On the integrality gap of hypergraphic Steiner tree relaxations

Neil Olver

Department of Mathematics, MIT

Aussois, January 2012

Joint work with Michel Goemans, Thomas Rothvoß and Rico Zenklusen.
Steiner tree

Terminals

Steiner nodes
Approximation results

<table>
<thead>
<tr>
<th></th>
<th>Perf. guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folklore</td>
<td>2</td>
</tr>
<tr>
<td>Zelikovsky [1991]</td>
<td>$11/6 \leq 1.83$</td>
</tr>
<tr>
<td>Berman & Ramaiyer [1991]</td>
<td>$16/9 \leq 1.78$</td>
</tr>
<tr>
<td>Zelikovsky [1993]</td>
<td>$1 + \ln(2) + \epsilon \leq 1.70$</td>
</tr>
<tr>
<td>Karpinski & Zelikovsky [1997]</td>
<td>≤ 1.65</td>
</tr>
<tr>
<td>Prömel & Steger [2000]</td>
<td>$5/3 \leq 1.67$</td>
</tr>
<tr>
<td>Hougardy & Prömel [1999]</td>
<td>≤ 1.59</td>
</tr>
<tr>
<td>Robins & Zelikovsky [2005]</td>
<td>$1 + \ln(3)/2 \leq 1.55$</td>
</tr>
<tr>
<td>Byrka, Grandoni, Rothvoß, Sanità [2010]</td>
<td>$\ln(4) + \epsilon \leq 1.39$</td>
</tr>
</tbody>
</table>
Hypergraphic relaxations

- Different (but equivalent) relaxations:
 - Warme [1998] (we’ll use this one).
 - Polzin and Vahdati-Deneshmand [2003].
 - Könemann, Pritchard and Tan [2009].
- All have a variable for each component.
Hypergraphic relaxations

- Different (but equivalent) relaxations:
 - Warme [1998] (we’ll use this one).
 - Polzin and Vahdati-Deneshmand [2003].
 - Könemann, Pritchard and Tan [2009].

- All have a variable for each component.
Undirected component-based relaxation

$$\min \sum_{C \in \mathcal{K}} x_C \text{cost}(C)$$

$$\sum_{C \in \mathcal{K}} x_C(|S \cap R(C)| - 1)^+ \leq |S| - 1 \quad \forall \emptyset \subsetneq S \subseteq R \quad \text{(LP)}$$

$$\sum_{C \in \mathcal{K}} x_C(|R(C)| - 1) = |R| - 1$$

$$x_C \geq 0 \quad \forall C \in \mathcal{K}.$$

- $\mathcal{K} =$ set of components.
- Exponential # of variables—but can get a PTAS by only considering components up to a certain size.

Warme [1998]

Borchers & Du [1997]
Integrality gaps

- Directed variant used by BGRS for their algorithm—but their analysis does not bound the integrality gap!
 - They do prove a bound of 1.55 on the integrality gap by other methods.
 - Chakrabarty, Könemann and Pritchard [2010] give a simpler proof of this bound.
Our results (I)

- Deeper understanding of the component-based LP.
- Leads to simpler algorithm, performance directly comparable to LP solution:
 - Deterministic (derandomization much simpler than for BGRS algorithm).
 - Gives matching bound on the integrality gap.
 - Don’t need to re-solve LP in each iteration.
Overview of algorithm

- Solve component LP to get near-optimal solution x.
- Until all terminals are connected:
 - Select component Q to contract; add Q to solution.
 - Modify LP solution x to be feasible in the new contracted instance.
Overview of algorithm

- Solve component LP to get near-optimal solution x.
- Until all terminals are connected:
 - Select component Q to contract; add Q to solution.
 - Modify LP solution x to be feasible in the new contracted instance.

- No re-solving of LP!
Choose N s.t. $x_C \cdot N \in \mathbb{N}$ for all $C \in \mathcal{K}$.

Make $x_C \cdot N$ "copies" of $C \in \mathcal{K}$.

Notation: $\Gamma(\mathcal{X}) :=$ set of components in \mathcal{X}.

