CONCEPT SIMILARITY IN SYMONTOS: AN ENTERPRISE ONTOLOGY MANAGEMENT TOOL

R. 554 Settembre 2001
Abstract

The possibility of assessing the similarity between concepts is growing in importance. Among the primary reasons, there is the development of the *Net Economy* that requires a high level of computer support and flexibility in doing business. In business transactions, *similarity* plays an important role. It is constantly used whenever a certain good or service is not available with the required characteristics. Then a substitute may be accepted, as far as it is sufficiently close to what was originally required. In this paper we propose a method for evaluating concept similarity. The work has been performed within the *SymOntos* project concerning the development of a symbolic ontology management system, where concepts are defined in accordance with a frame-oriented approach.

Keywords: *Enterprise Ontologies, Concept Similarity, Symbolic Ontology Management Systems.*
1. Introduction

The possibility of assessing the similarity between concepts is growing in importance. Among the primary reasons, we may cite the development of the so called Net Economy, that requires flexibility in doing business and the possibility of co-operation for national and international organizations, creating unplanned, often temporary, partnerships. In business transactions, similarity plays an important role. Flexibility requires enterprises to be able to cope with (often unexpected) different situations with respect to what originally planned. For instance, in an e-procurement transaction may be the case that the required good is not available with the desired characteristics (e.g., with the expected price, quality, or delivery date), therefore the production plan must be adjusted to use a "similar" part, although not exactly the one originally planned. (If the new part is "very similar", the production plans do not need to be adjusted.) A similarity evaluation method is also required in different areas, such as ontology integration, integration of multiple heterogeneous information sources for mediation and data warehousing, virtual enterprises, component-based information systems development. It is also important in another, very different, context, such as tourism services. When you start planning an holiday, it is very difficult to find exactly what you are looking for. Often, it is necessary to accept an hotel somehow close to the original choice (but not exactly), a flight with different dates or price. Again, similarity reasoning appears to be a fundamental activity, although we often establish a similarity threshold, below which we simply decide to stop since the trip is no more what we originally wanted.

On a more general ground, similarity reasoning, like taxonomic reasoning [3], represents one of the key mechanisms that humans use in order to organize their thoughts and plan their actions. However, similarity is a notion very difficult to be precisely and exhaustively defined. Objects can be similar from certain points of view and very different from others. According to [20], if we consider (the notion of) a pig, a donkey, and a car, the first two exhibit a greater affinity being both animals but, in another perspective, the last two are similar as vehicles. The first similarity is due to a natural affinity, the second to a functional affinity. In this paper we consider concept similarity from an informational point of view. Given two concepts, e.g. car and truck, with their respective definitions, we would like to have a method to assess their similarity. In e-commerce, the e-procurement is performed automatically by machines, then a similarity reasoning facility would be extremely useful in performing automatic transactions [30].

The work presented in this paper is a first solution that has been adopted in SymOntos [29], an enterprise ontology management system developed at LEKS (Lab for Enterprise Knowledge and Systems), IASI-CNR, within two European projects, namely FETISH (Federated European Tourism Information System Harmonization) and, currently, Harmonise. SymOntos is based on the OPAL (Object, Process, Actor Language) methodology [15], that allows concepts to be defined according to a frame-oriented approach. Notice that Frame Theory is a paradigm for representing real world knowledge, originally introduced by Minsky in [25], from which numerous research tracks on intelligent systems originated, such as Natural Languages and Recognition [10], Hybrid Systems [6], Object-Oriented Languages [21], ISA-hierarchies and subsumption [7], F-Logic [22].

1.1. The Knowledge Representation Method

According to OPAL, an ontology is constructed by defining a set of concepts and establishing semantic relations among them. OPAL supplies a set of predefined concept categories (referred
to as *metaconcepts*) and semantic relations that form the OPAL framework. The definition of a domain concept takes place by filling a concept template (conceived according to a frame-slot approach), supplying first the OPAL category it belongs to, then filling of the specified slots. The OPAL concept categories on which we focus in this paper are: *Actor*, *Object*, and *Process*.

- **Actor**: this metaconcept allows the ontology engineer to define the active concepts of the domain (e.g., *Customer* or *Travel_Agency*). A concept of this category is able to activate or perform one or more processes;

- **Object**: this metaconcept is used to model passive concepts, on which processes operate (e.g., *Flight_seat*, *Hotel_room*);

- **Process**: this metaconcept is used to model activities, that are performed to achieve actors’ goals (e.g., *Hotel_room_reserving*, *Flight_booking*).

Therefore, according to OPAL, a SymOntos concept is defined by specifying, besides the label and a description (*d*) in natural language, the following slots:

- **Kind** (*k*) - that specifies the category of the concept being defined (i.e., *Actor*, *Object*, or *Process*);
- **Broader** (*B*) - that gathers a set of references to more general concepts;
- **Part** (*Pa*) - that gathers a set of references to concepts representing components;
- **Related** (*R*) - that gathers a set of references to related concepts;
- **Predicate** (*Pr*) - that gathers a set of references to concepts that can be seen as attributes;
- **Similar** (*S*) - that gathers a (possibly empty) set of terms that represent similar concepts. Each term is associated with a *similarity degree* (a positive decimal less or equal to 1.0. In the latter case we have a synonym).

Example 1.1. Below a SymOntos concept is shown, whose label is *GuestHouse*, that is defined as follows:

```
GuestHouse := (
    d = "Private house where accommodation and in most cases breakfast are provided",
    k = Object,
    B = \{Accommodation\},
    Pa = \{DiningRoom\},
    R = \{Customer, Breakfast\},
    Pr = \{Price\},
    S = \{(Hotel,0.7)\}
)
```

It is important to note that the *similarity degree* is not judged by the user but it is established, by means of a Consensus System [26], by a panel of experts in a preliminary phase. We will refer to it as *tentative similarity* (*tsim*), to distinguish it from *concept similarity* (*csim*), that

1Notice that, the examples provided in this paper have been taken from the tourism domain. In particular, with regard to the descriptions of the tourism concepts, we considered the work developed in [13], within the FETISH European Project.
is evaluated on the basis of the concept structure and is only partially influenced by $tsim$.
The above concept structure allows a complex semantic net [6] to be defined. A few interesting
subgraphs can be identified. One is the inheritance hierarchy, constructed by means of the
Broader declarations; another is the similarity graph, constructed by means of the Similar
declarations. The remaining sections of a concept definition (i.e., Part, Related, and Predicate)
represent the structural form, since they determine the information structure of the related
instances. The aim of this work is to use (i) the inheritance hierarchy, (ii) the similarity graph,
and (iii) the concept structural forms to derive the concept similarity $csim$.

