Delay-Robust Event-Scheduling
In Memoriam of A. Caprara

A. Caprara\(^1\) L. Galli\(^2\) S. Stiller\(^3\) P. Toth\(^1\)

\(^1\)University of Bologna
\(^2\)University of Pisa
\(^3\)Technische Universität Berlin

17th Combinatorial Optimization Workshop
January 7-11, 2013
Aussois, France
Outline

Delay-Robust Event-Scheduling
 Robustness
 Framework
Outline

Delay-Robust Event-Scheduling
 Robustness
 Framework

Train Platforming Problem
 In and Out
 TPP deterministic model
Outline

Delay-Robust Event-Scheduling
- Robustness
- Framework

Train Platforming Problem
- In and Out
- TPP deterministic model

Delay-Robust Train Platforming
- Delay propagation network
- Buffers linking constraints
Outline

Delay-Robust Event-Scheduling
 Robustness
 Framework

Train Platforming Problem
 In and Out
 TPP deterministic model

Delay-Robust Train Platforming
 Delay propagation network
 Buffers linking constraints

Computational results
Outline

Delay-Robust Event-Scheduling
 Robustness
 Framework

Train Platforming Problem
 In and Out
 TPP deterministic model

Delay-Robust Train Platforming
 Delay propagation network
 Buffers linking constraints

Computational results

References
Robust Optimization

Robust Optimization finds best solutions, which are feasible for all likely scenarios.
Robust Optimization

Robust Optimization finds best solutions, which are feasible for all likely scenarios.

Pros

- no knowledge of the underlying distribution is required
Robust Optimization

Robust Optimization finds best solutions, which are feasible for all likely scenarios.

Pros

- no knowledge of the underlying distribution is required

Cons

Strict robustness is generally overconservative, because:

- solutions must cope with every likely scenarios without any recovery
Informally speaking, a solution to an optimization problem is called recovery robust if it can be adjusted to all likely scenarios by limited recovery action. Thus a recovery-robust solution provides a service guarantee (Liebchen et al. 2009 [3], Stiller 2008 [4]).
Robust Network Buffering

We are interested in the special case in which the recovery problem is a delay (d_e) propagation in some directed graph $N = (E, A)$, which is buffered on the arcs against disturbances on the nodes $e \in E$.

Details in Liebchen *et al.* 2009 [3], Stiller 2008 [4].
A framework

- A set \mathcal{E} of events to be scheduled.
- Denoting by F the set of feasible schedulings of events \mathcal{E}, i.e., the feasible region, a nominal problem of the form $\min \{ c(x) : x \in F \}$.
- A set \mathcal{S} of possible scenarios, where each scenario $s \in \mathcal{S}$ is defined by the external disturbance $\delta_e^s \geq 0$ assigned to each event $e \in \mathcal{E}$.
- A delay-propagation network $N = (\mathcal{E}, A)$, with $(e', e) \in A$ if a delay $d_{e'}$ on event e' may propagate to a delay d_e on event e.
- A delay $d_{e'}$ on event e' may propagate to a delay d_e on event e according to the relation $d_e \geq d_{e'} - b((e', e), x)$, where $b((e', e), x)$ is a buffer time function.
Delay-Robust Event-Scheduling
\textit{In Memoriam} of A. Caprara

\section*{Delay-Robust Event-Scheduling Framework}

\section*{Mathematical model}

The delay-robust problem can be formulated as:

\begin{equation}
\min c(x) + D, \tag{1}
\end{equation}

subject to

\begin{align*}
x \in F, \tag{2} \\
D & \geq \sum_{e \in \mathcal{E}} d_{e}^{s}, \quad s \in \mathcal{S}, \tag{3} \\
d_{e}^{s} & \geq d_{e}^{s}, \quad e \in \mathcal{E}, \quad s \in \mathcal{S}, \tag{4} \\
d_{e}^{s} & \geq d_{e}^{s} - f(e', e), \quad (e', e) \in A, \quad s \in \mathcal{S}, \tag{5} \\
f(e', e) & = b((e', e), x), \quad (e', e) \in A. \tag{6}
\end{align*}
Scenario set

\[\{ \delta^s \in \mathbb{R}^{|\mathcal{E}|}_+ : \|\delta^s\|_1 \leq \Delta \} \quad (7) \]

These are uncountably many scenarios, which can however be handled easily thanks to the following observation.

