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Abstract

The parametric lattice-point counting problem is as follows: Given an integer matrix A ∈ Zm×n ,
compute an explicit formula parameterized by b ∈ Rm that determines the number of integer
points in the polyhedron {x ∈Rn : Ax É b}. In the last decade, this counting problem has received
considerable attention in the literature. Several variants of Barvinok’s algorithm have been shown
to solve this problem in polynomial time if the number n of columns of A is fixed. Central to our
investigation is the following question:

Can one also efficiently determine a parameter b such that the number of integer
points in {x ∈Rn : Ax É b} is minimized?

Here, the parameter b can be chosen from a given polyhedron Q ⊆ Rm . Our main result is a
proof that finding such a minimizing parameter is N P-hard, even in dimension 2 and even if
the parametrization reflects a translation of a 2-dimensional convex polygon. This result is estab-
lished via a relationship of this problem to arithmetic progressions and simultaneous Diophan-
tine approximation.

On the positive side we show that in dimension 2 there exists a polynomial time algorithm
for each fixed k that either determines a minimizing translation or asserts that any translation
contains at most 1+1/k times the minimal number of lattice points.

1 Introduction

As many combinatorial optimization problems can be formulated as an integer program, also their
corresponding counting problems can be formulated as the problem of counting integer points in a
polytope. Although both problems are hard in general, they can be efficiently solved if the number
of variables is fixed. This was shown by Lenstra [Len83] in the case of integer programming and by
Barvinok [Bar94] for the integer point counting problem, see also [Bar02, BR07].

A parametric polyhedron is a set of the form Pb = {x ∈ Rn : Ax É b} for some matrix A ∈ Rm×n and
b ∈ Rm . The right-hand-side b is the parameter of Pb . Barvinok and Pommersheim [BP99] extended
Barvinok’s integer point counting algorithm to the parametric case. They describe an algorithm that
runs in polynomial time if the dimension is fixed and that computes a quasipolynomial whose value
at b equals |Pb ∩Zn |. Since then, several authors described alternative and more efficient algorithms
to compute this quasipolynomial [KV08, VW07]. Effective implementations of Barvinok’s algorithm
have been provided by De Loera et al. [DLHTY04] and by Köppe and Verdoolaege [KV08]. Applications
of parametric integer counting can, for example, be found in compiler optimization [VSB+07]. Other
very interesting, though not polynomial-time approaches to the parametric integer counting problem
can for example be found in [Bec00, BDR02, LZ05].

In this paper we consider the problem of finding a parameter b ∈ Q such that |Pb ∩ Z n | is mini-
mized. More precisely, we consider the following decision problem.
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INTEGER POINT MINIMIZATION

Given: A ∈Qm×n , a rational polyhedron Q ⊆Rm , k ∈N
Decide: ∃b ∈Q : |{x ∈Zn : Ax É b}| É k

We remark that if k = 0 and n is fixed, then this problem can be solved in polynomial time with a
technique of Kannan [Kan92], see also [ES08].

Contributions of this paper

Our first result is a proof that integer point minimization is N P-complete, even if n = 2, i.e. the para-
metric polyhedron resides in the Euclidean plane and then even if the parametric polyhedra are the
translations of some convex polygon along the x-axis. In other words, we show that the following
problem is N P-complete.

POLYGON TRANSLATION

Given: A ∈Qm×2 and b ∈Qm defining a convex polygon P = {x ∈R2 : Ax É b} ⊆R2 and k ∈N
Decide: ∃λ, 0 ÉλÉ 1 such that P + (−λ

0

)= {x + (−λ
0

)
: x ∈ P } contains at most k integer points.

Clearly, this is an instance of the parametric integer counting problem with Q ⊆ Rm being the 1-
dimensional polytope Q = {x ∈Rm : x = b −λa1, 0 ÉλÉ 1}, with a1 being the first column of A.

