G. Felici, V. Spinelli

GENETIC PROCEDURE FOR OVER-TRAINING CONTROL IN LOGIC MINING

R. 19 Settembre 2009

Giovanni Felici – Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30 - 00185 Roma, Italy. Email: felici@iasi.cnr.it.

Vincenzo Spinelli – ISTAT - Istituto Nazionale di Statistica, Via Tuscolana, 1788, 00173, Rome, Italy (vispelin@istant.it).
Abstract

In this paper we address a classification method and a technique for effectively dealing with the frequent problem of model over-training. The classification method is Box Clustering, a technique designed to produce classification rules in logic form starting from data in numerical form. The central concept of this methodology is that of homogeneous boxes, that, as will become clear in the paper, is often prone to the drawback of producing over-trained classifiers. The extension proposed is based on the formulation of an integer optimization problem that states the proper relations between the classification performances on the training and on the test set. This model is applied to refine the solution obtained with Box Clustering with a standard agglomerative technique, and it turns out to be intractable for classification problems of realistic size and the use of proper heuristics is advisable. For its solution we test the use of a genetic algorithm on different well known benchmark data sets, and show that the method is fast and robust, making it possible to derive more compact system of boxes in the data space with improved performance on test data.
1. Introduction

The development of algorithms for the analysis of data in logic or binary form has been a widely investigated research topic. In this area many successful methods make use of integer programming models and algorithms to find explanation of training data in the form of logic formulas that then provide both an understandable interpretation of the known data and a precise method to classify new data. In this framework, one of the most established methods is the Logical Analysis of Data (LAD), originated in Crama et al. and Hammer [6] and significantly developed since then both from a theoretical and from an applied point of view: an overview of the implementation of LAD and of its applications is presented in [5]. Similar methods are proposed by Felici et al. in [1, 2]. The extension of such logic-based methods to non-logic variables can be obtained by proper transformation of numerical data into logic data, often referred to as discretization or binarization (see for example [3, 4]). The Box Clustering (BC) Technique can be applied to data sets where the variables are numerical or ordered, and extends the logic approach approach without resorting to transformation of the original data [11].

The paper is organized as follows: Section 2 briefly introduces the terminology used in the paper to describe logic data, logic model, and the geometry for BC. In Section 3 we show how the BC approach is potentially exposed to over-training effects. In Section 4 we define an integer optimization problem to eliminate the over-training effect described; we present a genetic-based procedure to solve that optimization problem in Section 5. Finally, in Section 6 we apply this procedure to obtain BC solutions for some standard benchmark data sets used in machine learning, and conclude that the approach is effective and robust.

2. Box Clustering

In this section we briefly summarize the main concept of logic data analysis, referring for convenience to the terminology of [5]. It is assumed that a number of observations are given in the form of n-vectors of Boolean components, and that with each of these vectors an outcome is associated. The outcome is assumed to be binary, and according to its values the observations are usually termed positive (or true), and negative (or false). A dataset is interpreted as a partially defined Boolean function (pdBf), i.e. it is assumed that the outcomes are the values which an unknown Boolean function takes in a certain subset of vertices of the unit cube. A pattern is a logic function based on these Boolean variables, i.e., a product of Boolean variables, possibly complemented. A positive (or negative) pattern is a pattern that takes the value 0 in every negative (resp., positive) point in the dataset, and takes the value 1 in at least some of the positive (resp., negative) points in the dataset. A positive (or negative) theory consists of a set of positive (resp., negative) patterns with the property that in every positive (resp., negative) point of the given dataset, at least one of them takes value 1. The determination of such a Boolean function, that is one of the possible extensions of the pdBf represented by the dataset, is the main task of the LAD method of [5]. In analogy with the concept of (positive or negative) patterns we introduce here the concept of boxes for the logical analysis of numerical data, recalling that this definition can be easily extended to non-real but totally ordered variables. We define a box as a multi-dimensional range delimited by two points: $I(L, U) = \{X \in \mathbb{R}^n \mid l_i \leq x_i \leq u_i \, i = 1, \ldots, n \}$. A box is called positive (or negative) if it includes some positive (resp., negative) training points, but does not include any negative (resp., positive) training points. Positive and negative boxes will also be called homogeneous boxes. For any finite set S of points, we define its box-closure $[S]$ as the intersection of all boxes containing S. Given two boxes $A = [S]$ and $B = [T]$,
we define their join $A \lor B$ to be the box $[S \cup T]$. Such problem is indeed a particular type of clustering with special structures, a research topic that received recent attention (see, for example, the work in [14], where convex cones are considered as basic structures to partition the data space).

