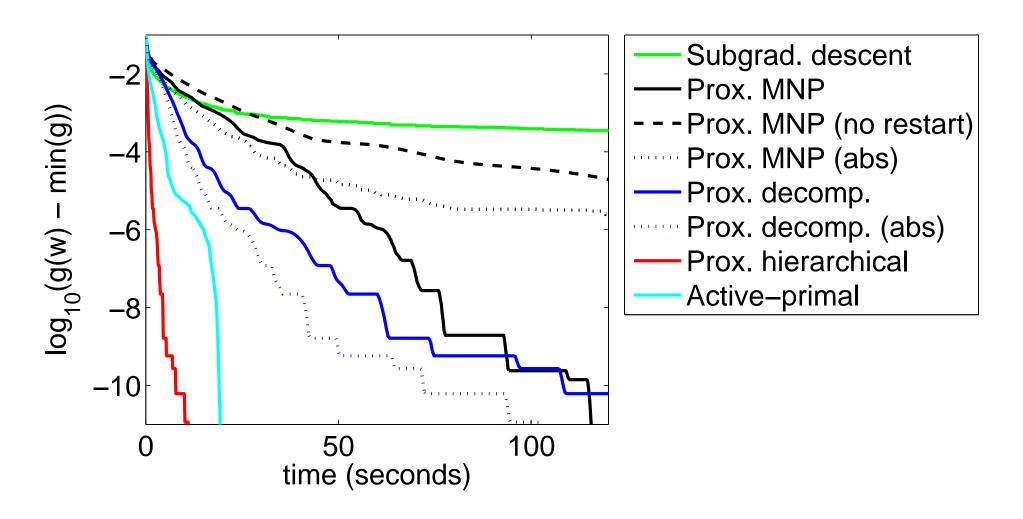
Unified optimization algorithms

- Polyhedral norm with $O(3^p)$ faces and extreme points
 - Not suitable to linear programming toolboxes
- Subgradient $(w \mapsto \Omega(w) \text{ non-differentiable})$
 - subgradient may be obtained in polynomial time ⇒ too slow
- Proximal methods (e.g., Beck and Teboulle, 2009)
 - $-\min_{w\in\mathbb{R}^p} L(y,Xw) + \lambda\Omega(w)$: differentiable + non-differentiable
 - Efficient when (P): $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w v||_2^2 + \lambda \Omega(w)$ is "easy"
 - Fact: (P) is equivalent to submodular function minimization

Active-set methods

Comparison of optimization algorithms

- Tree-based regularization (p = 511)
- See Bach et al. (2011) for larger-scale problems



Unified theoretical analysis

Decomposability

- Key to theoretical analysis (Negahban et al., 2009)
- **Property**: $\forall w \in \mathbb{R}^p$, and $\forall J \subset V$, if $\min_{j \in J} |w_j| \geqslant \max_{j \in J^c} |w_j|$, then $\Omega(w) = \Omega_J(w_J) + \Omega^J(w_{J^c})$

Support recovery

Extension of known sufficient condition (Zhao and Yu, 2006;
 Negahban and Wainwright, 2008)

High-dimensional inference

- Extension of known sufficient condition (Bickel et al., 2009)
- Matches with analysis of Negahban et al. (2009) for common cases

Support recovery - $\min_{w \in \mathbb{R}^p} \frac{1}{2n} ||y - Xw||_2^2 + \lambda \Omega(w)$

Notation

$$-\rho(J) = \min_{B \subset J^c} \frac{F(B \cup J) - F(J)}{F(B)} \in (0,1]$$
 (for J stable)

$$-c(J) = \sup_{w \in \mathbb{R}^p} \Omega_J(w_J) / ||w_J||_2 \leqslant |J|^{1/2} \max_{k \in V} F(\{k\})$$

Proposition

- Assume $y = Xw^* + \sigma\varepsilon$, with $\varepsilon \sim \mathcal{N}(0, I)$
- J= smallest stable set containing the support of w^*
- Assume $\nu = \min_{j, w_j^* \neq 0} |w_j^*| > 0$
- Let $Q = \frac{1}{n} X^{\top} X \in \mathbb{R}^{p \times p}$. Assume $\kappa = \lambda_{\min}(Q_{JJ}) > 0$
- Assume that for $\eta > 0$, $\left| (\Omega^J)^* [(\Omega_J(Q_{JJ}^{-1}Q_{Jj}))_{j \in J^c}] \right| \leq 1 \eta$
- If $\lambda \leqslant \frac{\kappa \nu}{2c(J)}$, \hat{w} has support equal to J, with probability larger than $1-3P\big(\Omega^*(z)>\frac{\lambda\eta\rho(J)\sqrt{n}}{2\sigma}\big)$
- -z is a multivariate normal with covariance matrix Q

