A fast algorithm for a parametric assignment problem and applications to max-algebra

Elisabeth Gassner Bettina Klinz

Graz University of Technology

Workshop on Combinatorial Optimization
Aussois, 2006
Contents

1. Introduction to max-algebra
2. The characteristic max-polynomial
3. A fast algorithm for a special parametric assignment problem
4. Generalizations and application to max-algebra
Max-algebra

Definition

Max-algebra is the algebraic system \((\mathbb{R} \cup \{-\infty\}, \otimes, \oplus)\) with

\[
a \otimes b := a + b \\
a \oplus b := \max(a, b)
\]
Definition

Max-algebra is the algebraic system \((\mathbb{R} \cup \{-\infty\}, \otimes, \oplus)\) with

\[
\begin{align*}
a \otimes b & := a + b \\
a \oplus b & := \max(a, b)
\end{align*}
\]

\[
A \otimes x = b
\]
Max-algebra is the algebraic system \((\mathbb{R} \cup \{-\infty\}, \otimes, \oplus)\) with

\[
a \otimes b := a + b
\]

\[
a \oplus b := \max(a, b)
\]
Max-algebra

Definition

Max-algebra is the algebraic system \((\mathbb{R} \cup \{-\infty\}, \otimes, \oplus)\) with

\[
a \otimes b := a + b \\
a \oplus b := \max(a, b)
\]

\[
A \otimes x = b \\
\max(a_{11} + x_1, a_{12} + x_2, \ldots, a_{1n} + x_n) = b_1 \\
\max(a_{21} + x_1, a_{22} + x_2, \ldots, a_{2n} + x_n) = b_2 \\
\vdots \\
\max(a_{n1} + x_1, a_{n2} + x_2, \ldots, a_{nn} + x_n) = b_n
\]

Definition

The characteristic max-polynomial $\chi_A(\lambda)$ of an $(n \times n)$-matrix A is equal to the *maximal objective value of the linear assignment problem* with cost matrix

$$\begin{pmatrix}
\max(a_{11}, \lambda) & a_{12} & \cdots & a_{1n} \\
 a_{21} & \max(a_{22}, \lambda) & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & \max(a_{nn}, \lambda)
\end{pmatrix}$$
Max-algebra

Definition

The characteristic max-polynomial $\chi_A(\lambda)$ of an $(n \times n)$-matrix A is equal to the maximal objective value of the linear assignment problem with cost matrix

$$
\begin{pmatrix}
\max(a_{11}, \lambda) & a_{12} & \ldots & a_{1n} \\
a_{21} & \max(a_{22}, \lambda) & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & \max(a_{nn}, \lambda)
\end{pmatrix}
$$

piecewise linear cost coefficients!
Max-algebra

Definition

The characteristic max-polynomial \(\chi_A(\lambda) \) of an \((n \times n) \)-matrix \(A \) is equal to the *maximal objective value of the linear assignment problem* with cost matrix

\[
\begin{pmatrix}
\max(a_{11}, \lambda) & a_{12} & \cdots & a_{1n} \\
 a_{21} & \max(a_{22}, \lambda) & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & \max(a_{nn}, \lambda)
\end{pmatrix}
\]

piecewise linear cost coefficients!

R. E. Burkard, P. Butkovic: Max-algebra and the linear assignment problem (2003),
An Example

\[c_\lambda(M) \]

\[\lambda \]

E. Gassner (TU Graz)
An Example

![Diagram of a network with nodes and edges, showing an example of a parametric assignment problem. The diagram includes arrows and labels indicating the flow and costs.]

\[c_\lambda(M) \]

\[\lambda \]

E. Gassner (TU Graz) Parametric Assignment Problem January 2006 5 / 15
An Example

![Diagram showing a network with nodes and edges labeled with expressions involving λ. The graph includes a vertical axis labeled $c_\lambda(M)$ and a horizontal axis labeled λ. Nodes are connected with edges labeled by expressions like $7 - \lambda$, $5 - \lambda$, and 6. The context suggests a discussion of a parametric assignment problem.](image-url)
An Example

Diagram:

- Nodes: 1, 2, 3, 4, 5, 6
- Edges and labels:
 - Node 1 to 4: $7 - \lambda$
 - Node 2 to 5: 6
 - Node 3 to 6: 1
 - Node 4 to 5: $5 - \lambda$

Graph:

- Directed edges connecting the nodes.