\blacksquare

\blacksquare

\blacksquare

\blacksquare

\blacksquare
\(\mathcal{X} \) contains all information about \(x \); in particular, can determine feasibility.

\[
\text{cost}(\mathcal{X}) := \sum_{e \in E(\mathcal{X})} c(e) = N \cdot \text{cost}(x).
\]

For any \(F \subseteq E(\mathcal{X}) \), \(\mathcal{X} - F \) is another blowup graph.
Edge removals

Crucial question

What are the possible edge removals after contracting a set of terminals Q?
Edge removals

Crucial question

What are the possible edge removals after contracting a set of terminals Q?

- Important to look at minimal edge removals:
Edge removals

Crucial question

What are the possible edge removals after contracting a set of terminals Q?

- Important to look at **minimal** edge removals:
Edge removals

Crucial question

What are the possible edge removals after contracting a set of terminals Q?

- Important to look at **minimal** edge removals:
Edge removals

Crucial question

What are the possible edge removals after contracting a set of terminals Q?

- Important to look at **minimal** edge removals:
Edge removals

Crucial question

What are the possible edge removals after contracting a set of terminals Q?

- Important to look at *minimal* edge removals:
Matroid structure

Given a set Q of terminals to contract, let

$$\mathcal{B}_Q = \{B \subseteq E(\mathcal{X}) | (\mathcal{X}/Q) - B \text{ is feasible, and } B \text{ is minimal with this property}\}.$$

Theorem

- \mathcal{B}_Q form the bases of a matroid M_Q of rank $N(|R(Q)| - 1)$.

Can precisely describe the rank function r_Q.

M_Q is a gammoid.
Matroid structure

Given a set Q of terminals to contract, let

$$\mathcal{B}_Q = \{ B \subseteq E(\mathcal{X}) \ | \ (\mathcal{X}/Q) - B \text{ is feasible,}$$

$$\text{and } B \text{ is minimal with this property} \}.$$
Thought experiment

- We want to show that there exists a component Q and removal set $B \in \mathcal{B}_Q$ s.t. $\text{cost}(B)/N$ is “large” compared to $\text{cost}(Q)$.

- Try an averaging argument: pick (Q, B) randomly from some distribution \mathcal{D} s.t. $B \in \mathcal{B}_Q$, and $\mathbb{E}\{\text{cost}(B)/N\}$ large compared to $\mathbb{E}\{\text{cost}(Q)\}$.
Thought experiment

- We want to show that there exists a component Q and removal set $B \in B_Q$ s.t. $\text{cost}(B)/N$ is “large” compared to $\text{cost}(Q)$.

- Try an averaging argument: pick (Q, B) randomly from some distribution \mathcal{D} s.t. $B \in B_Q$, and $\mathbb{E}\{\text{cost}(B)/N\}$ large compared to $\mathbb{E}\{\text{cost}(Q)\}$.

- Choose \mathcal{D} s.t. $\mathbb{P}\{Q = C\} = 1/|\Gamma(\mathcal{X})|$ $\forall C \in \Gamma(\mathcal{X})$.
 - So $\mathbb{E}\{\text{cost}(Q)\} = \text{cost}(\mathcal{X})/|\Gamma(\mathcal{X})|$.
Thought experiment

- We want to show that there exists a component Q and removal set $B \in \mathcal{B}_Q$ s.t. $\text{cost}(B)/N$ is “large” compared to $\text{cost}(Q)$.

- Try an averaging argument: pick (Q, B) randomly from some distribution \mathcal{D} s.t. $B \in \mathcal{B}_Q$, and $\mathbb{E}\{\text{cost}(B)/N\}$ large compared to $\mathbb{E}\{\text{cost}(Q)\}$.

- Choose \mathcal{D} s.t. $\mathbb{P}\{Q = C\} = 1/|\Gamma(\mathcal{X})|$ $\forall C \in \Gamma(\mathcal{X})$.
 - So $\mathbb{E}\{\text{cost}(Q)\} = \text{cost}(\mathcal{X})/|\Gamma(\mathcal{X})|$.