When we consider a set of observations, the box clustering problem is to find a system of boxes as a solution of a specific optimization problem taken from a general framework [11]. The constraints of this optimization problem are generally based on the geometrical properties of the boxes, and can be of different types:

- **coverage**: every observation is included in at least one box, and every box includes at least one observation.
- **homogeneity**: all the boxes are homogeneous.
- **spanning**: every box is the box-closure for the set of observations inside the same box.
- **overlapping**: we generally consider four levels of overlapping condition. If homogeneity does not hold, then we have: (a) none, i.e., no overlapping configuration is allowed, and (b) strong otherwise. If homogeneity does hold, then we define other two conditions: (c) mild, i.e., only homogeneous boxes can be overlapped, and (d) weak otherwise.
- **consistency**: every box must contain at least one point not included in another box, and this implies that we must have at most $n \leq |S|$ boxes.
- **saturation**: if we consider a subset of the above mentioned constraints C, we say that set of boxes is saturated if it satisfies all constraints in C and we cannot join any couple of boxes without violating one of the constraints in C. This constraint is generally considered a meta-constraint because it is based on a set of other constraints.

In the literature, the agglomerative approach is a well-established algorithm framework for the local search of a saturated box system satisfying an input set of constraints [9]. A homogeneous box of positive (or negative) points in BC is equivalent to a positive (resp., negative) pattern in [5] and thus a system of positive boxes in BC is equivalent to a positive (resp., negative) theory in LAD. Besides, a well-known BC problem is "the maximum box problem" [8], where the homogeneous box including the highest number of positive (or negative) points is to be found. We can identify this problem in the above described framework by considering (a) homogeneity constraint, (b) box set made by only one box, and (c) the number of points covered by the system of boxes as the objective function to be maximized.

3. Over-training Control

The scheme of a BC-based classifier is shown in Figure 3. It requires four input parameters: (a) a box set BS, (b) the training set Tr, (c) the weight function $w()$, and (d) the point p to classify (i.e., p belongs to the test set Ts). The weight function $w(B, Tr, p)$ assigns a weight to each box $B \in BS$. This weight is the measure of the attraction intensity of B with respect to p. If BS is a set coverage of the observation space, then we can naturally define the weight function as the characteristic function shown in Equation 1.

$$w(B, p) = \begin{cases} 0 & p \in B \\ 1 & \text{otherwise} \end{cases}$$ (1)
If BS is not a set coverage of the observation space, and only the spanning constraint holds, then we can define the weight function as the manhattan distance (see Equation 2), a reasonable metric according to the box geometry defined in Section 2.

\[
w(B, p) = \begin{cases}
0 & p \in B \\
d_1(B, p) & \text{otherwise}
\end{cases}
\]

(2)

If the weight function \(w()\) explicitly depends on \(\text{Tr}\) it can be defined as a gravitational model, where \(w(B, p)\) depends on the mutual position of the point \(p\) and the point of \(\text{Tr}\) contained in \(B\). These three classes for the weight function have a similar behavior for every box: they are positive definite functions and get their minimum value inside the box. The core of the classification schema is the choose-best-index() function. This function choose the index of the box having the best weight (i.e., minimum); we may in general assume that there exists a non-empty subset \(\mathcal{B} \subseteq BS\) such that each box \(B \in \mathcal{B}\) has value equal to the best value. Two exclusive conditions must then be considered:

- the boxes in \(\mathcal{B}\) belong to only one class: the function randomly chooses the index of one of these boxes.
- the boxes in \(\mathcal{B}\) belong to more than one class: the most elementary classification functions return an undefined result; the most sophisticated ones try to find out a group of homogeneous boxes in \(\mathcal{B}\) having the best global weight. If this search has no result then the function returns an undefined result.