1.2. The Essence of the Proposed Method

The proposed method is divided in two phases. The first is a preparation phase, where the
concepts are pre-elaborated, in order to make their structures fully explicit. The second is the
evaluation phase, where concept similarity is actually computed.

Phase 1 - Expanding the ontology
In this phase, the goal is to analyze the concept definitions to build two graphs. The first is the
inheritance graph (indeed, a Directed Acyclic Graph - DAG - if it is correctly defined), built
starting from the Broader section of the concept definitions, that organizes the ontology concepts
according to a generalization hierarchy. In this phase, the inheritance process is performed,
therefore the structural sections of concept definitions (i.e., Part, Related, and Predicate) are
augmented with the concept labels inherited from more general concepts (for a full treatment
of structural inheritance, please refer to [2]). This operation is referred to as "expansion".

The second is the similarity graph, built starting from the Similar slot, where nodes are
concepts and arcs are labeled with their tentative similarity degree. Since similarity enjoys the
reflexive, symmetric, and transitive properties, the similarity graph is obtained starting from
the original definitions (referred to as signature for similarity) and operating the reflexive,
symmetric, and transitive closure.

The output of this phase is an expanded (i.e., all the definitions have been expanded exploiting
inheritance) set of concepts and two graphs: inheritance DAG and similarity graph.

Phase 2 - Deriving concept similarity
Starting from the ontology transformed according to the previous phase, concept similarity
is evaluated by using their expanded structure. In our approach we consider four notions of
similarity. The first is the tentative similarity ($tsim$) declared in the concept definition. Then,
we have the following:

- **Flat structural similarity (fss)** - This is computed by analyzing the three structural
 slots (Pa, R, Pr) and evaluating the similarity of every concept referred therein.

- **Hierarchical structural similarity (hss)** - This sort of similarity only pertains to concept
 pairs that are hierarchically related. It is computed starting from the flat structural
 similarity (fss) defined above, by taking into consideration a further element related to
 the hierarchical relationship. In particular a factor, that represents the probability for an
 instance of the more general concept to be also an instance of the specialized concept, is
 introduced.

- **Concept similarity ($csim$)** - This is the final figure that is produced by combining the
structural similarity (either flat or hierarchical, depending on the case) and the tentative similarity supplied in the original concept definition.

The rest of this paper is organized as follows. In Section 2 the preliminary definitions of SymOntos concept and ontology, with the related notions of structural forms, are given. This allows us to formally address, in Section 3, Phase 1 by defining the structures (essentially, the ontology in expanded form, the inheritance DAG, and the similarity graph) on which the similarity evaluation analysis is performed. In Section 4 the actual method is described, with the steps of Phase 2 that allow the three mentioned kinds of similarities (fss, hss, $csim$) to be derived. Successively, the Related Work Section is given, followed by Section 6, where the conclusion and future lines of research are mentioned.

2. Formal Basis

In SymOntos, the fundamental modeling notion is that of a concept, specified by a concept expression. A concept expression has a left hand side, that is the identifying label of the concept (essentially, its name), and a right hand side, the concept definition, that specifies the structure of the concept. For instance, Hotel and Customer are concept labels. Below, the notion of a SymOntos concept is formally introduced.

Definition 2.1. [SymOntos concept] A SymOntos concept (concept for short) is a concept expression:

\[
c := (d,k,B,Pa,R,Pr,S)
\]

where the left hand side, i.e. c, is a label that uniquely identifies the concept, whereas the right hand side, that is the concept definition, is a 7-tuple defined as follows:

- d is a string expressing the description (i.e., the intuitive meaning) of the concept name, in natural language;
- k is the kind of the concept (i.e., its category, such as Actor, Object, or Process);
- B is the set of the names of the Broader concepts of c, i.e., labels denoting generalizations of c;
- Pa is the set of the names of the concepts that represent components (Part) of c;
- R is the set of the names of the concepts that are somehow Related to c;
- Pr is the set of the names of the concepts that in Predicate relation with c, i.e., denoting attributes of the concept being defined;
- S is the set of pairs $\langle b, tsim \rangle$ where b is the name of a concept that is Similar to c, and $tsim$ is a decimal number in the interval $[0.0 \ldots 1.0]$ standing for the tentative similarity degree.

Notice that, in the cases where confusion may arise, the components of the 7-tuple and the similarity degree will be properly indexed with the names of the related concept. For instance, the k element will be marked as k_c, and the similarity degree between the concepts c and b will indicated as $tsim_{c,b}$.

We present now the notion of a SymOntos ontology.
Definition 2.2. [SymOntos ontology] A SymOntos ontology (ontology for short) O is a set of interrelated SymOntos concepts. In particular, if T_O is the set of all the concept labels appearing in O, then it is partitioned by the sets N_O and W_O, i.e.:

\[T_O = N_O \cup W_O \]
\[N_O \cap W_O = \emptyset \]

where N_O is the set of concept labels that are left hand sides of concept expressions in O, and W_O is the set of all the remaining terms appearing in O that are referred to as known words of the ontology.

Known words represent "boundary concepts" that are intentionally left undefined, i.e., they denote concepts that do not belong to the application domain that is modeled, but are used in some definitions.

A concept label is referred to as a reference when it is defined in the right hand side of a concept expression, that is, it is used in a concept definition.

