Bin Packing with Conflicts on interval graphs: some computational results

Tiziano Bacci**
Sara Nicoloso ${ }^{* \ddagger}$
January 15, 2018

[^0]
Contents

1 Description of the data set 3
2 Heuristic algorithms 4
3 Exact algorithms 20
A General ILP formulation for BPPC $\mathbf{2 5}$

1 Description of the data set

In the present chapter we discuss the results obtained by solving thousands of instances with our heuristic algorithm BN proposed in Bacci and Nicoloso (2017) and other exact approaches.

The test bed was generated as we now describe.
By TI (n, B, Δ) we denote a set of 100 randomly generated instances of BPPC with n items, weights uniformly distributed in [20,100] (as in Falkenauer (1996)), bound B, and interval conflict graph with expected edge density Δ. When $\Delta>0$ we repeatedly run the random interval graph generator described in Bacci and Nicoloso (2017) and we selected 100 sets of n intervals whose intersection graph had edge density $\delta \in[\Delta-0.02 ; \Delta+0.02]$. When $\Delta=0$ we defined the set $\mathcal{I}=\left\{I_{h}=(h, h+1), h=0, \ldots, n-1\right\}$ of n mutually nonintersecting intervals (in this case BPPC reduces to $B P$). In particular, we chose $n \in\{120,250,500,1000\}, B \in\{120,150,180,210,240,270,300,330,360,390\}$, and $\Delta \in\{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9\}$. Totally we built 40000 instances of type T.

By $T T(n, B, \Delta)$ we denote a set of 100 randomly generated instances of $B P P C$ with n items, weights uniformly distributed in $[20,100]$ (as in Falkenauer (1996)), bound B, and threshold conflict graph with expected edge density Δ. When $0<\Delta \leq 0.5$ we run the generator described in Gendreau et al. (2004) with $d=\sqrt{\Delta / 2}$ and when $\Delta \geq 0.5$ with $d=1-\sqrt{(1-\Delta) / 2}$. In both cases we selected the graphs with edge density $\delta \in[\Delta-0.02 ; \Delta+0.02]$. When $\Delta=0$ we defined the set $\mathcal{I}=\left\{I_{h}=(h, h+1), h=0, \ldots, n-1\right\}$ of n mutually non-intersecting intervals. In particular, we chose $n \in\{120,250,500,1000\}$, $B \in\{120,150,180,210,240,270,300,330,360,390\}$, and $\Delta \in\{0,0.1,0.2,0.3,0.4$, $0.5,0.6,0.7,0.8,0.9\}$. We remark that, given $n=\bar{n}$, the weight of the i-th item of the k-th instance of $T T(\bar{n}, B, \Delta)$ is the same for all B and Δ and is exactly the weight of the i-th item of the k-th instance of $T I(\bar{n}, B, \Delta)$, for $k=1, \ldots, 100$ and $i=1, \ldots, \bar{n}$. Totally we built 40000 instances of type TT.

By $\operatorname{TM}(n, B, f(d))$ we denote a set of ten instances with n items, bound B, and threshold conflict graph with density $f(d)$. In particular $n \in\{120,250,500,1000\}$, and $d \in\{0,0.1, \ldots, 0.9\}$. The weights and the conflict graphs of all the $T M(n, B, f(d))$ are exactly those in the classes $1,2,3,4$ by Fernandes Muritiba et al. (2010). As for B, we considered $B \in\{120,150, \ldots, 390\} \cup$ $\{400\}$, even if in the cited paper only $B=150$ is considered. In particular,

Fernandes Muritiba et al. (2010) select the first 10 instances of the 20 originally proposed by Falkenauer (1996) for the Bin Packing (without conflicts), and add 10 random threshold conflict graphs generated by means of the generator described in Gendreau et al. (2004), varying d from 0 to 0.9 . We recall that the expected edge density δ of the conflict graphs generated in this way is not d as claimed by Fernandes Muritiba et al. (2010).

In order to verify how much the item weights affect the quality of the solution and/or the computing time, we also decided to construct the TS instances: by $T S(n, B, f(d))$ we will denote a set of ten instances with n items, bound B, and threshold conflict graph with density $f(d)$. The conflict graphs of a $T S(n, \cdot, f(d))$ are those of $T M(n, \cdot, f(d))$, and the weights are uniformly distributed in $[500,2500]$. We choose $B \in\{3000,3750, \ldots, 9750\} \cup\{10000\}$. We remark that the item weights of $\operatorname{TS}(n, B, f(d))$ are generated as the "instances with a larger number of items per bin" by Sadykov and Vanderbeck (2013) (the so-called " d instances"), where, however, only $B=10000$ is considered.

2 Heuristic algorithms

We compare the computational results obtained by applying the algorithm $B N$ described in Bacci and Nicoloso (2017) and an adaptation to BPPC of the classical heuristic algorithms First-Fit Decreasing, Best-Fit Decreasing, Worst-Fit Decreasing for the classical Bin Packing (Johnson (1974)), as described in Fernandes Muritiba et al. (2010). In particular, these adaptations, $U_{F F(\alpha)}, U_{B F(\alpha)}$, and $U_{W F(\alpha)}$ (we shall call them algorithms M), consider an extended conflict graph G_{w}, obtained by adding to G an edge for each pair of vertices i, j with $w_{i}+$ $w_{j}>B$, and consider vertex weights w_{i}^{s} defined as follows: $w_{i}^{s}=\alpha\left(w_{i} / \bar{w}\right)+$ $(1-\alpha)(\operatorname{deg}(i) / \overline{\operatorname{deg}})$, for $i=1,2, \ldots, n$, where $\alpha \in\{0,0.1, \ldots, 1\}, \operatorname{deg}(i)$ is the degree of vertex i in G_{w}, and \bar{w} and $\overline{\operatorname{deg}}$ are the average weight of the vertices and their average degree in G_{w}, respectively.

Let S be an instance of BPPC with an interval conflict graph G. Given $\alpha \in\{0,0.1, \ldots, 1\}$, let $u_{x(\alpha)}(S)$ be the value of the solution output by algorithm $U_{x(\alpha)}$ on S, for $x \in\{F F, B F, W F\}$. By $u^{M}(S)=\min \left\{u_{x(\alpha)}(S), \alpha \in\right.$ $\{0,0.1, \ldots, 1\}, x \in\{F F, B F, W F\}\}$ we denote the minimum among all the 33 values of the (feasible) solutions output by algorithms M on S. By $u^{B N}(S)$ we denote the value of the (feasible) solution output by algorithm $B N$ on S.

To evaluate the performances of the algorithms we define $L B_{B P P C}(S)=\max \left\{\left\lceil\sum_{i \in V} w_{i} / B\right\rceil ; \chi(G)\right\}$, a lower bound on the value of an op-
timum solution of BPPC on instance S.
In each table rows are indexed by Δ and columns by B. In each cell there are six values, each one averaged over the corresponding 100 instances:

- $\mathrm{M}=\mathrm{LB}$ ($\mathrm{BN}=\mathrm{LB}$, respectively) is the percentage of instances S where $u^{M}(S)=$ $L B_{B P P C}(S)\left(u^{B N}(S)=L B_{B P P C}(S)\right.$, respectively), i.e. the percentage of instances where $L B_{B P P C}(S)$ allows to certify that the corresponding algorithm found an optimum solution;
- $\mathrm{M}<\mathrm{BN}(\mathrm{BN}<\mathrm{M}$, respectively) is the percentage of instances S where $u^{M}(S)<u^{B N}(S)\left(u^{B N}(S)<u^{M}(S)\right.$, respectively) (notice that the complement to 100% of the sum of the last two values is the percentage of instances where $u^{M}(S)=u^{B N}(S)$);
- Gap_M (Gap_BN, respectively) is the gap $\frac{u^{M}(S)-L B_{B P P C}(S)}{L B_{B P P C}(S)}$ $\left(\frac{u^{B N}(S)-L B_{B P P C}(S)}{L B_{B P P C}(S)}\right.$, respectively). A light grey indicates the algorithm which outperforms the other one w.r.t. the corresponding data. If in a cell the value $X=L B$ is 100%, then all the data of algorithm X are colored in light cyan, for $X \in\{M, B N\}$.

The light cyan cells means that an algorithm solves to optimality all the 100 instances. Algorithms BN and M were coded in $\mathrm{C}++$ and ran on an Intel Xeon E5620 2.40GHz with 40 GB RAM under a Linux operating system.

In the following, the computational results of the heuristic procedures for different values of n are shown. Click here to view computational results on TI's instances, here for the ones on the TM's instances, here for the TS's and herefor the TT's.

			B									
			120	150	180	210	240	270	300	330	360	390
	0	M=LB	3\%	20\%	40\%	0\%	2\%	20\%	23\%	41\%	49\%	57\%
		$\mathrm{M}<\mathrm{BN}$	98\%	74\%	26\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	5.00\%	1.80\%	1.49\%	4.34\%	3.56\%	3.03\%	3.18\%	2.69\%	2.53\%	2.30\%
		BN=LB	0\%	0\%	21\%	43\%	59\%	80\%	74\%	85\%	87\%	88\%
		BN $<\mathrm{M}$	0\%	0\%	4\%	87\%	66\%	62\%	51\%	44\%	38\%	31\%
		Gap_BN	10.02\%	4.36\%	2.03\%	1.65\%	1.35\%	0.73\%	1.09\%	0.70\%	0.66\%	0.64\%
	0.1	$\mathrm{M}=\mathrm{LB}$	1\%	8\%	18\%	22\%	19\%	47\%	35\%	38\%	37\%	39\%
		$\mathrm{M}<\mathrm{BN}$	100\%	83\%	20\%	9\%	5\%	0\%	2\%	2\%	0\%	1\%
		Gap_M	5.13\%	2.07\%	2.16\%	2.30\%	2.71\%	2.01\%	2.78\%	2.83\%	3.16\%	3.26\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	13\%	25\%	43\%	73\%	63\%	75\%	81\%	80\%
		BN $<$ M	0\%	1\%	9\%	11\%	30\%	27\%	32\%	39\%	45\%	42\%
		Gap_BN	11.02\%	5.20\%	2.45\%	2.23\%	1.88\%	1.00\%	1.55\%	1.16\%	0.95\%	1.07\%
	0.2	$\mathrm{M}=\mathrm{LB}$	1\%	2\%	1\%	3\%	2\%	3\%	10\%	19\%	35\%	57\%
		$\mathrm{M}<\mathrm{BN}$	99\%	81\%	20\%	9\%	2\%	1\%	2\%	1\%	1\%	0\%
		Gap_M	5.15\%	2.70\%	3.40\%	3.80\%	4.66\%	4.58\%	4.82\%	4.58\%	3.55\%	2.40\%
		BN=LB	0\%	0\%	8\%	14\%	21\%	39\%	28\%	53\%	65\%	85\%
		BN $<$ M	0\%	1\%	30\%	40\%	57\%	60\%	46\%	51\%	39\%	31\%
		Gap_BN	11.13\%	5.85\%	3.14\%	2.88\%	2.70\%	2.29\%	2.97\%	2.13\%	1.73\%	0.78\%
	0.3	$\mathrm{M}=\mathrm{LB}$	0\%	1\%	0\%	0\%	10\%	36\%	57\%	63\%	65\%	66\%
		$\mathrm{M}<\mathrm{BN}$	100\%	70\%	11\%	9\%	2\%	4\%	1\%	0\%	0\%	0\%
		Gap_M	5.37\%	4.01\%	5.11\%	5.62\%	5.63\%	3.73\%	2.26\%	1.89\%	1.74\%	1.71\%
		BN=LB	0\%	0\%	$1 \%$$39 \%$$4.28 \%$$2 \%$	1\%	15\%	51\%	89\%	99\%	100\%	100\%
		BN $<$ M	0\%	6\%		42\%	53\%	42\%	41\%	37\%	35\%	34\%
		Gap_BN	11.79\%	6.60\%		$\begin{gathered} 4.62 \% \\ 33 \% \end{gathered}$	3.72\%	2.12\%	0.46\%	0.04\%	0.00\%	0.00\%
	0.4	$\mathrm{M}=\mathrm{LB}$	0\%	0\%			60\%	71\%	74\%	75\%	75\%	75\%
		$\mathrm{M}<\mathrm{BN}$	100\%	73\%	41\%	31\%	1\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	5.83\%	5.91\%	6.23\%	3.35\%	1.61\%	1.03\%	0.91\%	0.82\%	0.82\%	0.82\%
		BN=LB	0\%	0\%	1\%	28\%	85\%	99\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	11\%	23\%	23\%	32\%	29\%	26\%	25\%	25\%	25\%
		Gap_BN	13.97\%	8.95\%	6.90\%	3.67\%	0.59\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Δ	0.5	$\mathrm{M}=\mathrm{LB}$	0\%	1\%	28\%	67\%	78\%	79\%	80\%	80\%	80\%	80\%
		$\mathrm{M}<\mathrm{BN}$	100\%	82\%	42\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	6.98\%	7.38\%	3.07\%	0.94\%	0.57\%	0.52\%	0.52\%	0.52\%	0.52\%	0.52\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	24\%	88\%	99\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	2\%	18\%	29\%	21\%	21\%	20\%	20\%	20\%	20\%
		Gap_BN	16.06\%	11.81\%	3.67\%	0.33\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.6	M=LB	0\%	10\%	65\%	93\%	93\%	93\%	93\%	93\%	93\%	93\%
		$\mathrm{M}<\mathrm{BN}$	100\%	79\%	9\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	9.58\%	4.29\%	0.81\%	0.14\%	0.14\%	0.14\%	0.14\%	0.14\%	0.14\%	0.14\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	2\%	73\%	99\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	4\%	14\%	6\%	7\%	7\%	7\%	7\%	7\%	7\%
		Gap_BN	17.92\%	7.95\%	0.69\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.7	M=LB	0\%	57\%	92\%	99\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	85\%	7\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	12.25\%	0.88\%	0.13\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	6\%	91\%	99\%	100\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	5\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	18.70\%	3.81\%	0.18\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.8	M=LB	1\%	68\%	96\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<$ BN	92\%	53\%	3\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	8.22\%	0.69\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	33\%	94\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	11.36\%	1.69\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.9	M=LB	0\%	63\%	99\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	72\%	31\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.87\%	0.48\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	47\%	97\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	6.15\%	0.91\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		tMin_BN	0.0025	0.0008	0.0008	0.0008	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
		tMax_BN	0.0176	0.0101	0.0064	0.0054	0.0042	0.0037	0.0031	0.0030	0.0026	0.0027
		tavg_BN	0.0060	0.0037	0.0024	0.0018	0.0015	0.0013	0.0012	0.0011	0.0010	0.0010