The output of the function is the estimated class of the point \(p\). If we consider a dataset \(S = \text{Tr} \cup \text{Ts}\) with \(n\) classes, and then apply the classification function to every point in \(\text{Ts}\), the resulting confusion matrix \(M_c = M_c(\text{Ts}) = \{m_{ij}\}\) can be derived, where \(m_{ij}\) is defined as the number of points having the \(i\)-th class in \(\text{Ts}\) and classified in the \(j\)-th class by the BC classifier. From the definition of \(M_c\) we can always consider \(i, j = 1, \ldots, n + 1\): when \(i, j = n + 1\) we can manage some extreme cases: \(m_{n+1,j}\) is the number of the points having a class in \(\text{Ts}\) not defined in \(\text{Tr}\), and \(m_{i,n+1}\) is the number of the points that the BC classifier can not assign a class. \(M_c\) is univoquely defined by the pair \((\text{classification}, \text{Ts})\), and thus it depends on \((BS, \text{Tr}, w(), \text{choose-best-index})\). From the fact that \(\sum_{i=1,n} m_{ii}\) is the number of the correctly classified observations of \(\text{Ts}\), we can define the error function \(\text{Err}(M_c) = \sum_{i\neq j} m_{ij}\).

Proposition 3.1. If the box set BS satisfies, at least, the constraints \{coverage, homogeneous\} on the point set \(S\), then \(\text{Err}(M_c(S)) = 0\).

Proof:

Let us consider \(p \in S\). If BS is a coverage then there exists \(B \in BS\) such that \(p \in B\); but BS is homogeneous, and this means that \(p\) and \(B\) have the same class. If there is another \(B' \in BS\) then \(B\) and \(B'\) have the same class. Since every BC classifier, based on the schema shown in Figure 3, must rightly classify \(p\), we can conclude that \(\text{Err}(M_c(S)) = 0\).

Proposition 3.2. If \(S = \text{Tr} \cup \text{Ts}\) and BS is coverage and homogeneous for \(\text{Tr}\), then \(\text{Err}(M_c(S)) = \text{Err}(M_c(\text{Ts}))\).

Proof: For every BC classifier, we can check that \(\text{Err}(M_c(S)) = \text{Err}(M_c(\text{Tr})) + \text{Err}(M_c(\text{Ts}))\). From Proposition 3.1, we know that \(\text{Err}(M_c(\text{Tr})) = 0\), and this ends the proof.
The above considerations lead to conclude that every BC-classifier, based on BS with few elementary properties, is exposed to the risk of over-training, a well known situation where the learned model is adapted to noise or non-informative training data with excessive precision resulting in complex models and poor recognition performances on test data. To avoid this situation, we need a method to simplify the logic model and control the error function.

4. The Optimization Problem

Given the box set B and the point set S, for which Proposition 3.2 holds, we can consider the confusion matrix $M_0 = M_c(BS, Ts) = \{m_{ij}^0\}$ and, for every $\emptyset \neq B' \subseteq B$, $M = M_c(B', Ts) = \{m_{ij}\}$, and $l \in [0, 1]^n$. We can then define a l-similarity property for the matrix M with respect to M_0:

$$M \equiv l M_0 \iff \begin{cases} m_{ii} \geq (1 - l_i)m_{0ii} \\ m_{n+1,i} = 0 \end{cases} i = 1, \ldots, n + 1.$$

The condition $M \equiv l M_0$ requires that the classification results of B' in Ts are similar class by class to the results of B. If $\emptyset \neq B' \subset B$ then Proposition 3.2 could not hold for B', and this means that $\text{Err}(M_c(B', Tr)) \geq 0$. For the above considerations, it is meaningful to consider the objective function

$$\Delta(B', Tr, Ts) = |\text{Err}(M_c(B', Tr)) - \text{Err}(M_c(B', Ts))|.$$

As the dimensions of $|Tr|$ and $|Ts|$ may be different, we turn to a size-indendent measure for the errors on a generic set P:

$$\text{Err}'(M_c(B', P)) = \frac{\text{Err}(M_c(B', P))}{|P|}$$

changing accordingly the definition of Δ. From the consideration that B' could be less over-trained than B, it is appropriate to define an optimization problem to search the best B' having this property.

$$\begin{cases} \min \Delta(B', Tr, Ts) \\ s.t. \quad \emptyset \neq B' \subseteq B \\ M_c(B', Ts) \equiv l M_0 \end{cases}$$

(3)

Here we require that a new, smaller set of boxes B' is selected, for which the structure of the confusion matrix on the test set is similar (according to l) to that of the complete set B and where the errors on training and test are as similar as possible.