Proposition

For the delay-robust problem (1)-(6), the compact scenario set defined by (7) is equivalent to the finite scenario set \(S \) defined by the vectors

\[\{ \delta^s \in \{0, \Delta\}^{\mathcal{E}} : \|\delta^s\|_1 = \Delta \}, \]

which contains only \(|\mathcal{E}| \) scenarios.
Quadratic buffer time function

In the most natural case, the buffer time $b((e', e), x)$ only depends on the way in which events e' and e are scheduled in x, and is independent of the scheduling of the other events:

$$f(e', e) = \sum_{h' \in \mathcal{H}_e} \sum_{h \in \mathcal{H}_e} \varphi(e', h', e, h) \ x_{e', h'} \ x_{e, h}, \quad (e', e) \in A.$$

These quadratic constraints can be linearised in a few ways.
Projecting out delay variables

One may directly optimise over the feasible region obtained by projecting out the d_e^s variables (and removing the constraints (3)-(5)).

Let $\sigma_{\bar{f}}(s, \bar{e})$ be the value of the shortest path from s to $\bar{e} \in \mathcal{E}$ on the delay propagation network $N = (\mathcal{E}, A)$ with arc lengths $\bar{f}_{(e', e)}$ for $(e', e) \in A$. Moreover, let $P_{\bar{f}}(s, \bar{e}) \subseteq A$ denote such a shortest path.

Lemma

*Given buffer time values $\bar{f}_{(e', e)}$, an external disturbance equal to Δ on event $s \in \mathcal{E}$ (and null for the other events) propagates to a delay of value $\max\{0, \Delta - \sigma_{\bar{f}}(s, \bar{e})\}$ on event $\bar{e} \in \mathcal{E}$.***
A direct consequence is:

Lemma

Given buffer time values $\bar{f}(e',e)$ and maximum cumulative delay \bar{D}, for every scenario $s \in \mathcal{S}$ there exist values of the d_s^e variables satisfying (3)-(5) if and only if $\sum_{e \in \mathcal{E}} \max\{0, \Delta - \sigma_{\bar{f}}(s,e)\} \leq \bar{D}$. Otherwise, for the considered scenario s, letting $\mathcal{E}_{\bar{f}}(s) \subseteq \mathcal{E}$ be the set of events such that $\Delta - \sigma_{\bar{f}}(s,e) > 0$, a valid inequality that is violated by $\bar{f}(e',e)$ and \bar{D} is

$$\sum_{e \in \mathcal{E}_{\bar{f}}(s)} \sum_{a \in P_{\bar{f}}(s,e)} f_a \geq \Delta |\mathcal{E}_{\bar{f}}(s)| - D.$$
Problem definition

The objective of train platforming is assigning trains to platforms in a railway station.
Problem definition

The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out:
Problem definition

The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out:

- for a specific railway station
Problem definition

The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out:

- for a specific railway station
- after the timetable has been defined
In and Out
In and Out

Input

- Train schedule: arrival, departure times, directions and allowed shifts
- Railway station topology: platforms, paths and directions
In and Out

Input

- Train schedule: arrival, departure times, directions and allowed shifts
- Railway station topology: platforms, paths and directions

Output

- Assign each train a platform and two paths for arrival and departure s.t. no operational constraint is violated
Train schedule

The train schedule of a railway station contains info on arrival and departure times, directions and allowed shifts of each train passing through it.
Railway station topology

The topology of a railway station includes platforms, paths and directions.
Resources and operational constraints

Platform conflicts are forbidden, path conflicts are allowed to some extent.

A pattern P for a train t is a 5-tuple defining: platform, arrival/departure paths and shifts. Operational constraints can be expressed using an incompatibility graph among patterns.
TPP deterministic model

\[
\min \sum_{t \in T} \sum_{P \in \mathcal{P}_t} c_{t,P} \ x_{t,P}
\]

s.t.

\[
\sum_{P \in \mathcal{P}_t} x_{t,P} = 1, \quad t \in T
\]

\[
\sum_{(t,P) \in K} x_{t,P} \leq 1, \quad K \in \mathcal{K}
\]

\[
x_{t,P} \in \{0,1\}, \quad t \in T, P \in \mathcal{P}_t
\]

Details in Caprara *et al.* 2011 [1].
Delay propagation network

The platforming gives rise to a network in which the delay caused by disturbances propagates.
Delay propagation network

The platforming gives rise to a network in which the delay caused by disturbances propagates.