Consistency - $\min_{w \in \mathbb{R}^p} \frac{1}{2n} ||y - Xw||_2^2 + \lambda \Omega(w)$

Proposition

- Assume $y = Xw^* + \sigma\varepsilon$, with $\varepsilon \sim \mathcal{N}(0, I)$
- -J = smallest stable set containing the support of w^*
- Let $Q = \frac{1}{n} X^{\top} X \in \mathbb{R}^{p \times p}$.
- $\text{ Assume that } \forall \Delta \text{ s.t. } \Omega^J(\Delta_{J^c}) \leqslant 3\Omega_J(\Delta_J), \ \Delta^\top Q \Delta \geqslant \kappa \|\Delta_J\|_2^2 \\ \text{ Then } \left[\Omega(\hat{w}-w^*) \leqslant \frac{24c(J)^2\lambda}{\kappa\rho(J)^2}\right] \text{ and } \left[\frac{1}{n}\|X\hat{w}-Xw^*\|_2^2 \leqslant \frac{36c(J)^2\lambda^2}{\kappa\rho(J)^2}\right]$

with probability larger than $1 - P(\Omega^*(z) > \frac{\lambda \rho(J)\sqrt{n}}{2\sigma})$

- -z is a multivariate normal with covariance matrix Q
- Concentration inequality (z normal with covariance matrix Q):
 - $-\mathcal{T}$ set of stable inseparable sets
 - Then $P(\Omega^*(z) > t) \leqslant \sum_{A \in \mathcal{T}} 2^{|A|} \exp\left(-\frac{t^2 F(A)^2/2}{1^T \Omega_{AA} 1}\right)$

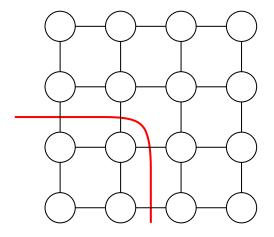
Symmetric submodular functions (Bach, 2011)

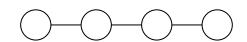
- ullet Let $F:2^V o \mathbb{R}$ be a symmetric submodular set-function
- Proposition: The Lovász extension f(w) is the convex envelope of the function $w \mapsto \max_{\alpha \in \mathbb{R}} F(\{w \geqslant \alpha\})$ on the set $[0,1]^p + \mathbb{R}1_V = \{w \in \mathbb{R}^p, \max_{k \in V} w_k \min_{k \in V} w_k \leqslant 1\}.$
- Shaping all level sets

Symmetric submodular functions - Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Cuts total variation

$$F(A) = \sum_{k \in A, j \in V \setminus A} d(k, j) \quad \Rightarrow \quad f(w) = \sum_{k, j \in V} d(k, j) (w_k - w_j)_+$$



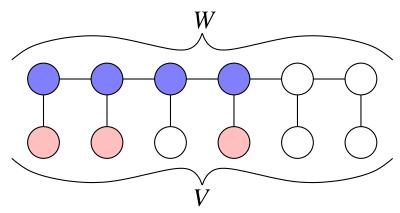


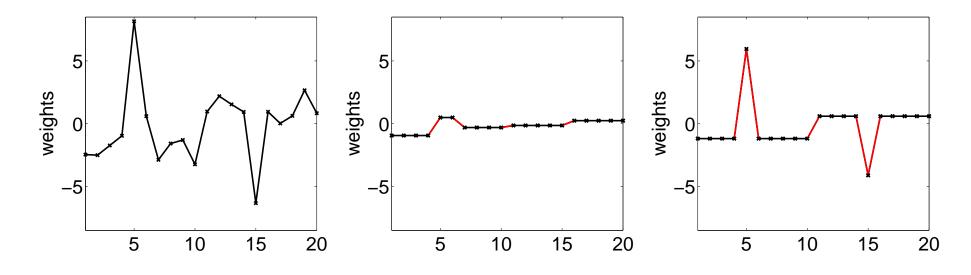
- NB: graph may be directed
- Application to change-point detection (Tibshirani et al., 2005;
 Harchaoui and Lévy-Leduc, 2008)

