
Introduction to Submodular Functions

S. Thomas McCormick Satoru Iwata

Sauder School of Business, UBC
Cargese Workshop on Combinatorial Optimization,

Sept–Oct 2013

Teaching plan

I First hour: Tom McCormick on submodular functions

I Next half hour: Satoru Iwata on Lovàsz extension

I Later: Tom, Satoru, Francis, Seffi on more advanced topics

Teaching plan

I First hour: Tom McCormick on submodular functions

I Next half hour: Satoru Iwata on Lovàsz extension

I Later: Tom, Satoru, Francis, Seffi on more advanced topics

Teaching plan

I First hour: Tom McCormick on submodular functions

I Next half hour: Satoru Iwata on Lovàsz extension

I Later: Tom, Satoru, Francis, Seffi on more advanced topics

Contents

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

Contents

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

Outline

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

Motivating “business school” example

I Suppose that you manage a factory that is capable of making
any one of a large finite set E of products.

I In order to produce product e ∈ E it is necessary to set up the
machines needed to manufacture e, and this costs money.

I The setup cost is non-linear, and it depends on which other
products you choose to produce.

I For example, if you are already producing iPhones, then the
setup cost for also producing iPads is small, but if you are not
producing iPhones, the setup cost for producing iPads is large.

I Suppose that we choose to produce the subset of products
S ⊆ E. Then we write the setup cost of subset S as c(S).

Motivating “business school” example

I Suppose that you manage a factory that is capable of making
any one of a large finite set E of products.

I In order to produce product e ∈ E it is necessary to set up the
machines needed to manufacture e, and this costs money.

I The setup cost is non-linear, and it depends on which other
products you choose to produce.

I For example, if you are already producing iPhones, then the
setup cost for also producing iPads is small, but if you are not
producing iPhones, the setup cost for producing iPads is large.

I Suppose that we choose to produce the subset of products
S ⊆ E. Then we write the setup cost of subset S as c(S).

Motivating “business school” example

I Suppose that you manage a factory that is capable of making
any one of a large finite set E of products.

I In order to produce product e ∈ E it is necessary to set up the
machines needed to manufacture e, and this costs money.

I The setup cost is non-linear, and it depends on which other
products you choose to produce.

I For example, if you are already producing iPhones, then the
setup cost for also producing iPads is small, but if you are not
producing iPhones, the setup cost for producing iPads is large.

I Suppose that we choose to produce the subset of products
S ⊆ E. Then we write the setup cost of subset S as c(S).

Motivating “business school” example

I Suppose that you manage a factory that is capable of making
any one of a large finite set E of products.

I In order to produce product e ∈ E it is necessary to set up the
machines needed to manufacture e, and this costs money.

I The setup cost is non-linear, and it depends on which other
products you choose to produce.

I For example, if you are already producing iPhones, then the
setup cost for also producing iPads is small, but if you are not
producing iPhones, the setup cost for producing iPads is large.

I Suppose that we choose to produce the subset of products
S ⊆ E. Then we write the setup cost of subset S as c(S).

Motivating “business school” example

I Suppose that you manage a factory that is capable of making
any one of a large finite set E of products.

I In order to produce product e ∈ E it is necessary to set up the
machines needed to manufacture e, and this costs money.

I The setup cost is non-linear, and it depends on which other
products you choose to produce.

I For example, if you are already producing iPhones, then the
setup cost for also producing iPads is small, but if you are not
producing iPhones, the setup cost for producing iPads is large.

I Suppose that we choose to produce the subset of products
S ⊆ E. Then we write the setup cost of subset S as c(S).

Set Functions

I Notice that c(S) is a function from 2E (the family of all
subsets of E) to R.

I If f is a function f : 2E → R then we call f a set function.

I We globally use n to denote |E|. Thus a set function f on E
is determined by its 2n values f(S) for S ⊆ E.

I This is a lot of data. We typically have some more compact
representation of f that allows us to efficiently compute f(S)
for a given S.

I Because of this, we talk about set functions using an value
oracle model: we assume that we have an algorithm E whose
input is some S ⊆ E, and whose output is f(S). We denote
the running time of E by EO.

I We typically think that EO = Ω(n), i.e., that it takes at least
linear time to evaluate f on S.

Set Functions

I Notice that c(S) is a function from 2E (the family of all
subsets of E) to R.

I If f is a function f : 2E → R then we call f a set function.

I We globally use n to denote |E|. Thus a set function f on E
is determined by its 2n values f(S) for S ⊆ E.

I This is a lot of data. We typically have some more compact
representation of f that allows us to efficiently compute f(S)
for a given S.

I Because of this, we talk about set functions using an value
oracle model: we assume that we have an algorithm E whose
input is some S ⊆ E, and whose output is f(S). We denote
the running time of E by EO.

I We typically think that EO = Ω(n), i.e., that it takes at least
linear time to evaluate f on S.

Set Functions

I Notice that c(S) is a function from 2E (the family of all
subsets of E) to R.

I If f is a function f : 2E → R then we call f a set function.

I We globally use n to denote |E|. Thus a set function f on E
is determined by its 2n values f(S) for S ⊆ E.

I This is a lot of data. We typically have some more compact
representation of f that allows us to efficiently compute f(S)
for a given S.

I Because of this, we talk about set functions using an value
oracle model: we assume that we have an algorithm E whose
input is some S ⊆ E, and whose output is f(S). We denote
the running time of E by EO.

I We typically think that EO = Ω(n), i.e., that it takes at least
linear time to evaluate f on S.

Set Functions

I Notice that c(S) is a function from 2E (the family of all
subsets of E) to R.

I If f is a function f : 2E → R then we call f a set function.

I We globally use n to denote |E|. Thus a set function f on E
is determined by its 2n values f(S) for S ⊆ E.

I This is a lot of data. We typically have some more compact
representation of f that allows us to efficiently compute f(S)
for a given S.

I Because of this, we talk about set functions using an value
oracle model: we assume that we have an algorithm E whose
input is some S ⊆ E, and whose output is f(S). We denote
the running time of E by EO.

I We typically think that EO = Ω(n), i.e., that it takes at least
linear time to evaluate f on S.

Set Functions

I Notice that c(S) is a function from 2E (the family of all
subsets of E) to R.

I If f is a function f : 2E → R then we call f a set function.

I We globally use n to denote |E|. Thus a set function f on E
is determined by its 2n values f(S) for S ⊆ E.

I This is a lot of data. We typically have some more compact
representation of f that allows us to efficiently compute f(S)
for a given S.

I Because of this, we talk about set functions using an value
oracle model: we assume that we have an algorithm E whose
input is some S ⊆ E, and whose output is f(S). We denote
the running time of E by EO.

I We typically think that EO = Ω(n), i.e., that it takes at least
linear time to evaluate f on S.

Set Functions

I Notice that c(S) is a function from 2E (the family of all
subsets of E) to R.

I If f is a function f : 2E → R then we call f a set function.

I We globally use n to denote |E|. Thus a set function f on E
is determined by its 2n values f(S) for S ⊆ E.

I This is a lot of data. We typically have some more compact
representation of f that allows us to efficiently compute f(S)
for a given S.

I Because of this, we talk about set functions using an value
oracle model: we assume that we have an algorithm E whose
input is some S ⊆ E, and whose output is f(S). We denote
the running time of E by EO.