Table 1: Computational results obtained by algorithms M and algorithm $B N$ on TI (120, B, Δ)

			(${ }^{\text {c }}$									
			120	150	180	210	240	270	300	330	360	390
	0	M=LB	0\%	0\%	11\%	0\%	0\%	0\%	0\%	3\%	11\%	20\%
		$\mathrm{M}<\mathrm{BN}$	100\%	70\%	16\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.87\%	1.56\%	1.18\%	3.67\%	3.23\%	2.86\%	2.59\%	2.29\%	2.13\%	2.05\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	12\%	35\%	61\%	75\%	64\%	88\%	88\%	86\%
		BN $<$ M	0\%	1\%	13\%	100\%	100\%	100\%	89\%	91\%	78\%	66\%
		Gap_BN	9.12\%	2.92\%	1.22\%	0.90\%	0.61\%	0.45\%	0.72\%	0.26\%	0.29\%	0.36\%
	0.1	M=LB	0\%	0\%	2\%	0\%	7\%	3\%	1\%	4\%	2\%	7\%
		$\mathrm{M}<\mathrm{BN}$	100\%	83\%	21\%	2\%	1\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.88\%	1.64\%	1.56\%	1.95\%	1.80\%	2.04\%	2.43\%	2.43\%	2.87\%	2.79\%
		BN=LB	0\%	0\%	5\%	19\%	52\%	64\%	53\%	80\%	80\%	81\%
		BN $<$ M	0\%	2\%	14\%	51\%	63\%	76\%	73\%	84\%	88\%	81\%
		Gap_BN	9.94\%	3.41\%	1.62\%	1.26\%	0.76\%	0.64\%	0.94\%	0.44\%	0.47\%	0.49\%
	0.2	M=LB	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	8\%
		$\mathrm{M}<\mathrm{BN}$	100\%	78\%	8\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.95\%	2.25\%	2.60\%	3.22\%	4.21\%	4.82\%	5.22\%	5.83\%	5.97\%	5.06\%
		BN=LB	0\%	0\%	0\%	3\%	24\%	30\%	26\%	38\%	23\%	53\%
		BN $<$ M	0\%	5\%	44\%	84\%	99\%	100\%	100\%	98\%	95\%	92\%
		Gap_BN	9.93\%	3.88\%	2.08\%	1.71\%	1.28\%	1.25\%	1.51\%	1.36\%	1.85\%	1.20\%
	0.3	M=LB	0\%	0\%	0\%	0\%	0\%	7\%	16\%	25\%	28\%	31\%
		$\mathrm{M}<\mathrm{BN}$	100\%	63\%	2\%	1\%	0\%	1\%	2\%	0\%	0\%	0\%
		Gap_M	4.03\%	3.50\%	4.50\%	5.30\%	6.20\%	5.48\%	3.67\%	2.85\%	2.60\%	2.50\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	0\%	0\%	0\%	11\%	66\%	96\%	100\%	100\%
		BN $<$ M	0\%	12\%	79\%	92\%	95\%	86\%	79\%	75\%	72\%	69\%
		Gap_BN	10.21\%	4.84\%	2.98\%	2.85\%	3.01\%	2.69\%	1.02\%	0.10\%	0.00\%	0.00\%
	0.4	M=LB	0\%	0\%	0\%	2\%	17\%	31\%	35\%	38\%	37\%	37\%
		$\mathrm{M}<$ BN	100\%	70\%	19\%	19\%	4\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.24\%	5.03\%	5.92\%	4.73\%	2.43\%	1.70\%	1.67\%	1.60\%	1.58\%	1.58\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	0\%	6\%	65\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	21\%	48\%	45\%	73\%	69\%	65\%	62\%	63\%	63\%
		Gap_BN	11.76\%	6.58\%	$\begin{gathered} 5.35 \% \\ 5 \% \end{gathered}$	4.20\%	0.77\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Δ	0.5	$\mathrm{M}=\mathrm{LB}$	0\%	0\%		31\%	48\%	47\%	48\%	48\%	48\%	48\%
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	51\%	7\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.83\%	6.42\%	3.97\%	1.13\%	0.80\%	0.79\%	0.79\%	0.79\%	0.79\%	0.79\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	2\%	75\%	99\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	3\%	22\%	55\%	51\%	53\%	52\%	52\%	52\%	52\%
		Gap_BN	13.65\%	9.48\%	4.54\%	0.41\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.6	M=LB	0\%	5\%	43\%	75\%	79\%	80\%	80\%	80\%	80\%	80\%
		$\mathrm{M}<$ BN	100\%	93\%	32\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	6.47\%	5.00\%	0.81\%	0.27\%	0.23\%	0.22\%	0.22\%	0.22\%	0.22\%	0.22\%
		BN=LB	0\%	0\%	37\%	99\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	2\%	24\%	24\%	21\%	20\%	20\%	20\%	20\%	20\%
		Gap_BN	16.28\%	8.75\%	0.95\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.7	M=LB	0\%	22\%	87\%	99\%	99\%	99\%	99\%	99\%	99\%	99\%
		$\mathrm{M}<\mathrm{BN}$	100\%	93\%	14\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	10.68\%	1.02\%	0.10\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	83\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	3\%	10\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%
		Gap_BN	18.29\%	3.89\%	0.14\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.8	M=LB	0\%	44\%	95\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<$ BN	100\%	83\%	6\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	7.69\%	0.55\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	6\%	91\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0%	4%	2%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	11.47\%	1.89\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.9	M=LB	0\%	52\%	95\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	97\%	67\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.46\%	0.34\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	20\%	93\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	3\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	6.31\%	1.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		tMin_BN	0.0117	0.0038	0.0034	0.0033	0.0031	0.0030	0.0030	0.0029	0.0029	0.0029
		tMax_BN	0.1201	0.0686	0.0498	0.0365	0.0246	0.0195	0.0235	0.0158	0.0137	0.0124
		tavg_BN	0.0433	0.0234	0.0143	0.0101	0.0076	0.0064	0.0058	0.0051	0.0047	0.0045

Table 2: Computational results obtained by algorithms M and algorithm $B N$ on TI (250, B, Δ)

Table 3: Computational results obtained by algorithms M and algorithm $B N$ on TI(500, B, Δ)