If we consider the characteristic boolean vector $x = (x_1, \ldots, x_m)$ of B, i.e. $|B| = m$ and $b_i \in B \iff x_i = 1$ then Problem 3 can be equivalently defined:

$$\begin{cases} \min \Delta(x, Tr, Ts) \\ s.t. \quad \sum_{i=1,m} x_i \geq 1 \\ M_c(x, Tr, Ts) \equiv l M_0 \\ x_i \in \{0, 1\} \end{cases}$$

(4)

The condition $\emptyset \neq B'$ is changed into $\sum_{i=1,m} x_i \geq 1$, but if we consider $l_i > 0$ for every i then $\sum_i x_i \geq n \geq 1$, and the constraint always holds. Δ is a positive and bounded function by definition, and in particular $\Delta(x, P_1, P_2) \in [0, 1]$ for every (P_1, P_2). We can then represent the objective function with a barrier formulation as the following one:
7. \[
 f(x, P_1, P_2, l) = \begin{cases}
 \Delta(x, P_1, P_2) & \text{if } M_c \equiv_i M_0 \\
 1 & \text{otherwise}
 \end{cases}
\] (5)

With the above transformations, we formulate an un-constrained version of the optimization problem for the over-training control in BC:

\[
\left\{ \begin{array}{l}
\min f(x, Tr, Ts, l) \\
\text{s.t. } x_i \in \{0, 1\} \quad i = 1, \ldots, m
\end{array} \right.
\] (6)

Problem 6 can be formulated as an Integer Linear Problem with \(n(2m + 1)\) binary variables and \(m(2n + 1) + 2 + n_c\) constraints such that \(|Tr| + |Ts| = n\) and \(n_c\) is the number of classes. This means that it depends quadratically on the size of the BC problem. If we consider a small BC problem, \(m = 1000, n = 100, \) and \(n_c = 2,\) we must define a problem with 200,100 binary variables and 201,004 constraints. Clearly such problem is hard to solve even for small values of \(m\) and \(n;\) for this reason, we resort to a heuristic solution approach, and in particular to a genetic method that appears to be well suited for the purposes of this application.

5. Genetic-based Procedure

In this section we describe the straight-forward application of a genetic search engine to the optimization problem described in the previous section. For this implementation we have chosen the PGAPack software system \([17, 18]\) that presents several interesting features, mentioned below.

A scheme of the algorithm is given in Figure 6; the genetic-based procedure for BC considers \(k\) independent runs of 2-fold cross validations for the chosen combination of parameter values, and is based on four functions: (a) cross-split(), (b) local-search(), (c) genetic(), and (d) \(f()\) (the fitness function). The data-split function randomly splits the input data set \(S\) into 2 parts \((Tr, Ts)\) of fixed size (the size being determined by the pair \((|S|, k)\)), where \(Tr\) is the training set, used to build the BC model, and \(Ts\) is the test set, used for validation. The local-search function is the implementation of the well-known agglomerative algorithm for BC \([8]\).

The genetic function is the implementation of the genetic-based engine to solve the Problem 6, where the fitness function is the objective function of problem 6. The choice PGAPack \(([17, 18])\) is mainly based on three features: (a) it is highly configurable system, (b) there exists a scalar and a parallel version of the engine, and (c) its interface is very simple and easy-to-use. The algorithm in Figure 5 is characterized by steps 6 and 7; these 2 steps, in a standard application or would be replaced by \(d = \text{Err}(BS, Tr, Ts)\). The genetic function, i.e. step 6 in Figure 5, is expanded in Figure 5, where we can see the calls to the PGAPack functions (see \([18]\) for further details).