I We typically think that EO = Ω(n), i.e., that it takes at least
linear time to evaluate f on S.

Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.

Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.

Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.

Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.

Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.

Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.

Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.

Outline

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

Submodularity definitions

I In general, if f is a set function on E, we say that f is
submodular if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≤ f(S + e)− f(S). (2)

I The classic definition of submodularity looks quite different.
We also say that set function f is submodular if

for all S, T ⊆ E, f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). (3)

Lemma
Definitions (2) and (3) are equivalent.

Proof.
Homework.

Submodularity definitions

I In general, if f is a set function on E, we say that f is
submodular if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≤ f(S + e)− f(S). (2)

I The classic definition of submodularity looks quite different.
We also say that set function f is submodular if

for all S, T ⊆ E, f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). (3)

Lemma
Definitions (2) and (3) are equivalent.

Proof.
Homework.

Submodularity definitions

I In general, if f is a set function on E, we say that f is
submodular if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≤ f(S + e)− f(S). (2)

I The classic definition of submodularity looks quite different.
We also say that set function f is submodular if

for all S, T ⊆ E, f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). (3)

Lemma
Definitions (2) and (3) are equivalent.

Proof.
Homework.

Submodularity definitions

I In general, if f is a set function on E, we say that f is
submodular if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≤ f(S + e)− f(S). (2)

I The classic definition of submodularity looks quite different.
We also say that set function f is submodular if

for all S, T ⊆ E, f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). (3)

Lemma
Definitions (2) and (3) are equivalent.

Proof.
Homework.

More definitions

I We say that set function f is monotone if S ⊆ T implies that
f(S) ≤ f(T).

I Many set functions arising in applications are monotone, but
not all of them.

I A set function that is both submodular and monotone is
called a polymatroid.

I Polymatroids generalize matroids, and are a special case of the
submodular polyhedra we’ll see later.

More definitions

I We say that set function f is monotone if S ⊆ T implies that
f(S) ≤ f(T).

I Many set functions arising in applications are monotone, but
not all of them.

I A set function that is both submodular and monotone is
called a polymatroid.

I Polymatroids generalize matroids, and are a special case of the
submodular polyhedra we’ll see later.

More definitions

I We say that set function f is monotone if S ⊆ T implies that
f(S) ≤ f(T).

I Many set functions arising in applications are monotone, but
not all of them.

I A set function that is both submodular and monotone is
called a polymatroid.

I Polymatroids generalize matroids, and are a special case of the
submodular polyhedra we’ll see later.

More definitions

I We say that set function f is monotone if S ⊆ T implies that
f(S) ≤ f(T).

I Many set functions arising in applications are monotone, but
not all of them.

I A set function that is both submodular and monotone is
called a polymatroid.

I Polymatroids generalize matroids, and are a special case of the
submodular polyhedra we’ll see later.

Even more definitions

I We say that set function f is supermodular if it satisfies these
definitions with the inequalities reversed, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≥ f(S + e)− f(S). (4)

Thus f is supermodular iff −f is submodular.

I We say that set function f is modular if it satisfies these
definitions with equality, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) = f(S + e)− f(S). (5)

Thus f is modular iff it is both sub- and supermodular.

Lemma
Set function f is modular iff there is some vector a ∈ RE such that
f(S) = f(∅) +

∑
e∈S ae.

Proof.
Homework.

Even more definitions

I We say that set function f is supermodular if it satisfies these
definitions with the inequalities reversed, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≥ f(S + e)− f(S). (4)

Thus f is supermodular iff −f is submodular.

I We say that set function f is modular if it satisfies these
definitions with equality, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) = f(S + e)− f(S). (5)

Thus f is modular iff it is both sub- and supermodular.

Lemma
Set function f is modular iff there is some vector a ∈ RE such that
f(S) = f(∅) +

∑
e∈S ae.

Proof.
Homework.

Even more definitions

I We say that set function f is supermodular if it satisfies these
definitions with the inequalities reversed, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≥ f(S + e)− f(S). (4)

Thus f is supermodular iff −f is submodular.

I We say that set function f is modular if it satisfies these
definitions with equality, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) = f(S + e)− f(S). (5)

Thus f is modular iff it is both sub- and supermodular.

Lemma
Set function f is modular iff there is some vector a ∈ RE such that
f(S) = f(∅) +

∑
e∈S ae.

Proof.
Homework.

Even more definitions

I We say that set function f is supermodular if it satisfies these
definitions with the inequalities reversed, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) ≥ f(S + e)− f(S). (4)

Thus f is supermodular iff −f is submodular.

I We say that set function f is modular if it satisfies these
definitions with equality, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T) = f(S + e)− f(S). (5)

Thus f is modular iff it is both sub- and supermodular.

Lemma
Set function f is modular iff there is some vector a ∈ RE such that
f(S) = f(∅) +

∑
e∈S ae.

Proof.
Homework.

Motivating example again

I The lemma suggest a natural way to extend a vector a ∈ RE

to a modular set function: Define a(S) =
∑

e∈S ae. Note that
a(∅) = 0. (Queyranne: “a · S” is better notation?)

I For example, let’s suppose that the profit from producing
product e ∈ E is pe, i.e., p ∈ RE .

I We assume that these profits add up linearly, so that the
profit from producing subset S is p(S) =

∑
e∈E pe.

I Therefore our net revenue from producing subset S is
p(S)− c(S), which is a supermodular set function (why?).

I Notice that the similar notations “c(S)” and “p(S)” mean
different things here: c(S) really is a set function, whereas
p(S) is an artificial set function derived from a vector p ∈ RE .

I In this example we naturally want to find a subset to produce
that maximizes our net revenue, i.e, to solve
maxS⊆E(p(S)− c(S)), or equivalently

min
S⊆E

(c(S)− p(S)).

Motivating example again

I The lemma suggest a natural way to extend a vector a ∈ RE

to a modular set function: Define a(S) =
∑

e∈S ae. Note that
a(∅) = 0. (Queyranne: “a · S” is better notation?)

I For example, let’s suppose that the profit from producing
product e ∈ E is pe, i.e., p ∈ RE .

I We assume that these profits add up linearly, so that the
profit from producing subset S is p(S) =

∑
e∈E pe.

I Therefore our net revenue from producing subset S is
p(S)− c(S), which is a supermodular set function (why?).

I Notice that the similar notations “c(S)” and “p(S)” mean
different things here: c(S) really is a set function, whereas
p(S) is an artificial set function derived from a vector p ∈ RE .

I In this example we naturally want to find a subset to produce
that maximizes our net revenue, i.e, to solve
maxS⊆E(p(S)− c(S)), or equivalently

min
S⊆E

(c(S)− p(S)).

Motivating example again

I The lemma suggest a natural way to extend a vector a ∈ RE

to a modular set function: Define a(S) =
∑

e∈S ae. Note that
a(∅) = 0. (Queyranne: “a · S” is better notation?)

I For example, let’s suppose that the profit from producing
product e ∈ E is pe, i.e., p ∈ RE .

I We assume that these profits add up linearly, so that the
profit from producing subset S is p(S) =

∑
e∈E pe.

I Therefore our net revenue from producing subset S is
p(S)− c(S), which is a supermodular set function (why?).

I Notice that the similar notations “c(S)” and “p(S)” mean
different things here: c(S) really is a set function, whereas
p(S) is an artificial set function derived from a vector p ∈ RE .