			B										
			120	150	180	210	240	270	300	330	360	390	400
	0	$\mathrm{M}=\mathrm{LB}$	0\%	20\%	50\%	0\%	20\%	50\%	20\%	30\%	50\%	80\%	60\%
		$\mathrm{M}<\mathrm{BN}$	100\%	60\%	30\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.96\%	1.67\%	1.26\%	4.65\%	2.63\%	1.84\%	3.32\%	3.21\%	2.50\%	1.05\%	2.25\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	40\%	30\%	90\%	80\%	80\%	90\%	100\%	100\%	90\%
		BN $<$ M	0\%	0\%	10\%	90\%	70\%	30\%	60\%	60\%	50\%	20\%	30\%
		Gap_BN	10.17\%	2.89\%	1.73\%	2.03\%	0.33\%	0.74\%	0.83\%	0.45\%	0.00\%	0.00\%	0.59\%
	0.1	M=LB	0\%	20\%	50\%	60\%	100\%	90\%	70\%	90\%	100\%	100\%	90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	40\%	50\%	30\%	10\%	10\%	10\%	10\%	10\%	0\%
		Gap_M	3.96\%	1.67\%	1.26\%	1.18\%	0.00\%	0.37\%	1.25\%	0.45\%	0.00\%	0.00\%	0.59\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	10\%	10\%	20\%	70\%	80\%	70\%	80\%	90\%	90\%	90\%
		BN $<$ M	0\%	0\%	0\%	10\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%
		Gap_BN	10.79\%	4.34\%	2.24\%	2.31\%	0.99\%	0.73\%	1.27\%	0.91\%	0.53\%	0.53\%	0.59\%
	0.2	$\mathrm{M}=\mathrm{LB}$	0\%	20\%	20\%	40\%	70\%	90\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	20\%	20\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%
		Gap_M	3.96\%	1.67\%	1.98\%	1.75\%	0.99\%	0.37\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	20\%	20\%	80\%	90\%	90\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	10\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	10.12\%	3.53\%	2.23\%	2.32\%	0.67\%	0.37\%	0.42\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.3	$\mathrm{M}=\mathrm{LB}$	0\%	20\%	10\%	60\%	70\%	80\%	90\%	90\%	90\%	90\%	90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	50\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.78\%	1.88\%	2.19\%	1.34\%	1.11\%	0.79\%	0.29\%	0.29\%	0.29\%	0.29\%	0.29\%
		BN=LB	0\%	0\%	10\%	60\%	80\%	80\%	90\%	90\%	90\%	90\%	90\%
		BN $<$ M	0\%	0\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	11.76\%	6.64\%	3.67\%	1.34\%	0.79\%	0.79\%	0.29\%	0.29\%	0.29\%	0.29\%	0.29\%
	0.4	$\mathrm{M}=\mathrm{LB}$	0\%	10\%	40\%	60\%	70\%	70\%	70\%	70\%	80\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	10\%	0\%	10\%	10\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	7.58\%	3.35\%	2.10\%	1.24\%	0.62\%	0.62\%	0.62\%	0.62\%	0.43\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	50\%	60\%	70\%	70\%	70\%	70\%	80\%	100\%	100\%
		BN $<$ M	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Δ		Gap_BN	16.25\%	8.29\%	2.15\%	1.24\%	0.82\%	0.82\%	0.62\%	0.62\%	0.43\%	0.00\%	0.00\%
Δ	0.5	M=LB	0\%	10\%	50\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%
		$\mathrm{M}<\mathrm{BN}$	90\%	70\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	13.41\%	2.57\%	1.09\%	0.62\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	40\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	19.85\%	4.52\%	1.26\%	0.62\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%
	0.6	$\mathrm{M}=\mathrm{LB}$	0\%	10\%	50\%	70\%	80\%	80\%	90\%	90\%	90\%	90\%	90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	50\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	12.75\%	3.79\%	1.48\%	0.92\%	0.46\%	0.46\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	10\%	30\%	70\%	80\%	80\%	90\%	90\%	90\%	90\%	90\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	16.71\%	5.46\%	2.06\%	0.92\%	0.46\%	0.62\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%
	0.7	M=LB	0\%	30\%	60\%	90\%	90\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	40\%	20\%	10\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	6.07\%	1.18\%	0.47\%	0.12\%	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	30\%	50\%	80\%	90\%	90\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	8.96\%	1.67\%	0.71\%	0.24\%	0.12\%	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.8	M=LB	0\%	10\%	50\%	80\%	90\%	90\%	90\%	90\%	90\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	80\%	50\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	5.80\%	1.76\%	0.63\%	0.21\%	0.11\%	0.11\%	0.11\%	0.11\%	0.11\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	60\%	90\%	90\%	90\%	90\%	90\%	90\%	100\%	100\%
		BN $<$ M	0\%	0\%	10\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	7.15\%	2.28\%	0.53\%	0.11\%	0.11\%	0.11\%	0.11\%	0.11\%	0.11\%	0.00\%	0.00\%
	0.9	M=LB	0\%	30\%	60\%	90\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	40\%	30\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	2.69\%	0.93\%	0.37\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	20\%	60\%	90\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	3.06\%	1.21\%	0.37\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		tMin_BN	0.0010	0.0008	0.0007	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	0.0005
		tMax_BN	0.0069	0.0043	0.0032	0.0028	0.0019	0.0018	0.0017	0.0016	0.0012	0.0013	0.0013
		tavg_BN	0.0031	0.0019	0.0014	0.0012	0.0010	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008

Table 4: Computational results obtained by algorithms M and algorithm $B N$ on
TM $(120, B, \Delta)$

			B										
			120	150	180	210	240	270	300	330	360	390	400
	0	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	20\%	0\%	0\%	0\%	0\%	10\%	10\%	20\%	20\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.29\%	1.47\%	0.95\%	3.72\%	3.15\%	2.66\%	2.35\%	2.16\%	2.11\%	2.04\%	2.09\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	40\%	20\%	60\%	80\%	100\%	80\%	90\%	80\%	80\%
		BN $<$ M	0\%	0\%	20\%	100\%	100\%	100\%	100\%	70\%	80\%	60\%	60\%
		Gap_BN	9.05\%	2.56\%	0.71\%	1.10\%	0.64\%	0.36\%	0.00\%	0.43\%	0.24\%	0.52\%	0.53\%
	0.1	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	20\%	50\%	50\%	70\%	90\%	40\%	70\%	70\%	80\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.29\%	1.47\%	0.95\%	0.69\%	0.79\%	0.54\%	0.20\%	1.30\%	0.71\%	0.78\%	0.53\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	20\%	50\%	60\%	80\%	100\%	90\%	80\%	80\%	80\%
		BN $<$ M	0\%	0\%	10\%	0\%	10\%	10\%	10\%	50\%	10\%	10\%	0\%
		Gap_BN	9.30\%	3.05\%	1.06\%	0.69\%	0.64\%	0.36\%	0.00\%	0.22\%	0.47\%	0.52\%	0.53\%
	0.2	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	0\%	30\%	30\%	70\%	90\%	70\%	80\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	20\%	10\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.29\%	1.58\%	1.30\%	1.10\%	1.10\%	0.54\%	0.20\%	0.65\%	0.47\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	0\%	40\%	50\%	80\%	90\%	100\%	90\%	100\%	100\%
		BN $<$ M	0\%	0\%	0\%	10\%	30\%	10\%	0\%	30\%	10\%	0\%	0\%
		Gap_BN	9.78\%	3.15\%	1.53\%	1.09\%	0.79\%	0.36\%	0.20\%	0.00\%	0.24\%	0.00\%	0.00\%
	0.3	M=LB	0\%	0\%	10\%	60\%	70\%	90\%	90\%	90\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	40\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.37\%	1.77\%	1.66\%	0.54\%	0.45\%	0.13\%	0.13\%	0.13\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	0\%	60\%	70\%	90\%	90\%	90\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	9.68\%	3.93\%	2.24\%	0.95\%	0.45\%	0.13\%	0.13\%	0.13\%	0.00\%	0.00\%	0.00\%
	0.4	$\mathrm{M}=\mathrm{LB}$	0\%	10\%	30\%	80\%	80\%	90\%	90\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	20\%	20\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.16\%	2.22\%	1.17\%	0.23\%	0.23\%	0.11\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	30\%	60\%	70\%	90\%	90\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Δ		Gap_BN	11.41\%	6.58\%	1.51\%	0.43\%	0.33\%	0.11\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%
Δ	0.5	M=LB	0\%	10\%	40\%	70\%	80\%	90\%	90\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	20\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	11.37\%	2.05\%	0.73\%	0.40\%	0.16\%	0.08\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	40\%	70\%	80\%	80\%	90\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	18.72\%	5.27\%	0.97\%	0.32\%	0.16\%	0.16\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.6	$\mathrm{M}=\mathrm{LB}$	0\%	20\%	40\%	70\%	80\%	80\%	80\%	80\%	90\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	10\%	10\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	10.89\%	1.71\%	0.61\%	0.19\%	0.13\%	0.13\%	0.13\%	0.13\%	0.07\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	50\%	60\%	70\%	80\%	80\%	80\%	90\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	15.14\%	3.44\%	0.62\%	0.27\%	0.19\%	0.13\%	0.13\%	0.13\%	0.07\%	0.00\%	0.00\%
	0.7	M=LB	0\%	0\%	40\%	60\%	80\%	90\%	90\%	90\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	70\%	30\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	8.34\%	2.30\%	0.82\%	0.41\%	0.12\%	0.06\%	0.06\%	0.06\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	20\%	60\%	80\%	90\%	90\%	90\%	100\%	100\%	100\%
		BN $<$ M	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	11.64\%	3.60\%	0.99\%	0.47\%	0.12\%	0.06\%	0.06\%	0.06\%	0.00\%	0.00\%	0.00\%
	0.8	M=LB	0\%	30\%	60\%	70\%	90\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	50\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.94\%	0.86\%	0.25\%	0.15\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	20\%	50\%	70\%	90\%	100\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	5.83\%	1.26\%	0.36\%	0.15\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.9	M=LB	10\%	60\%	60\%	80\%	90\%	90\%	90\%	90\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	90\%	60\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	2.50\%	0.74\%	0.41\%	0.14\%	0.05\%	0.05\%	0.05\%	0.05\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	40\%	60\%	80\%	90\%	90\%	90\%	90\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	3.30\%	1.11\%	0.46\%	0.14\%	0.05\%	0.05\%	0.05\%	0.05\%	0.00\%	0.00\%	0.00\%
		tMin_BN	0.0042	0.0035	0.0032	0.0028	0.0027	0.0025	0.0024	0.0022	0.0023	0.0022	0.0022
		tMax_BN	0.0601	0.0276	0.0205	0.0155	0.0115	0.0097	0.0070	0.0076	0.0075	0.0061	0.0062
		tavg_BN	0.0220	0.0115	0.0073	0.0058	0.0048	0.0042	0.0038	0.0038	0.0036	0.0035	0.0034

Table 5: Computational results obtained by algorithms M and algorithm $B N$ on
TM $(250, B, \Delta)$

			B										
			120	150	180	210	240	270	300	330	360	390	400
	0	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		$\mathrm{M}<\mathrm{BN}$	100\%	60\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.02\%	1.33\%	1.06\%	3.66\%	3.23\%	2.84\%	2.76\%	2.28\%	2.13\%	1.92\%	1.57\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	0\%	10\%	50\%	50\%	60\%	80\%	70\%	70\%	80\%
		BN $<$ M	0\%	20\%	30\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	90\%
		Gap_BN	8.75\%	1.87\%	0.89\%	0.62\%	0.39\%	0.44\%	0.40\%	0.22\%	0.35\%	0.38\%	0.26\%
	0.1	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	30\%	30\%	50\%	70\%
		$\mathrm{M}<\mathrm{BN}$	100\%	50\%	0\%	$\begin{gathered} 0 \% \\ 0.97 \% \\ 0 \% \\ 40 \% \\ 0.69 \% \end{gathered}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.02\%	1.38\%	1.12\%		0.79\%	0.98\%	0.99\%	0.76\%	0.83\%	0.64\%	0.39\%
		BN=LB	0\%	0\%	10\%		70\%	40\%	60\%	80\%	70\%	70\%	80\%
		BN $<$ M	0\%	0\%	40\%		70\%	50\%	60\%	50\%	40\%	20\%	10\%
		Gap_BN	8.77\%	1.82\%	0.88\%		0.24\%	0.53\%	0.40\%	0.22\%	0.35\%	0.38\%	0.26\%
	0.2	M=LB	0\%	0\%	0\%	$\begin{gathered} 0 \% \\ 10 \% \\ 1.24 \% \\ 0 \% \end{gathered}$	0\%	10\%	60\%	70\%	80\%	90\%	90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	0\%		0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.02\%	1.38\%	1.48\%		1.03\%	1.24\%	0.49\%	0.32\%	0.22\%	0.10\%	0.10\%
		BN=LB	0\%	0\%	0\%		30\%	30\%	80\%	90\%	80\%	90\%	90\%
		BN $<$ M	0\%	0\%	70\%	$\begin{gathered} 50 \% \\ 0.90 \% \end{gathered}$	60\%	70\%	30\%	20\%	0\%	0\%	0\%
		Gap_BN	8.53\%	2.46\%	1.07\%		0.55\%	0.63\%	0.20\%	0.10\%	0.22\%	0.10\%	0.10\%
	0.3	M=LB	0\%	0\%	0\%	70%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	20\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.02\%	1.53\%	1.71\%	0.55\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	0\%	60\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	40\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	8.36\%	3.40\%	1.54\%	0.61\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.4	$\mathrm{M}=\mathrm{LB}$	0\%	10\%	40\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.18\%	1.79\%	0.49\%	0.20\%	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%
		BN=LB	0\%	0\%	70\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%
		BN $<$ M	0\%	0\%	30\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Δ		Gap_BN	10.90\%	5.18\%	0.39\%	0.20\%	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%
Δ	0.5	M=LB	0\%	0\%	40\%	80\%	90\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	10\%	10\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	10.27\%	1.52\%	0.32\%	0.08\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	60\%	70\%	80\%	100\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	30\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	17.17\%	2.94\%	0.24\%	0.12\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.6	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	40\%	80\%	90\%	90\%	90\%	90\%	90\%	100\%	100\%
		$\mathrm{M}<$ BN	100\%	90\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	7.83\%	0.93\%	0.30\%	0.10\%	0.07\%	0.03\%	0.03\%	0.03\%	0.03\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	40\%	80\%	90\%	90\%	90\%	90\%	90\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	10\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	13.13\%	2.16\%	0.33\%	0.10\%	0.07\%	0.03\%	0.03\%	0.03\%	0.03\%	0.00\%	0.00\%
	0.7	M=LB	0\%	0\%	60\%	80\%	90\%	90\%	90\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	30\%	0\%	0\%	10\%	0\%	10\%	0\%	0\%	0\%
		Gap_M	7.37\%	1.16\%	0.26\%	0.09\%	0.06\%	0.03\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	30\%	80\%	90\%	90\%	90\%	90\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	10.28\%	2.28\%	0.35\%	0.09\%	0.06\%	0.06\%	0.03\%	0.03\%	0.00\%	0.00\%	0.00\%
	0.8	M=LB	0\%	0\%	30\%	50\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.85\%	0.84\%	0.33\%	0.18\%	0.10\%	0.03\%	0.03\%	0.03\%	0.03\%	0.03\%	0.03\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	30\%	50\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%
		BN $<$ M	0\%	10\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	6.67\%	1.57\%	0.36\%	0.18\%	0.10\%	0.03\%	0.03\%	0.03\%	0.03\%	0.03\%	0.03\%
	0.9	M=LB	0\%	50\%	70\%	70\%	70\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	90\%	80\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	1.95\%	0.22\%	0.07\%	0.07\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	70\%	70\%	70\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	2.46\%	0.60\%	0.07\%	0.07\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		tMin_BN	0.0174	0.0159	0.0120	0.0113	0.0106	0.0102	0.0100	0.0100	0.0091	0.0089	0.0088
		tMax_BN	0.4111	0.1915	0.1243	0.0928	0.0662	0.0601	0.0502	0.0393	0.0399	0.0327	0.0305
		tavg_BN	0.1606	0.0712	0.0424	0.0306	0.0212	0.0202	0.0179	0.0159	0.0155	0.0145	0.0140