Example 2.1. Consider the concept GuestHouse previously defined, together with the following two concepts:

- **Accommodation**:
 \[
 \begin{align*}
 d &= \text{"A place where at least sleeping and sanitary facilities are provided"}, \\
 k &= \text{Object}, \\
 B &= \{\}, \\
 Pa &= \{\text{Room}\}, \\
 R &= \{\text{Country}\}, \\
 Pr &= \{\text{NofRooms}\}, \\
 S &= \{\langle \text{Hotel},0.8 \rangle\}
 \end{align*}
 \]

- **RuralHouse**:
 \[
 \begin{align*}
 d &= \text{"GuestHouse in the countryside"}, \\
 k &= \text{Object}, \\
 B &= \{\text{GuestHouse}\}, \\
 Pa &= \{\text{Court}\}, \\
 R &= \{\text{RusticLand}\}, \\
 Pr &= \{\text{NofRecrServ}\}, \\
 S &= \{\}
 \end{align*}
 \]

This is a very simple example of ontology where, for instance, Customer (in the concept definition of GuestHouse) and Court (in the concept definition of RuralHouse) are known words, i.e., they are not left hand sides of any concept expressions, and Hotel, in the Accommodation concept definition, is a reference.

Indeed, we are not interested in any ontology, rather in the ontologies that satisfy some formal properties, also referred to as correct ontologies. Such a notion, that will be formally introduced in Section 3, is based on some properties defined over the structure of the concepts and, in particular, on the mutual references that the concepts of the ontology exhibit.
To this end, below we start by addressing the notion of a *structural form* of a concept, that consists of components (\(Pa\)), associations (\(R\)), and attributes (\(Pr\)) of a concept definition. Since we focus on structural similarity, such a notion is fundamental in computing concept similarity, as defined in Section 4.

Definition 2.3. [Structural form of a concept] The *structural form* of a concept \(c\) is the concept expression whose name is indicated as \(c^−\) and whose definition is given by the three structural slots \(Pa, R,\) and \(Pr\) of \(c\), i.e.:

\[
c^− := (Pa,R,Pr)
\]

Example 2.2. For instance, the structural form of the *GuestHouse* concept of the Example 1.1 is defined as follows:

\[
\text{GuestHouse}^− := (Pa = \{\text{DiningRoom}\},
R = \{\text{Customer, Breakfast}\},
Pr = \{\text{Price}\})
\]

In the following, given an ontology \(O\), the set of the structural forms of the concepts defined in \(O\) will be denoted as \(O^−\).

The slots of a concept definition that are not present in the structural form, i.e. \(B\) and \(S\), are used to define the *signature for inheritance* and *signature for similarity* of the structural form of an ontology, respectively, as defined below. Notice that the notion of a signature for inheritance has been originally introduced in [1]. In this paper, such a notion will be used in accordance with [2], where it represents the \(DirectDesc\) relation (i.e., the relation among a concept and its immediate specializations).

Definition 2.4. [Structural form of an ontology] Given an ontology \(O\), let \(O\) be the triple \((O^−, \Sigma_O, \Gamma_O)\), where \(O^−\) is the set of structural forms of the concepts in \(O\), and \(\Sigma_O, \Gamma_O\) are two relations defined as follows:

- \(\Sigma_O\) is a set of ordered pairs defined according to the inheritance hierarchy (the sets of broader concepts) of \(O\) as follows:

\[
\Sigma_O = \{(d, c) \mid c, d \in T_O \text{ and } d \in B_c\};
\]

- \(\Gamma_O\) is a set of ordered triples defined according to the sets of similar concepts of \(O\) as follows:

\[
\Gamma_O = \{(c,d,tsim) \mid c, d \in T_O \text{ and } (d,tsim) \in S_c\}.
\]

Then, \(O = (O^−, \Sigma_O, \Gamma_O)\) is the structural form of the ontology \(O\), where \(\Sigma_O\) and \(\Gamma_O\) are referred to as the *signature for inheritance* and *signature for similarity* of \(O\), respectively.

Example 2.3. For instance, suppose to enrich the ontology given by the concepts of the Examples 1.1, 2.1 with the further concepts:

- \(FarmHouse := (\)
 - \(d = "\text{GuestHouse located on an operating farm}"\),
 - \(k = \text{Object}\),
 - \(B = \{\text{GuestHouse}\}\),
\(Pa = \{ \text{Dairy} \} \),
\(R = \{ \text{Countryside, Milk, Cheese} \} \),
\(Pr = \{ \text{Nof Animals} \} \),
\(S = \{ \} \)

- \(\text{Hotel} := (\)
 \(d = \) "Establishment with reception, services and additional facilities where accommodation and in most cases meals are provided",
 \(k = \text{Object} \),
 \(B = \{ \text{Accommodation} \} \),
 \(Pa = \{ \text{Restaurant} \} \),
 \(R = \{ \text{Tourist, CreditCard} \} \),
 \(Pr = \{ \text{Cost, NofCreditCards} \} \),
 \(S = \{ \} \)

- \(\text{GrandHotel} := (\)
 \(d = \) "Hotel where accommodation is provided in rooms or suites",
 \(k = \text{Object} \),
 \(B = \{ \text{Hotel} \} \),
 \(Pa = \{ \text{Suite, SwimmingPool} \} \),
 \(R = \{ \text{Limousine, Airline} \} \),
 \(Pr = \{ \text{NofSuites, LimoService} \} \),
 \(S = \{ (\text{Hotel},0.9) \} \).

The structural form of this ontology is given by the structural forms of the concepts in it defined, and the signatures for inheritance and similarity graphically represented in Figures 1, and 2, respectively. Notice that the evaluation of the similarity degrees between, for instance, \(\text{GuestHouse} \) and \(\text{GrandHotel} \), or \(\text{GrandHotel} \) and \(\text{Accommodation} \), will be addressed in the next section.

\[\square \]

3. Correct Ontology

In this section the conditions that an ontology has to satisfy to be correct are presented. As we will see, the notion of a correct ontology concerns the signatures for inheritance and similarity
3.1. Formal Properties about Term Similarity

In this subsection a few definitions concerning the similarity among a general set of terms (i.e., concept labels, defined or undefined) are given.

Definition 3.1. [Tentative similarity] Given a set of terms \(T \), the tentative similarity (similarity for short) is a relation on \(T \times T \times [0.0...1.0] \) where, if \(\langle c_i, c_j, \text{tsim}_{i,j} \rangle \in T \times T \times [0.0...1.0] \), the decimal number \(\text{tsim}_{i,j} \) is referred to as the tentative similarity degree.

Below, the notions of reflexive, symmetric, and transitive similarity are given, together with their closures.