I In this example we naturally want to find a subset to produce
that maximizes our net revenue, i.e, to solve
maxS⊆E(p(S)− c(S)), or equivalently

min
S⊆E

(c(S)− p(S)).

Motivating example again

I The lemma suggest a natural way to extend a vector a ∈ RE

to a modular set function: Define a(S) =
∑

e∈S ae. Note that
a(∅) = 0. (Queyranne: “a · S” is better notation?)

I For example, let’s suppose that the profit from producing
product e ∈ E is pe, i.e., p ∈ RE .

I We assume that these profits add up linearly, so that the
profit from producing subset S is p(S) =

∑
e∈E pe.

I Therefore our net revenue from producing subset S is
p(S)− c(S), which is a supermodular set function (why?).

I Notice that the similar notations “c(S)” and “p(S)” mean
different things here: c(S) really is a set function, whereas
p(S) is an artificial set function derived from a vector p ∈ RE .

I In this example we naturally want to find a subset to produce
that maximizes our net revenue, i.e, to solve
maxS⊆E(p(S)− c(S)), or equivalently

min
S⊆E

(c(S)− p(S)).

Motivating example again

I The lemma suggest a natural way to extend a vector a ∈ RE

to a modular set function: Define a(S) =
∑

e∈S ae. Note that
a(∅) = 0. (Queyranne: “a · S” is better notation?)

I For example, let’s suppose that the profit from producing
product e ∈ E is pe, i.e., p ∈ RE .

I We assume that these profits add up linearly, so that the
profit from producing subset S is p(S) =

∑
e∈E pe.

I Therefore our net revenue from producing subset S is
p(S)− c(S), which is a supermodular set function (why?).

I Notice that the similar notations “c(S)” and “p(S)” mean
different things here: c(S) really is a set function, whereas
p(S) is an artificial set function derived from a vector p ∈ RE .

I In this example we naturally want to find a subset to produce
that maximizes our net revenue, i.e, to solve
maxS⊆E(p(S)− c(S)), or equivalently

min
S⊆E

(c(S)− p(S)).

Motivating example again

I The lemma suggest a natural way to extend a vector a ∈ RE

to a modular set function: Define a(S) =
∑

e∈S ae. Note that
a(∅) = 0. (Queyranne: “a · S” is better notation?)

I For example, let’s suppose that the profit from producing
product e ∈ E is pe, i.e., p ∈ RE .

I We assume that these profits add up linearly, so that the
profit from producing subset S is p(S) =

∑
e∈E pe.

I Therefore our net revenue from producing subset S is
p(S)− c(S), which is a supermodular set function (why?).

I Notice that the similar notations “c(S)” and “p(S)” mean
different things here: c(S) really is a set function, whereas
p(S) is an artificial set function derived from a vector p ∈ RE .

I In this example we naturally want to find a subset to produce
that maximizes our net revenue, i.e, to solve
maxS⊆E(p(S)− c(S)), or equivalently

min
S⊆E

(c(S)− p(S)).

More examples of submodularity

I Let G = (N,A) be a directed graph. For S ⊆ N define
δ+(S) = {i→ j ∈ A | i ∈ S, j /∈ S},
δ−(S) = {i→ j ∈ A | i /∈ S, j ∈ S}. Then |δ+(S)| and
|δ−(S)| are submodular.

I More generally, suppose that w ∈ RA are weights on the arcs.
If w ≥ 0, then w(δ+(S)) and w(δ−(S)) are submodular, and if
w 6≥ 0 then they are not necessarily submodular (homework).

I The same is true for undirected graphs where we consider
δ(S) = {i — j | i ∈ S, j /∈ S}.

I Here, e.g., w(δ+(∅)) = 0.

I Now specialize the previous example slightly to Max Flow /
Min Cut: Let N = {s}∪{t}∪E be the node set with source s
and sink t. We have arc capacities u ∈ RA

+, i.e., arc i→ j has
capacity uij ≥ 0. An s–t cut is some S ⊆ E, and the capacity
of cut S is cap(S) = u(δ+(S + s)), which is submodular.

I Here cap(∅) =
∑

e∈E use is usually positive.

More examples of submodularity

I Let G = (N,A) be a directed graph. For S ⊆ N define
δ+(S) = {i→ j ∈ A | i ∈ S, j /∈ S},
δ−(S) = {i→ j ∈ A | i /∈ S, j ∈ S}. Then |δ+(S)| and
|δ−(S)| are submodular.

I More generally, suppose that w ∈ RA are weights on the arcs.
If w ≥ 0, then w(δ+(S)) and w(δ−(S)) are submodular, and if
w 6≥ 0 then they are not necessarily submodular (homework).

I The same is true for undirected graphs where we consider
δ(S) = {i — j | i ∈ S, j /∈ S}.

I Here, e.g., w(δ+(∅)) = 0.

I Now specialize the previous example slightly to Max Flow /
Min Cut: Let N = {s}∪{t}∪E be the node set with source s
and sink t. We have arc capacities u ∈ RA

+, i.e., arc i→ j has
capacity uij ≥ 0. An s–t cut is some S ⊆ E, and the capacity
of cut S is cap(S) = u(δ+(S + s)), which is submodular.

I Here cap(∅) =
∑

e∈E use is usually positive.

More examples of submodularity

I Let G = (N,A) be a directed graph. For S ⊆ N define
δ+(S) = {i→ j ∈ A | i ∈ S, j /∈ S},
δ−(S) = {i→ j ∈ A | i /∈ S, j ∈ S}. Then |δ+(S)| and
|δ−(S)| are submodular.

I More generally, suppose that w ∈ RA are weights on the arcs.
If w ≥ 0, then w(δ+(S)) and w(δ−(S)) are submodular, and if
w 6≥ 0 then they are not necessarily submodular (homework).

I The same is true for undirected graphs where we consider
δ(S) = {i — j | i ∈ S, j /∈ S}.

I Here, e.g., w(δ+(∅)) = 0.

I Now specialize the previous example slightly to Max Flow /
Min Cut: Let N = {s}∪{t}∪E be the node set with source s
and sink t. We have arc capacities u ∈ RA

+, i.e., arc i→ j has
capacity uij ≥ 0. An s–t cut is some S ⊆ E, and the capacity
of cut S is cap(S) = u(δ+(S + s)), which is submodular.

I Here cap(∅) =
∑

e∈E use is usually positive.

More examples of submodularity

I Let G = (N,A) be a directed graph. For S ⊆ N define
δ+(S) = {i→ j ∈ A | i ∈ S, j /∈ S},
δ−(S) = {i→ j ∈ A | i /∈ S, j ∈ S}. Then |δ+(S)| and
|δ−(S)| are submodular.

I More generally, suppose that w ∈ RA are weights on the arcs.
If w ≥ 0, then w(δ+(S)) and w(δ−(S)) are submodular, and if
w 6≥ 0 then they are not necessarily submodular (homework).

I The same is true for undirected graphs where we consider
δ(S) = {i — j | i ∈ S, j /∈ S}.

I Here, e.g., w(δ+(∅)) = 0.

