A new characterization of Seymour graphs

Zoltán Szigeti

Laboratoire G-SCOP
Grenoble, France

January 2009

joint with A. Ageev, A. Sebő
Outline

1. Motivation
2. Definitions: complete packing of cuts, joins
3. Seymour Graphs
4. Around Seymour graphs
5. Co-NP characterization of Seymour graphs
6. New Co-NP characterization of Seymour graphs
7. Proof
8. Algorithmic aspects
9. Open problem
Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.
Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges $s_i t_i$.
Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges s_it_i.

Complete packing of cycles

Given a graph $H' = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cycles in H', each containing exactly one edge of F.
Motivation

Edge-disjoint paths problem
Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges s_it_i.

Complete packing of cycles
Given a graph $H' = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual :
Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges s_it_i.

Complete packing of cycles

Given a graph $H' = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual:

Complete packing of cuts

Given a graph $G = (V', E' + F')$, decide whether there exist $|F'|$ edge-disjoint cuts in G, each containing exactly one edge of F'.
An example

Edge-disjoint paths problem
Complete packing of paths

An example
An example

Adding the edges

Characterization of Seymour graphs

January 2009
The graph H'
An example

Complete packing of cycles
An example

H' is planar
An example

\[H' \text{ and his dual} \]
An example

\[H' \text{ and his dual} \]
An example

Complete packing of cycles and cuts
Complete packing of cuts

The graphs are not planar anymore!
Complete packing of cuts

The problem

Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.
Complete packing of cuts

The problem

Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G = (V, E + F)$ admits a complete packing of cuts, then F is a join: for every cycle C, $|C \cap F| \leq |C \setminus F|$.
Complete packing of cuts

The problem
Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition
If the graph $G = (V, E + F)$ admits a complete packing of cuts, then F is a join: for every cycle C, $|C \cap F| \leq |C \setminus F|$.

Sufficient condition?
If F is a join, the graph $G = (V, E + F)$ admits a complete packing of cuts?
Complete packing of cuts

The problem

Given a graph \(G = (V, E + F) \), decide whether there exist \(|F| \) edge-disjoint cuts in \(G \), each containing exactly one edge of \(F \).

Necessary condition

If the graph \(G = (V, E + F) \) admits a complete packing of cuts, then \(F \) is a join: for every cycle \(C \), \(|C \cap F| \leq |C \setminus F|\).

Sufficient condition?

If \(F \) is a join, the graph \(G = (V, E + F) \) admits a complete packing of cuts?

\[\text{NOT: } K_4 \]
Complete packing of cuts

The problem
Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition
If the graph $G = (V, E + F)$ admits a complete packing of cuts, then F is a join: for every cycle C, $|C \cap F| \leq |C \setminus F|$.

Sufficient condition?
If F is a join, the graph $G = (V, E + F)$ admits a complete packing of cuts?

Theorem (Middendorf, Pfeiffer)
Given a join in a graph, decide whether there exists a complete packing of cuts is an NP-complete problem.
Theorem (Seymour)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.
Theorem (Seymour)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.
Theorem (Seymour)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph if for every join there exists a complete packing of cuts.
Theorem (Seymour)
If G is a bipartite graph, (\iff no odd cycle)
then for every join there exists a complete packing of cuts.

Theorem (Seymour)
If G is a series-parallel graph,
then for every join there exists a complete packing of cuts.

Definition
G is a Seymour graph
if for every join there exists a complete packing of cuts.
Theorem (Seymour)
If G is a bipartite graph, (\(\iff\) no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)
If G is a series-parallel graph, (\(\iff\) no subdivision of K_4) then for every join there exists a complete packing of cuts.

Definition
G is a Seymour graph if for every join there exists a complete packing of cuts.
Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, (\iff no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph \iff if for every join there exists a complete packing of cuts.
Around Seymour graphs

subclasses

1. **Seymour**: Graphs without odd cycle,
2. **Seymour**: Graphs without subdivision of K_4,
3. **Gerards**: Graphs without odd K_4 and without odd prism,
4. **Szigeti**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.
subclasses

1. **Seymour**: Graphs without **odd cycle**,
2. **Seymour**: Graphs without subdivision of K_4,
3. **Gerards**: Graphs without **odd K_4** and without **odd prism**,
4. **Szigeti**: Graphs without **non-Seymour odd K_4** and without **non-Seymour odd prism**.
subclasses