Symmetric submodular functions - Examples

- From F(A) to $\Omega(w)$: provides new sparsity-inducing norms
 - Regular functions (Boykov et al., 2001; Chambolle and Darbon, 2009)

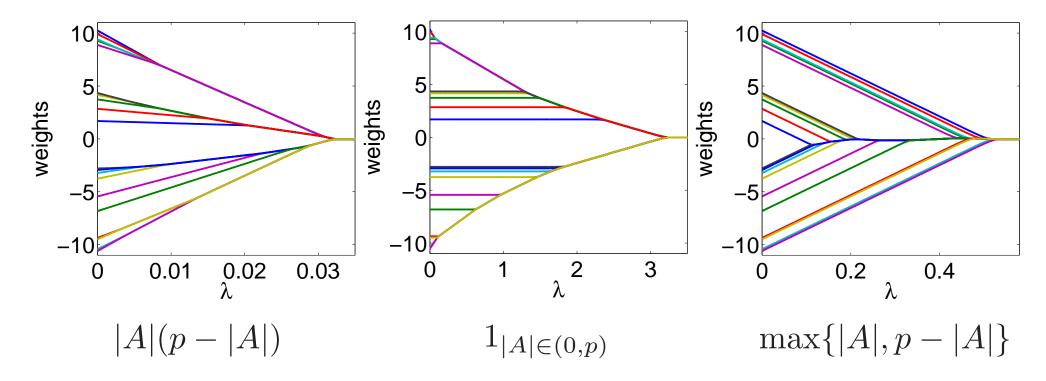
$$F(A) = \min_{B \subset W} \sum_{k \in B, \ j \in W \setminus B} d(k, j) + \lambda |A \Delta B|$$





Symmetric submodular functions - Examples

- From F(A) to $\Omega(w)$: provides new sparsity-inducing norms
 - $-F(A) = g(\operatorname{Card}(A)) \Rightarrow$ priors on the size and numbers of clusters



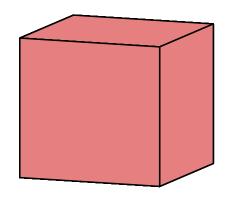
 Convex formulations for clustering (Hocking, Joulin, Bach, and Vert, 2011)

ℓ_2 -relaxation of combinatorial penalties (Obozinski and Bach, 2012)

- Main result of Bach (2010):
 - -f(|w|) is the convex envelope of $F(\operatorname{Supp}(w))$ on $[-1,1]^p$

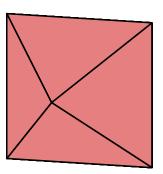
Problems:

- Limited to submodular functions
- Limited to ℓ_{∞} -relaxation: undesired artefacts



$$F(A) = \min\{|A|, 1\}$$

$$\Omega(w) = ||w||_{\infty}$$



$$F(A) = 1_{\{A \cap \{1\} \neq \emptyset\}} + 1_{\{A \cap \{2,3\} \neq \emptyset\}}$$

$$\Omega(w) = |w_1| + ||w_{\{2,3\}}||_{\infty}$$

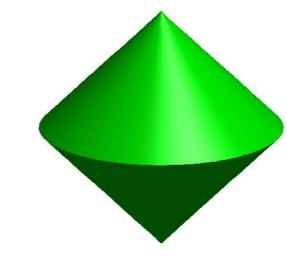
ℓ_2 -relaxation of submodular penalties (Obozinski and Bach, 2012)

ullet F a nondecreasing submodular function with Lovász extension f

• Define
$$\Omega_2(w) = \min_{\eta \in \mathbb{R}^p_+} \frac{1}{2} \sum_{i \in V} \frac{|w_i|^2}{\eta_i} + \frac{1}{2} f(\eta)$$

- NB: general formulation (Micchelli et al., 2011; Bach et al., 2011)
- **Proposition 1**: Ω_2 is the convex envelope of $w \mapsto F(\operatorname{Supp}(w)) \|w\|_2$
- Proposition 2: Ω_2 is the *homogeneous* convex envelope of $w\mapsto \frac{1}{2}F(\operatorname{Supp}(w))+\frac{1}{2}\|w\|_2^2$
- Jointly penalizing and regularizing
 - Extension possible to ℓ_q , q > 1