I Now specialize the previous example slightly to Max Flow /
Min Cut: Let N = {s}∪{t}∪E be the node set with source s
and sink t. We have arc capacities u ∈ RA

+, i.e., arc i→ j has
capacity uij ≥ 0. An s–t cut is some S ⊆ E, and the capacity
of cut S is cap(S) = u(δ+(S + s)), which is submodular.

I Here cap(∅) =
∑

e∈E use is usually positive.

More examples of submodularity

I Let G = (N,A) be a directed graph. For S ⊆ N define
δ+(S) = {i→ j ∈ A | i ∈ S, j /∈ S},
δ−(S) = {i→ j ∈ A | i /∈ S, j ∈ S}. Then |δ+(S)| and
|δ−(S)| are submodular.

I More generally, suppose that w ∈ RA are weights on the arcs.
If w ≥ 0, then w(δ+(S)) and w(δ−(S)) are submodular, and if
w 6≥ 0 then they are not necessarily submodular (homework).

I The same is true for undirected graphs where we consider
δ(S) = {i — j | i ∈ S, j /∈ S}.

I Here, e.g., w(δ+(∅)) = 0.

I Now specialize the previous example slightly to Max Flow /
Min Cut: Let N = {s}∪{t}∪E be the node set with source s
and sink t. We have arc capacities u ∈ RA

+, i.e., arc i→ j has
capacity uij ≥ 0. An s–t cut is some S ⊆ E, and the capacity
of cut S is cap(S) = u(δ+(S + s)), which is submodular.

I Here cap(∅) =
∑

e∈E use is usually positive.

More examples of submodularity

I Let G = (N,A) be a directed graph. For S ⊆ N define
δ+(S) = {i→ j ∈ A | i ∈ S, j /∈ S},
δ−(S) = {i→ j ∈ A | i /∈ S, j ∈ S}. Then |δ+(S)| and
|δ−(S)| are submodular.

I More generally, suppose that w ∈ RA are weights on the arcs.
If w ≥ 0, then w(δ+(S)) and w(δ−(S)) are submodular, and if
w 6≥ 0 then they are not necessarily submodular (homework).

I The same is true for undirected graphs where we consider
δ(S) = {i — j | i ∈ S, j /∈ S}.

I Here, e.g., w(δ+(∅)) = 0.

I Now specialize the previous example slightly to Max Flow /
Min Cut: Let N = {s}∪{t}∪E be the node set with source s
and sink t. We have arc capacities u ∈ RA

+, i.e., arc i→ j has
capacity uij ≥ 0. An s–t cut is some S ⊆ E, and the capacity
of cut S is cap(S) = u(δ+(S + s)), which is submodular.

I Here cap(∅) =
∑

e∈E use is usually positive.

Outline

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

Max Flow / Min Cut

I Review: Vector x ∈ RA is a feasible flow if it satisfies

1. Conservation: x(δ+({i}) = x(δ−({i}) for all i ∈ E, i.e., flow
out = flow in.

2. Boundedness: 0 ≤ xij ≤ uij for all i→ j ∈ A.

I The value of flow f is val(x) = x(δ+({s}))− x(δ−({s})).

Theorem (Ford & Fulkerson)

For any capacities u, val∗ ≡ maxx val(x) = minS cap(S) ≡ cap∗,
i.e., the value of a max flow equals the capacity of a min cut.

I Now we want to sketch part of the proof of this, since some
later proofs will use the same technique.

Max Flow / Min Cut

I Review: Vector x ∈ RA is a feasible flow if it satisfies

1. Conservation: x(δ+({i}) = x(δ−({i}) for all i ∈ E, i.e., flow
out = flow in.

2. Boundedness: 0 ≤ xij ≤ uij for all i→ j ∈ A.

I The value of flow f is val(x) = x(δ+({s}))− x(δ−({s})).

Theorem (Ford & Fulkerson)

For any capacities u, val∗ ≡ maxx val(x) = minS cap(S) ≡ cap∗,
i.e., the value of a max flow equals the capacity of a min cut.

I Now we want to sketch part of the proof of this, since some
later proofs will use the same technique.

Max Flow / Min Cut

I Review: Vector x ∈ RA is a feasible flow if it satisfies

1. Conservation: x(δ+({i}) = x(δ−({i}) for all i ∈ E, i.e., flow
out = flow in.

2. Boundedness: 0 ≤ xij ≤ uij for all i→ j ∈ A.

I The value of flow f is val(x) = x(δ+({s}))− x(δ−({s})).

Theorem (Ford & Fulkerson)

For any capacities u, val∗ ≡ maxx val(x) = minS cap(S) ≡ cap∗,
i.e., the value of a max flow equals the capacity of a min cut.

I Now we want to sketch part of the proof of this, since some
later proofs will use the same technique.

Max Flow / Min Cut

I Review: Vector x ∈ RA is a feasible flow if it satisfies

1. Conservation: x(δ+({i}) = x(δ−({i}) for all i ∈ E, i.e., flow
out = flow in.

2. Boundedness: 0 ≤ xij ≤ uij for all i→ j ∈ A.

I The value of flow f is val(x) = x(δ+({s}))− x(δ−({s})).

Theorem (Ford & Fulkerson)

For any capacities u, val∗ ≡ maxx val(x) = minS cap(S) ≡ cap∗,
i.e., the value of a max flow equals the capacity of a min cut.

I Now we want to sketch part of the proof of this, since some
later proofs will use the same technique.

Max Flow / Min Cut

I Review: Vector x ∈ RA is a feasible flow if it satisfies

1. Conservation: x(δ+({i}) = x(δ−({i}) for all i ∈ E, i.e., flow
out = flow in.

2. Boundedness: 0 ≤ xij ≤ uij for all i→ j ∈ A.

I The value of flow f is val(x) = x(δ+({s}))− x(δ−({s})).

Theorem (Ford & Fulkerson)

For any capacities u, val∗ ≡ maxx val(x) = minS cap(S) ≡ cap∗,
i.e., the value of a max flow equals the capacity of a min cut.

I Now we want to sketch part of the proof of this, since some
later proofs will use the same technique.

Max Flow / Min Cut

I Review: Vector x ∈ RA is a feasible flow if it satisfies

1. Conservation: x(δ+({i}) = x(δ−({i}) for all i ∈ E, i.e., flow
out = flow in.

2. Boundedness: 0 ≤ xij ≤ uij for all i→ j ∈ A.

I The value of flow f is val(x) = x(δ+({s}))− x(δ−({s})).

Theorem (Ford & Fulkerson)

For any capacities u, val∗ ≡ maxx val(x) = minS cap(S) ≡ cap∗,
i.e., the value of a max flow equals the capacity of a min cut.

I Now we want to sketch part of the proof of this, since some
later proofs will use the same technique.

Algorithmic proof of Max Flow / Min Cut

I First, weak duality. For any feasible flow x and cut S:

val(x) = x(δ+({s}))− x(δ−({s}))
+

∑
i∈S [x(δ+({i}))− x(δ−({i}))]

= x(δ+(S + s))− x(δ−(S + s))
≤ u(δ+(S + s))− 0 = cap(S).

I An augmenting path w.r.t. feasible flow x is a directed path P
such that i→ j ∈ P implies either (i) i→ j ∈ A and
xij < uij , or (ii) j → i ∈ A and xji > 0.

I If there is an augmenting path P from s to t w.r.t. x, then
clearly we can push some flow α > 0 through P and increase
val(x) by α, proving that x is not maximum.