Table 6: Computational results obtained by algorithms M and algorithm $B N$ on
$T M(500, B, \Delta)$

Table 7: Computational results obtained by algorithms M and algorithm $B N$ on
$\operatorname{TM}(1000, B, \Delta)$

			B										
			120	150	180	210	240	270	300	330	360	390	400
0		M=LB	0\%	0\%	20\%	0\%	0\%	10\%	20\%	20\%	40\%	80\%	30\%
		$\mathrm{M}<\mathrm{BN}$	100\%	70\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.12\%	2.08\%	2.00\%	3.47\%	3.65\%	3.31\%	3.35\%	3.68\%	3.03\%	1.08\%	3.89\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	20\%	40\%	40\%	100\%	60\%	90\%	80\%	90\%	70\%
		BN $<$ M	0\%	0\%	10\%	60\%	50\%	90\%	40\%	70\%	40\%	10\%	40\%
		Gap_BN	9.24\%	4.33\%	$\begin{gathered} 1.99 \% \\ 30 \% \end{gathered}$	$\begin{gathered} 1.73 \% \\ 80 \% \end{gathered}$	$\begin{gathered} 2.00 \% \\ 70 \% \end{gathered}$	0.00\%	1.68\%	0.48\%	1.00\%	$\begin{gathered} 0.53 \% \\ 90 \% \end{gathered}$	1.67\%
	0.1	M=LB	0\%	0\%				60\%	70\%	100\%	80\%		90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	30\%	20\%	10\%	10\%	0\%	0\%	0\%	10\%	$\begin{gathered} 0 \% \\ 0.56 \% \\ 90 \% \\ 0 \% \end{gathered}$
		Gap_M	5.21\%	2.28\%	1.74\%	0.57\%	1.00\%	1.52\%	1.22\%	0.00\%	0.98\%	0.56\%	
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	10\%	70\%	60\%	60\%	70\%	100\%	90\%	80\%	
		BN $<$ M	0\%	0\%	0\%	10\%	0\%	10\%	0\%	0\%	10\%	0\%	
		Gap_BN	11.51\%	5.34\%	2.47\%	0.84\%	1.32\%	1.50\%	1.22\%	0.00\%	0.50\%	1.11\%	$0.56 \%$$100 \%$
	0.2	M=LB	0\%	0\%	20\%	40\%	60\%	90\%	90\%	90\%	100\%	90\%	
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	50\%	20\%	30\%	0\%	10\%	0\%	0\%	0\%	0\%
		Gap_M	6.26\%	2.23\%	1.96\%	1.70\%	1.28\%	0.38\%	0.40\%	0.43\%	0.00\%	0.56\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	0\%	30\%	30\%	90\%	80\%	90\%	100\%	90\%	100\%
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	11.82\%	4.88\%	3.63\%	2.26\%	2.25\%	0.38\%	0.78\%	0.43\%	0.00\%	0.56\%	0.00\%
	0.3	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	30\%	50\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%0%
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	50\%	30\%	0\%	0\%	0\%	0\%	0\%	0\%	
		Gap_M	4.47\%	3.12\%	1.94\%	1.93\%	0.86\%	0.57\%	0.57\%	0.57\%	0.57\%	0.29\%	$\begin{gathered} 0.29 \% \\ 90 \% \\ 0 \% \\ 0.29 \% \end{gathered}$
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	20\%	50\%	90\%	90\%	90\%	90\%	90\%	90\%	
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
		Gap_BN	12.14\%	7.45\%	3.18\%	2.79\%	0.86\%	0.57\%	0.57\%	0.57\%	0.57\%	0.29\%	
	0.4	$\mathrm{M}=\mathrm{LB}$	0\%	10\%	50\%	70\%	70\%	80\%	80\%	90\%	90\%	90\%	90\%0%0
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	30\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
		Gap_M	9.44\%	3.95\%	1.48\%	1.04\%	0.85\%	0.42\%	0.42\%	0.23\%	0.23\%	0.23\%	$\begin{gathered} 0.23 \% \\ 90 \% \\ 0 \% \end{gathered}$
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	50\%	70\%	70\%	80\%	80\%	90\%	90\%	90\%	
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
Δ		Gap_BN	16.15\%	7.75\%	2.14\%	1.04\%	0.85\%	0.42\%	0.42\%	0.23\%	0.23\%	0.23\%	0.23\%
\triangle	0.5	M=LB	0\%	10\%	40\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%
		$\mathrm{M}<\mathrm{BN}$	100\%	70\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	$\begin{gathered} 0 \% \\ 0.16 \% \\ 90 \% \\ 0 \% \\ 0.16 \% \end{gathered}$
		Gap_M	14.40\%	2.08\%	1.09\%	0.64\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	40\%	70\%	90\%	90\%	90\%	90\%	90\%	90\%	
		BN $<$ M	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
		Gap_BN	19.90\%	4.99\%	1.09\%	0.64\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	0.16\%	
	0.6	M=LB	0\%	20\%	40\%	60\%	80\%	80\%	80\%	80\%	90\%	90\%	90\%$0 \%$$0.16 \%$
		$\mathrm{M}<\mathrm{BN}$	100\%	90\%	30\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	
		Gap.M	12.30\%	3.31\%	1.46\%	0.89\%	0.46\%	0.46\%	0.30\%	0.30\%	0.16\%	0.16\%	
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	40\%	60\%	80\%	80\%	80\%	80\%	90\%	90\%	90\%
		BN $<$ M	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	16.27\%	5.39\%	1.76\%	1.02\%	0.46\%	0.46\%	0.30\%	0.30\%	0.16\%	0.16\%	0.16\%
	0.7	M=LB	0\%	60\%	60\%	70\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	80\%	50\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	7.00\%	1.31\%	0.60\%	0.36\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	30\%	60\%	70\%	90\%	100\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	8.76\%	2.36\%	0.60\%	0.36\%	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.8	M=LB	0\%	30\%	60\%	90\%	90\%	90\%	90\%	90\%	90\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	80\%	60\%	30\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	6.09\%	1.56\%	0.52\%	0.11\%	0.11\%	0.11\%	0.11\%	0.11\%	0.11\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	10\%	50\%	80\%	90\%	90\%	90\%	90\%	90\%	100\%	100\%
		BN $<$ M	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	7.03\%	2.38\%	0.84\%	0.21\%	0.11\%	0.11\%	0.11\%	0.11\%	0.11\%	0.00\%	0.00\%
	0.9	$\mathrm{M}=\mathrm{LB}$	0\%	30\%	70\%	70\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%$0 \%$$0.00 \%$
		$\mathrm{M}<\mathrm{BN}$	0\%	30\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
		Gap_M	4.17\%	1.40\%	0.37\%	0.28\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
		$\mathrm{BN}=\mathrm{LB}$	0\%	20\%	60\%	70\%	100\%	100\%	100\%	100\%	100\%	100\%	$\begin{gathered} .00 \% \\ 100 \% \\ 0 \% \\ 0.00 \% \\ \hline \end{gathered}$
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
		Gap_BN	4.17\%	1.68\%	0.56\%	0.28\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
		tMin_BN	0.0010	0.0008	0.0007	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	0.0005
		tMax_BN	0.0072	0.0046	0.0031	0.0025	0.0024	0.0017	0.0018	0.0015	0.0015	0.0013	0.0014
		tavg_BN	0.0032	0.0020	0.0014	0.0012	0.0010	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008

Table 8: Computational results obtained by algorithms M and algorithm $B N$ on
TS (120, B, Δ)