From ℓ_{∞} to ℓ_2 Removal of undesired artefacts



$$F(A) = 1_{\{A \cap \{3\} \neq \emptyset\}} + 1_{\{A \cap \{1,2\} \neq \emptyset\}}$$
$$\Omega_2(w) = |w_3| + ||w_{\{1,2\}}||_2$$

$$F(A) = 1_{\{A \cap \{1,2,3\} \neq \emptyset\}} + 1_{\{A \cap \{2,3\} \neq \emptyset\}} + 1_{\{A \cap \{2\} \neq \emptyset\}}$$

ullet Extension to non-submodular functions + tightness study: see Obozinski and Bach (2012)

Beyond submodular functions?

- \bullet Let F be any set-function
- "Edmonds extension": homogeneous convex envelope of $w \mapsto F(\operatorname{Supp}(w))$ on $[0,1]^p$ equal to

$$f(w) = \sup_{\forall A \subseteq V, \ s(A) \leqslant F(A)} w^{\top} s = \sup_{s \in P(F)} w^{\top} s$$

- When is it an extension of F?
- Lower combinatorial envelope: $G(B) = f(1_B) = \sup_{s \in P(F)} s(B)$
 - $-G \leqslant F$
 - Property: idempotent operation
- A new class of set-functions: functions for which G = F

Conclusion

- Structured sparsity for machine learning and statistics
 - Many applications (image, audio, text, etc.)
 - May be achieved through structured sparsity-inducing norms
 - Link with submodular functions: unified analysis and algorithms

Submodular functions to encode discrete structures

Conclusion

• Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms
 Submodular functions to encode discrete structures

On-going work on machine learning and submodularity

- Submodular function maximization
- Importing concepts from machine learning (e.g., graphical models)
- Multi-way partitions for computer vision
- Online learning

References

- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In *Advances in Neural Information Processing Systems*, 2008.
- F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, 2010.
- F. Bach. Learning with submodular functions: A convex optimization perspective. *Arxiv preprint* arXiv:1111.6453, 2011a.
- F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. 2011b. URL http://hal.inria.fr/hal-00645271/en.
- F. Bach. Shaping level sets with submodular functions. In Adv. NIPS, 2011.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Foundations and Trends® in Machine Learning, 4(1):1–106, 2011.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization. Statistical Science, 2012. To appear.
- R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. Technical report, arXiv:0808.3572, 2008.
- H. H. Bauschke, P. L. Combettes, and D. R. Luke. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. *J. Approx. Theory*, 127(2):178–192, 2004.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

- M. J. Best and N. Chakravarti. Active set algorithms for isotonic regression; a unifying framework. *Mathematical Programming*, 47(1):425–439, 1990.
- P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 37(4):1705–1732, 2009.
- D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. *The Journal of Machine Learning Research*, 3:993–1022, January 2003.
- D. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. *Advances in neural information processing systems*, 16:106, 2004.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In *Advances in Neural Information Processing Systems (NIPS)*, volume 20, 2008.
- S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. *IEEE Trans. PAMI*, 23(11):1222–1239, 2001.
- V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery using markov random fields. In *Advances in Neural Information Processing Systems*, 2008.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- A. Chambolle and J. Darbon. On total variation minimization and surface evolution using parametric maximum flows. *International Journal of Computer Vision*, 84(3):288–307, 2009.
- V. Chandrasekaran, B. Recht, P.A. Parrilo, and A.S. Willsky. The convex geometry of linear inverse problems. *Arxiv preprint arXiv:1012.0621*, 2010.

- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Review*, 43(1):129–159, 2001.
- G. Choquet. Theory of capacities. Ann. Inst. Fourier, 5:131–295, 1954.
- T. M. Cover and J. A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 1991.
- J. Edmonds. Submodular functions, matroids, and certain polyhedra. In *Combinatorial optimization Eureka, you shrink!*, pages 11–26. Springer, 1970.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745, 2006.
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the minimum-norm base. *Pacific Journal of Optimization*, 7:3–17, 2011.
- E. Girlich and N. N. Pisaruk. The simplex method for submodular function minimization. Technical Report 97-42, University of Magdeburg, 1997.
- J.-L. Goffin and J.-P. Vial. On the computation of weighted analytic centers and dual ellipsoids with the projective algorithm. *Mathematical Programming*, 60(1-3):81-92, 1993.
- A. Gramfort and M. Kowalski. Improving M/EEG source localization with an inter-condition sparse prior. In *IEEE International Symposium on Biomedical Imaging*, 2009.
- H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region. *European Journal of Operational Research*, 54(2):227–236, 1991.
- Z. Harchaoui and C. Lévy-Leduc. Catching change-points with Lasso. Adv. NIPS, 20, 2008.