Second, we show that there is a polynomial-time approximation scheme for the optimization version
of POLYGON TRANSLATION. More precisely, there exists an algorithm that runs in polynomial time
for any fixed integer k and either determines a minimizing translation or asserts that any translation
contains at most 1+1/k times the minimal number of lattice points.

This result combines techniques from the geometry of numbers with classical techniques from
discrepancy theory. The discrepancy of a polygon is the absolute value of the difference between the
number of integer points in the polygon and its area. There is a rich literature bounding this discrep-
ancy, see, e.g. [Hux96], starting with Gauss’ circle problem. Gauss [Gau73] investigated the discrepancy
of a disk of radius R around 0. He showed that this discrepancy is bounded by O(R), which implies
that the number of integer points is Θ(R2) because the area of the disk is πR2. Discrepancy bounds
also exist for polygons [Hux96], but they involve the length of the boundary. Instead, we bound the
discrepancy in terms of the lattice width of the input polygon: the number of integer points in a
polygon of high lattice width is very close to its area. On the other hand, we adapt a technique of
Kannan [Kan90] to solve instances with thin polygons exactly.

2 Polygon translation is NP-complete

In this section, we provide our main hardness result. First, we discuss the relation of arithmetic pro-
gressions with the polygon translation problem.

2.1 Arithmetic progressions and their pulse functions

The arithmetic progression defined by the triple (a,k,d) is the set A = {a, a +d , a +2d , . . . , a +kd}. We
say that a function of the form

p(x) =
{

0 if |x − y | < ε for some y ∈ A

1 else

where ε > 0 is a pulse function. The next lemma establishes a relation of pulse functions with the
polygon translation problem. Figure 1 illustrates the construction with an example.
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(`1, y1)

(`2, y2) (r2, y2)

(r1, y1)

Figure 1: A quadrilateral for a pulse function p(x) defined by the arithmetic progression {0.2,0.45,0.7}
with ε = 0.08. The red line segments have length 0.28, 0.53 and 0.78 (bottom up) and the green line
segments have length 0.12,0.37 and 0.62 (bottom up). As the polygon is translated by x to the left, the
number of integer points inside the polygon is 17+p(x).

Lemma 1. Let p :R→ {0,1} be a pulse function for the arithmetic progression A = {a, a +d , . . . , a +kd}
with parameter 0 < εÉ d

2 and discontinuities only in (0,1). That is, a −ε> 0 and a +kd +ε< 1.
Let y1, y2 ∈Z such that y2 − y1 = k. Consider a convex quadrilateral P with vertices (`1, y1), (r1, y1),

(`2, y2), and (r2, y2). If we have

1. `1 < r1 and `2 < r2,

2. {`1} = a +ε and {`2} = a +kd +ε,

3. {r1} = a −ε and {r2} = a +kd −ε, and

4. k | (b`2c−b`1c) and k | (br2c−br1c),

then there exists an M ∈N so that

|(t

(−1
0

)
+P )∩Z2| = M +p({t }) for t ∈ [0,1].

Proof. Consider the horizontal slice Li = P ∩ {(x, y) | y = y1 + i } for 0 É i É k. Using conditions (2) to
(4) of the Lemma, one verifies that Li is a line segment [αi ,βi ]× {y1 + i } with {αi } = a + i d + ε and
{βi } = a+ i d −ε. In other words, as the segment sweeps left, an integer point leaves at all times t with
{t } = {βi } = a + i d −ε, and an integer point enters at all times t with {t } = {αi } = a + i d +ε. Taking into
account that Li is relatively closed, one has

|(t

(−1
0

)
+Li )∩Z2| = Mi +

{
0 if a + i d −ε< {t } < a + i d +ε
1 otherwise

for some Mi ∈N. In fact, Mi = bβi c−dαi e.
Summing over all Li , 0 É i É k, and using the fact that the intervals (a + i d − ε, a + i d + ε) are

pairwise disjoint, we obtain the claim of the Lemma.