The function evaluate() is the implementation of the objective function used for the genetic engine. In function genetic(), steps 2-3 define the element of the search space, i.e. a binary vector of length \(nb\). Step 4 define the type of optimization problem, i.e. the minimization of the objective function. Step 5 is the creation of the PGAPack data structure, while step 6 sets the upper bound for the size of the population in each step. Steps 7-8 start the genetic engine, while step 9 cleans all the PGAPack data structures used during the execution. The current version of our genetic-BC system uses the scalar version of the PGAPack system; its parallel version may be deployed in solving larger problems, i.e. more than 10000 observations. The genetic engine has an heavy impact on the final results, as shown later. We have used four parameter sets for each run of the procedure, as shown in Table 5. Such parameters are the main ones that
function overtraining(S, k, P)
{
1 \(\Delta^* = 1; \)
2 Best BS = \emptyset;
3 for(i = 0; i < k; i + +){
4 (Tr, Ts) = data-split(S, k, i);
5 BS = local-search(Tr, P);
6 \(\hat{BS} = \text{genetic}(BS, Tr, Ts, P); \)
7 d = f(\(\hat{BS}, Tr, Ts; \))
8 if(d < \(\Delta^* \)){
9 Best BS = \(\hat{BS}; \)
10 \(\Delta^* = d; \)
11 }
12 }
}

Figure 2: Genetic schema for BC

function genetic(BS, Tr, Ts, P)
{
1 PGAContext * ctx;
2 nb = |BS|;
3 ty = PGA_DATATYPE_BINARY;
4 op = PGA_MINIMIZE;
5 ctx = PGACreate(&argc, argv, ty, nb, op);
6 PGASetPopSize(ctx, P.pop);
 /* P.pop = 1000 */
7 PGASetUp(ctx);
8 PGARun(ctx, evaluate);
9 PGADestroy(ctx);
}

Figure 3: Genetic function genetic()
define the BC method, related with the type of constraints imposed on the system of boxes, on the way the boxes are clustered, and on the method to assign a single element to one of the boxes in the solution. Even if there are other low-level parameters, they are not relevant within the scope of the experiments, and they have been omitted for brevity.

<table>
<thead>
<tr>
<th>Table 1: Summary for parameter sets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlapping</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>(P_1)</td>
</tr>
<tr>
<td>(P_2)</td>
</tr>
<tr>
<td>(P_3)</td>
</tr>
<tr>
<td>(P_4)</td>
</tr>
</tbody>
</table>

6. Experiments

In order to empirically evaluate the efficiency of the procedure described in Section 5 and its use in data analysis, we have applied it to five frequently-used data sets, taken from the repository of the University of California, Irvine (UCI), see [12]: Pima Indian diabetes (\textit{pima}), Congressional voting records (\textit{voting}), Wisconsin Prognostic Breast Cancer (\textit{wpbc}), Image Segmentation data (\textit{segment}), and Waveform Database Generator (\textit{wave}). One further data set, \textit{ictus}, is an unpublished medical archive about the ictus disease. The key parameters of these six data sets are listed in Table 2: columns 2-4 indicate, for each data set, the number of records, of features, and of classes, respectively. Table 2 also indicates the presence/absence of missing values (column 5).

<table>
<thead>
<tr>
<th>Table 2: Summary for considered data sets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data set</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>\textit{wpbc}</td>
</tr>
<tr>
<td>\textit{voting}</td>
</tr>
<tr>
<td>\textit{ictus}</td>
</tr>
<tr>
<td>\textit{pima}</td>
</tr>
<tr>
<td>\textit{segment}</td>
</tr>
<tr>
<td>\textit{wave}</td>
</tr>
</tbody>
</table>

According to the dimension of each data set, we have consider different values for the \(k\) parameter in the cross validation procedure and the \(l\) similarity parameter in the genetic function. The columns 6 and 7 in Table 2 shows our run-time choices for these two parameters. A representative examples of the results obtained is given in n Figure 4, where we show some sequences of solutions found by the genetic engine for \textit{pima}: the black lines are the values of \(\text{Err}'(M_c(B', T'))\), while the gray ones are the values of \(\text{Err}'(M_c(B', T_s))\). At the very first generations of the genetic population, the two groups of lines are very distant (as predicted by Proposition 3.2), but they converge quite rapidly. Similar behaviors are observed for the other data sets. In Figures 5-6 we
can see the performances of the function genetic() by comparing the input BS and the output one. The horizontal axes represents the number of boxes, while the vertical axes the values of the fitness function f (see Problem 6). The black circles are the BC solutions coming out from the local-search function, while the gray ones are the genetic solutions. Many duplicated and/or very similar solutions have appeared during the search, and they have been omitted from the plots. The solid (or dashed) box is the box-closure of the black (respectively, gray) points, and their mutual positions give us some hints for the interpretation of the results:

- The main effect of the genetic engine is to shift the dashed box to the left of the black one, i.e. the genetic solutions must have less boxes than the local-search one. This aspect can be clearly seen in Figure 6.