			B										
			120	150	180	210	240	270	300	330	360	390	400
	0	M=LB	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	10\%	10\%	20\%
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	4.01\%	1.70\%	1.44\%	4.05\%	3.18\%	2.67\%	2.79\%	2.18\%	2.37\%	2.32\%	2.11\%
		BN=LB	0\%	0\%	10\%	40\%	60\%	90\%	70\%	80\%	80\%	90\%	80\%
		BN $<$ M	0\%	0\%	20\%	100\%	100\%	100\%	90\%	80\%	80\%	80\%	60\%
		Gap_BN	9.04\%	2.99\%	1.19\%	$\begin{gathered} 0.83 \% \\ 10 \% \end{gathered}$	0.64\%	0.18\%	0.61\%	0.43\%	0.48\%	0.26\%	0.55\%
	0.1	M=LB	0\%	0\%	0\%		40\%	60\%	70\%	80\%	60\%	80\%	80\%
		$\mathrm{M}<\mathrm{BN}$	100\%	70\%	30\%	10\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.27\%	1.71\%	1.45\%	1.27\%	0.96\%	0.73\%	0.60\%	0.44\%	0.96\%	0.52\%	0.53\%
		BN=LB	0\%	0\%	10\%	0\%	60\%	70\%	80\%	90\%	80\%	80\%	90\%
		BN $<$ M	0\%	0\%	20\%	0\%	20\%	10\%	10\%	10\%	20\%	0\%	10\%
		Gap_BN	9.56\%	2.41\%	1.56\%	1.41\%	0.64\%	0.54\%	0.41\%	0.22\%	0.48\%	0.52\%	0.26\%
	0.2	M=LB	0\%	0\%	$\begin{gathered} \hline 0 \% \\ 30 \% \\ 1.91 \% \\ 0 \% \\ 40 \% \\ 1.79 \% \end{gathered}$	0\%	20\%	50\%	70\%	80\%	90\%	100\%	100\%
		$\mathrm{M}<$ BN	100\%	70\%		20\%	0\%	0\%	10\%	0\%	0\%	0\%	0\%
		Gap_M	4.05\%	1.90\%		1.53\%	1.27\%	0.90\%	0.60\%	0.43\%	0.23\%	0.00\%	0.00\%
		BN=LB	0\%	0\%		0\%	30\%	50\%	80\%	90\%	90\%	100\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%		10\%	10\%	0\%	20\%	10\%	0\%	0\%	0\%
		Gap_BN	9.49\%	3.08\%		1.67\%	1.12\%	0.90\%	0.39\%	0.22\%	0.23\%	0.00\%	0.00\%
	0.3	$\mathrm{M}=\mathrm{LB}$	0\%	0\%	0\%	$\begin{gathered} 50 \% \\ 0 \% \\ 0.68 \% \\ 50 \% \\ 0 \% \\ 0.68 \% \end{gathered}$	80\%	90\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	70\%	50\%		10\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	3.04\%	2.21\%	1.92\%		0.29\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	10\%		80\%	90\%	100\%	100\%	100\%	100\%	100\%
		BN $<$ M	0\%	0\%	10\%		0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	8.00\%	4.31\%	2.64\%		0.45\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
	0.4	M=LB	0\%	0\%	30\%	$\begin{gathered} \hline 80 \% \\ 0 \% \\ 0.21 \% \\ 80 \% \\ 0 \% \\ 0.21 \% \end{gathered}$	$\begin{gathered} 90 \% \\ 0 \% \\ 0.11 \% \\ 90 \% \\ 0 \% \\ 0.11 \% \end{gathered}$	$\begin{gathered} \hline 90 \% \\ 0 \% \\ 0.11 \% \\ 90 \% \\ 0 \% \\ 0.11 \% \end{gathered}$	90\%	90\%	90\%	90\%	90\%
		$\mathrm{M}<$ BN	100\%	100\%	30\%				0\%	0\%	0\%	0\%	0\%
		Gap_M	4.39\%	2.43\%	1.28\%				0.11\%	0.11\%	0.11\%	0.11\%	0.11\%
		BN=LB	0\%	0\%	30\%				90\%	90\%	90\%	90\%	90\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	20\%				0\%	0\%	0\%	0\%	0\%
Δ		Gap_BN	13.01\%	6.67\%	2.21\%				0.11\%	0.11\%	0.11\%	0.11\%	0.11\%
Δ	0.5	M=LB	0\%	30\%	40\%	60\%	$70 \%$$0 \%$$0.24 \%$$70 \%$$0 \%$$0.24 \%$	$\begin{gathered} \hline 80 \% \\ 0 \% \\ 0.16 \% \\ 80 \% \\ 0 \% \\ 0.16 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \\ 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \\ 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$	
		$\mathrm{M}<$ BN	100\%	80\%	10\%	10\%							0%
		Gap_M	9.83\%	2.09\%	0.81\%	0.41\%					0.00\%	0.00%	0.00%
		$\mathrm{BN}=\mathrm{LB}$	0\%	10\%	50\%	60\%					$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$	$100 \%$$0 \%$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$
		BN $<$ M	0\%	0\%	20\%	0\%							
		Gap_BN	16.43\%	4.02\%	0.75\%	0.49\%					0.00\%	0.00\%	
	0.6	M=LB	0\%	10\%	30\%	60\%	$\begin{gathered} \hline 80 \% \\ 0 \% \\ 0.13 \% \\ 80 \% \\ 0 \% \\ 0.13 \% \end{gathered}$	$\begin{gathered} \hline 90 \% \\ 0 \% \\ 0.07 \% \\ 90 \% \\ 0 \% \\ 0.07 \% \end{gathered}$	$\begin{gathered} \hline 90 \% \\ 0 \% \\ 0.07 \% \\ 90 \% \\ 0 \% \\ 0.07 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \% \\ 0 \% \\ 0.07 \% \\ 90 \% \\ 0 \% \\ 0.07 \% \\ \hline \end{gathered}$	$\begin{gathered} 90 \% \\ 0 \% \\ 0.07 \% \\ 90 \% \\ 0 \% \\ 0.07 \% \end{gathered}$	$90 \%$$0 \%$$0.07 \%$	
		$\mathrm{M}<\mathrm{BN}$	100\%	80\%	20\%	20\%							$\begin{gathered} 90 \% \\ 0 \% \\ 0.07 \% \end{gathered}$
		Gap_M	9.94\%	1.60\%	0.67\%	0.26\%							
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	30\%	50\%						$\begin{gathered} 90 \% \\ 0 \% \end{gathered}$	$\begin{gathered} 0.07 \% \\ 90 \% \end{gathered}$
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%							$\begin{gathered} 90 \% \\ 0 \% \end{gathered}$
		Gap_BN	13.80\%	2.84\%	0.82\%	0.40\%						0.07%	0.07\%
	0.7	M=LB	0\%	0\%	30\%	60\%	80\%	90\%	90\%	90\%0%	90\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	100\%	50\%	10\%	$0 \%$$0.17 \%$	0\%	0\%		0\%	10\%	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$
		Gap_M	8.63\%	2.50\%	0.69\%	0.29\%		$\begin{gathered} 0.06 \% \\ 90 \% \\ 0 \% \\ 0.06 \% \end{gathered}$	$\begin{gathered} 0.06 \% \\ 90 \% \\ 0 \% \\ 0.06 \% \end{gathered}$	$\begin{gathered} 0.06 \% \\ 90 \% \\ 0 \% \\ 0.06 \% \end{gathered}$	$\begin{gathered} 0.06 \% \\ 90 \% \\ 0 \% \\ 0.06 \% \end{gathered}$	0.00\%	
		BN=LB	0\%	0\%	10\%	60\%	$\begin{gathered} 80 \% \\ 0 \% \\ 0.17 \% \end{gathered}$					$\begin{gathered} 90 \% \\ 0 \% \end{gathered}$	$\begin{aligned} & 0.00 \% \\ & 100 \% \end{aligned}$
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%							$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$
		Gap_BN	11.36\%	3.91\%	1.05\%	0.35\%						0.06\%	0.00\%
	0.8	M=LB	0\%	30\%	70\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		$\mathrm{M}<$ BN	100\%	90\%	10\%	20\%	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	0\%\%0.00%	0\%	0%	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$
		Gap_M	4.29\%	0.82\%	0.15\%	0.00\%					0.00\%	0.00\%	
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	70\%	80\%	$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$	$\begin{aligned} & 0.00 \% \\ & 100 \% \end{aligned}$	0.00\% 100\%	$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$	$\begin{aligned} & 0.00 \% \\ & 100 \% \end{aligned}$
		BN $<$ M	0\%	0\%	0\%	0\%			0\%	$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$			$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$
		Gap_BN	5.70\%	1.58\%	0.20\%	0.10\%	0.00\%	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 0.00 \% \\ & 100 \% \end{aligned}$	0.00\%	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	0.00\%
	0.9	$\mathrm{M}=$ LB	0\%	30\%	60\%	80\%	$\begin{gathered} 100 \% \\ 10 \% \\ 0.00 \% \\ 90 \% \\ 0 \% \\ 0.05 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$		$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$			
		$\mathrm{M}<\mathrm{BN}$	90\%	50\%	10\%	0\%			$\begin{gathered} 100 \% \\ 0 \% \end{gathered}$				
		Gap_M	3.15\%	0.87\%	0.33\%	0.14\%			0.00\%	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	20\%	60\%	80\%		$\begin{aligned} & 0.00 \% \\ & 100 \% \end{aligned}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 0 \% \\ 0.00 \% \end{gathered}$
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	0\%	0\%		$\begin{gathered} 0 \% \\ 0.00 \% \end{gathered}$					
		Gap_BN	3.78\%	1.27\%	0.37\%	0.14\%							
		tMin_BN	0.0043	0.0041	0.0031	0.0027	$\begin{aligned} & 0.0026 \\ & 0.0125 \\ & 0.0048 \end{aligned}$	$\begin{aligned} & 0.0025 \\ & 0.0100 \\ & 0.0042 \end{aligned}$		$\begin{aligned} & 0.0024 \\ & 0.0085 \\ & 0.0037 \end{aligned}$	$\begin{aligned} & \hline 0.0022 \\ & 0.0074 \\ & 0.0036 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0022 \\ & 0.0064 \\ & 0.0035 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0022 \\ & 0.0071 \\ & 0.0034 \end{aligned}$
		tMax_BN	0.0596	0.0301	0.0207	0.0168							
		tavg_BN	0.0222	0.0118	0.0076	0.0060							

Table 9: Computational results obtained by algorithms M and algorithm $B N$ on
TS (250, B, Δ)

Table 10: Computational results obtained by algorithms M and algorithm $B N$ on $\operatorname{TS}(500, B, \Delta)$

Table 11: Computational results obtained by algorithms M and algorithm $B N$ on $\operatorname{TS}(1000, B, \Delta)$