Next we consider a decision problem involving several pulse functions.

ARITHMETIC PROGRESSION MEETING

Given: pulse functions p1, . . . , pn (encoded as their parameters a( j ), k( j ), d ( j ), ε( j ) ∈Q)
Decide: ∃x ∈R : p(x) =∑n

j=1 p j (x) = 0

We delay the proof of the next theorem to Section 2.2.
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Figure 2: The construction of P in the proof of Theorem 3.

Theorem 2. Arithmetic Progression Meeting is N P-hard.

We are now in the position to prove that POLYGON TRANSLATION is N P-complete. In our reduction
to arithmetic progression meeting, we restrict ourselves to pulse functions whose discontinuities lie
in the open interval (0,1). We can always reduce to this special case using an affine transformation of
the pulse functions, so that this restriction is without loss of generality.

Theorem 3. Polygon Translation is N P-hard.

Proof. Let p1, . . . , pn : R→ {0,1} be an instance of Arithmetic Progression Meeting. We will assume
without loss of generality that all discontinuities of the p j lie in the open interval (0,1). Let p =∑n

j=1 p j . The goal is to construct a convex polygon P such that

|(t

(−1
0

)
+P )∩Z2| = M +p({t }) for all t ∈R

for some M ∈ N. Then P , v =
(−1

0

)
, and M form an instance of Polygon Translation which is a Yes-

instance if and only if p1, . . . , pn is a Yes-instance for Arithmetic Progression Meeting.
The idea for the construction of P is straightforward. Lemma 1 gives us a tool for constructing

quadrilaterals P1, . . . ,Pn corresponding to the pulse functions p1, . . . , pn , which we then stack verti-
cally to form the polygon P with 2n +2 edges. This is illustrated in Figure 2.

Formally, we define the polygon P as the convex polygon constrained by 2n+2 lines: the 2n lines
defined by the left and right edges of the P j , and the lines through the bottom edge of P1 and the top
edge of Pn . We will argue that, given a proper choice of coordinates for the P j , the resulting polygon
P satisfies the following properties:

1. P has 2n +2 edges: the bottom edge of P1, the top edge of Pn , and n edges each on the left and
right sides, which are extensions of the left and right edges of the P j , respectively.

2. P has 2n + 2 vertices: the two bottom vertices of P1, the two top vertices of Pn , and 2(n − 1)
vertices which are obtained as the intersection points of lines through the left or right edges of
adjacent P j .

3. Any horizontal translate of P contains exactly the same integer points as the union of the cor-
responding translates of the P j .

The last property is the result that we really need for the reduction. The first two properties merely
guide us along during the proof.

We will use the same notation as in Lemma 1, but with superscripts indicating which polygon

P j we are talking about. We choose y ( j+1)
1 = y ( j )

2 +1 for all j = 1. . .n −1, and y ( j )
2 = y ( j )

1 +k( j ) for all
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y = y ( j )
2

y = y ( j+1)
1

`
( j )
2b`( j )

2 c

x ′ `
( j+1)
1

b`( j+1)
1 c

x ′′

Figure 3: Intersection of the lines through the left edges of P j and P j+1 in the proof of Theorem 3.

j = 1. . .n. We then choose

b`( j )
2 c = b`( j )

1 c+k( j ) · (3 j )

b`( j+1)
1 c = b`( j )

2 c+3 j +2

The fractional part of the `( j )
i is chosen to satisfy the conditions of Lemma 1. Observe that this fixes

the y ( j )
i and `( j )

i up to an integer translation of P .

Let us describe how our choice of the b`( j )
i c establishes the first two properties listed above on the

left side of P . Observe that the slopes of the left edges of the P j are strictly decreasing: the slope of
the left edge of P j+1 is always strictly less than the slope of the left edge of P j .