I Conversely, suppose 6 ∃ aug. path P from s to t w.r.t. x.
Define S = {i ∈ E | ∃ aug. path from s to i w.r.t. x}.

I For i ∈ S + s and j /∈ S + s we must have xij = uij and
xji = 0, and so val(x) = x(δ+(S + s))− x(δ−(S + s)) =
u(δ+(S + s))− 0 = cap(S).

Algorithmic proof of Max Flow / Min Cut

I First, weak duality. For any feasible flow x and cut S:

val(x) = x(δ+({s}))− x(δ−({s}))
+

∑
i∈S [x(δ+({i}))− x(δ−({i}))]

= x(δ+(S + s))− x(δ−(S + s))
≤ u(δ+(S + s))− 0 = cap(S).

I An augmenting path w.r.t. feasible flow x is a directed path P
such that i→ j ∈ P implies either (i) i→ j ∈ A and
xij < uij , or (ii) j → i ∈ A and xji > 0.

I If there is an augmenting path P from s to t w.r.t. x, then
clearly we can push some flow α > 0 through P and increase
val(x) by α, proving that x is not maximum.

I Conversely, suppose 6 ∃ aug. path P from s to t w.r.t. x.
Define S = {i ∈ E | ∃ aug. path from s to i w.r.t. x}.

I For i ∈ S + s and j /∈ S + s we must have xij = uij and
xji = 0, and so val(x) = x(δ+(S + s))− x(δ−(S + s)) =
u(δ+(S + s))− 0 = cap(S).

Algorithmic proof of Max Flow / Min Cut

I First, weak duality. For any feasible flow x and cut S:

val(x) = x(δ+({s}))− x(δ−({s}))
+

∑
i∈S [x(δ+({i}))− x(δ−({i}))]

= x(δ+(S + s))− x(δ−(S + s))
≤ u(δ+(S + s))− 0 = cap(S).

I An augmenting path w.r.t. feasible flow x is a directed path P
such that i→ j ∈ P implies either (i) i→ j ∈ A and
xij < uij , or (ii) j → i ∈ A and xji > 0.

I If there is an augmenting path P from s to t w.r.t. x, then
clearly we can push some flow α > 0 through P and increase
val(x) by α, proving that x is not maximum.

I Conversely, suppose 6 ∃ aug. path P from s to t w.r.t. x.
Define S = {i ∈ E | ∃ aug. path from s to i w.r.t. x}.

I For i ∈ S + s and j /∈ S + s we must have xij = uij and
xji = 0, and so val(x) = x(δ+(S + s))− x(δ−(S + s)) =
u(δ+(S + s))− 0 = cap(S).

Algorithmic proof of Max Flow / Min Cut

I First, weak duality. For any feasible flow x and cut S:

val(x) = x(δ+({s}))− x(δ−({s}))
+

∑
i∈S [x(δ+({i}))− x(δ−({i}))]

= x(δ+(S + s))− x(δ−(S + s))
≤ u(δ+(S + s))− 0 = cap(S).

I An augmenting path w.r.t. feasible flow x is a directed path P
such that i→ j ∈ P implies either (i) i→ j ∈ A and
xij < uij , or (ii) j → i ∈ A and xji > 0.

I If there is an augmenting path P from s to t w.r.t. x, then
clearly we can push some flow α > 0 through P and increase
val(x) by α, proving that x is not maximum.

I Conversely, suppose 6 ∃ aug. path P from s to t w.r.t. x.
Define S = {i ∈ E | ∃ aug. path from s to i w.r.t. x}.

I For i ∈ S + s and j /∈ S + s we must have xij = uij and
xji = 0, and so val(x) = x(δ+(S + s))− x(δ−(S + s)) =
u(δ+(S + s))− 0 = cap(S).

Algorithmic proof of Max Flow / Min Cut

I First, weak duality. For any feasible flow x and cut S:

val(x) = x(δ+({s}))− x(δ−({s}))
+

∑
i∈S [x(δ+({i}))− x(δ−({i}))]

= x(δ+(S + s))− x(δ−(S + s))
≤ u(δ+(S + s))− 0 = cap(S).

I An augmenting path w.r.t. feasible flow x is a directed path P
such that i→ j ∈ P implies either (i) i→ j ∈ A and
xij < uij , or (ii) j → i ∈ A and xji > 0.

I If there is an augmenting path P from s to t w.r.t. x, then
clearly we can push some flow α > 0 through P and increase
val(x) by α, proving that x is not maximum.

I Conversely, suppose 6 ∃ aug. path P from s to t w.r.t. x.
Define S = {i ∈ E | ∃ aug. path from s to i w.r.t. x}.

I For i ∈ S + s and j /∈ S + s we must have xij = uij and
xji = 0, and so val(x) = x(δ+(S + s))− x(δ−(S + s)) =
u(δ+(S + s))− 0 = cap(S).

More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Many SFMin algorithms are based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.

More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Many SFMin algorithms are based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.

More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Many SFMin algorithms are based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.

More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Many SFMin algorithms are based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.

More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Many SFMin algorithms are based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.

More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Many SFMin algorithms are based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.

More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Many SFMin algorithms are based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.

Further examples which are all submodular (Krause)

I Matroids: The rank function of a matroid.

I Coverage: There is a set F a facilities we can open, and a set
C of clients we want to service. There is a bipartite graph
B = (F ∪C,A) from F to C such that if we open S ⊆ F , we
serve the set of clients Γ(S) ≡ {j ∈ C | i→ j ∈ A, some
i ∈ S}. If w ≥ 0 then w(Γ(S)) is submodular.

I Queues: If a system E of queues satisfies a “conservation
law” then the amount of work that can be done by queues in
S ⊆ E is submodular.

I Entropy: The Shannon entropy of a random vector.
I Sensor location: If we have a joint probability distribution over

two random vectors P (X,Y) indexed by E and the X
variables are conditionally independent given Y , then the
expected reduction in the uncertainty of about Y given the
values of X on subset S is submodular. Think of placing
sensors at a subset S of locations in the ground set E in order
to measure Y ; a sort of stochastic coverage.

Further examples which are all submodular (Krause)

I Matroids: The rank function of a matroid.
I Coverage: There is a set F a facilities we can open, and a set
C of clients we want to service. There is a bipartite graph
B = (F ∪C,A) from F to C such that if we open S ⊆ F , we
serve the set of clients Γ(S) ≡ {j ∈ C | i→ j ∈ A, some
i ∈ S}. If w ≥ 0 then w(Γ(S)) is submodular.

I Queues: If a system E of queues satisfies a “conservation
law” then the amount of work that can be done by queues in
S ⊆ E is submodular.

I Entropy: The Shannon entropy of a random vector.
I Sensor location: If we have a joint probability distribution over

two random vectors P (X,Y) indexed by E and the X
variables are conditionally independent given Y , then the
expected reduction in the uncertainty of about Y given the
values of X on subset S is submodular. Think of placing
sensors at a subset S of locations in the ground set E in order
to measure Y ; a sort of stochastic coverage.

Further examples which are all submodular (Krause)

I Matroids: The rank function of a matroid.
I Coverage: There is a set F a facilities we can open, and a set
C of clients we want to service. There is a bipartite graph
B = (F ∪C,A) from F to C such that if we open S ⊆ F , we
serve the set of clients Γ(S) ≡ {j ∈ C | i→ j ∈ A, some
i ∈ S}. If w ≥ 0 then w(Γ(S)) is submodular.