			边 B									
			120	150	180	210	240	270	300	330	360	390
	0	M=LB	3\%	20\%	40\%	0\%	2\%	20\%	23\%	41\%	49\%	57\%
		$\mathrm{M}<\mathrm{BN}$	98\%	74\%	26\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	5.00\%	1.80\%	1.49\%	4.34\%	3.56\%	3.03\%	3.18\%	2.69\%	2.53\%	2.30\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	0\%	21\%	43\%	59\%	80\%	74\%	85\%	87\%	88\%
		BN $<$ M	0\%	0\%	4\%	87\%	66\%	62\%	51\%	44\%	38\%	31\%
		Gap_BN	10.02\%	4.36\%	2.03\%	1.65\%	1.35\%	0.73\%	1.09\%	0.70\%	0.66\%	0.64\%
	0.1	M=LB	3\%	16\%	24\%	47\%	57\%	86\%	93\%	94\%	97\%	99\%
		$\mathrm{M}<\mathrm{BN}$	98\%	72\%	31\%	23\%	13\%	4\%	2\%	0\%	0\%	0\%
		Gap_M	5.00\%	1.83\%	1.89\%	1.55\%	1.42\%	0.52\%	0.27\%	0.24\%	0.12\%	0.04\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	1\%	11\%	27\%	49\%	83\%	91\%	94\%	97\%	99\%
		BN $<$ M	0\%	1\%	3\%	2\%	3\%	1\%	0\%	0\%	0\%	0\%
		Gap_BN	10.83\%	4.52\%	2.60\%	2.14\%	1.75\%	0.63\%	0.35\%	0.24\%	0.12\%	0.04\%
	0.2	M=LB	0\%	2\%	21\%	75\%	87\%	92\%	95\%	97\%	100\%	100\%
		$\mathrm{M}<$ BN	100\%	88\%	55\%	19\%	6\%	0\%	1\%	0\%	0\%	0\%
		Gap_M	5.31\%	2.34\%	2.09\%	0.74\%	0.38\%	0.22\%	0.14\%	0.08\%	0.00\%	0.00\%
		BN=LB	0\%	0\%	15\%	63\%	83\%	92\%	94\%	97\%	100\%	100\%
		BN $<$ M	0\%	0\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	11.61\%	6.23\%	3.70\%	1.31\%	0.56\%	0.22\%	0.17\%	0.08\%	0.00\%	0.00\%
	0.3	M=LB	0\%	9\%	54\%	79\%	84\%	90\%	97\%	99\%	99\%	100\%
		$\mathrm{M}<\mathrm{BN}$	98\%	94\%	22\%	5\%	1\%	0\%	1\%	0\%	0\%	0\%
		Gap_M	6.13\%	2.82\%	1.37\%	0.53\%	0.38\%	0.23\%	0.07\%	0.02\%	0.02\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	2\%	51\%	77\%	83\%	90\%	96\%	99\%	99\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	2\%	3\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	13.64\%	7.66\%	1.92\%	0.63\%	0.40\%	0.23\%	0.09\%	0.02\%	0.02\%	0.00\%
	0.4	M=LB	0\%	14\%	58\%	81\%	90\%	95\%	97\%	98\%	100\%	100\%
		$\mathrm{M}<\mathrm{BN}$	100\%	78\%	9\%	1\%	0\%	1\%	1\%	0\%	1\%	0\%
		Gap_M	9.04\%	3.22\%	0.95\%	0.42\%	0.19\%	0.10\%	0.06\%	0.04\%	0.00\%	0.00\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	2\%	57\%	80\%	90\%	94\%	96\%	98\%	99\%	100\%
		$\mathrm{BN}<\mathrm{M}$	0\%	2\%	3\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	17.37\%	6.63\%	1.06\%	0.43\%	0.19\%	0.12\%	0.08\%	0.04\%	0.02\%	0.00\%
Δ	0.5	$\mathrm{M}=\mathrm{LB}$	0\%	19\%	56\%	72\%	80\%	$83 \%$$0 \%$$0.33 \%$$83 \%$$1 \%$$0.31 \%$	90\%	94\%	96\%	97\%
		$\mathrm{M}<\mathrm{BN}$	100\%	82\%	17\%	8\%	1\%		1\%	0\%	0\%	0\%
		Gap_M	14.79\%	3.49\%	1.21\%	0.65\%	0.41\%		0.17\%	0.10\%	0.07\%	0.05\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	2\%	49\%	68\%	80\%		89\%	94\%	96\%	97\%
		BN $<$ M	0\%	1\%	2\%	0\%	0\%		0\%	0\%	0\%	0\%
		Gap_BN	21.23\%	6.19\%	1.47\%	0.79\%	0.43\%		0.19\%	0.10\%	0.07\%	0.05\%
	0.6	M=LB	0\%	28\%	62\%	76\%	86\%	94\%	95\%	98\%	99\%	99\%
		$\mathrm{M}<$ BN	98\%	77\%	9\%	5\%	1\%	1\%	0\%	0\%	0\%	0\%
		Gap_M	14.00\%	2.76\%	0.91\%	0.42\%	0.23\%	0.09\%	0.08\%	0.03\%	0.02\%	0.02\%
		BN=LB	0\%	7\%	58\%	75\%	85\%	94\%	95\%	98\%	99\%	99\%
		$\mathrm{BN}<\mathrm{M}$	0\%	0\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	19.10\%	5.15\%	1.03\%	0.50\%	0.25\%	0.11\%	0.08\%	0.03\%	0.02\%	0.02\%
	0.7	M=LB	0\%	26\%	53\%	72\%	82\%	92\%	94\%	95\%	96\%	97\%
		$\mathrm{M}<\mathrm{BN}$	99\%	76\%	16\%	7\%	2\%	0\%	0\%	0\%	0\%	0\%
		Gap_M	12.04\%	2.66\%	0.87\%	0.44\%	0.26\%	0.13\%	0.08\%	0.07\%	0.06\%	0.04\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	9\%	49\%	66\%	81\%	92\%	94\%	95\%	96\%	97\%
		$\mathrm{BN}<\mathrm{M}$	0\%	2\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
		Gap_BN	15.88\%	4.60\%	1.10\%	0.54\%	0.29\%	0.13\%	0.08\%	0.07\%	0.06\%	0.04\%
	0.8	$\mathrm{M}=$ LB	0\%	28\%	65\%	80\%	92\%	95\%	98\%	98\%	99\%	99\%
		$\mathrm{M}<$ BN	96\%	64\%	15\%	4\%	0\%	2\%	0\%	0\%	0\%	0\%
		Gap_M	9.01\%	1.83\%	0.56\%	0.31\%	0.11\%	0.06\%	0.03\%	0.03\%	0.01\%	0.01\%
		$\mathrm{BN}=\mathrm{LB}$	0\%	9\%	60\%	77\%	92\%	94\%	98\%	98\%	99\%	99\%
		$\mathrm{BN}<\mathrm{M}$	0%	1%	1%	0%	0%	0\%	0%	0%	0%	0\%
		Gap_BN	11.60\%	3.04\%	0.74\%	0.36\%	0.11\%	0.09\%	0.03\%	0.03\%	0.01\%	0.01\%
	0.9	M=LB	1\%	31\%	65\%	80\%	89\%	93\%	98\%	98\%	98\%	98\%
		$\mathrm{M}<\mathrm{BN}$	84\%	51\%	8\%	3\%	1\%	0\%	1\%	0\%	0\%	0\%
		Gap_M	6.10\%	1.49\%	0.54\%	0.27\%	0.12\%	0.08\%	0.02\%	0.02\%	0.02\%	0.02\%
		BN=LB	0\%	20\%	66\%	78\%	88\%	94\%	97\%	98\%	98\%	98\%
		BN $<$ M	0\%	1\%	4\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%
		Gap_BN	7.63\%	2.22\%	0.59\%	0.30\%	0.13\%	0.06\%	0.03\%	0.02\%	0.02\%	0.02\%
		tMin_BN	0.0011	0.0008	0.0007	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	0.0005
		tMax_BN	0.0085	0.0052	0.0032	0.0031	0.0023	0.0021	0.0019	0.0016	0.0015	0.0014
		tavg_BN	0.0029	0.0017	0.0012	0.0010	0.0009	0.0008	0.0008	0.0008	0.0007	0.0007

Table 12: Computational results obtained by algorithms M and algorithm $B N$ on $T T(120, B, \Delta)$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{10}{|l|}{}

\hline \& \& \& 120 \& 150 \& 180 \& 210 \& 240 \& 270 \& 300 \& 330 \& 360 \& 390

\hline \& \multirow{6}{*}{0} \& M=LB \& 0\% \& 0\% \& 11\% \& 0\% \& 0\% \& 0\% \& 0\% \& 3\% \& 11\% \& 20\%

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 100\% \& 70\% \& 16\% \& 0\% \& 0\% \& 0\% \& 0\% \& 0\% \& 0\% \& 0\%

\hline \& \& Gap_M \& 3.87\% \& 1.56\% \& 1.18\% \& 3.67\% \& 3.23\% \& 2.86\% \& 2.59\% \& 2.29\% \& 2.13\% \& 2.05\%

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 0\% \& 12\% \& 35\% \& 61\% \& 75\% \& 64\% \& 88\% \& 88\% \& 86\%

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 1\% \& 13\% \& 100\% \& 100\% \& 100\% \& 89\% \& 91\% \& 78\% \& 66\%

\hline \& \& Gap_BN \& 9.12\% \& 2.92\% \& 1.22\% \& 0.90\% \& 0.61\% \& 0.45\% \& 0.72\% \& 0.26\% \& 0.29\% \& 0.36\%

\hline \& \multirow{6}{*}{0.1} \& $\mathrm{M}=$ LB \& 0\% \& 0\% \& \multirow[t]{3}{*}{$$
\begin{gathered}
1 \% \\
15 \% \\
1.66 \%
\end{gathered}
$$} \& 8\% \& \multirow[t]{3}{*}{$$
\begin{gathered}
33 \% \\
4 \% \\
1.06 \%
\end{gathered}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
64 \% \\
2 \% \\
0.63 \%
\end{gathered}
$$} \& 88\% \& 97\% \& 98\% \& 98\%

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 100\% \& 82\% \& \& 20\% \& \& \& 0\% \& 0\% \& 0\% \& 0\%

\hline \& \& Gap_M \& 3.88\% \& 1.63\% \& \& 1.33\% \& \& \& 0.26\% \& 0.07\% \& 0.05\% \& 0.05\%

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 1\% \& \multirow[t]{2}{*}{$$
\begin{gathered}
4 \% \\
22 \%
\end{gathered}
$$} \& 12\% \& \multirow[t]{2}{*}{49%
18%} \& 74\% \& 88\% \& 97\% \& 98\% \& 98\%

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 1\% \& \& 12\% \& \& 12\% \& \multirow[t]{2}{*}{0%
0.26%} \& \multirow[t]{2}{*}{$$
\begin{gathered}
0 \% \\
0.07 \%
\end{gathered}
$$} \& $$
\begin{gathered}
0 \% \\
0.05 \%
\end{gathered}
$$ \& \multirow[t]{2}{*}{$$
\begin{gathered}
0 \% \\
0.05 \%
\end{gathered}
$$}

\hline \& \& Gap_BN \& 9.39\% \& 3.63\% \& \multirow[t]{4}{*}{$$
\begin{gathered}
1.57 \% \\
4 \% \\
63 \% \\
1.88 \%
\end{gathered}
$$} \& 1.45\% \& \multirow[t]{4}{*}{$$
\begin{gathered}
0.84 \% \\
84 \% \\
3 \% \\
0.27 \%
\end{gathered}
$$} \& \multirow[t]{4}{*}{$$
\begin{gathered}
0.45 \% \\
89 \% \\
3 \% \\
0.16 \%
\end{gathered}
$$} \& \& \& \multirow[b]{2}{*}{96\%} \&

\hline \& \multirow{12}{*}{0.2

0.3} \& $\mathrm{M}=\mathrm{LB}$ \& 0\% \& 0\% \& \& 66\% \& \& \& 93\% \& 94\% \& \& 98\%

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 100\% \& 95\% \& \& 23\% \& \& \& \multirow[t]{2}{*}{\[
$$
\begin{gathered}
0 \% \\
0.09 \%
\end{gathered}
$$

\]} \& 0\% \& \[

0 \%
\] \& 0\%

\hline \& \& Gap_M \& 4.03\% \& 1.92\% \& \& 0.54\% \& \& \& \& \multirow[t]{2}{*}{0.08\%

94%} \& \[
0.05 \%

\] \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
0.03 \% \\
98 \%
\end{gathered}
$$
\]}

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 0\% \& 2\% \& 57\% \& 81\% \& 87\% \& \multirow[t]{2}{*}{93%

0%} \& \& \multirow[t]{2}{*}{$$
96 \%
$$

$$
0 \%
$$} \&

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 2\% \& 4\% \& 0\% \& 0\% \& 0\% \& \& \[
$$
\begin{gathered}
94 \% \\
0 \%
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
98 \% \\
0 \%
\end{gathered}
$$
\]

\hline \& \& Gap_BN \& 9.82\% \& 4.66\% \& 2.86\% \& 0.88\% \& 0.31\% \& 0.20\% \& 0.09\% \& 0.08\% \& $$
\begin{gathered}
0 \% \\
0.05 \%
\end{gathered}
$$ \& 0.03\%

\hline \& \& $\mathrm{M}=\mathrm{LB}$ \& 0\% \& 3\% \& 52\% \& 75\% \& \multirow[t]{6}{*}{86%
0%
0.19%
86%
0%

0.19%} \& 92\% \& 95\% \& 95\% \& 96\% \& \multirow[t]{2}{*}{$$
\begin{gathered}
98 \% \\
0 \%
\end{gathered}
$$}

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 100\% \& 97\% \& 31\% \& 5\% \& \& 1\% \& \multirow[t]{2}{*}{0%
0.07%} \& 0\% \& 0\% \&

\hline \& \& Gap_M \& 4.45\% \& 2.28\% \& 0.76\% \& 0.32\% \& \& 0.10\% \& \& 0.05\% \& 0.04\% \& $$
\begin{gathered}
0 \% \\
0.02 \%
\end{gathered}
$$

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 0\% \& 45\% \& 72\% \& \& 92\% \& \[
$$
\begin{gathered}
0.07 \% \\
95 \%
\end{gathered}
$$

\] \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
95 \% \\
0 \%
\end{gathered}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
96 \% \\
0 \%
\end{gathered}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
98 \% \\
0 \%
\end{gathered}
$$
\]}

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 1\% \& 6\% \& 0\% \& \& 0\% \& 0\% \& \& \&

\hline \& \& Gap_BN \& 11.40\% \& 6.90\% \& 1.19\% \& 0.37\% \& \& 0.11\% \& 0.07\% \& 0.05\% \& 0.04\% \& $$
\begin{gathered}
0 \% \\
0.02 \%
\end{gathered}
$$