- So if we can also ensure that $\mathbb{P}\{e \in B\} \geq \alpha \cdot N/|\Gamma(\mathcal{X})|$, we get

$$\mathbb{E}\{\text{cost}(B)/N\} = \frac{1}{N} \sum_{e} c(e) \mathbb{P}\{e \in B\} = \alpha \cdot \text{cost}(\mathcal{X})/|\Gamma(\mathcal{X})|,$$

implying an integrality gap $\leq \alpha$.

Unfortunately we can't get better than $g = 13/29$.

\[\]
Thought experiment

We want to show that there exists a component Q and removal set $B \in B_Q$ s.t. $\text{cost}(B)/N$ is “large” compared to $\text{cost}(Q)$.

Try an **averaging argument**: pick (Q, B) randomly from some distribution \mathcal{D} s.t. $B \in B_Q$, and $\mathbb{E}\{\text{cost}(B)/N\}$ large compared to $\mathbb{E}\{\text{cost}(Q)\}$.

Choose \mathcal{D} s.t. $\mathbb{P}\{Q = C\} = 1/|\Gamma(\mathcal{X})|$ \quad $\forall C \in \Gamma(\mathcal{X})$.

So $\mathbb{E}\{\text{cost}(Q)\} = \text{cost}(\mathcal{X})/|\Gamma(\mathcal{X})|$.

So if we can also ensure that $\mathbb{P}\{e \in B\} \geq \alpha \cdot N/|\Gamma(\mathcal{X})|$, we get

$$\mathbb{E}\{\text{cost}(B)/N\} = \frac{1}{N} \sum_{e} c(e) \mathbb{P}\{e \in B\} = \alpha \cdot \text{cost}(\mathcal{X})/|\Gamma(\mathcal{X})|,$$

implying an integrality gap $\leq \alpha$.

Unfortunately we can’t get better than $\alpha = 2$.
Removal probabilities

- Let $B(M_Q)$ be the base polytope associated with M_Q.
- $p \in B(M_Q)$ iff there exists a distribution \mathcal{D}_Q on B_Q s.t.
 \[P_{\mathcal{D}_Q} \{ e \in B_Q \} = p_e. \]
- Consider the scaled Minkowski sum
 \[B_{rem} = \frac{1}{|\Gamma(\mathcal{X})|} \sum_{Q \in \Gamma(\mathcal{X})} B(M_Q). \]
- $p \in B_{rem}$ iff there exists \mathcal{D} s.t. for random (Q, B), $B \in B_Q$, $P\{Q = C\} = 1/|\Gamma(\mathcal{X})|$ $\forall C$ and
 \[P_{\mathcal{D}} \{ e \in B \} = p_e. \]
Polymatroids for random contraction

- B_{rem} is a polymatroid, with rank function

$$r = \frac{1}{|\Gamma(X)|} \sum_{Q \in \Gamma(X)} r_Q.$$

- But r_Q has an implicit description:

$$r_Q(F) = \min_{S \supseteq Q} h_{\chi-F}(S).$$
Polymatroids for random contraction

- B_{rem} is a polymatroid, with rank function

 $$r = \frac{1}{|\Gamma(X)|} \sum_{Q \in \Gamma(X)} r_Q.$$

- But r_Q has an implicit description:

 $$r_Q(F) = \min_{S \supseteq Q} h_{\chi - F}(S).$$

Theorem

$$B_{rem} \supseteq \frac{N}{|\Gamma(X)|} B(M_R).$$

Equivalently:

$$\sum_{Q \in \Gamma(X)} B(M_Q) \supseteq N \cdot B(M_R).$$
Core edges

- The set of extreme points of $B(M_R)$ is precisely B_R.
- So for any $K \in B_R$, the vector p of marginals given by

$$p_e = \begin{cases}
N/|\Gamma(X)| & e \in K \\
0 & e \notin K
\end{cases}$$

is in B_{rem}.
Core edges

- The set of extreme points of $B(M_R)$ is precisely B_R.

- So for any $K \in B_R$, the vector p of marginals given by

$$p_e = \begin{cases}
 N/|\Gamma(\mathcal{X})| & e \in K \\
 0 & e \notin K
\end{cases}$$

is in B_{rem}.

- What must remain after removing some $B \in B_R$? Precisely a spanning tree on \mathcal{X}/R.