Diagram:

- $c_\lambda(M)$ vs. λ
- Two lines:
 - Blue line: descending
 - Red line: horizontal

Equation:

- $c_\lambda(M)$ function of λ
An Example

λ

$c_{\lambda}(M)$

λ_1
Problem Formulation

Given:

- balanced, bipartite graph $G = (U, V, E)$
- parametric edge weights $c_{\lambda}(i, j) = c(i, j) - \lambda b(i, j)$
Problem Formulation

Given:
- balanced, bipartite graph $G = (U, V, E)$
- parametric edge weights $c_\lambda(i, j) = c(i, j) - \lambda b(i, j)$

Task: Determine the optimal objective value function

$$z(\lambda) = \min \left\{ \sum_{(i,j)\in A} c_\lambda(i, j) \mid A \text{ is an assignment in } G \right\}$$

and the corresponding optimal assignments.
Problem Formulation

Given:
- balanced, bipartite graph $G = (U, V, E)$
- subset of edges $P \subseteq E$, parametric edge weights

$$c_{\lambda}(i, j) = \begin{cases}
 c(i, j) - \lambda & \text{if } (i, j) \in P \text{ (parametric edge)} \\
 c(i, j) & \text{else (non-parametric edge)}
\end{cases}$$

Task: Determine the optimal objective value function

$$z(\lambda) = \min \left\{ \sum_{(i, j) \in A} c_{\lambda}(i, j) \mid A \text{ is an assignment in } G \right\}$$

and the corresponding optimal assignments.
Notation

assignment M in G
parametric edges
Notation

parametric edges

incremental network $N(M)$
parametric edges

parametric backward edge
parametric edges

parametric forward edge
Notation

parametric edges

critical cycle $C = \text{zero-weight and augmenting}$
Theorem

Let λ' be fixed and let M' be an optimal assignment for λ'. Let $\delta \geq 0$ be minimal such that there exists a critical cycle C in $N(M')$ at $\lambda' + \delta$. Then

- M' is optimal for all $\lambda \in [\lambda', \lambda' + \delta]$,
- $M'' = M' \▽ C$ is also optimal at $\lambda' + \delta$ and contains more parametric edges than M',
- $\lambda' + \delta$ is a breakpoint of $z(\lambda)$.
Algorithm (Version 1)

Step 1: Initialization
Algorithm (Version 1)

Step 1: Initialization

$\lambda_0 \leftarrow$ lower bound for first breakpoint
$M_0 \leftarrow$ optimal assignment for λ_0, $j \leftarrow 0$
Continue with Step 2.
Algorithm (Version 1)

Step 1: Initialization

\(\lambda_0 \leftarrow \) lower bound for first breakpoint
\(M_0 \leftarrow \) optimal assignment for \(\lambda_0 \), \(j \leftarrow 0 \)
Continue with Step 2.

Step 2: Pivot
Algorithm (Version 1)

Step 1: Initialization

\(\lambda_0 \leftarrow \text{lower bound for first breakpoint} \)

\(M_0 \leftarrow \text{optimal assignment for } \lambda_0, j \leftarrow 0 \)

Continue with Step 2.

Step 2: Pivot

if no critical cycle \(C \) exists in \(N(M_j) \) for \(\lambda \geq \lambda_j \) then

Stop.

else

Increase parameter until \(\exists \) critical cycle \(C \) in \(N(M_j) \) \(\Rightarrow \bar{\lambda} \)

Continue with Step 3.

end if
Algorithm (Version 1)

Step 1: Initialization
\[\lambda_0 \leftarrow \text{lower bound for first breakpoint} \]
\[M_0 \leftarrow \text{optimal assignment for } \lambda_0, j \leftarrow 0 \]
Continue with Step 2.

Step 2: Pivot
if no critical cycle \(C \) exists in \(N(M_j) \) for \(\lambda \geq \lambda_j \) then
 Stop.
else
 Increase parameter until \(\exists \) critical cycle \(C \) in \(N(M_j) \) \(\Rightarrow \bar{\lambda} \)
 Continue with Step 3.
end if

Step 3: New Assignment
Algorithm (Version 1)

Step 1: Initialization

\[\lambda_0 \leftarrow \text{lower bound for first breakpoint} \]
\[M_0 \leftarrow \text{optimal assignment for } \lambda_0, \ j \leftarrow 0 \]
Continue with Step 2.