\hline \& \multirow{6}{*}{0.4} \& $\mathrm{M}=\mathrm{LB}$ \& 0\% \& 12\% \& 54\% \& 78\% \& 88\% \& 93\% \& 94\% \& 96\% \& 96\% \& 97\%

\hline \& \& $\mathrm{M}<$ BN \& 100\% \& 89\% \& 15\% \& 2\% \& 1\% \& 0\% \& 0\% \& 0\% \& 0\% \& 0\%

\hline \& \& Gap_M \& 6.16\% \& 2.25\% \& 0.59\% \& 0.24\% \& 0.12\% \& 0.06\% \& 0.05\% \& 0.04\% \& 0.04\% \& 0.03\%

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 2\% \& 51\% \& 76\% \& 88\% \& 93\% \& 94\% \& \multirow[b]{3}{*}{\[
$$
\begin{gathered}
96 \% \\
0 \% \\
0.04 \%
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
96 \% \\
0 \% \\
0.04 \% \\
\hline
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
97 \% \\
0 \% \\
0.03 \%
\end{gathered}
$$
\]}

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 3\% \& 8\% \& 1\% \& 0.12\% \& 0\% \& \multirow[t]{2}{*}{$$
\begin{gathered}
0 \% \\
0.05 \%
\end{gathered}
$$} \& \& \&

\hline Δ \& \& Gap_BN \& 14.55\% \& 5.16\% \& 0.66\% \& 0.25\% \& \multirow[t]{4}{*}{$$
\begin{gathered}
0.12 \% \\
84 \% \\
2 \% \\
0.16 \%
\end{gathered}
$$} \& \multirow[t]{2}{*}{0.06\%} \& \& \& \&

\hline Δ \& \multirow{6}{*}{0.5} \& $\mathrm{M}=\mathrm{LB}$ \& 0\% \& 12\% \& 42\% \& \multirow[t]{3}{*}{$$
\begin{gathered}
69 \% \\
4 \% \\
0.31 \%
\end{gathered}
$$} \& \& \& 89\% \& 92\% \& 93\% \& 96\%

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 100\% \& 87\% \& 19\% \& \& \& \multirow[t]{2}{*}{\[
$$
\begin{gathered}
0 \% \\
0.12 \%
\end{gathered}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
2 \% \\
0.10 \%
\end{gathered}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
0 \% \\
0.07 \%
\end{gathered}
$$
\]} \& 0\% \& 0\%

\hline \& \& Gap_M \& 11.27\% \& 2.13\% \& 0.68\% \& \& \& \& \& \& \multirow[t]{2}{*}{$$
\begin{gathered}
0.06 \% \\
93 \%
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
0.03 \% \\
96 \%
\end{gathered}
$$
\]}

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 1\% \& 43\% \& 67\% \& \multirow[t]{3}{*}{\[
$$
\begin{gathered}
83 \% \\
0 \% \\
0.17 \%
\end{gathered}
$$

\]} \& \[

$$
\begin{gathered}
0.12 \% \\
86 \%
\end{gathered}
$$

\] \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
87 \% \\
0 \%
\end{gathered}
$$

\]} \& \[

$$
\begin{gathered}
0.07 \% \\
92 \%
\end{gathered}
$$
\] \& \&

\hline \& \& BN $<$ M \& 0\% \& 2\% \& 7\% \& 0\% \& \& \multirow[t]{2}{*}{\[
$$
\begin{gathered}
0 \% \\
0.12 \%
\end{gathered}
$$

\]} \& \& \[

$$
\begin{gathered}
92 \% \\
0 \%
\end{gathered}
$$

\] \& \multirow[t]{2}{*}{| 93\% |
| :--- |
| 0\% |
| 0.06\% |} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
96 \% \\
0 \% \\
0.03 \%
\end{gathered}
$$
\]}

\hline \& \& Gap_BN \& 18.40\% \& 4.28\% \& 0.82\% \& 0.34\% \& \& \& $$
0.11 \%
$$ \& \[

0.07 \%
\] \& \&

\hline \& \multirow{6}{*}{0.6} \& M=LB \& 0\% \& 14\% \& 61\% \& 77\% \& \multirow[t]{3}{*}{$$
\begin{gathered}
85 \% \\
2 \% \\
0.14 \%
\end{gathered}
$$} \& 90\% \& 93\% \& 96\% \& \& 96\%

\hline \& \& $\mathrm{M}<$ BN \& 100\% \& 90\% \& 19\% \& 3\% \& \& \multirow[t]{2}{*}{\[
$$
\begin{gathered}
0 \% \\
0.09 \%
\end{gathered}
$$

\]} \& 0\% \& 0\% \& \[

$$
\begin{gathered}
\hline 96 \% \\
0 \%
\end{gathered}
$$
\] \& 0\%

\hline \& \& Gap_M \& 12.09\% \& 1.70\% \& 0.46\% \& 0.24\% \& \& \& \multirow[t]{4}{*}{$$
\begin{gathered}
0.06 \% \\
93 \% \\
0 \% \\
0.06 \%
\end{gathered}
$$} \& \multirow[t]{4}{*}{\[

$$
\begin{gathered}
0.03 \% \\
96 \% \\
0 \% \\
0.03 \%
\end{gathered}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{gathered}
0.03 \% \\
96 \% \\
0 \% \\
0.03 \%
\end{gathered}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{gathered}
0.03 \% \\
96 \% \\
0 \% \\
0.03 \%
\end{gathered}
$$
\]}

\hline \& \& BN=LB \& 0\% \& 1\% \& 59\% \& 75\% \& 0.14\%

84% \& \multirow[t]{3}{*}{$$
\begin{gathered}
0.09 \% \\
90 \% \\
0 \% \\
0.09 \%
\end{gathered}
$$} \& \& \& \&

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 3\% \& 6\% \& 0\% \& \multirow[t]{2}{*}{$$
\begin{gathered}
0 \% \\
0.16 \%
\end{gathered}
$$} \& \& \& \& \&

\hline \& \& Gap_BN \& 17.92\% \& 3.64\% \& 0.59\% \& 0.26\% \& \& \& \& \& \&

\hline \& \multirow{6}{*}{0.7} \& $\mathrm{M}=$ LB \& 0\% \& 10\% \& 59\% \& 82\% \& \multirow[t]{6}{*}{\[
$$
\begin{gathered}
\hline 88 \% \\
0 \% \\
0.08 \% \\
88 \% \\
0 \% \\
0.08 \%
\end{gathered}
$$

\]} \& \multirow[t]{6}{*}{\[

$$
\begin{gathered}
\hline 92 \% \\
0 \% \\
0.05 \% \\
92 \% \\
0 \% \\
0.05 \%
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
94 \% \\
1 \% \\
0.04 \%
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
97 \% \\
1 \% \\
0.02 \%
\end{gathered}
$$
\]} \& \multirow[t]{2}{*}{98\%

0%} \& \multirow[t]{3}{*}{$$
\begin{array}{|c|}
\hline 99 \% \\
0 \% \\
0.01 \%
\end{array}
$$}

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 100\% \& 84\% \& 18\% \& 2\% \& \& \& \& \& \&

\hline \& \& Gap_M \& 9.14\% \& 1.38\% \& 0.35\% \& 0.14\% \& \& \& \& \& 0.01\% \&

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 4\% \& 52\% \& 82\% \& \& \& \multirow[t]{2}{*}{\[
$$
\begin{gathered}
93 \% \\
0 \%
\end{gathered}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
96 \% \\
0 \%
\end{gathered}
$$
\]} \& \multirow[t]{2}{*}{98\%

0%} \& \multirow[t]{3}{*}{$$
\begin{gathered}
99 \% \\
0 \% \\
0.01 \%
\end{gathered}
$$}

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 5\% \& 5\% \& 1\% \& \& \& \& \& \&

\hline \& \& Gap_BN \& 13.72\% \& 3.03\% \& 0.47\% \& 0.14\% \& \& \& 0.05\% \& 0.03\% \& 0.01\% \&

\hline \& \multirow{6}{*}{0.8} \& $\mathrm{M}=\mathrm{LB}$ \& 0\% \& 14\% \& 50\% \& 64\% \& \& \multirow[t]{6}{*}{81%
0%
0.12%
81%
0%
0.12%} \& 90\% \& 93\% \& 93\% \& 95\%

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 100\% \& 85\% \& 16\% \& 6\% \& \multirow[t]{2}{*}{\[
$$
\begin{gathered}
3 \% \\
0.17 \%
\end{gathered}
$$

\]} \& \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
1 \% \\
0.07 \%
\end{gathered}
$$
\]} \& 0\% \& 0\% \& 0\%

\hline \& \& Gap_M \& 7.91\% \& 1.42\% \& 0.51\% \& 0.28\% \& \& \& \& 0.05\% \& 0.04\% \& 0.03\%

\hline \& \& $\mathrm{BN}=\mathrm{LB}$ \& 0\% \& 1\% \& 46\% \& 62\% \& 74\% \& \& 89\% \& 93\% \& 93\% \& 95\%

\hline \& \& $\mathrm{BN}<\mathrm{M}$ \& 0\% \& 1\% \& 1\% \& 1\% \& 0\% \& \& 0\% \& 0\% \& 0\% \& 0\%

\hline \& \& Gap_BN \& 11.13\% \& 2.74\% \& 0.61\% \& 0.31\% \& 0.19\% \& \& 0.07\% \& 0.05\% \& 0.04\% \& 0.03\%

\hline \& \& M=LB \& 0\% \& 15\% \& 59\% \& 80\% \& 91\% \& 95\% \& 96\% \& 98\% \& 99\% \& 99\%

\hline \& \& $\mathrm{M}<\mathrm{BN}$ \& 99\% \& 71\% \& 16\% \& 2\% \& 0\% \& 0\% \& 0\% \& 1\% \& 0\% \& 0\%

\hline \& 0. \& Gap_M \& 5.21\% \& 1.03\% \& 0.30\% \& 0.13\% \& 0.05\% \& 0.03\% \& 0.02\% \& 0.01\% \& 0.01\% \& 0.01\%

\hline \& 0. \& BN=LB \& 0\% \& 9\% \& 54\% \& 79\% \& 91\% \& 95\% \& 96\% \& 97\% \& 99\% \& 99\%

\hline \& \& BN $<$ M \& 0\% \& 2\% \& 2\% \& 1\% \& 0\% \& 0\% \& 0\% \& 0\% \& 0\% \& 0\%

\hline \& \& Gap_BN \& 7.14\% \& 1.81\% \& 0.37\% \& 0.14\% \& 0.05\% \& 0.03\% \& 0.02\% \& 0.02\% \& 0.01\% \& 0.01\%

\hline \& \& tMin_BN \& 0.0049 \& 0.0042 \& 0.0031 \& 0.0028 \& 0.0026 \& 0.0025 \& 0.0023 \& 0.0023 \& 0.0023 \& 0.0023

\hline \& \& tMax_BN \& 0.0673 \& 0.0360 \& 0.0225 \& 0.0183 \& 0.0132 \& 0.0112 \& 0.0099 \& 0.0085 \& 0.0083 \& 0.0071

\hline \& \& tavg_BN \& 0.0201 \& 0.0101 \& 0.0065 \& 0.0050 \& 0.0042 \& 0.0038 \& 0.0036 \& 0.0034 \& 0.0033 \& 0.0032

\hline
\end{tabular}

Table 13: Computational results obtained by algorithms M and algorithm $B N$ on $T T(250, B, \Delta)$

Table 14: Computational results obtained by algorithms M and algorithm $B N$ on $T T(500, B, \Delta)$

3 Exact algorithms

In this section we tested two exact algorithms for BPPC to see if we could get optimum solutions in a reasonable time on the instances of our test bed. Precisely, we compare the results obtained by solving the arc-flow formulation generated by the Vector Packing Solver (VPS for short) by Brandão and Pedroso (2016), available at Brandão (2016), and the formulation \mathcal{F}_{2} presented in Appendix A. Brandão and Pedroso (2016) apply VPS to instances with $B=150$, only. When we applied it to instances with values of $B \neq 150$, we noticed that its computing time and its percentage of unsolved instances rapidly increase for increasing B. For this reason we decided to solve \mathcal{F}_{2}, a classical BPPC formulation, and compare its results with those of VPS. Both formulations, coded in C++, are solved with Cplex 12.6 on an Intel Xeon E5620 2.40GHz with 40 GB RAM under a Linux operating system. In particular, for the formulation \mathcal{F}_{2}, we set $U B=n$ and $L B=0$. Due to the high running times, we had to limit ourselves to consider only the first ten instances of $\operatorname{TI}(n, B, \Delta), \operatorname{TM}(n, B, \Delta)$, $T S(n, B, \Delta), T T(n, B, \Delta)$, and to set a time limit of 600 seconds for each formulation on each instance.