1. **Seymour**: Graphs without odd cycle,
2. **Seymour**: Graphs without subdivision of K_4,
3. **Gerards**: Graphs without odd K_4 and without odd prism,
4. **Szigeti**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.
Around Seymour graphs

subclasses

1. **Seymour**: Graphs without *odd cycle*,
2. **Seymour**: Graphs without *subdivision of K_4*,
3. **Gerards**: Graphs without *odd K_4* and without *odd prism*,
4. **Szigeti**: Graphs without *non-Seymour odd K_4* and without *non-Seymour odd prism*.
Around Seymour graphs

subclasses

1. **Seymour**: Graphs without odd cycle,
2. **Seymour**: Graphs without subdivision of K_4,
3. **Gerards**: Graphs without odd K_4 and without odd prism,
4. **Szigeti**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

K_4

prism
subclasses

1. **Seymour**: Graphs without odd cycle,
2. **Seymour**: Graphs without subdivision of K_4,
3. **Gerards**: Graphs without odd K_4 and without odd prism,
4. **Szigeti**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

K_4 prism odd K_4 odd prism
subclasses

1. **Seymour**: Graphs without odd cycle,
2. **Seymour**: Graphs without subdivision of K_4,
3. **Gerards**: Graphs without odd K_4 and without odd prism,
4. **Szigeti**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

K_4, prism, odd K_4, odd prism
Around Seymour graphs

subclasses

1. **Seymour**: Graphs without odd cycle,
2. **Seymour**: Graphs without subdivision of K_4,
3. **Gerards**: Graphs without odd K_4 and without odd prism,
4. **Szigeti**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

Superclass

Seymour graph \(\implies\) no even subdivision of K_4 and of prism.
Attention!

Seymour property is not inherited to subgraphs!
Seymour property is not inherited to subgraphs!

non-Seymour odd K_4 Seymour graph
Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.
Remarks

Given a join F, an F-complete packing of cuts Q, two F-tight cycles C_1 and C_2 and a cycle C in $C_1 \cup C_2$, then

- each edge of C_i (and hence of C) belongs to a cut $Q \in Q$,
- $\{C \cap Q : Q \in Q, C \cap Q \neq \emptyset\}$ partitions C and $|C \cap Q|$ is even,
- $|C|$ is even so $C_1 \cup C_2$ is bipartite.
Given a join F, an F-complete packing of cuts Q, two F-tight cycles C_1 and C_2 and a cycle C in $C_1 \cup C_2$, then

- each edge of C_i (and hence of C) belongs to a cut $Q \in Q$,
- $\{C \cap Q : Q \in Q, C \cap Q \neq \emptyset\}$ partitions C and $|C \cap Q|$ is even,
- $|C|$ is even so $C_1 \cup C_2$ is bipartite.
Remarks

Given a join F, an F-complete packing of cuts Q, two F-tight cycles C_1 and C_2 and a cycle C in $C_1 \cup C_2$, then

- each edge of C_i (and hence of C) belongs to a cut $Q \in Q$,
- $\{C \cap Q : Q \in Q, C \cap Q \neq \emptyset\}$ partitions C and $|C \cap Q|$ is even,
- $|C|$ is even so $C_1 \cup C_2$ is bipartite.
Remarks

Given a join F, an F-complete packing of cuts Q, two F-tight cycles C_1 and C_2 and a cycle C in $C_1 \cup C_2$, then

- each edge of C_i (and hence of C) belongs to a cut $Q \in Q$,
- $\{C \cap Q : Q \in Q, C \cap Q \neq \emptyset\}$ partitions C and $|C \cap Q|$ is even,
- $|C|$ is even so $C_1 \cup C_2$ is bipartite.
Preliminaries

Remarks

Given a join F, an F-complete packing of cuts Q, two F-tight cycles C_1 and C_2 and a cycle C in $C_1 \cup C_2$, then

- each edge of C_i (and hence of C) belongs to a cut $Q \in Q$,
- $\{C \cap Q : Q \in Q, C \cap Q \neq \emptyset\}$ partitions C and $|C \cap Q|$ is even,
- $|C|$ is even so $C_1 \cup C_2$ is bipartite.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.
Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if *G* admits a join *F* and two *F*-tight cycles whose union is an odd *K*_4 or an odd prism.
Theorem (Ageev, Kostochka, Szigeti)

\(G \) is not Seymour if and only if \(G \) admits a join \(F \) and two \(F \)-tight cycles whose union is an odd \(K_4 \) or an odd prism.