Step 2: Pivot

if no critical cycle \(C \) exists in \(N(M_j) \) for \(\lambda \geq \lambda_j \) then
- Stop.
else
- Increase parameter until \(\exists \) critical cycle \(C \) in \(N(M_j) \) \(\Rightarrow \bar{\lambda} \)
- Continue with Step 3.
end if

Step 3: New Assignment

\[M_{j+1} \leftarrow M_j \nabla C \text{ is new optimal assignment} \]
\[\lambda_{j+1} \leftarrow \bar{\lambda} \text{ is a new breakpoint} \]
\[j \leftarrow j + 1. \text{ Continue with Step 2.} \]
Algorithm (Version 1)

Step 1: Initialization
\(\lambda_0 \leftarrow \) lower bound for first breakpoint
\(M_0 \leftarrow \) optimal assignment for \(\lambda_0, j \leftarrow 0 \)
Continue with Step 2.

Step 2: Pivot

if no critical cycle \(C \) exists in \(N(M_j) \) for \(\lambda \geq \lambda_j \) then
Stop.
else
Increase parameter until \(\exists \) critical cycle \(C \) in \(N(M_j) \) \(\Rightarrow \bar{\lambda} \)
Continue with Step 3.
end if

Step 3: New Assignment

\(M_{j+1} \leftarrow M_j \triangledown C \) is new optimal assignment
\(\lambda_{j+1} \leftarrow \bar{\lambda} \) is a new breakpoint
\(j \leftarrow j + 1. \) Continue with Step 2.
Assignment M is optimal

\iff

There is no negative-cost cycle C in $N(M)$

\iff

There exists a shortest path tree in $N(M)$
Theorem

Assignment M is optimal

\iff

There is no negative-cost cycle C in $N(M)$

\iff

There exists a shortest path tree in $N(M)$

Idea:
Consider the parametric shortest path tree problem in $N(M)$.
Theorem

Assignment M is optimal

\iff

There is no negative-cost cycle C in $N(M)$

\iff

There exists a shortest path tree in $N(M)$

Idea:
Consider the parametric shortest path tree problem in $N(M)$.

R. M. Karp and J. B. Orlin: Parametric shortest path algorithms with an application to cyclic staffing (1981),
N. E. Young, R. E. Tarjan, and J. B. Orlin: Faster parametric shortest path and minimum-balance algorithms (1991)
Assignments and shortest paths

Theorem

Assignment M is optimal

\iff

There is no negative-cost cycle C in $N(M)$

\iff

There exists a shortest path tree in $N(M)$

Idea:
Consider the parametric shortest path tree problem in $N(M)$.

R. M. Karp and J. B. Orlin: Parametric shortest path algorithms with an application to cyclic staffing (1981),
N. E. Young, R. E. Tarjan, and J. B. Orlin: Faster parametric shortest path and minimum-balance algorithms (1991)

$O(mn + n^2 \log n)$
Let M' be optimal for λ'.
Let M' be optimal for λ'.

If \exists shortest path tree for all $\lambda \geq \lambda'$ in $N(M')$ then

\implies M' is optimal for all higher parameter values. Stop.
Let M' be optimal for λ'.

if \exists shortest path tree for all $\lambda \geq \lambda'$ in $N(M')$ **then**

\implies M' is optimal for all higher parameter values. Stop.

else

Let $\bar{\lambda}$ be the maximal value such that there exists a shortest path tree in $N(M')$ for $\bar{\lambda}$.

\implies \exists critical cycle in $N(M')$ for $\bar{\lambda}$.

end if
Algorithm

Step 1: Initialization

\[\lambda_0 \leftarrow \text{lower bound for first breakpoint} \]
\[M_0 \leftarrow \text{optimal assignment for } \lambda_0, j \leftarrow 0 \]
Continue with Step 2.