Furthermore, we claim that the lines through the left edges of P j and P j+1 intersect in a point

(x, y) with y ( j )
2 < y < y ( j+1)

1 ; that is, they intersect “between” P j and P j+1. To see this, consider the

point (x ′, y ′) where the line through the left edge of P j intersects the horizontal line y = y ( j+1)
1 . By our

choice of the b`( j )
i c, we know that

x ′ < `( j )
2 +3 j +1 < b`( j )

2 c+3 j +2 = b`( j+1)
1 c.

On the other hand, if (x ′′, y ′′) is the intersection of the line through the left edge of P( j+1) with the

horizontal line y ′ = y ( j )
2 , then

x ′′ < `( j+1)
1 −3( j +1) < b`( j+1)

1 c−3 j −2 = b`( j )
2 c.

This establishes the claim. The situation is illustrated in Figure 3.
An analogous choice of coordinates is used for the right edges of the P j , to obtain negative slopes

with strictly decreasing absolute value, and well-placed intersection points of the lines through right
edges of adjacent P j .

Together, these properties imply that the boundary of P is indeed an extension of the boundaries
of the P j . In particular, every horizontal slice of P with integer vertical coordinates coincides with a
slice of one of the P j , and vice versa. This establishes also the third property listed above. Hence

|t
(−1

0

)
+P | =

n∑
j=1

|t
(−1

0

)
+P j | =

n∑
j=1

(M ( j ) +p j ({t })) =
(

n∑
j=1

M ( j )

)
︸ ︷︷ ︸

=:M

+p({t })

for all t ∈R, which completes the reduction.

5



2.2 Simultaneous Diophantine approximation and arithmetic progression meeting

Dirichlet’s theorem is is a classical result in number theory about the approximation of a vector of
real numbers using rational numbers of equal denominator, see e.g. [HW08, chapter 11]. It states that
given α1, . . . , αn ∈R and Q ∈N, there exist q ∈ {1, . . . ,Q} and p1, . . . , pn ∈Z such that

|α j −
p j

q
| É 1

qQ1/n
for all j = 1. . .n

This result is best possible up to constants for the general case. However, we may ask whether a
better approximation is possible for a specific set of numbers. This motivates the following decision
problem, which was shown to be N P-hard by Lagarias [Lag85].

SIMULTANEOUS DIOPHANTINE APPROXIMATION

Given: α1, . . . ,αn ∈Q, Q ∈N, ε> 0
Decide: ∃q ∈ {1, . . . ,Q} such that |qα j −dqα j c| É ε for all j = 1. . .n

We use d·c to denote the nearest integer (breaking ties by rounding down). For computational pur-
poses, theα j must be rational numbers, though their denominators will typically be much larger than
Q.

Proof of Theorem 2. Let α1, . . . ,αn ∈Q, Q ∈N, ε > 0 be an instance of Simultaneous Diophantine Ap-
proximation. We assume without loss of generality that α j ∈ (0,1).

We will define an instance of Arithmetic Progression Meeting with pulse functions p0, p1, . . . , pn

as follows. We scale numerators and denominators so that the denominators of the α j and ε are all
equal and we denote their common denominator by D . For every j = 1. . .n, let

p j (x) =
{

0 |x − i
α j
| < ε

α j
+ 1

2D for some i ∈ {0,1, . . . ,dQα j c}

1 else

The intuition behind this definition is that we would like to have p j (x) = 0 if and only if |xα j −dxα j c| É
ε as in the definition of simultaneous Diophantine approximation. The correction term 1