I Queues: If a system E of queues satisfies a “conservation
law” then the amount of work that can be done by queues in
S ⊆ E is submodular.

I Entropy: The Shannon entropy of a random vector.
I Sensor location: If we have a joint probability distribution over

two random vectors P (X,Y) indexed by E and the X
variables are conditionally independent given Y , then the
expected reduction in the uncertainty of about Y given the
values of X on subset S is submodular. Think of placing
sensors at a subset S of locations in the ground set E in order
to measure Y ; a sort of stochastic coverage.

Further examples which are all submodular (Krause)

I Matroids: The rank function of a matroid.
I Coverage: There is a set F a facilities we can open, and a set
C of clients we want to service. There is a bipartite graph
B = (F ∪C,A) from F to C such that if we open S ⊆ F , we
serve the set of clients Γ(S) ≡ {j ∈ C | i→ j ∈ A, some
i ∈ S}. If w ≥ 0 then w(Γ(S)) is submodular.

I Queues: If a system E of queues satisfies a “conservation
law” then the amount of work that can be done by queues in
S ⊆ E is submodular.

I Entropy: The Shannon entropy of a random vector.

I Sensor location: If we have a joint probability distribution over
two random vectors P (X,Y) indexed by E and the X
variables are conditionally independent given Y , then the
expected reduction in the uncertainty of about Y given the
values of X on subset S is submodular. Think of placing
sensors at a subset S of locations in the ground set E in order
to measure Y ; a sort of stochastic coverage.

Further examples which are all submodular (Krause)

I Matroids: The rank function of a matroid.
I Coverage: There is a set F a facilities we can open, and a set
C of clients we want to service. There is a bipartite graph
B = (F ∪C,A) from F to C such that if we open S ⊆ F , we
serve the set of clients Γ(S) ≡ {j ∈ C | i→ j ∈ A, some
i ∈ S}. If w ≥ 0 then w(Γ(S)) is submodular.

I Queues: If a system E of queues satisfies a “conservation
law” then the amount of work that can be done by queues in
S ⊆ E is submodular.

I Entropy: The Shannon entropy of a random vector.
I Sensor location: If we have a joint probability distribution over

two random vectors P (X,Y) indexed by E and the X
variables are conditionally independent given Y , then the
expected reduction in the uncertainty of about Y given the
values of X on subset S is submodular. Think of placing
sensors at a subset S of locations in the ground set E in order
to measure Y ; a sort of stochastic coverage.

Outline

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

Optimizing submodular functions

I In our motivating example we wanted to minS⊆E c(S)− p(S).

I This is a specific example of the generic problem of
Submodular Function Minimization (SFMin):

Given submodular f , solve min
S⊆E

f(S).

I By contrast, in other contexts we want to maximize. For
example, in an undirected graph with weights w ≥ 0 on the
edges, the Max Cut problem is to maxS⊆E w(δ(S)).

I Generically, Submodular Function Maximization (SFMax) is:

Given submodular f , solve max
S⊆E

f(S).

Optimizing submodular functions

I In our motivating example we wanted to minS⊆E c(S)− p(S).

I This is a specific example of the generic problem of
Submodular Function Minimization (SFMin):

Given submodular f , solve min
S⊆E

f(S).

I By contrast, in other contexts we want to maximize. For
example, in an undirected graph with weights w ≥ 0 on the
edges, the Max Cut problem is to maxS⊆E w(δ(S)).

I Generically, Submodular Function Maximization (SFMax) is:

Given submodular f , solve max
S⊆E

f(S).

Optimizing submodular functions

I In our motivating example we wanted to minS⊆E c(S)− p(S).

I This is a specific example of the generic problem of
Submodular Function Minimization (SFMin):

Given submodular f , solve min
S⊆E

f(S).

I By contrast, in other contexts we want to maximize. For
example, in an undirected graph with weights w ≥ 0 on the
edges, the Max Cut problem is to maxS⊆E w(δ(S)).

I Generically, Submodular Function Maximization (SFMax) is:

Given submodular f , solve max
S⊆E

f(S).

Optimizing submodular functions

I In our motivating example we wanted to minS⊆E c(S)− p(S).

I This is a specific example of the generic problem of
Submodular Function Minimization (SFMin):

Given submodular f , solve min
S⊆E

f(S).

I By contrast, in other contexts we want to maximize. For
example, in an undirected graph with weights w ≥ 0 on the
edges, the Max Cut problem is to maxS⊆E w(δ(S)).

I Generically, Submodular Function Maximization (SFMax) is:

Given submodular f , solve max
S⊆E

f(S).

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).
I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.

I E.g., if a sensor in location i costs ci ≥ 0, then our constraint
would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).

I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.

I E.g., if a sensor in location i costs ci ≥ 0, then our constraint
would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).
I So we should just choose S = E to maximize???

I But in such problems we typically have a budget B, and want
to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.

I E.g., if a sensor in location i costs ci ≥ 0, then our constraint
would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).
I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.

I E.g., if a sensor in location i costs ci ≥ 0, then our constraint
would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).
I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.

I E.g., if a sensor in location i costs ci ≥ 0, then our constraint
would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).
I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.

I E.g., if a sensor in location i costs ci ≥ 0, then our constraint
would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).
I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.
I E.g., if a sensor in location i costs ci ≥ 0, then our constraint

would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .

Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T).
I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.
I E.g., if a sensor in location i costs ci ≥ 0, then our constraint

would be c(S) ≤ B (a knapsack constraint).
I Or we could have multiple budgets, or . . .

Complexity of submodular optimization

I The canonical example of SFMin is Min Cut, which has many
polynomial algorithms, so there is some hope that SFMin is
also polynomial.

I The canonical example of SFMax is Max Cut, which is know
to be NP Hard, and so SFMax is NP Hard.

I Constrained SFMax is also NP Hard.
I Thus for the SFMax problems, we will be interested in

approximation algorithms.
I An algorithm for an maximization problem is a
α-approximation if it always produces a feasible solution with
objective value at least α · OPT.

Complexity of submodular optimization

I The canonical example of SFMin is Min Cut, which has many
polynomial algorithms, so there is some hope that SFMin is
also polynomial.

I The canonical example of SFMax is Max Cut, which is know
to be NP Hard, and so SFMax is NP Hard.

I Constrained SFMax is also NP Hard.
I Thus for the SFMax problems, we will be interested in

approximation algorithms.
I An algorithm for an maximization problem is a
α-approximation if it always produces a feasible solution with
objective value at least α · OPT.

Complexity of submodular optimization

I The canonical example of SFMin is Min Cut, which has many
polynomial algorithms, so there is some hope that SFMin is
also polynomial.

I The canonical example of SFMax is Max Cut, which is know
to be NP Hard, and so SFMax is NP Hard.

I Constrained SFMax is also NP Hard.

I Thus for the SFMax problems, we will be interested in
approximation algorithms.

I An algorithm for an maximization problem is a
α-approximation if it always produces a feasible solution with
objective value at least α · OPT.

Complexity of submodular optimization

I The canonical example of SFMin is Min Cut, which has many
polynomial algorithms, so there is some hope that SFMin is
also polynomial.