Definition 3.2. [Reflexive Similarity] A similarity \(S \) on \(T \times T \times [0.0...1.0] \) is reflexive if and only if:
\[
\forall c_i \in T \Rightarrow \langle c_i, c_i, \text{tsim}_{i,i} \rangle \in T \text{ and } \text{tsim}_{i,i} = 1.0.
\]
Furthermore, given two similarity relations \(S \) and \(R \) on \(T \times T \times [0.0...1.0] \), \(S \) is the reflexive similarity closure of \(R \) if and only if \(S \) is the smallest subset of \(T \times T \times [0.0...1.0] \) such that:
- \(S \) contains \(R \);
- \(S \) is reflexive.

Of course, \(S \) is obtained from \(R \) by adding all the elements \(\langle c_i, c_i, 1.0 \rangle \), for all \(c_i \in T \).

Definition 3.3. [Symmetric similarity] A similarity \(S \) on \(T \times T \times [0.0...1.0] \) is symmetric if and only if:
\[
\forall \langle c_i, c_j, \text{tsim}_{i,j} \rangle \in S \Rightarrow \langle c_j, c_i, \text{tsim}_{j,i} \rangle \in S \text{ and } \text{tsim}_{i,j} = \text{tsim}_{j,i}.
\]
Furthermore, given two similarity relations \(S \) and \(R \) on \(T \times T \times [0.0...1.0] \), \(S \) is the symmetric similarity closure of \(R \) if and only if \(S \) is the smallest subset of \(T \times T \times [0.0...1.0] \) such that:
- \(S \) contains \(R \);
- \(S \) is symmetric.

Of course, \(S \) is obtained from \(R \) by adding all the elements \(\langle c_j, c_i, \text{tsim}_{i,j} \rangle \), for all \(\langle c_i, c_j, \text{tsim}_{i,j} \rangle \) in \(R \).
Definition 3.4. [Transitive similarity] A similarity S on $T \times T \times [0.0...1.0]$ is *transitive* if and only if:

$\forall \langle c_i, c_j, tsim_{i,j} \rangle, \langle c_j, c_h, tsim_{j,h} \rangle \in S \Rightarrow \langle c_i, c_h, tsim_{i,h} \rangle \in S$

where $tsim_{i,h}$ is a value depending on $tsim_{i,j}$, and $tsim_{j,h}$, i.e.:

$tsim_{i,h} = f(tsim_{i,j}, tsim_{j,h})$

such that $tsim_{i,h} \leq tsim_{i,j}, tsim_{j,h}$.

Furthermore, given two similarity relations S and R on $T \times T \times [0.0...1.0]$, S is the *transitive similarity closure* of R if and only if S is the smallest subset of $T \times T \times [0.0...1.0]$ such that:

- S contains R;
- S is transitive.

Of course, S is obtained from R by adding all the elements $\langle c_i, c_h, tsim_{i,h} \rangle$, for all $\langle c_i, c_j, tsim_{i,j} \rangle$, $\langle c_j, c_h, tsim_{j,h} \rangle$ in R.

Notice that the above definition has been conceived in order to give maximum flexibility to the method. In fact, the f function can be defined by the user according to the specific application domain addressed. For instance, in this paper, we assume that:

$f(tsim_{i,j}, tsim_{j,h}) = tsim_{i,j} \ast tsim_{j,h}$

but more sophisticated choices are compatible with the method, e.g., ”fuzzy functions”.

Example 3.1. For instance, in our example, if we assume that $T = T_O$, let R be the similarity represented in Figure 2, i.e.:

$(GuestHouse, Hotel, 0.7)$,
$(GrandHotel, Hotel, 0.9)$,
$(Accommodation, Hotel, 0.8)$.

By adding to it the following triples:

$(GuestHouse, GuestHouse, 1.0)$,
$(GrandHotel, GrandHotel, 1.0)$,
$(FarmHouse, FarmHouse, 1.0)$,
$(RuralHouse, RuralHouse, 1.0)$,
... (for all the concepts names defined in T_O).

we have the reflexive similarity closure of R. Furthermore, by adding:

$(Hotel, GuestHouse, 0.7)$,
$(Hotel, GrandHotel, 0.9)$,
$(Hotel, Accommodation, 0.8)$,

we get the symmetric similarity closure of R.

Notice that the transitive similarity closure of R is R itself, since it is not possible to derive triples by transitivity in it. However, if the transitive similarity closure is applied to the symmetric similarity closure of R, it is possible to derive:

$(GuestHouse, Accommodation, 0.56)$,
$(GrandHotel, Accommodation, 0.72)$,
Therefore, in order to obtain all possible triples that can be derived by transitivity, the symmetric similarity closure will be applied first. This is illustrated in the next subsection.

3.2. Inheritance DAG and Similarity Graph

As already mentioned, the formal definition of a correct ontology is related to some formal properties that the signatures for inheritance and similarity of the ontology have to satisfy. To this end, below the notions of inheritance DAG and similarity graph are first introduced.

Definition 3.5. [Inheritance DAG] Given an ontology O, consider its structural form $O = (O^{-}, \Sigma_{O}, \Gamma_{O})$. Let Σ_{O} be the transitive closure of Σ_{O}. Consider the following conditions:

1. Σ_{O} is antireflexive;
2. Σ_{O} is antisymmetric;
3. $\forall (c,d) \in \Sigma_{O} \Rightarrow k_{c} = k_{d}$, i.e., the concepts have the same kind.

Then, if all the above conditions are fulfilled, Σ_{O} is referred to as the inheritance DAG of O.

In fact, it is well known that the inheritance hierarchy of a set of concepts must be free of cycles and, in particular, the inheritance relation has to be antireflexive, antisymmetric, and transitive, i.e., (T_{O}, Σ_{O}) must be a strict partially ordered set (POSET) [17].

For instance, the transitive closure of the signature for inheritance represented in Figure 1 fulfills all the three conditions given in the previous definition. Then, it is the inheritance DAG of the ontology described in the Example 2.3.