2D is needed
due to the strict inequality required in pulse functions. Furthermore, we define

p0(x) =
{

0 |x − i | < 1
2D for some i ∈ {1,2, . . . ,Q}

1 else

It remains to be shown that the original instance of Simultaneous Diophantine Approximation is a
Yes-instance if and only if p =∑n

j=0 p j has a root.
Suppose q ∈ {1, . . . ,Q} satisfies |qα j −dqα j c| É ε for all j = 1. . .n. Then dividing by α j yields

|q − dqα j c
α j

| É ε

α j

and hence one obtains p(q) = 0.
Conversely, suppose that p(q) = 0. Define q̂ := dqc. As p0(q) = 0, we have q̂ ∈ {1, . . . ,Q}. Further-

more, |q − q̂ | < 1
2D . Let i j ∈ {0, . . . ,dQα j c} with |q − i j /α j | < ε/α j +1/(2D). Then

|q − i j /α j | = |q̂ +q − q̂ − i j /α j |
Ê |q̂ − i j /α j |− |q − q̂|
Ê |q̂ − i j /α j |−1/(2D)
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From this, it follows that
|q̂ − i j /α j | < ε/α j +1/D

and since α j ∈ (0,1) also that
|q̂α j − i j | < ε+1/D.

Since the denominator of α j and ε is D one has

|q̂α j − i j | É ε

which shows that q̂ is a solution to simultaneous Diophantine approximation.

3 A polynomial time approximation scheme

In this section, we show the following theorem, which implies a polynomial time approximation
scheme for the POLYGON TRANSLATION problem.

Theorem 4. For every k ∈ N, there is a polynomial-time algorithm which, given a polygon P and a
direction v ∈ Z2 as input, either computes a translate t v +P containing a minimal number of integer
points or asserts that every translate of P is a (1+1/k)-approximation to the optimal solution.

The intuition behind this result is that when P is small, we can use integer programming in fixed
dimension and adapt a technique of Kannan [Kan90] to find an optimum. On the other hand, if P is
large and contains many lattice points, then only a small fraction of them is close to the boundary,
and hence the discrepancy relative to the average number of lattice points that one expects based on
the area of P is small.

This idea goes back to Gauss’ circle problem. Gauss showed that as r grows, the number of integer
points L(r ) in a disk of radius r is asymptotically equal to its area, πr 2. In fact, he gave a bound on
the error term |L(r )−πr 2| that is linear in r . The heart of the argument lies in counting unit squares
intersecting the disk and showing that only O(r ) of them lie near the boundary. Observe that if one
transforms the setting of Gauss’ circle problem by a linear map, the disk becomes an ellipse E and Z2

becomes a general latticeΛ. Instead of unit squares we now count fundamental parallelepipeds ofΛ;
the trick is to use the right parallelepiped.

The dual of a lattice Λ is Λ? = {y ∈ R2 : ∀x ∈Λ : yT x ∈ Z}. The width wy (K ) of a convex body K
along a dual lattice vector y ∈Λ? \ {0} is defined as

wy (K ) := max
x∈K

yT x −min
x∈K

yT x.

The lattice width w(K ) of K is the minimum over all choices of y ∈ Λ? \ {0}. Note that in the linear
transformation of Gauss’ circle problem, the diameter of the disk becomes the lattice width of the
ellipse E . The lattice width and the corresponding dual lattice vector can be computed efficiently in
fixed dimension [?]. x

Theorem 5. For every lattice Λ⊂ R2 and convex body K ⊆ R2 with lattice width at least k Ê 1, one has
|N − vol(K )

det(Λ) | É 3
2k

vol(K )
det(Λ) , where N = |K ∩Λ|.

Proof. Using a linear transformation, we can assume that the Löwner-John ellipsoid [Bal97] of K is a
unit disk centered at some z ∈R2:

B(z,1) ⊆ K ⊆ B(z,2)
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Figure 4: The set P (K ) from the proof of Theorem 5.