I The canonical example of SFMax is Max Cut, which is know
to be NP Hard, and so SFMax is NP Hard.

I Constrained SFMax is also NP Hard.
I Thus for the SFMax problems, we will be interested in

approximation algorithms.

I An algorithm for an maximization problem is a
α-approximation if it always produces a feasible solution with
objective value at least α · OPT.

Complexity of submodular optimization

I The canonical example of SFMin is Min Cut, which has many
polynomial algorithms, so there is some hope that SFMin is
also polynomial.

I The canonical example of SFMax is Max Cut, which is know
to be NP Hard, and so SFMax is NP Hard.

I Constrained SFMax is also NP Hard.
I Thus for the SFMax problems, we will be interested in

approximation algorithms.
I An algorithm for an maximization problem is a
α-approximation if it always produces a feasible solution with
objective value at least α · OPT.

Complexity of submodular optimization

I Recall that our algorithms interact with f via calls to the
value oracle E , and one call costs EO = Ω(n).

I As is usual in computational complexity, we have to think
about how the running time varies as a function of the size of
the problem.

I One clear measure of size is n = |E|.
I But we might also need to think about the sizes of the values
f(S).

I When f is integer-valued, define M = maxS⊆E |f(S)|.
I Unfortunately, exactly computing M is NP Hard (SFMax), but

we can compute a good enough bound on M in O(nEO) time.

Complexity of submodular optimization

I Recall that our algorithms interact with f via calls to the
value oracle E , and one call costs EO = Ω(n).

I As is usual in computational complexity, we have to think
about how the running time varies as a function of the size of
the problem.

I One clear measure of size is n = |E|.
I But we might also need to think about the sizes of the values
f(S).

I When f is integer-valued, define M = maxS⊆E |f(S)|.
I Unfortunately, exactly computing M is NP Hard (SFMax), but

we can compute a good enough bound on M in O(nEO) time.

Complexity of submodular optimization

I Recall that our algorithms interact with f via calls to the
value oracle E , and one call costs EO = Ω(n).

I As is usual in computational complexity, we have to think
about how the running time varies as a function of the size of
the problem.

I One clear measure of size is n = |E|.

I But we might also need to think about the sizes of the values
f(S).

I When f is integer-valued, define M = maxS⊆E |f(S)|.
I Unfortunately, exactly computing M is NP Hard (SFMax), but

we can compute a good enough bound on M in O(nEO) time.

Complexity of submodular optimization

I Recall that our algorithms interact with f via calls to the
value oracle E , and one call costs EO = Ω(n).

I As is usual in computational complexity, we have to think
about how the running time varies as a function of the size of
the problem.

I One clear measure of size is n = |E|.
I But we might also need to think about the sizes of the values
f(S).

I When f is integer-valued, define M = maxS⊆E |f(S)|.
I Unfortunately, exactly computing M is NP Hard (SFMax), but

we can compute a good enough bound on M in O(nEO) time.

Complexity of submodular optimization

I Recall that our algorithms interact with f via calls to the
value oracle E , and one call costs EO = Ω(n).

I As is usual in computational complexity, we have to think
about how the running time varies as a function of the size of
the problem.

I One clear measure of size is n = |E|.
I But we might also need to think about the sizes of the values
f(S).

I When f is integer-valued, define M = maxS⊆E |f(S)|.

I Unfortunately, exactly computing M is NP Hard (SFMax), but
we can compute a good enough bound on M in O(nEO) time.

Complexity of submodular optimization

I Recall that our algorithms interact with f via calls to the
value oracle E , and one call costs EO = Ω(n).

I As is usual in computational complexity, we have to think
about how the running time varies as a function of the size of
the problem.

I One clear measure of size is n = |E|.
I But we might also need to think about the sizes of the values
f(S).

I When f is integer-valued, define M = maxS⊆E |f(S)|.
I Unfortunately, exactly computing M is NP Hard (SFMax), but

we can compute a good enough bound on M in O(nEO) time.

Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.

Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.

Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.

Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.

Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.

Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.

Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.

Is submodularity concavity or convexity?

I Submodular functions are sort of concave: Suppose that set
function f has f(S) = g(|S|) for some g : R→ R. Then f is
submodular iff g is concave (homework). This is the
“decreasing returns to scale” point of view.

I Submodular functions are sort of convex: Set function f
induces values on {0, 1}E via f̂(χ(S)) = f(S), where
χ(S)e = 1 if e ∈ S, 0 otherwise. There is a canonical
piecewise linear way to extend f̂ to [0, 1]E called the Lovász
extension. Then f is submodular iff f̂ is convex.

I Continuous convex functions are easy to minimize, hard to
maximize; SFMin looks easy, SFMax is hard. Thus the convex
view looks better.

I There is a whole theory of discrete convexity starting from the
Lovász extension that parallels continuous convex analysis, see
Murota’s book.

Is submodularity concavity or convexity?

I Submodular functions are sort of concave: Suppose that set
function f has f(S) = g(|S|) for some g : R→ R. Then f is
submodular iff g is concave (homework). This is the
“decreasing returns to scale” point of view.

I Submodular functions are sort of convex: Set function f
induces values on {0, 1}E via f̂(χ(S)) = f(S), where
χ(S)e = 1 if e ∈ S, 0 otherwise. There is a canonical
piecewise linear way to extend f̂ to [0, 1]E called the Lovász
extension. Then f is submodular iff f̂ is convex.

I Continuous convex functions are easy to minimize, hard to
maximize; SFMin looks easy, SFMax is hard. Thus the convex
view looks better.

I There is a whole theory of discrete convexity starting from the
Lovász extension that parallels continuous convex analysis, see
Murota’s book.

Is submodularity concavity or convexity?

I Submodular functions are sort of concave: Suppose that set
function f has f(S) = g(|S|) for some g : R→ R. Then f is
submodular iff g is concave (homework). This is the
“decreasing returns to scale” point of view.

I Submodular functions are sort of convex: Set function f
induces values on {0, 1}E via f̂(χ(S)) = f(S), where
χ(S)e = 1 if e ∈ S, 0 otherwise. There is a canonical
piecewise linear way to extend f̂ to [0, 1]E called the Lovász
extension. Then f is submodular iff f̂ is convex.

I Continuous convex functions are easy to minimize, hard to
maximize; SFMin looks easy, SFMax is hard. Thus the convex
view looks better.

I There is a whole theory of discrete convexity starting from the
Lovász extension that parallels continuous convex analysis, see
Murota’s book.

Is submodularity concavity or convexity?

I Submodular functions are sort of concave: Suppose that set
function f has f(S) = g(|S|) for some g : R→ R. Then f is
submodular iff g is concave (homework). This is the
“decreasing returns to scale” point of view.

I Submodular functions are sort of convex: Set function f
induces values on {0, 1}E via f̂(χ(S)) = f(S), where
χ(S)e = 1 if e ∈ S, 0 otherwise. There is a canonical
piecewise linear way to extend f̂ to [0, 1]E called the Lovász
extension. Then f is submodular iff f̂ is convex.

I Continuous convex functions are easy to minimize, hard to
maximize; SFMin looks easy, SFMax is hard. Thus the convex
view looks better.

I There is a whole theory of discrete convexity starting from the
Lovász extension that parallels continuous convex analysis, see
Murota’s book.

Outline

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.

I It turns out that the right thing to do is to think about
vectors x ∈ RE , and so polyhedra in RE .