In each table rows are indexed by Δ and columns by B. In each cell there are up to four values:

- TimeX denotes the time (in seconds, rounded to the first digit) required to generate and solve to optimality the formulation X, with $X \in\left\{V P S, \mathcal{F}_{2}\right\}$ on one instance, averaged over the solved instances, only;
- $\neg \mathrm{OptX}$ denotes the percentage of instances which X was unable to solve within the time limit, with $\mathrm{X} \in\left\{V P S, \mathcal{F}_{2}\right\}$. A " - " in a cell indicates that none of the ten instances was solved to optimality because the time limit was exceeded. An empty space in a cell indicates that all the ten instances were solved to optimality (an entire row of empty spaces was removed from the table).

Denote by t_{X}, q_{X} the computing time of formulation X, for $X \in\left\{V P S, \mathcal{F}_{2}\right\}$, averaged over the solved instances, and its percentage of unsolved instances within the time limit, and let $t_{X}\left(1-q_{X}\right)+600 q_{X}$ be a lower bound on the computing time averaged over solved and unsolved instances. We say that formulation A outperforms formulation B when i) $t_{A} \leq t_{B}$ and $q_{A} \leq q_{B}$ (see $T I(120,210,0.2)$), or when $i i) t_{A}\left(1-q_{A}\right)+600 q_{A} \leq t_{B}\left(1-q_{B}\right)+600 q_{B}$ (see $T I(120,180,0.1)$). In each cell the approach which outperforms the other one is highlighted in grey.

In the following, the computational results of the exact procedures for different values of n are shown. Click here to view computational results on TI's instances, here for the ones on the TM's instances, here for the TS's and here for the TT's.

			B ${ }^{\text {B }}$									
			120	150	180	210	240	270	300	330	360	390
Δ	0	TimeVPS	2.04	6.28	12.38	18.77	31.03	48.90	68.71	126.11	190.38	221.24
		$\neg \mathrm{OptVPS}$ Time \mathcal{F}_{2}	$\begin{gathered} 90.81 \\ \hline 0.0 \end{gathered}$	100\%	100\%	100\%	100%	100%	100\%	100%	$\begin{gathered} 418.90 \\ 90 \% \end{gathered}$	$\begin{gathered} 10 \% \\ - \\ 100 \% \end{gathered}$
	0.1	TimeVPS										
		\rightarrow OptVPS	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		Time \mathcal{F}_{2}	119.73	-	-		-	-	447.70	535.76	472.37	405.40
		$\neg \mathrm{Opt} \mathcal{F}_{2}$	10\%	100\%	100\%	100\%	100\%	100\%	90\%	70\%	70\%	40\%
	0.2	TimeVPS		-						-	-	-
		\rightarrow OptVPS	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		Time \mathcal{F}_{2}	106.70	-	-	-	-	-	-	499.24	448.13	379.24
		$\neg \mathrm{Opt} \mathcal{F}_{2}$	10\%	100\%	100\%	100\%	100\%	100\%	100\%	90\%	60\%	40\%
	0.3	TimeVPS	305.41	-	-	-	-	-	-	-	-	-
		\rightarrow OptVPS	50\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		Time \mathcal{F}_{2}	130.79	-	-	-	-	-	37.80	16.45	16.55	16.60
		$\neg \mathrm{Opt} \mathcal{F}_{2}$	10\%	100\%	100\%	100\%	100\%	100\%	30\%			
	0.4	TimeVPS	151.30	-	-		-	-	-	-	-	-
		\neg OptVPS		100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		Time \mathcal{F}_{2}	120.65	-	-	110.99	20.30	20.45	20.37	20.38	20.35	20.67
		$\neg \mathrm{Opt} \mathcal{F}_{2}$	10\%	100\%	100\%	80\%						
	0.5	TimeVPS	61.74	423.58							-	
		\rightarrow OptVPS		90\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
		Time \mathcal{F}_{2}	121.16	-	41.77	23.01	23.14	23.48	23.30	23.20	23.47	23.43
		$\neg \mathrm{Opt} \mathcal{F}_{2}$	10\%	100\%	30\%							
	0.6	TimeVPS	17.50	72.88	134.58	234.46	317.47	369.83	368.22	334.63	308.13	259.03
		Time \mathcal{F}_{2}	126.75	28.79	27.39	26.80	26.98	26.97	26.80	26.97	27.07	26.93
		$\rightarrow \mathrm{Opt} \mathcal{F}_{2}$	20\%	30\%								
	0.7	TimeVPS	8.02	15.31	23.66	30.41	33.63	34.39	33.76	32.88	32.00	30.98
		Time \mathcal{F}_{2}	38.64	29.87	30.06	29.48	29.40	29.92	29.38	29.19	29.57	29.51
		$\neg \mathrm{Opt} \mathcal{F}_{2}$	10\%									
	0.8	TimeVPS	5.03	7.82	9.89	10.68	10.87	10.60	10.39	10.28	9.99	9.85
		Time \mathcal{F}_{2}	31.34	30.98	30.86	30.42	30.32	30.69	30.55	30.41	30.60	30.75
	0.9	TimeVPS	3.11	4.66	5.65	5.86	5.77	5.62	5.53	5.44	5.42	5.23
		Time \mathcal{F}_{2}	29.00	29.68	29.95	29.51	29.90	30.06	29.53	29.34	29.52	29.52

Table 15: Computational results obtained by VPS and \mathcal{F}_{2} on $T I(500, B, \Delta)$

Table 16: Computational results obtained by VPS and \mathcal{F}_{2} on $T M(120, B, \Delta)$

Table 17: Computational results obtained by VPS and \mathcal{F}_{2} on $T S(120, B, \Delta)$

Table 18: Computational results obtained by VPS and \mathcal{F}_{2} on $T T(500, B, \Delta)$

A General ILP formulation for BPPC

BPPC on arbitrary conflict graphs $G=(V, E)$ is usually formulated in this way (Gendreau et al. (2004); Fernandes Muritiba et al. (2010); Sadykov and Vanderbeck (2013)), where $x_{i j}=1$ if item i belongs to subset V_{j} and 0 otherwise, for $i=1, \ldots, n$ and $j=1, \ldots, n$, and $y_{j}=1$ if subset $V_{j} \neq \varnothing$ and 0 otherwise, for $j=1, \ldots, n$.

$$
\begin{array}{rll}
\mathcal{F}_{1}: \min & \sum_{j=1}^{n} y_{j} & \\
& \sum_{j=1}^{n} x_{i j}=1 & i=1, \ldots, n \\
& \sum_{i=1}^{n} w_{i} x_{i j} \leq B y_{j} & j=1, \ldots, n \\
& x_{i j}+x_{k j} \leq 1 & \forall(i, k) \in E \text { and } j=1, \ldots, n \tag{3}\\
& x_{i j} \in\{0,1\} & i=1, \ldots, n \text { and } j=1, \ldots, n \\
& y_{j} \in\{0,1\} & j=1, \ldots, n
\end{array}
$$

Assignment constraints (1) can be also written as $\sum_{j=1}^{n} x_{i j} \geq 1$ for all i. Constraints (2) are the classical capacity constraints and force variable $y_{j}=1$ when the corresponding bin is non-empty, and constraints (3) are the classical conflict constraints.

The formulation can be strengthened in several ways:
i) Constraints (3) can be replaced by the clique constraints: $\sum_{i \in C} x_{i j} \leq 1$ for all the maximal subsets C of vertices inducing a complete subgraph. This is particularly convenient when the graph allows to easily compute all the maximal subsets C of vertices inducing a complete subgraph. We remark that when G is an interval graph all the maximal subsets C of vertices inducing a complete subgraph can be computed in linear time;
ii) Both versions of constraints (3) can be strengthened by replacing the right hand side by y_{j};
iii) To break the symmetries, one can add the constraints $y_{j+1} \leq y_{j}$ for $j=$ $1, \ldots, n-1$;
$i v)$ To reduce the number of the x variables, one can define $x_{i j}$ for $i=1, \ldots, n$ and $j=1, \ldots, \min \{i, n\}$, only.
v) Let W be a subset of vertices inducing a complete subgraph of maximum size and H be the subset of vertices with weights greater than $B / 2$. If $|W| \geq|H|$ then set $A:=W$, otherwise set $A:=H$. W.l.o.g. rename the items in such a way that the items in A are the first ones in the new ordering. Then, to break symmetries, one can add to the formulation the constraints $x_{i i}=1$ for $i=1, \ldots,|A|$.
vi) If one knows a lower bound ($L B \geq|A|$) on the value of the objective function for a given instance, then w.l.o.g. one can fix $y_{j}=1$ for $j=1, \ldots, L B$, and if one knows an upper bound (UB), then w.l.o.g. one can fix $y_{j}=0$ for $j=U B+1, \ldots, n$.

The resulting formulation \mathcal{F}_{2} is the following:

$$
\begin{array}{ll}
\mathcal{F}_{2}: \min & \sum_{j=L B+1}^{U B} y_{j}+L B \\
& \\
x_{i i}=1 & i=1, \ldots,|A| \\
& x_{i j}=0 \\
& \sum_{j=1}^{\min \{i ; U B\}} x_{i j}=1
\end{array} \quad i=1, \ldots,|A|, \quad j=1, \ldots, U B, \quad i \neq j
$$

References

T. Bacci and S. Nicoloso. A heuristic algorithm for the bin packing problem with conflicts on interval graphs. arXiv:1707.00496 [math.CO], 2017.
F. Brandão. Brandão BPPC website, 2016. URL http://vpsolver.dcc.fc.up.pt/.
F. Brandão and J. P. Pedroso. Bin packing and related problems: General arcflow formulation with graph compression. Computers \mathcal{E} Operations Research, 69:56-67, 2016.
E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics, 2:5-30, 1996.
A. E. Fernandes Muritiba, M. Iori, E. Malaguti, and P. Toth. Algorithms for the bin packing problem with conflicts. INFORMS Journal on Computing, 22(3): 401-415, 2010.
M. Gendreau, G. Laporte, and F. Semet. Heuristics and lower bounds for the bin packing problem with conflicts. Computers \mathcal{E} Operations Research, 31:347-358, 2004.
D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences, 8:272-314, 1974.
R. Sadykov and F. Vanderbeck. Bin packing with conflicts: a generic Branch-and-Price algorithm. INFORMS Journal on Computing, 25(2):244-255, 2013.

[^0]: *IASI - CNR, Via dei Taurini 19, 00185 Roma, Italia
 †tiziano.bacci@iasi.cnr.it
 \ddagger sara.nicoloso@iasi.cnr.it