Let B = (b1,b2) be a reduced basis of the dual lattice Λ?. In other words, ‖b1‖ É ‖b2‖ and its Gram-
Schmidt orthogonalization satisfies

b2 = b?2 +µb1, b?2 ⊥b1, |µ| É 1

2
. (1)

It is well known that b1 is a shortest non-zero lattive vector. Thus it is the lattice width direction of
disks. In particular, 4‖b1‖ = w(B(z,2)) Ê w(K ) Ê k. Let

P = {x ∈R2 : 0 É bT
1 x < 1 and 0 É bT

2 x < 1}

be the fundamental parallelepiped of Λ associated to B and let P be its closure. We relate the lattice
points in K to the area of K by centering one copy of P at each lattice point, see Fig. 4:

P (K ) = (K ∩Λ)± 1

2
P = ⋃

x∈K∩Λ
x ± 1

2
P .

Let R = ∂K ± 1
2P . We have

K \ R ⊆P (K ) ⊆ K ∪R.

Since K is a convex body, we can estimate

vol(R \ K ) É vol((K +B(0,δ)) \ K ) É |∂K |δ+πδ2,

where |∂K | is the length of the boundary and δ is the radius of P . By Lemma 6 below, we have δ É
1.2
‖b1‖ É

1
3k . Furthermore, |∂K | É |∂B(z,2)| = 4π because K is convex and contained in B(z,2).

vol(R \ K ) É 4π

3

1

k
+ π

9k

1

k
É 3

2k
vol(K ),

where the last inequality follows from vol(K ) Ê vol(B(z,1)) =π and k Ê 1. It follows that

vol(P (K )) É vol(K )+vol(R \ K ) É vol(K )+ 3

2k
vol(K ).

A lower bound follows from an analogous argument, and combining these inequalities with vol(P (K )) =
N ·vol(P ) = N ·det(Λ) yields the statement of the Theorem.

Lemma 6. Let B = (b1,b2) be a reduced basis of Λ? and P = {x ∈R2 : 0 É bT
1 x < 1 and 0 É bT

2 x < 1} the
associated fundamental parallelepiped of Λ. Then the diameter d of P is bounded by d É 2.4

‖b1‖ .
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Proof. Using the triangle inequality, we bound d É ‖x‖+‖y‖, where x and y are vertices of P adjacent
to 0. In particular, let x be the vertex satisfying bT

1 x = 0 and bT
2 x = 1. Using notation from the proof of

Theorem 5, we compute (b?2 )T x = bT
2 x +µbT

1 x = 1. Since x⊥b1 and hence x is parallel to b2, we get

‖x‖2 = 1

‖b?2 ‖2
É 4

3

1

‖b1‖2 .

The inequality follows from (1) and ‖b1‖ É ‖b2‖. Similarly, let y be the vertex satisfying bT
1 y = 1 and

bT
2 y = 0. We compute (b?2 )T y = bT

2 y −µbT
1 y =−µ, and conclude using Pythagoras’ theorem:

‖y‖2 É 1

‖b1‖2 + µ2

‖b?2 ‖2
É 1

‖b1‖2 + 4

3

µ2

‖b1‖2 É 4

3

1

‖b1‖2 .

The statement of the lemma follows from 2
p

4/3 = 2.309. . ..

In the second part of this section, we will show how to find an optimal translate when the lat-
tice width of P is at most a constant. We extend a technique which was introduced by Kannan for
parametric integer programming [Kan90]. Kannan determines the lattice width direction of the para-
metric polyhedron Pb as a function of the parameter b, and partitions the parameter space according
to width direction and according to how the respective lattice hyperplanes interact with the bound-
ary of the polyhedron. In our case, the lattice width direction is the same for all parameters, since
we only translate the input polygon. We partition the parameter space only based on interactions of
the boundary of t v +P with the lattice hyperplanes orthogonal to the width direction of P . Our main
extension is that we encode counting the number of integer points on lattice slices in an integer pro-
gram, where Kannan’s work only tested for feasibility. Our approach is compatible with partitioning
the parameter space based on the lattice width direction, and hence the following Lemma can be ex-
tended to even more general 2-dimensional INTEGER POINT MINIMIZATION problems, provided that
the lattice width is bounded by a constant for all possible parameter values.