- J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. *IEEE Transactions on Information Theory*, 52(9):4036–4048, 2006.
- T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an algorithm for clustering using convex fusion penalties. In *Proc. ICML*, 2011.
- J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing submodular functions. *Journal of the ACM*, 48(4):761–777, 2001.
- S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization. Technical report, HAL, 2013.
- Stefanie Jegelka, Hui Lin, and Jeff A. Bilmes. Fast approximate submodular minimization. In *Neural Information Processing Society (NIPS)*, Granada, Spain, December 2011.
- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Submitted to ICML*, 2010.
- R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. Technical report, Preprint arXiv:1105.0363, 2011. In submission to SIAM Journal on Imaging Sciences.

- K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In *Proceedings of CVPR*, 2009.
- S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2010.
- V. Kolmogorov. Minimizing a sum of submodular functions. *Disc. Appl. Math.*, 160(15), 2012.
- N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy minimization and beyond via dual decomposition. *IEEE TPAMI*, 33(3):531–552, 2011.
- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc. UAI*, 2005.
- L. Lovász. Submodular functions and convexity. *Mathematical programming: the state of the art, Bonn*, pages 235–257, 1982.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Technical report, arXiv:0908.0050, 2009a.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In *Computer Vision, 2009 IEEE 12th International Conference on*, pages 2272–2279. IEEE, 2009b.
- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *NIPS*, 2010.
- S. T. McCormick. Submodular function minimization. *Discrete Optimization*, 12:321–391, 2005.
- N. Megiddo. Optimal flows in networks with multiple sources and sinks. *Mathematical Programming*, 7(1):97-107, 1974.

- C.A. Micchelli, J.M. Morales, and M. Pontil. Regularizers for structured sparsity. *Arxiv preprint* arXiv:1010.0556, 2011.
- K. Murota. Discrete convex analysis. Number 10. Society for Industrial Mathematics, 2003.
- K. Nagano, Y. Kawahara, and K. Aihara. Size-constrained submodular minimization through minimum norm base. In *Proc. ICML*, 2011.
- S. Negahban and M. J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits and perils of ℓ_1 - ℓ_∞ -regularization. In *Adv. NIPS*, 2008.
- S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. 2009.
- A. S. Nemirovski and D. B. Yudin. *Problem complexity and method efficiency in optimization*. John Wiley, 1983.
- Y. Nesterov. *Introductory lectures on convex optimization: A basic course*. Kluwer Academic Pub, 2003.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep,* 76, 2007.
- G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties. Technical report, HAL, 2012.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- J.B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. *Mathematical Programming*, 118(2):237–251, 2009.
- F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM.

- Bioinformatics, 24(13):i375-i382, Jul 2008.
- B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnörr. A study of Nesterovs scheme for Lagrangian decomposition and map labeling. In *CVPR*, 2011.
- A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.
- M. Seeger. On the submodularity of linear experimental design, 2009. http://lapmal.epfl.ch/papers/subm_lindesign.pdf.
- Naum Zuselevich Shor, Krzysztof C. Kiwiel, and Andrzej Ruszcay?ski. *Minimization methods for non-differentiable functions*. Springer-Verlag New York, Inc., 1985.
- P. Stobbe and A. Krause. Efficient minimization of decomposable submodular functions. In *NIPS*, 2010.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused Lasso. *Journal of the Royal Statistical Society. Series B*, 67(1):91–108, 2005.
- P. Wolfe. Finding the nearest point in a polytope. Math. Progr., 11(1):128-149, 1976.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of The Royal Statistical Society Series B*, 68(1):49–67, 2006.
- P. Zhao and B. Yu. On model selection consistency of Lasso. *Journal of Machine Learning Research*, 7:2541–2563, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute

penalties. *Annals of Statistics*, 37(6A):3468–3497, 2009.