Definition 3.6. [Similarity graph] Given an ontology O, consider its structural form $O = (O^{-}, \Sigma_{O}, \Gamma_{O})$. According to the Definition 2.4, Γ_{O} is a similarity on $T_{O} \times T_{O} \times [0.0...1.0]$. Let Γ_{O} be the transitive closure of the reflexive and symmetric closure of Γ_{O}. Consider the following conditions:

1. $\forall (c,d,tsim_{c,d}) \in \Gamma_{O} \Rightarrow k_{c} = k_{d}$, i.e., the concepts have the same Kind;
2. $\forall c,d \in T_{O}, (c,d, as_{c,d}) \in \Gamma_{O}$, where $as_{c,d}$ is defined as follows:
 $as_{c,d} = tsim_{c,d}$ if $tsim_{c,d}$ is the similarity degree defined in Γ_{O} and it is unique;
 $as_{c,d} = \{ tsim^{i}_{c,d} \}_{Choice}$ in the presence of multiple (transitively derived) similarity degrees defined in Γ_{O};
 $as_{c,d} = 0.0$ otherwise.

If all the above conditions are fulfilled, Γ_{O} is referred to as the similarity graph of O. In particular, $as_{c,d}$ will be referred to as the axiomatic similarity degree of the concepts c,d.

For instance, the transitive similarity closure of the symmetric similarity closure of the signature for similarity represented in Figure 2 is shown in Figure 3.
Notice that in this case, if we consider the symmetric closure of Figure 2, for each pair of concept names the similarity degrees derived by transitivity are unique. Therefore, by extending the graph of Figure 3 with reflexivity, and the triples:

\((\text{GuestHouse}, \text{FarmHouse}, 0.0)\)

\((\text{RuralHouse}, \text{GrandHotel}, 0.0)\)

... (for all pairs not involved in any similarity)

we have the similarity graph of the ontology described in the Example 2.3.

Finally, we have the notion of a correct SymOntos ontology.

Definition 3.7. [Correct ontology] Given an ontology \(O\), consider its structural form \(O = (O^-, \Sigma_O, \Gamma_O)\). Then, the ontology \(O\) is correct iff \(\Sigma_O\) is the inheritance DAG and \(\Gamma_O\) is the similarity graph of \(O\).

If we extend the similarity subgraph of Figure 3 as mentioned above, the ontology of the Example 2.3 is correct.

3.3. Concepts Inheritance

As already mentioned in the Introduction, the goal of the paper is the definition of a method that allows similarity among ontology concepts to be evaluated on the basis of the concept definitions. In order to perform this evaluation, the “expansion” step must be performed. Such a step concerns the inheritance of the concept definitions, a problem widely investigated in literature, see for instance [2]. The inheritance process is a necessary step for the evaluation of structural similarity, since in the structural form of a concept all the concept labels declared in the slots of its ancestors, up in the inheritance DAG of the ontology, must be present. The inheritance process is performed by applying to the ontology concepts the Expand function that will be illustrated in the next subsection. Such a function is a revisitation of the Expand function defined in [2], modified in order to deal with the richer knowledge model used in OPAL to construct concept expressions.

Below, given a correct ontology, the notion of Ancestors of a concept is introduced. Such a notion allows all the concept names that are generalizations of a given concept, up in the inheritance DAG, to be identified.

Definition 3.8. [The Ancestors function] Consider the structural form \(O = (O^-, \Sigma_O, \Gamma_O)\) of a correct ontology with a non-empty inheritance DAG \(\Sigma_O\). Then, the Ancestors (\(A\)) function is defined as follows:

\[A: T_O \rightarrow \wp(T_O),\]
and, given a concept name $c \in T_O$:
\[\mathcal{A}(c) = \{ d \in T_O \mid \langle c, d \rangle \in \Sigma_O \} \]

Notice that, for any $c \in T_O$, the set $\mathcal{A}(c)$ is always finite since T_O is finite and Σ_O is a DAG.

For instance, in our example, we have:
\[\mathcal{A}(\text{RuralHouse}) = \{ \text{GuestHouse}, \text{Accommodation} \} \]

In order to evaluate the similarity among concepts, we have to expand the concept definitions by inheriting all the concept names that are related to the ancestors of the concepts, up in the inheritance hierarchy. To this end, the Expand function is presented below. Such a function, essentially, returns a concept whose structural components are defined as the union of the corresponding components of the ancestor concepts.

Definition 3.9. [The Expand function] Consider the structural form $O = (O^-, \Sigma_O, \Gamma_O)$ of a correct ontology with a non-empty signature for inheritance. Let C_c be the set of all possible concept expressions. Then, the $\text{Expand} \ (\mathcal{E})$ function is defined as follows:
\[
\mathcal{E} : N_O \rightarrow C_c,
\]
and, given a concept name $c \in N_O$:
\[
\mathcal{E}(c) = c' := (R'_c, P_a', P_r')
\]
where:
\[
R'_c = \bigcup_{g \in \mathcal{A}(c)} R_g \cup R_c;
\]
\[
P_a' = \bigcup_{d \in \mathcal{A}(c)} P_a d \cup P_a c;
\]
\[
P_r' = \bigcup_{e \in \mathcal{A}(c)} P_r e \cup P_r c.
\]

Notice that, in the above definition, for a known word $w \in W_O$, the set R_w, $P_a w$, and $P_r w$, are assumed to be empty since they are not concept names known to the ontology.

By using the \mathcal{E} function, we are able to present the notion of expanded form of an ontology. Such a form allows us to present, in the next sections, the method for similarity evaluations.

Definition 3.10. [Expanded form of an ontology] Given an ontology in structural form $O = (O^-, \Sigma_O, \Gamma_O)$, let O' be defined as follows:
\[
O' = \bigcup_{c_i \in N_O} \mathcal{E}(c_i)
\]
where \mathcal{E} is the Expand function defined above. Then, the triple:
\[
O' = (O', \Sigma_O, \Gamma_O)
\]
is the expanded form of the ontology O.

In essence, the expanded form is composed of two signatures (for inheritance and similarity) and the set of concepts in expanded structural form.

Example 3.2. Consider again the Examples 2.1, 2.2. The Expand function applied to the concepts GuestHouse and RuralHouse returns:

- $\text{GuestHouse}' := (\begin{align*}
P_a &= \{ \text{Room}, \text{DiningRoom} \}, \\
R &= \{ \text{Country}, \text{Customer}, \text{Breakfast} \}, \\
P_r &= \{ \text{NofRooms}, \text{Price} \} \end{align*})$
In the following subsections, the three notions of structural similarity are addressed. In all the three cases, they are defined for concepts of a correct ontology in expanded form.