Lemma 7. Given a dual lattice vector y ∈ Z2 \ {0} such that wy (P ) É k, the optimal translate of P in
direction v ∈Z2 can be computed in time 2O(k logk)bO(1), where b is the encoding length of P, v, and y.

Proof. Using a unimodular transformation if necessary, we can assume without loss of generality that
y = e1. Let us sketch a simple algorithm to compute the number of integer points in a translate t v+P .
Let us denote β= minx∈t v+P eT

1 x the first coordinate of the leftmost point in the translate. Let

Si = (t v +P )∩ {x ∈R2 : x1 = dβe+ i }, i = 0. . .k

denote the integral vertical slices of t v +P . Note that some of the Si may be empty. For each slice, we
can compute the lower end ai and upper end bi and write Si = {dβe+ i }× [ai ,bi ]. It follows that

|(t v +P )∩Z2| =
k∑

i=0
|Si ∩Z2| =

k∑
i=0

bbi c−dai e+1

We will argue that this algorithm can be encoded into a small number of integer programs that allow
us to find the optimal t . We start by writing down the minimization of the number of integer points
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based on the ai and bi .

min
k∑

i=0
yi

yi Ê Bi − Ai +1 (∀i )

yi Ê 0 (∀i )

bi −1 < Bi É bi (∀i )

ai É Ai < ai +1 (∀i )

Ai ,Bi ∈Z (∀i )

We can obtain γ= dβe similarly:

β=β0 + t v1

βÉ γ<β+1

γ ∈Z,

where we precompute β0 as the value of β for t = 0. The only remaining task is to encode the compu-
tation of the ai and bi given t and γ.

Suppose that we know which edge of t v +P the point (γ+ i , ai ) lies on, and suppose that the
corresponding edge of P lies on the straight line defined by cT x = d . Then ai is defined uniquely by
the equation

cT (γ+ i , ai )T − cT t v = d ,

hence we can express ai as a linear function in t and γ and add a corresponding constraint to the
integer program.

Unfortunately, the point (γ+i , ai ) does not always lie on the same edge. Let us separate the trans-
lation of the polygon into a horizontal and a vertical component, because a vertical translation does
not affect the incidence between edges and vertical lines. As the polygon is translated horizontally,
the point (γ+ i , ai ) moves onto a different edge of the polygon when a corresponding vertex of the
polygon crosses the vertical line x1 = γ+ i . Over all points (γ+ i , ai ) and (γ+ i ,bi ), such an event
happens n times – once per vertex – for one unit of horizontal movement.

Hence we can separate [0,1) into intervals I1, . . . , In with the property that the combinatorics of
incidences between vertical lines and edges of the polygon are constant for all γ−βwithin each inter-
val. This allows us to solve one integer program for each of the intervals, each integer program with
the added constrained that γ−β ∈ I j for some j , and appropriate constraints computing the ai and
bi as outlined above. Together, these n integer programs cover the entire space of possible values for
t , and we simply take the best solution found among all of them. Each individual integer program has
O(k) variables, 2k+1 of which are integer variables, and can therefore be solved in time 2O(k logk)bO(1)

using Kannan’s algorithm for integer programming [Kan87].

Proof of Theorem 4. We summarize the algorithm as follows:

1. Compute the lattice width and width direction y ∈Z2 \ {0} of P .

2. If w(P ) É 4k, compute an optimal translate using the algorithm of Lemma 7.

3. Otherwise, assert that every translate is a (1+1/k)-approximate solution.

The correctness of the last step follows from Theorem 5: Let A be the area of P and let OPT be the
number of integer points in an optimal solution. Then for every t ∈R:

|(t v +P )∩Z2| É (1+ 3

8k
)A É (1+ 3

8k
) · 1

1− 3
8k

·OPT É (1+ 1

k
)OPT,
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as long as k Ê 2.
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