Step 2: Pivot

if no critical cycle \(C \) exists in \(N(M_j) \) for \(\lambda \geq \lambda_j \) then
 Stop.
else
 Increase parameter until \(\exists \) critical cycle \(C \) in \(N(M_j) \) \(\Rightarrow \bar{\lambda} \)
 Continue with Step 3.
end if

Step 3: New Assignment

\[M_{j+1} \leftarrow M_j \nabla C \text{ is new optimal assignment} \]
\[\lambda_{j+1} \leftarrow \bar{\lambda} \text{ is a new breakpoint} \]
\[j \leftarrow j + 1. \text{ Continue with Step 2.} \]
Step 2: Pivot

Build up the current incremental network $N(M_j)$.

$T \leftarrow$ shortest path tree in $N(M_j)$ for λ_j.

Solve parametric shortest path tree problem for $\lambda \geq \lambda_j$.

if \exists shortest path tree for all $\lambda \geq \lambda_j$ in $N(M_j)$ then

Stop.

else

Let $\bar{\lambda}$ be the maximal value such that there exists a shortest path tree in $N(M_j)$ for $\bar{\lambda}$.

\Rightarrow \exists critical cycle in $N(M')$ for $\bar{\lambda}$.

Continue with Step 3.

end if
Observation

Let T_j be a shortest path tree in $N(M_j)$ for λ_j. Then the tree \tilde{T}_j in $N(M_{j+1})$ such that T_j and \tilde{T}_j have the same underlying undirected graph is a shortest path tree in $N(M_{j+1})$ for λ_j.
Running Time Analysis

Observation

Let T_j be a shortest path tree in $N(M_j)$ for λ_j. Then the tree \tilde{T}_j in $N(M_{j+1})$ such that T_j and \tilde{T}_j have the same underlying undirected graph is a shortest path tree in $N(M_{j+1})$ for λ_j.

Observation

The number of path changes during the whole algorithm is bounded from above by $O(n^2)$.

E. Gassner (TU Graz)
Observation

Let T_j be a shortest path tree in $N(M_j)$ for λ_j. Then the tree \tilde{T}_j in $N(M_{j+1})$ such that T_j and \tilde{T}_j have the same underlying undirected graph is a shortest path tree in $N(M_{j+1})$ for λ_j.

Observation

The number of path changes during the whole algorithm is bounded from above by $O(n^2)$.

Theorem

Our algorithm solves the parametric assignment problem in $O(mn + n^2 \log n)$ time.
Generalizations

Given:
- balanced, bipartite graph $G = (U, V, E)$
- piecewise affine linear, continuous edge weights with slopes in $\{-d, \ldots, d\} \subset \mathbb{Z}$ and k breakpoints.
Given:
- balanced, bipartite graph \(G = (U, V, E) \)
- piecewise affine linear, continuous edge weights with slopes in \(\{-d, \ldots, d\} \subset \mathbb{Z} \) and \(k \) breakpoints.

Task:
- Find a minimal assignment for every value of the parameter.
Generalizations

Given:
- balanced, bipartite graph $G = (U, V, E)$
- piecewise affine linear, continuous edge weights with slopes in $\{-d, \ldots, d\} \subset \mathbb{Z}$ and k breakpoints.

Task:
- Find a minimal assignment for every value of the parameter.
- Running time:
 $$\mathcal{O}(d(n + k)(m + n \log n))$$
Generalizations

Given:
- balanced, bipartite graph $G = (U, V, E)$
- piecewise affine linear, continuous edge weights with slopes in $\{-d, \ldots, d\} \subset \mathbb{Z}$ and k breakpoints.

Task:
- Find a minimal assignment for every value of the parameter.
- Running time:

 $\mathcal{O}(d(n + k)(m + n \log n))$

Characteristic max-polynomial:
- piecewise affine linear, continuous edge weights with slopes in $\{-1, \ldots, 1\}$ and n breakpoints (1 breakpoint for each diagonal element).
Generalizations

Given:
- balanced, bipartite graph \(G = (U, V, E) \)
- piecewise affine linear, continuous edge weights with slopes in \(\{-d, \ldots, d\} \subset \mathbb{Z} \) and \(k \) breakpoints.

Task:
- Find a minimal assignment for every value of the parameter.
- Running time:

\[O(d(n + k)(m + n \log n)) \]

Characteristic max-polynomial:
- piecewise affine linear, continuous edge weights with slopes in \(\{-1, \ldots, 1\} \) and \(n \) breakpoints (1 breakpoint for each diagonal element).
- Running time:

\[O(mn + n^2 \log n) \]
Thank you for your attention!