4. Deriving Concept Similarity

As pointed out in the Introduction, the goal of the paper is the definition of a method that allows similarity among ontology concepts to be derived on the basis of their definitions. In this approach, the following three kinds of similarity evaluation are proposed, depending on the definitions of concepts to be compared:

- **Flat structural similarity** degree, for concepts that are not hierarchically related;
- **Hierarchical structural similarity** degree, for concepts that are hierarchically related;
- **Concept similarity** degree, that represents the final concept similarity evaluation, obtained by composing the tentative (axiomatic) similarity and the derived similarity, flat or hierarchical.

We will show that the axiomatic similarity (as) degree, introduced with the similarity graph (see Definition 3.6), plays a fundamental role in all the three kinds of evaluations, not only in the last one.

4.1. Flat Structural Similarity degree

The flat structural similarity (fss) degree is computed on the basis of the expanded structural forms of the concepts and the axiomatic similarity degree defined according to the similarity graph. The method presented in this subsection has been inspired to the maximum weighted matching problem in bipartite graphs, that can be solved in polynomial time [16]. Informally, it is illustrated as follows.

Consider two concepts whose names are \(c_i \), and \(c_j \), and one of the three slots of their structural form, for instance Part (Pa). Then:

- consider the cartesian product \(Pa_{c_i} \times Pa_{c_j} \);
- within the above set, consider all the sets of pairs such that no two pairs in the set share an element. Such sets will be referred to as candidate sets of pairs. For instance, assume that \(Pa_{c_i} \) and \(Pa_{c_j} \) represent a set of boys and a set of girls, respectively, a candidate set of pairs defines a possible set of marriages (when polygamy is not allowed) [16];
- for each candidate set of pairs, consider the sum of the axiomatic similarity degrees of the concept pairs in it;
- the candidate set having the maximal among all the computed sums is chosen.
Therefore, for each slot, elements of c_i are paired with elements of c_j in order to give the maximal sum. The fss of the concepts c_i, c_j is then computed starting from the three maximal values determined for each of the slots Pa, R, and Pr, up to a normalization factor.

Definition 4.1. [The set C_R of candidate sets of pairs] Consider two concepts c_i, c_j of a correct ontology and let R be one of the three concept slots Pa (Part), R (Related), or Pr (Predicate). Let n_R, m_R be the cardinalities of the sets R_{c_i}, R_{c_j}, respectively, i.e. $n_R = |R_{c_i}|$, $m_R = |R_{c_j}|$, and suppose that $n_R \leq m_R$.

Then, the set $C_R(c_i, c_j)$ of candidate sets of pairs is defined by all possible sets of n_R pairs of concept names defined as follows:

$$C_R(c_i, c_j) = \{ \{ (a_1, b_1), \ldots, (a_{n_R}, b_{n_R}) \} \mid a_h \in R_{c_i}, b_h \in R_{c_j}, \forall h = 1, \ldots, n_R, \text{ and } a_h \neq a_k, b_h \neq b_l, \forall k, l \neq h \}.$$

Below the definition of fss between concepts of a given ontology follows.

Definition 4.2. [Flat structural similarity (fss)] Consider a correct ontology in expanded form, $O' = (O', \Sigma_O, \Gamma_O)$.

Then, the flat structural similarity (fss) of two concepts whose names are $c_i, c_j \in NO$ is defined as follows:

$$fss(c_i, c_j) = \sum_{R \in S} \left[\frac{w_R}{m_R} \max_{P \in C_R(c_i, c_j)} \left(\sum_{(a, b) \in P} as(a, b) \right) \right]$$

where $S = \{ Pa, R, Pr \}$ (i.e., R stands for one of the three concept slots defining the structural form of a concept), $C_R(c_i, c_j)$ and m_R are defined as in the previous definition, and $as(a, b)$ is the axiomatic similarity degree of the concept names a, b, as defined according to the similarity graph Γ_O. Furthermore w_R is a weight such that:

$$\sum_{R \in S} w_R \leq 1$$

Notice that $fss(c_i, c_j)$ is always a value between zero and one and, given two concepts c_i, c_j, $fss(c_i, c_j) = fss(c_j, c_i)$.

Example 4.1. In order to provide a more complex example, suppose that the signature for similarity of the Example 2.3 has been extended as shown in Figure 4. Consider the expanded concepts of the Example 3.2, together with the following ones:

- $FarmHouse' := (\text{Pa} = \{\text{Room, DiningRoom, Dairy}\},$
 $\text{R} = \{\text{Country, Customer, Breakfast, Countryside, Milk, Cheese}\},$
 $\text{Pr} = \{\text{NofRooms, Price, NofAnimals}\}$)
• GrandHotel' := (
 Pa = \{Room, Restaurant, Suite, SwimmingPool\},
 R = \{Country, Tourist, CreditCard, Limousine, Airline\},
 Pr = \{NofRooms, Cost, NofCreditCards, NofSuites, LimoService\}
)

Furthermore for sake of simplicity assume that, for any R, \(w_R = \frac{1}{3}\). According to the Definition 4.2, the following holds:

\[
\begin{align*}
 fss(\text{RuralHouse}, \text{FarmHouse}) &= \frac{1}{3} \left(\frac{2}{4} + \frac{3.7}{7} + \frac{2}{7} \right) = 0.64 \\
 fss(\text{RuralHouse}, \text{GrandHotel}) &= \frac{1}{3} \left(\frac{1.8}{4} + \frac{1.9}{6} + \frac{1.9}{5} \right) = 0.40 \\
 fss(\text{FarmHouse}, \text{GrandHotel}) &= \frac{1}{3} \left(\frac{1.8}{4} + \frac{1.9}{6} + \frac{1.9}{5} \right) = 0.38
\end{align*}
\]

where, for instance, for the concepts RuralHouse and FarmHouse the candidate sets of pairs with maximal sum are the following:

\[
\begin{align*}
 \{\langle \text{Room, Room} \rangle, \langle \text{DiningRoom, DiningRoom} \rangle, \langle \text{Court, Dairy} \rangle\} &\in \mathcal{C}_{Pa}(\text{RuralHouse, FarmHouse}) \\
 \{\langle \text{Country, Country} \rangle, \langle \text{Customer, Customer} \rangle, \langle \text{Breakfast, Breakfast} \rangle, \\
 \langle \text{Countryside, RusticLand} \rangle\} &\in \mathcal{C}_{R}(\text{RuralHouse, FarmHouse}) \\
 \{\langle \text{Nof Rooms, Nof Rooms} \rangle, \langle \text{Price, Price} \rangle, \langle \text{Nof Animals, Nof RecreServ} \rangle\} &\in \mathcal{C}_{Pr}(\text{RuralHouse, FarmHouse})
\end{align*}
\]

Intuitively, in order to obtain the maximal sum, it is reasonable to pair the same concept
names, leaving the remaining ones to match each other. For instance, in the case of Related (R), RusticLand has been paired with Countryside rather than Milk or Cheese, since the axiomatic similarity between them is 0.7 rather than 0.0. In the case of Predicate (Pr), NofRecrServ has been paired with NofAnimals since, although their axiomatic similarity is 0.0, the sum of the axiomatic similarity degrees obtained from the other two pairs is maximal.