Examples

- Seymour odd \(K_4 \)
- non-Seymour odd prism
Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

Seymour odd K_4

non-Seymour odd prism
Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

Seymour odd K_4

non-Seymour odd prism
Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

- Seymour odd K_4
- non-Seymour odd prism
Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

- Seymour odd K_4
- non-Seymour odd prism
Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

- **Seymour odd K_4**
- **non-Seymour odd prism**

Important remark

If a graph G contains as a subgraph an even subdivision of K_4 or of prism then G is not Seymour.
Forbidden minors?

Attention!

Contraction of an edge does not keep Seymour property.
A new notion of contraction

Definitions

1. \(G \) is factor-critical if \(\forall v \in V, \ G - v \) admits a perfect matching.

2. The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.
A new notion of contraction

Definitions

1. G is **factor-critical** if $\forall v \in V, \; G - v$ admits a perfect matching.

2. The contraction of a factor-critical subgraph and its neighbors is a **factor-contraction**.
A new notion of contraction

Definitions

1. G is factor-critical if $\forall v \in V$, $G - v$ admits a perfect matching.

2. The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

\[G \xrightarrow{\text{factor-contraction}} (X \cup N(X)) \]
A new notion of contraction

Definitions

1. \(G \) is **factor-critical** if \(\forall v \in V, G - v \) admits a perfect matching.

2. The contraction of a factor-critical subgraph and its neighbors is a **factor-contraction**.

Important lemma

Factor-contraction keeps the Seymour property!
Theorem (Ageev, Sebő, Szigeti)

G is not Seymour if and only if

- G can be factor-contracted to a graph
- that contains as a subgraph an even subdivision of K_4 or of the prism.
Theorem (Ageev, Sebő, Szigeti)

A graph G is not Seymour if and only if
- G can be factor-contracted to a graph
- that contains as a subgraph an even subdivision of K_4 or of the prism.

Examples

- Seymour odd K_4
- non-Seymour odd prism
Proof of sufficiency:

1. Factor-contraction keeps the Seymour property,
2. If the contracted graph H contains as a subgraph an even subdivision of K_4 or of prism then H is not Seymour.
Proof of sufficiency:

1. Factor-contraction keeps the Seymour property,

2. If the contracted graph H contains as a subgraph an even subdivision of K_4 or of prism then H is not Seymour.
Proof of sufficiency:

1. Factor-contraction keeps the Seymour property,
2. If the contracted graph H contains as a subgraph an even subdivision of K_4 or of prism then H is not Seymour.
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.
Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.
Complete 2-packing of cuts

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.

Characterization of Seymour graphs

Z. Szigeti (G-SCOP, Grenoble)

January 2009
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.

Example: If Q is a CPC, then $2Q$ is a C2PC.
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.

Theorem (Edmonds-Johnson, Lovász)

F is a join \iff there exists a complete 2-packing of cuts.
Complete 2-packing of cuts

<table>
<thead>
<tr>
<th>Complete 2-packing of cuts (for G and $F \subseteq E(G)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $2</td>
</tr>
<tr>
<td>2. every edge of G belongs to ≤ 2 cuts and</td>
</tr>
<tr>
<td>3. every cut contains exactly one edge of F.</td>
</tr>
</tbody>
</table>

Theorem (Sebő)

Let G be a graph, $F \neq \emptyset$ a join, $v \in V(F)$.

(a) \exists an F-complete 2-packing of cuts $\{\delta(X) : X \in C\}$ and $C \in C$ st

- $G[C]$ is factor-critical,
- $\{c\} \in C \ \forall c \in C$ (if $|C| = 1$, then C is contained twice in C),
- $v \notin C$. ($C \subseteq V(F) - v$.)

(b) If there exists an F-complete packing of cuts then there is one containing a star different of $\delta(v)$.
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.

Theorem (Sebő)

Let G be a graph, $F \neq \emptyset$ a join, $v \in V(F)$.

(a) \exists an F-complete 2-packing of cuts $\{\delta(X) : X \in C\}$ and $C \in C$ st
 1. $G[C]$ is factor-critical,
 2. $\{c\} \in C \ \forall c \in C$ (if $|C| = 1$, then C is contained twice in C),
 3. $v \notin C$. ($C \subseteq V(F) - v$.)

(b) If there exists an F-complete packing of cuts then there is one containing a star different of $\delta(v)$.
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.

Theorem (Sebő)

Let G be a graph, $F \neq \emptyset$ a join, $v \in V(F)$.