![Diagram](image-url)
Core edges

- The set of extreme points of $B(M_R)$ is precisely B_R.
- So for any $K \in B_R$, the vector p of marginals given by
 \[p_e = \begin{cases}
 N/|\Gamma(\mathcal{X})| & e \in K \\
 0 & e \notin K
 \end{cases} \]
 is in B_{rem}.
- What must remain after removing some $B \in B_R$? Precisely a spanning tree on \mathcal{X}/R.

![Diagram of a spanning tree on \mathcal{X}/R.]
Witness sets
Witness sets
Witness sets
Witness sets
Weights

- Charge cost of cleanup edges to edges in K:

$$w(f) = c(f) + \sum_{e \in K : f \in W(e)} \frac{c(e)}{|W(e)|}.$$

Theorem

There exists a component Q and $B \in \mathcal{B}_Q$ so that $w(B)/N \geq \text{cost}(Q)$.

- (Q, B) can be found algorithmically (for each Q, find a maximum weight basis in \mathcal{B}_Q; the gammoid structure of M_Q is helpful here).
Algorithm

- Start with blowup graph \mathcal{X} and $K \in \mathcal{B}_R$.
- $N = 2$ in this example.
Algorithm

- Find Q and max weight basis $B \in \mathcal{B}_Q$ s.t. $\text{cost}(Q) \leq w(B)/N$.

![Graph diagram](image-url)
Algorithm

- Remove B
Remove B and cleanup edges: $F = \{ e \notin K \mid W(e) \subseteq B \}$.
Algorithm

- Remove B and cleanup edges: $F = \{ e \notin K \mid W(e) \subseteq B \}$.
- Contract Q.

![Graph Diagram]
▶ Find Q and $B \in \mathcal{B}_Q$ s.t. $\text{cost}(Q) \leq \frac{w(B)}{N}$.
Algorithm

- Find Q and $B \in \mathcal{B}_Q$ s.t. $\text{cost}(Q) \leq \frac{w(B)}{N}$.
- Remove B
Find Q and $B \in \mathcal{B}_Q$ s.t. $\text{cost}(Q) \leq \frac{w(B)}{N}$.

Remove B and cleanup edges.
Algorithm

- Contract.
Algorithm

- Contract.
- Final tree.
Full algorithm

For a given blowup graph \(\mathcal{X} \) and \(K \in \mathcal{B}_R \):

Algorithm

1. \(T \leftarrow \emptyset \)
2. While \(T \) is not a Steiner tree:
 - Find \(Q \) and \(B \in \mathcal{B}_Q \) s.t. \(\text{cost}(Q) \leq w(B)/N \).
 - Cleanup: Let \(F = \{ e \notin K \mid W(e) \subseteq B \} \).
 - Update: \(T \leftarrow T \cup Q \), \(\mathcal{X} \leftarrow (\mathcal{X} - B - F)/Q \), \(K \leftarrow K \setminus B \).

Theorem

Algorithm returns solution of cost at most \(\Phi_K(\mathcal{X})/N \), where

\[
\Phi_K(\mathcal{X}) = \sum_{e \in K} H(|W(e)|).
\]
Potential analysis

- Can find K minimizing $\Phi_K(\mathcal{X})$ by a dynamic program.

- For best K, can show that
 - $\Phi_K(\mathcal{X}) \leq \ln(4) \text{cost}(\mathcal{X})$.
 - If G is quasi-bipartite, $\Phi_K(\mathcal{X}) \leq \frac{73}{60} \text{cost}(\mathcal{X})$.
Our results (II)

- Quasi-bipartite:
 - 73/60 bound on integrality gap (previous best of 1.28 by Chakrabarty, Könemann and Pritchard [2010]).
 - Can show how to obtain optimal solution to hypergraphic LP by solving bidirected relaxation.

- Separation of undirected component-based LP by $|R|$ max-flow computations.
 - Rank computations with one max-flow.

- Easy proof of sparsity of basic solutions (first proven by Chakrabarty et al. [2010]).
Open problems

- Improve the bound!

- Practical (non-galactic) approximation algorithms?

- Better than 2 bound on integrality gap of bidirected cut relaxation?