4.2. Hierarchical Structural Similarity degree

The hierarchical structural similarity (hss) degree is computed for concepts that are hierarchically related. The hss is essentially defined as the fss increased by a value defined according to the inheritance DAG of the ontology. In particular, such a value is computed under specific assumptions that are related to the extentional notion of inheritance, i.e., the distribution of concept instances along the hierarchy. This proposal has been formulated under the following assumptions. In the inheritance DAG:

- the concepts are organized according to a specialization as partition: in the hierarchy, the instances populate the leaves of the DAG, and the population of an intermediate node is the union of the populations of the children (recursively);
- for any concept, the distribution of the instances among the specialized concepts is uniform, i.e., the children are equally populated.

Such assumptions can be easily relaxed by introducing appropriate coefficients that take into account the actual distribution of instances of the different concepts. Very often, especially in e-business, an ontology is related to a database and, therefore, distribution coefficients can be obtained by means of simple data mining operations (a further elaboration on this point is beyond the scope of this paper). Then, the corrector we propose in order to compute the structural similarity of two hierarchically related concepts is given by the specialization probability defined below. It is, essentially, the probability for an instance of a more general concept to be an instance of one of its specialized concepts, under the assumptions above.

Definition 4.3. [Specialization Probability] Consider an inheritance DAG and two concepts c_i, c_j hierarchically related. Let $(c_1, ..., c_n)$ be the path connecting such concepts, where $c_1 = c_i$, that we assume to be more general than c_j, and $c_n = c_j$. Then, if g_h is the outdegree of the concept c_h in the inheritance DAG, for $h = 1...n - 1$, the specialization probability, say $p(c_i, c_j)$, is defined as follows:

$$p(c_i, c_j) = \prod_{h} \frac{1}{g_h}$$

Then, the hss can be defined as follows.

Definition 4.4. [Hierarchical structural similarity (hss)] Consider a correct ontology in expanded form $O' = (O', \Sigma_O, \Gamma_O)$, and two concepts $c_i, c_j \in N_O$ that are hierarchically related (i.e., connected by a path) in the signature for inheritance Σ_O. Then, the hierarchical structural similarity (hss) of c_i, c_j is defined starting from the flat structural similarity $fss(c_i, c_j)$ as follows:

$$hss(c_i, c_j) = fss(c_i, c_j) + (1 - fss(c_i, c_j)) \ast p(c_i, c_j)$$

where $p(c_i, c_j)$ is the specialization probability as defined above.
Example 4.2. For instance, consider the hierarchically related concepts *RuralHouse* and *GuestHouse*. Their flat structural similarity degree is:

\[fss(RuralHouse, GuestHouse) = \frac{1}{3} \left(\frac{2}{3} + \frac{2}{3} + \frac{2}{3} \right) = 0.69 \]

Now, since the outdegree of the node labeled with *GuestHouse* in the inheritance DAG is 2, then \(p(c_i, c_j) = \frac{1}{2} \). Therefore, the hierarchical structural similarity degree between *RuralHouse* and *GuestHouse* is:

\[hss(RuralHouse, GuestHouse) = 0.69 + \frac{1 - 0.69}{2} = 0.84. \]

4.3. Concept Similarity degree

After the introduction of the \(fss \) and the \(hss \) degrees, we are able to define the concept similarity (\(csim \)) degree. Is is essentially given by the average of the axiomatic similarity degree \(as \) and the \(hss \) or \(fss \) degrees, if the concepts are hierarchically related or not, respectively.

Definition 4.5. [Concept similarity (csim)] Consider a correct ontology in expanded form, \(\mathcal{O}' = (O', \Sigma_O, \Gamma_O) \) and two concepts \(c_i, c_j \in N_O \). Then, the concept similarity (\(csim \)) of \(c_i, c_j \) is defined as follows. Assume that:

- \(ss(c_i, c_j) = fss(c_i, c_j) \), if \(c_i, c_j \) are not hierarchically related,
- \(ss(c_i, c_j) = hss(c_i, c_j) \), otherwise.

Then:

\[csim(c_i, c_j) = \frac{ss(c_i, c_j) + as(c_i, c_j)}{2} \]

where \(as(c_i, c_j) \) is the axiomatic similarity degree of the concepts \(c_i, c_j \).

Example 4.3. For instance, in our example, consider the concepts *GuestHouse* and *GrandHotel* that are not related in the inheritance DAG, but they are related in the similarity graph with non-null axiomatic similarity degree. Then:

\[csim(GuestHouse, GrandHotel) = \frac{0.40 + 0.63}{2} = 0.51 \]

since:

\[fss(GuestHouse, GrandHotel) = \frac{1}{3} \left(\frac{4}{3} + \frac{9}{5} + \frac{9}{5} \right) = 0.40. \]

In the case of *RuralHouse* and *FarmHouse* we have two concepts that are again not related in the inheritance DAG, but this time with null axiomatic similarity degree. Therefore:

\[csim(RuralHouse, FarmHouse) = \frac{0.64 + 0.0}{2} = 0.32. \]

Consider now the concept *Hotel*, whose expanded form is:

\[Hotel' := \{
 Pa = \{ Room, Restaurant \},
 R = \{ Country, Tourist, CreditCard \},
 Pr = \{ NofRooms, Cost, NofCreditCards \}
\]