We consider two type of disturbances: (i) the train arrives late at the station, and (ii) the platform operations take longer than required.
Delay propagation network

The platforming gives rise to a network in which the delay caused by disturbances propagates.

We consider two type of disturbances: (i) the train arrives late at the station, and (ii) the platform operations take longer than required.

Hence, the following two events are associated with each train $t \in T$ and define \mathcal{E}:

- **arrival a_t:** the train occupies a given arrival path at a given instant
- **departure p_t:** the train frees its platform at a given instant
Example

Assume that in the nominal solution trains t' and t stop at the same platform, event $p_{t'}$ is scheduled at 10:00, and event a_t at 10:04 with 3 minutes to travel along the arrival path, so that t occupies the platform at 10:07. Moreover, assume that the headway time that must elapse between t' freeing the platform and t occupying it is 2 minutes and that the 3-minute travel time for t along its arrival path is fixed. If the departure path of t' and the arrival path of t are compatible, the buffer time $f(p_{t'}, a_t)$ is equal to 5 minutes, as a delay of up to 5 minutes on $p_{t'}$ does not affect a_t, whereas a larger one does.
Delay-robust mathematical model

\[
\min \sum_{t \in T} \sum_{P \in \mathcal{P}_t} c_{t,P} \ x_{t,P} + D
\]

subject to

\[
\sum_{P \in \mathcal{P}_t} x_{t,P} = 1, \quad t \in T,
\]

\[
\sum_{(t,P) \in K} x_{t,P} \leq 1, \quad K \in \mathcal{K},
\]

\[
x_{t,P} \in \{0, 1\}, \quad t \in T, \ P \in \mathcal{P}_t,
\]

\[
f(e', e) = \sum_{P_1 \in \mathcal{P}_{t_1}} \sum_{P_2 \in \mathcal{P}_{t_2}} c_{P_1,P_2,a} \ x_{t_1,P_1} x_{t_2,P_2}, \quad (e', e) \in A,
\]

\[
D \geq \sum_{e \in \mathcal{E}} d^s_e, \quad s \in \mathcal{I},
\]

\[
d^s_e \geq \delta^s_e, \quad e \in \mathcal{E}, \ s \in \mathcal{I},
\]

\[
d^s_e \geq d^s_{e'} - f(e', e), \quad (e', e) \in A, \ s \in \mathcal{I}.
\]
A straightforward link between the buffer value of a given arc $a \in A(N)$ associated with train pair $(t_1, t_2) \in T^2$ and the choice of patterns for the given pair of trains is the following:

$$\sum_{P_1 \in \mathcal{P}_{t_1}} \sum_{P_2 \in \mathcal{P}_{t_2}} c_{P_1,P_2,a} x_{t_1,P_1} x_{t_2,P_2}$$

where c_{a,P_1,P_2} is a constant associated to arc a and to the corresponding choice of patterns (P_1, P_2) for trains (t_1, t_2).
Bufflers linking constraints

\[f_a \leq \sum_{P_1 \in \mathcal{P}_{t_1}} \alpha^a_{P_1} x_{t_1,P_1} + \sum_{P_2 \in \mathcal{P}_{t_2}} \beta^a_{P_2} x_{t_2,P_2} - \gamma^a, \quad a \in A(N), \ (\alpha, \beta, \gamma) \in \mathcal{F}_a \quad (8) \]

Following Caprara et al. 2011 [1], the separation of Constraints (8) is done by a sort of polyhedral brute force, given that, for each pair of trains \(t_1, t_2 \), and for each arc \(a \in A(N) \) the number of vertices in \(Q_{t_1,t_2,a} \) is small. Specifically, \(Q_{t_1,t_2,a} \) has \(|\mathcal{P}_{t_1}| |\mathcal{P}_{t_2}| \) vertices and lies in \(\mathbb{R} |\mathcal{P}_{t_1}| + |\mathcal{P}_{t_2}| + 1 \), so we can separate over it by solving an LP with \(|\mathcal{P}_{t_1}| |\mathcal{P}_{t_2}| \) variables and \(|\mathcal{P}_{t_1}| + |\mathcal{P}_{t_2}| + 1 \) constraints.
Computational results: Palermo C.Le.