I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???

I To get this to make sense we will normalize all our submodular
functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .

I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???

I To get this to make sense we will normalize all our submodular
functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .
I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???

I To get this to make sense we will normalize all our submodular
functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .
I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???

I To get this to make sense we will normalize all our submodular
functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .
I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???

I To get this to make sense we will normalize all our submodular
functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .
I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???
I To get this to make sense we will normalize all our submodular

functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .
I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???
I To get this to make sense we will normalize all our submodular

functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .
I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???
I To get this to make sense we will normalize all our submodular

functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

Submodular polyhedra

I Let’s associate submodular functions with polyhedra.
I It turns out that the right thing to do is to think about

vectors x ∈ RE , and so polyhedra in RE .
I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???
I To get this to make sense we will normalize all our submodular

functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.

The submodular polyhedron

I Now that we’ve normalized s.t. f(∅) = 0, define the
submodular polyhedron associated with set function f by

P (f) ≡ {x ∈ RE | x(S) ≤ f(S) ∀S ⊆ E}.

I When f is submodular and monotone (a polymatroid rank
function), P (f) is just the polymatroid.

I It turns out to be convenient to also consider the face of P (f)
induced by the constraint x(E) ≤ f(E), called the base
polyhedron of f :

B(f) ≡ {x ∈ RE | x(S) ≤ f(S)∀S ⊂ E, x(E) = f(E)}.

I We will soon show that B(f) is always non-empty when f is
submodular.

The submodular polyhedron

I Now that we’ve normalized s.t. f(∅) = 0, define the
submodular polyhedron associated with set function f by

P (f) ≡ {x ∈ RE | x(S) ≤ f(S) ∀S ⊆ E}.

I When f is submodular and monotone (a polymatroid rank
function), P (f) is just the polymatroid.

I It turns out to be convenient to also consider the face of P (f)
induced by the constraint x(E) ≤ f(E), called the base
polyhedron of f :

B(f) ≡ {x ∈ RE | x(S) ≤ f(S)∀S ⊂ E, x(E) = f(E)}.

I We will soon show that B(f) is always non-empty when f is
submodular.

The submodular polyhedron

I Now that we’ve normalized s.t. f(∅) = 0, define the
submodular polyhedron associated with set function f by

P (f) ≡ {x ∈ RE | x(S) ≤ f(S) ∀S ⊆ E}.

I When f is submodular and monotone (a polymatroid rank
function), P (f) is just the polymatroid.

I It turns out to be convenient to also consider the face of P (f)
induced by the constraint x(E) ≤ f(E), called the base
polyhedron of f :

B(f) ≡ {x ∈ RE | x(S) ≤ f(S)∀S ⊂ E, x(E) = f(E)}.

I We will soon show that B(f) is always non-empty when f is
submodular.

The submodular polyhedron

I Now that we’ve normalized s.t. f(∅) = 0, define the
submodular polyhedron associated with set function f by

P (f) ≡ {x ∈ RE | x(S) ≤ f(S) ∀S ⊆ E}.

I When f is submodular and monotone (a polymatroid rank
function), P (f) is just the polymatroid.

I It turns out to be convenient to also consider the face of P (f)
induced by the constraint x(E) ≤ f(E), called the base
polyhedron of f :

B(f) ≡ {x ∈ RE | x(S) ≤ f(S)∀S ⊂ E, x(E) = f(E)}.

I We will soon show that B(f) is always non-empty when f is
submodular.

Optimizing over B(f)

I Now that we have a polyhedron it is natural to want to
optimize over it.

I Consider maxwTx s.t. x ∈ P (f). Notice that y ≤ x and
x ∈ P (f) imply that y ∈ P (f). Thus if some we < 0 the
optimum is unbounded below. So let’s assume that w ≥ 0.

I Intuitively, with w ≥ 0 a maximum solution will be forced up
against the x(E) ≤ f(E) constraint, and so it will become
tight, and so an optimal solution will be in B(f). So we
consider maxx∈RE wTx s.t. x ∈ B(f).

I The naive thing to do is to try to solve this greedily:
Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

Optimizing over B(f)

I Now that we have a polyhedron it is natural to want to
optimize over it.

I Consider maxwTx s.t. x ∈ P (f). Notice that y ≤ x and
x ∈ P (f) imply that y ∈ P (f). Thus if some we < 0 the
optimum is unbounded below. So let’s assume that w ≥ 0.

I Intuitively, with w ≥ 0 a maximum solution will be forced up
against the x(E) ≤ f(E) constraint, and so it will become
tight, and so an optimal solution will be in B(f). So we
consider maxx∈RE wTx s.t. x ∈ B(f).

I The naive thing to do is to try to solve this greedily:
Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

Optimizing over B(f)

I Now that we have a polyhedron it is natural to want to
optimize over it.

I Consider maxwTx s.t. x ∈ P (f). Notice that y ≤ x and
x ∈ P (f) imply that y ∈ P (f). Thus if some we < 0 the
optimum is unbounded below. So let’s assume that w ≥ 0.

I Intuitively, with w ≥ 0 a maximum solution will be forced up
against the x(E) ≤ f(E) constraint, and so it will become
tight, and so an optimal solution will be in B(f). So we
consider maxx∈RE wTx s.t. x ∈ B(f).

I The naive thing to do is to try to solve this greedily:
Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

Optimizing over B(f)

I Now that we have a polyhedron it is natural to want to
optimize over it.

I Consider maxwTx s.t. x ∈ P (f). Notice that y ≤ x and
x ∈ P (f) imply that y ∈ P (f). Thus if some we < 0 the
optimum is unbounded below. So let’s assume that w ≥ 0.

I Intuitively, with w ≥ 0 a maximum solution will be forced up
against the x(E) ≤ f(E) constraint, and so it will become
tight, and so an optimal solution will be in B(f). So we
consider maxx∈RE wTx s.t. x ∈ B(f).

I The naive thing to do is to try to solve this greedily:
Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

Outline

Introduction
Motivating example
What is a submodular function?
Review of Max Flow / Min Cut

Optimizing submodular functions
SFMin versus SFMax
Tools for submodular optimization
The Greedy Algorithm

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).

2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).

3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).

4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.
I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.
I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm (Edmonds)

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.
I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).

I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.

I Optimality is proven via duality. Put dual variable πS on
constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.

I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.

I But then x(S) =
∑

i<k xei
=

∑
i<k(f(e≺i + ei)− f(e≺i)) =

f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).
I Thus we get equality, and so x is (primal) optimal (and π is

dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.

I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.

I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).

I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.

I Triangular systems like this are easy to solve, and indeed gives
that xei = f(e≺i + ei)− f(e≺i).

I Duality says that the dual has the same basis matrix, and π
restricted to the e≺i solves πTM = wT .

I Again this triangular system easily solves to πe≺i
= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).

I Duality says that the dual has the same basis matrix, and π
restricted to the e≺i solves πTM = wT .

I Again this triangular system easily solves to πe≺i
= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .

I Again this triangular system easily solves to πe≺i
= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =

e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1

I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

	Introduction
	Motivating example
	What is a submodular function?
	Review of Max Flow / Min Cut

	Optimizing submodular functions
	SFMin versus SFMax
	Tools for submodular optimization
	The Greedy Algorithm

