Simultaneous Embedding with Fixed Edges

Michael Schulz

University of Cologne

Aussois 2009
Graph Drawing

Input
One graph G

Output
Layout of G
Simultaneous Graph Drawing

Michael Schulz (Univ. of Cologne)
A simultaneous embedding with fixed edges (SEFE) of graphs G_1, \ldots, G_k consists of drawings $\Gamma_1, \ldots, \Gamma_k$ with

- Γ_i is a planar drawing of G_i,
- every node in $G_i \cap G_j$ is drawn equally in Γ_i and Γ_j and
- every edge in $G_i \cap G_j$ is drawn equally in Γ_i and Γ_j.

Known results

Positive results

<table>
<thead>
<tr>
<th>Guaranteed SEFE for</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tree, path)</td>
<td>[Erten and Kobourov 2004]</td>
</tr>
<tr>
<td>(outerplanar graph, cycle)</td>
<td>[Di Giacomo and Liotta 2005]</td>
</tr>
<tr>
<td>(planar graph, tree)</td>
<td>[Frati 2006]</td>
</tr>
</tbody>
</table>

Negative result

<table>
<thead>
<tr>
<th>Example pair without SEFE for</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>two outerplanar graphs</td>
<td>[Frati 2006]</td>
</tr>
</tbody>
</table>
NP-completeness

Theorem

To decide SEFE for three graphs is NP-complete.

Open problem

The complexity for two graphs.
Let P_{SEFE} be the set of all planar graphs, that share a SEFE with any planar graph.

\[G_1 \in P_{SEFE}, \ G_2 \text{ planar} \implies (G_1, G_2) \text{ has SEFE.} \]
Theorem

P_{SEFE} is the set of all planar graphs that do not contain the node-disjoint union of a cycle and an edge.
Theorem

P_{SEFE} is the set of all planar graphs that do not contain the node-disjoint union of a cycle and an edge.
Theorem

P_{SEFE} is the set of all planar graphs that do not contain the node-disjoint union of a cycle and an edge.
P_{SEFE} is the set of all planar graphs that do not contain the node-disjoint union of a cycle and an edge.
Theorem

P_{SEFE} is the set of all planar graphs that do not contain the node-disjoint union of a cycle and an edge.
Construction SEFE:

- G_1 planar, $G_2 \not\supseteq 1$

1. Planar drawing D_1 of G_1
2. Start D_2 of G_2 with $G_1 \cap G_2$
3. Insert remaining edges of G_2
Construction SEFE:

G_1 planar, $G_2 \not\supseteq 1$

1. Planar drawing D_1 of G_1
2. Start D_2 of G_2 with $G_1 \cap G_2$
3. Insert remaining edges of G_2
Construction SEFE:

- G_1 planar, $G_2 \not\supseteq 1$

1. Planar drawing D_1 of G_1
2. Start D_2 of G_2 with $G_1 \cap G_2$
3. Insert remaining edges of G_2
Construction SEFE:

- G_1 planar, $G_2 \not\supseteq G_1$

1. Planar drawing D_1 of G_1
2. Start D_2 of G_2 with $G_1 \cap G_2$
3. Insert remaining edges of G_2
Theorem

\(P_{SEFE} \) consists of all

- forests,
- circular caterpillars,
- bi-stars, and
- subgraphs of \(K_4 \).
do not contain
To show:

Proof: Case distinction
Thanks.

Thank you very much for your attention.