- The side effect of the genetic engine is to shift the dashed box to the top of the black one, and this means that $\text{Err}(B', Tr \cup Ts) \geq \text{Err}(B, Ts)$, see Figure 5.

![Figure 4: Genetic tracing for pima](image)

6.1. Classification performance

Even if the focus of this work is to analyze the behavior of the genetic function, several considerations can be drawn from the classification performances of the overtraining procedure. We thus consider the mean and standard deviation of the errors over the different experiments. In Table 3 we have summed up the best results for all the data sets. Evidently, it is not possible to define the single best result, but we have focused on the non-dominated points in the planes defined by the number of boxes and the percentage of errors, choosing as best the points that belong to the Pareto set. Columns 2 and 3 are the results of the local-search function, while columns 4 and 5 are the results of the genetic one. In Table 4, we have a statistical analysis of the $\text{result differences}$ for each input data set $S = (Tr, Ts)$: for every run-time parameter sets P, we have chosen, in a hierarchical way, the BS having the minimum error rate and the minimum number of boxes; on these four couples of values, we have evaluate the mean and the standard
deviation of both the number of boxes and the error rate. The results in Table 4 show us that each P_i (Table 5), has an heavy influence on $|BS|$; in other words, $\sigma(|BS|)$ is generally very large, but the error rate is very stable, i.e., $\mu(Err)$ is almost constant and $\sigma(Err)$ is narrow. In general we have witnessed a robust behavior of the genetic-based procedure for all the different data sets considered. The magnitude of the effect of the procedure varies among the different benchmarks, due mainly to the different amount of noise present in the data.

7. Conclusion

In this paper we have proposed a genetic based algorithm to refine the solutions obtained using Box Clustering for supervised classification of non-logic data with logic based models, with the main purpose of eliminating the frequent over-training behavior of such classification tool. The over-training control problem has been formulated as an optimization problem where we constraint the structure of the confusion matrix in a desider way and, moreover, we require the minimal distance between the error on training set and the error on test set. The straight forward formulation of this optimization problem grows in size very rapide with the dimensions of the data analyzed, making it untractable for reasonable applications. For this problem a standard genetic algorithm has proved to find solutions of good quality. The application of the genetic procedure amounts to the selection of a subset of the box set identified by the standard Box Clustering algorithm; such subset is typically smaller that the original one and exhibits improved recognition performances on testing data.
Table 3: Best Results for data sets

Data set		Local Step		Genetic Step		
		BS	$f()$	\hat{BS}	$f()$	
wpbc		8	17.53%	6	18.56%	
voting		63	19.88%	20	16.67%	
		63	19.88%	10	17.54%	
		64	21.64%	23	18.13%	
ictus		36	8.02%	3	7.59%	
		43	12.46%	13	7.02%	
pima		43	15.62%	22	20.44%	
		39	19.01%	12	22.92%	
segment		20	4.55%	14	4.84%	
		31	5.47%	11	7.57%	
wave		97	14.94%	11	17.80%	
		93	16.26%	30	16.30%	
		267	13.04%	109	13.98%	

Table 4: Average Results for data sets

Data set		Number of boxes	Total error				
		k-fold	μ	σ	μ	σ	
wpbc		1	13.00	5.15	19.33%	5.98%	
		2	13.00	4.30	20.11%	4.53%	
voting		1	24.50	7.50	20.47%	1.79%	
		2	22.50	3.04	19.66%	3.77%	
ictus		1	4.75	1.48	8.41%	0.83%	
		2	10.50	1.50	7.52%	0.65%	
pima		1	38.75	16.18	20.05%	0.60%	
		2	38.75	9.91	19.92%	2.01%	
segment		1	24.00	7.45	6.92%	1.35%	
		2	23.75	10.28	6.87%	0.53%	
		3	21.75	4.97	8.12%	1.15%	
wave		1	53.50	37.45	18.98%	3.49%	
		2	55.50	34.77	18.59%	3.67%	
		3	64.50	47.55	17.78%	4.63%	
		4	52.25	38.31	17.50%	1.99%	
		5	63.25	43.08	18.55%	3.26%	
References