(a) \exists an F-complete 2-packing of cuts $\{\delta(X) : X \in C\}$ and $C \in \mathcal{C}$ st

1. $G[C]$ is factor-critical,
2. $\{c\} \in \mathcal{C}$ $\forall c \in C$ (if $|C| = 1$, then C is contained twice in \mathcal{C}),
3. $v \notin C$. ($C \subseteq V(F) - v$.)

(b) If there exists an F-complete packing of cuts then there is one containing a star different of $\delta(v)$.

Z. Szigeti (G-SCOP, Grenoble) Characterization of Seymour graphs January 2009 15 / 18
Complete 2-packing of cuts

Complete 2-packing of cuts (for \(G \) and \(F \subseteq E(G) \))

1. \(2|F| \) cuts so that
2. every edge of \(G \) belongs to \(\leq 2 \) cuts and
3. every cut contains exactly one edge of \(F \).

Theorem (Sebő)

Let \(G \) be a graph, \(F \neq \emptyset \) a join, \(v \in V(F) \).

(a) \(\exists \) an \(F \)-complete 2-packing of cuts \(\{\delta(X) : X \in C\} \) and \(C \in \mathcal{C} \) st

1. \(G[C] \) is factor-critical,
2. \(\{c\} \in \mathcal{C} \ \forall c \in C \) (if \(|C| = 1 \), then \(C \) is contained twice in \(C \)),
3. \(v \notin C. \ (C \subseteq V(F) - v.) \)

(b) If there exists an \(F \)-complete packing of cuts then there is one containing a star different of \(\delta(v) \).
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.

Theorem (Sebő)

Let G be a graph, $F \neq \emptyset$ a join, $v \in V(F)$.

(a) \exists an F-complete 2-packing of cuts $\{\delta(X) : X \in C\}$ and $C \in C$ st
 1. $G[C]$ is factor-critical,
 2. $\{c\} \in C \ \forall c \in C$ (if $|C| = 1$, then C is contained twice in C),
 3. $v \notin C$. ($C \subseteq V(F) - v$.)

(b) If there exists an F-complete packing of cuts then there is one containing a star different of $\delta(v)$.
Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

1. $2|F|$ cuts so that
2. every edge of G belongs to ≤ 2 cuts and
3. every cut contains exactly one edge of F.

Theorem (Sebő)

Let G be a graph, $F \neq \emptyset$ a join, $v \in V(F)$.

(a) \exists an F-complete 2-packing of cuts $\{\delta(X) : X \in C\}$ and $C \in C$ st

1. $G[C]$ is factor-critical,
2. $\{c\} \in C \ \forall c \in C$ (if $|C| = 1$, then C is contained twice in C),
3. $v \notin C$. ($C \subseteq V(F) - v$.)

(b) If there exists an F-complete packing of cuts then there is one containing a star different of $\delta(v)$.
Proof of necessity:

1. **Minimal counter-example:**
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \delta(C) \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph:**
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. **Minimal counter-example:**
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph:**
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. **Minimal counter-example**:
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem**:
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C \in \mathcal{C}$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph**:
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem**:
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. **Minimal counter-example:**
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 1. No $C2PC$ for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a $C2PC$ for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph:**
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. **Minimal counter-example:**
 - **1.** G non-Seymour graph,
 - **2.** any factor-contraction results in a Seymour graph,
 - **3.** F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 - **1.** No C2PC for (G, F) contains a star twice.
 - **2.** Let $v \in V(F)$. Let C and $C \in \mathcal{C}$.
 - **3.** Factor-contracting C, F_C is a join and G_C is Seymour.
 - **4.** \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 - **5.** $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 - **6.** By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph:**
 - **1.** $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 - **2.** G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 - **1.** non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. Minimal counter-example:
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. Application of Sebő’s Theorem:
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. Subgraph:
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. Application of Lovász-Plummer’s theorem:
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. **Minimal counter-example:**
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 1. No $C2PC$ for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a $C2PC$ for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph:**
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. **Minimal counter-example:**
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph:**
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. Minimal counter-example:
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. Application of Sebő’s Theorem:
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C \in \mathcal{C}$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. Subgraph:
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. Application of Lovász-Plummer’s theorem:
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. Minimal counter-example:
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. Application of Sebő’s Theorem:
 1. No C2PC for \((G, F)\) contains a star twice.
 2. Let \(v \in V(F)\). Let \(C\) and \(C \in \mathcal{C}\).
 3. Factor-contracting \(C\), \(F_C\) is a join and \(G_C\) is Seymour.
 4. \(\exists\) CPC \(Q'\) for \((G_C, F_C)\) containing a star different of \(\delta(v_C)\).
 5. \(2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}\) is a C2PC for \((G, F)\).
 6. By (2.1), \(F_C = \emptyset\), that is \(C = V(F) - v\).