Then, consider *Accommodation* that is hierarchically related to *Hotel*, with non-null axiomatic similarity degree. The following holds:

\[csim(Hotel, Accommodation) = \frac{0.69 + 0.80}{2} = 0.75 \]

since:

\[fss(Hotel, Accommodation) = \frac{1}{3} \left(\frac{2}{3} + \frac{1}{3} + \frac{1}{3} \right) = 0.38 \]

\[hss(Hotel, Accommodation) = 0.38 + (1 - 0.38) \frac{1}{2} = 0.69. \]
Finally, as an example of hierarchically related concepts with null axiomatic similarity degree, consider RuralHouse and GuestHouse, for which the following holds:

\[\text{csim}(\text{RuralHouse}, \text{GuestHouse}) = \frac{0.84 + 0.0}{2} = 0.42. \]

\[\square \]

5. Related Work

Similarity has been tackled in different fields of Computer Science, and a number of significant results are available. Other disciplines, such as Linguistics and Cognitive psychology, have addressed the same problem producing interesting results, but with a limited impact for us, due to the completely different methodological ground [24]. The method proposed in this paper is the result of the analysis of different solutions that are present in the literature, and our aim is to overcome a number of limitations that we found therein. It must be noted that the large majority of existing results have not been conceived in e-commerce and business-to-business interoperability contexts, but rather in data integration for distributed query processing and/or data warehousing [9, 19, 18, 11]. Therefore what we have perceived as a limitation for our aim may be valid for different applications.

The first difference of the proposed approach with respect to existing results is the way we treat similarity between hierarchically related concepts. For instance, in [9, 14] a constant value (specifically 0.5) is associated with any pair of hierarchically related concepts. In our opinion, a constant value does not properly reflect the level of specialization and, on the contrary, it is important to evaluate this coefficient by considering the degree of refinement of the specialized concept: the greater is the refinement, the higher is the distance between the concepts. Therefore, by introducing the notion of hss, we take into account the probability for an instance of a general concept to be also instance of a specialization (e.g., the probability that a vehicle is a car, in a given application domain). We believe that this method produces better results than merely associating a constant factor to any pair of hierarchically related concepts. For instance, instead of axiomatically assigning 0.5 to the pair of concepts (Hotel, Accommodation) of the Examples 2.1, and 2.3, three different values can be derived according to the proposed approach:

(i) the first value, \(fss(\text{Hotel}, \text{Accommodation}) = 0.38 \), takes into account the structures of the concepts and, in particular, the fact that Hotel has, for each slot, a few of concepts that are not present in the corresponding slots of Accommodation;

(ii) the second value, \(hss(\text{Hotel}, \text{Accommodation}) = 0.69 \), is obtained by considering the hierarchy of Figure 1 and, in particular, the outdegree of Accommodation;

(iii) finally, the average of the previous value with the similarity degree axiomatically given in Figure 4 (in this case 0.8) leads to the final result:

\[\text{csim}(\text{Hotel}, \text{Accommodation}) = 0.75. \]

Similarity among hierarchically related concepts has been investigated within Semantic nets and logic-based Knowledge Representation. In [27], where a metric on the power set of nodes in a semantic net has been proposed, the conceptual distance of concepts that are hierarchically related has been defined by considering the length of the shortest path connecting them. Furthermore, in [8] the Semantic-Distance Metric (SDM) has been defined, which is based on weighted paths. In particular, in that paper concepts are connected by hyperonym/hyponym and synonym links. With respect to [27], in this paper the hss allows a more refined similarity evaluation that takes into account not only the distance but also the outdegrees of the concepts in the inheritance hierarchy. With respect to [8], in this work not only synonyms have been considered, but also concepts with similarity degrees strictly lesser than one. Furthermore, ac-
According to the \textit{fss}, in our proposal structural links have also been addressed, such as the ones related to attributes or components.

The second main difference of our proposal with respect to the existing literature is the partitioning of the structural definition of a concept into different slots - essentially, attributes (Pr), parts (Pa), and related (R) concepts - comparing therefore only elements of concept definitions that belong to the same partitions. Conversely, the majority of methods found in the literature consider one kind of slot only, namely property names (i.e., attributes). In particular, in our approach these three slots are addressed separately (since the relationship of a car with the attribute \textit{colour} is inherently different from its relationship with a garage where it is repaired).

In [28], a richer set of distinguishing characteristics has been proposed, that includes both the intentional (classes) and extentional (tokens) levels. However, there are a number of limitations, such as the necessity that two concepts are at the same ISA level to be compared.

On a more technical ground, we did not adopt the popular Dice's function [23], as for instance in [4, 9], that allows concept similarity to be evaluated on the basis of the number of similar concept components divided by the total number of concept components of the two concepts, without explicitly considering in the computation their similarity degree. Therefore, with respect to our approach, such a function introduces a simplification since each similar component counts one, independently of the similarity degree. Analogously, in [12] semantic relatedness (similarity) evaluation is based on the aggregation of the interconnections between concepts, that is, the more properties two concepts have in common, the more closely related they are.

Finally, it is worth mentioning that the \textit{fss} evaluation between concepts defined in this paper can be seen as a form of co-occurrence strategy as defined in [24], for which a SymOntos concept is a context and similarity is established on the basis of the amount of overlap of the contexts. Furthermore, in [5], general forms of distance metrics for the computation of similarity measures have been defined, although with more emphasis on the evaluation of similarity between instances, rather than concepts.

6. Conclusion

In this paper a method for the evaluation of concept similarity has been presented. The problem of concept similarity is a complex one, therefore we addressed it from a specific angle: that of structural similarity. Structural similarity, though being a partial view of a more general problem, represents an important issue in the emerging applications of e-commerce. In fact, the structural aspect of a concept determines the structure of data that commercial institutions exchange in doing business. Another field where structural similarity is relevant is that of information integration in query processing of heterogeneous data sources and data warehousing. Even if we consider the structural components of concepts only, the problem appears quite complex. For this reason, in the paper we did not elaborate on a number of tuning parameters, such as the specialization probability factor.

The similarity evaluation method proposed in this paper has been included in the SymOntos system [29], developed within the European projects \textit{FETISH} and \textit{Harmonise}, aiming at the construction and maintenance of tourism ontologies. The method will be used within various tasks, such as semantic data reconciliation and approximate query processing.
References