<table>
<thead>
<tr>
<th>instance</th>
<th>[1] Solution</th>
<th>Delay-Robust LP</th>
<th>Delay-Robust Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>time</td>
<td>D</td>
</tr>
<tr>
<td>PA I</td>
<td>1112</td>
<td>5</td>
<td>451.88</td>
</tr>
<tr>
<td>PA II</td>
<td>694</td>
<td>5</td>
<td>252.00</td>
</tr>
<tr>
<td>PA III</td>
<td>756</td>
<td>5</td>
<td>285.00</td>
</tr>
<tr>
<td>PA IV</td>
<td>525</td>
<td>5</td>
<td>207.00</td>
</tr>
</tbody>
</table>

Table: Results for the real-world instances of Rete Ferroviaria Italiana.
Computational results: Genova P.Principe

<table>
<thead>
<tr>
<th>instance</th>
<th>[1] Solution</th>
<th>Delay-Robust LP</th>
<th>Delay-Robust Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>time</td>
<td>D</td>
</tr>
<tr>
<td>GE I</td>
<td>561</td>
<td>5</td>
<td>193.11</td>
</tr>
<tr>
<td>GE II</td>
<td>1252</td>
<td>5</td>
<td>388.00</td>
</tr>
<tr>
<td>GE III</td>
<td>1073</td>
<td>5</td>
<td>297.95</td>
</tr>
<tr>
<td>GE IV</td>
<td>758</td>
<td>5</td>
<td>231.00</td>
</tr>
</tbody>
</table>

Table: Results for the real-world instances of Rete Ferroviaria Italiana.
Computational results: Bari C.Le.

<table>
<thead>
<tr>
<th>instance</th>
<th>[1] Solution</th>
<th>Delay-Robust LP</th>
<th>Delay-Robust Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA I</td>
<td>770 5</td>
<td>341.00 68</td>
<td>592 42% 23% 1095</td>
</tr>
<tr>
<td>BA II</td>
<td>959 5</td>
<td>508.08 118</td>
<td>959 47% 0% 5</td>
</tr>
<tr>
<td>BA III</td>
<td>711 5</td>
<td>293.91 115</td>
<td>651 55% 8% 525</td>
</tr>
<tr>
<td>BA IV</td>
<td>733 5</td>
<td>308.40 103</td>
<td>686 55% 6% 2431</td>
</tr>
<tr>
<td>BA V</td>
<td>786 5</td>
<td>245.26 165</td>
<td>734 67% 7% 3204</td>
</tr>
<tr>
<td>BA VI</td>
<td>819 5</td>
<td>312.00 51</td>
<td>819 62% 0% 5</td>
</tr>
<tr>
<td>BA VII</td>
<td>1025 5</td>
<td>315.18 77</td>
<td>743 58% 27% 4126</td>
</tr>
<tr>
<td>BA VIII</td>
<td>714 5</td>
<td>240.00 45</td>
<td>580 59% 19% 535</td>
</tr>
</tbody>
</table>

Table: Results for the real-world instances of Rete Ferroviaria Italiana.
Computational results: Milano C.Le.

<table>
<thead>
<tr>
<th>instance</th>
<th>[1] Solution D</th>
<th>Delay-Robust LP D</th>
<th>Delay-Robust Solution D</th>
<th>%gap</th>
<th>%reduction</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI I</td>
<td>480</td>
<td>354.00</td>
<td>476</td>
<td>26%</td>
<td>1%</td>
<td>201</td>
</tr>
<tr>
<td>MI II</td>
<td>785</td>
<td>449.28</td>
<td>686</td>
<td>35%</td>
<td>13%</td>
<td>2415</td>
</tr>
<tr>
<td>MI III</td>
<td>1102</td>
<td>382.88</td>
<td>822</td>
<td>53%</td>
<td>25%</td>
<td>938</td>
</tr>
<tr>
<td>MI IV</td>
<td>1067</td>
<td>721.00</td>
<td>951</td>
<td>24%</td>
<td>11%</td>
<td>2547</td>
</tr>
<tr>
<td>MI V</td>
<td>1002</td>
<td>290.76</td>
<td>565</td>
<td>49%</td>
<td>44%</td>
<td>2503</td>
</tr>
<tr>
<td>MI VI</td>
<td>898</td>
<td>415.13</td>
<td>816</td>
<td>49%</td>
<td>9%</td>
<td>618</td>
</tr>
</tbody>
</table>

Table: Results for the real-world instances of Rete Ferroviaria Italiana.
Questions

Thank you!
References