3. Subgraph:
 1. \(G' - v = C\) is factor-critical \(\forall v \in V(F)\), that is
 2. \(G'\) is bicritical (and non-trivial).

4. Application of Lovász-Plummer’s theorem:
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of \(K_4\) or of the prism.
Proof of necessity:

1. **Minimal counter-example:**
 1. \(G \) non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. \(F \) a join without \(F \)-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 1. No \(\text{C2PC} \) for \((G, F)\) contains a star twice.
 2. Let \(v \in V(F) \). Let \(C \) and \(C \in \mathcal{C} \).
 3. Factor-contracting \(C \), \(F_C \) is a join and \(G_C \) is Seymour.
 4. \(\exists \) \(\text{CPC} \) \(Q' \) for \((G_C, F_C)\) containing a star different of \(\delta(v_C) \).
 5. \(2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\} \) is a \(\text{C2PC} \) for \((G, F)\).
 6. By (2.1), \(F_C = \emptyset \), that is \(C = V(F) - v \).

3. **Subgraph:**
 1. \(G' - v = C \) is factor-critical \(\forall v \in V(F) \), that is
 2. \(G' \) is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of \(K_4 \) or of the prism.
Proof of necessity:

1. Minimal counter-example:
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. Application of Sebő’s Theorem:
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. Subgraph:
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. Application of Lovász-Plummer’s theorem:
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

Minimal counter-example:
1. G non-Seymour graph,
2. any factor-contraction results in a Seymour graph,
3. F a join without F-complete packing of cuts.

Application of Sebő’s Theorem:
1. No C2PC for (G, F) contains a star twice.
2. Let $v \in V(F)$. Let C and $C \in \mathcal{C}$.
3. Factor-contracting C, F_C is a join and G_C is Seymour.
4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

Subgraph:
1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
2. G' is bicritical (and non-trivial).

Application of Lovász-Plummer’s theorem:
1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. Minimal counter-example:
 - G non-Seymour graph,
 - any factor-contraction results in a Seymour graph,
 - F a join without F-complete packing of cuts.

2. Application of Sebő’s Theorem:
 - No C2PC for (G, F) contains a star twice.
 - Let $v \in V(F)$. Let C and $C \in \mathcal{C}$.
 - Factor-contracting C, F_C is a join and G_C is Seymour.
 - \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 - $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 - By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. Subgraph:
 - Let $G' := G[V(F)]$.
 - $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 - G' is bicritical (and non-trivial).

4. Application of Lovász-Plummer’s theorem:
 - non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. **Minimal counter-example:**
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. **Application of Sebő’s Theorem:**
 1. No $C2PC$ for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a $C2PC$ for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

3. **Subgraph:** Let $G' := G[V(F)]$.
 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. **Application of Lovász-Plummer’s theorem:**
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. Minimal counter-example:
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. Application of Sebő’s Theorem:
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c) : c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. Application of Lovász-Plummer’s theorem:
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Proof of necessity:

1. Minimal counter-example:
 1. G non-Seymour graph,
 2. any factor-contraction results in a Seymour graph,
 3. F a join without F-complete packing of cuts.

2. Application of Sebő’s Theorem:
 1. No C2PC for (G, F) contains a star twice.
 2. Let $v \in V(F)$. Let C and $C' \in C$.
 3. Factor-contracting C, F_C is a join and G_C is Seymour.
 4. \exists CPC Q' for (G_C, F_C) containing a star different of $\delta(v_C)$.
 5. $2Q' \cup \{\delta(C)\} \cup \{\delta(c): c \in C\}$ is a C2PC for (G, F).
 6. By (2.1), $F_C = \emptyset$, that is $C = V(F) - v$.

 1. $G' - v = C$ is factor-critical $\forall v \in V(F)$, that is
 2. G' is bicritical (and non-trivial).

4. Application of Lovász-Plummer’s theorem:
 1. non-trivial bicritical graphs contain as a subgraph an even subdivision of K_4 or of the prism.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.
What we can not do

1. Given a graph G, decide whether it is a Seymour graph.

2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.
NP characterization?
Open problem

NP characterization?

Find a construction for Seymour graphs!