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Abstract

We study the minimum number of constraints needed to formulate random instances of the
maximum stable set problem via LPs (more precisely, linear extended formulations), in two
distinct models. In the uniform model, the constraints of the LP are not allowed to depend on
the input graph, which should be encoded solely in the objective function. There we prove a
2Ω(n/ log n) lower bound with probability at least 1− 2−2n for every LP that is exact for a ran-
domly selected set of instances; each graph on at most n vertices being selected independently
with probability p > 2−(

n/4
2 )+n. In the non-uniform model, the constraints of the LP may de-

pend on the input graph, but we allow weights on the vertices. The input graph is sampled
according to the G(n, p) model. There we obtain upper and lower bounds holding with high
probability for various ranges of p. The bounds are close as there is only an essentially quadratic
gap in the exponent. Finally, we state a conjecture to close the gap.

1 Introduction
In the last three years, extended formulations considerably gained interest in various areas, includ-
ing discrete mathematics, combinatorial optimization, and theoretical computer science.

The key idea underlying extended formulations is that by choosing the right variables it is
possible to efficiently express various combinatorial optimization problems via linear programs
(LPs) in higher dimension. There is an ever expanding collection of examples of small size extended
formulations. For instance, Williams [2002] has expressed theminimum spanning tree problem on
a planar graph with only a linear number of (variables and) constraints, while in the natural edge
variables the LP has an exponential number of constraints. There exist numerous other examples,
see e.g., the surveys by Conforti et al. [2010] and Kaibel [2011].

On the other hand, extended formulations ask for the intrinsic difficulty of expressing a given
combinatorial optimization problem through a single LP, in terms of the minimum number of
constraints necessary in such an LP. This leads to a complexity measure that we call loosely here
‘polyhedral complexity’ (precise definitions are given later from Section 2 on).

In fact, the main reason behind the renewed interest for extended formulations is the recent
series of breakthroughs in lower bounding techniques [Rothvoß, 2011, Fiorini et al., 2012, Braun
et al., 2012, Braverman andMoitra, 2012, Braun and Pokutta, 2013, Chan et al., 2013, Rothvoß, 2013].
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These breakthroughs make it now conceivable to quantify the polyhedral complexity of any given
combinatorial optimization problem unconditionally, that is, independently of conjectures such as
P vs. NP, and without extra assumption on the structure of the LP.

Although a polynomial upper bound on the polyhedral complexity yields a polynomial upper
bound on the true algorithmic complexity of the problem—provided that the LP can be efficiently
constructed and also that the size of the coefficients is kept under control (see Rothvoß [2011] for
a discussion of this last issue) e.g., through interior point methods—it is becoming clear that the
converse does not hold. Recently, Chan et al. [2013] proved that every LP for MAXCUT with an

integrality gap at most 2− ε needs at least nΩ
(

log n
log log n

)
constraints, while the approximation factor of

the celebrated SDP-based polynomial time algorithm of Goemans and Williamson [1995] is close
to 1.13. Even more recently, Rothvoß [2013] solved another major open problem in the area by
showing a 2Ω(n) lower bound on the size of any LP expressing the perfect matching problem.

In this paper, we consider the problem of determining the average case polyhedral complexity
of the maximum stable set problem, in two different models: ‘uniform’ and ‘non-uniform’, see
Section 1.2 below. Roughly, the uniform model asks for a single LP that works for a given set of
input graphs. In the non-uniformmodel the LP can depend on the input graph G but should work
for every choice of weights on the vertices of G (in particular, for all induced subgraphs of G).

We show that the polyhedral complexity of the maximum stable set problem remains high in
each of these models, when the input graph is sampled according to natural distributions. There-
fore, we conclude that the hardness of the problem is not concentrated on a small mass of graphs
but it is spread out through all graphs.

1.1 Related work
At core of the study of extended formulations is Yannakakis’s famous paper [Yannakakis, 1988,
1991] relating polyhedral complexity and nonnegative rank. In his work, Yannakakis was able to
show that the TSP polytope does not admit a symmetric linear programming formulation of poly-
nomial size (incidentally, he did not rely on the connection to nonnegative rank mentioned above
but rather on a group-theoretic argument). The symmetry assumption was then removed later
in Fiorini et al. [2012] and a formal framework for approximate linear programming formulations
was established in Braun et al. [2012].

Our work is most directly related to Fiorini et al. [2012] and Braun et al. [2012], where the foun-
dation for the framework used here are laid out. The first paper identified the Unique Disjointness
(UDISJ) partial matrix as an important source of lower bounds on polyhedral complexity. The
second paper laid out a framework for studying the size of approximate linear programming for-
mulations. This framework forms the basis of our uniform model.

Finally, at the core of our lower bound for the uniform model is a theorem from Braun and
Pokutta [2013] that provides a strong lower bound on the nonnegative rank of a submatrix of the
UDISJ partial matrix obtained by (adversarially) dropping rows and columns.

1.2 Contribution
We present the first strong and unconditional results on the average case size of LP formulations
for the maximum stable set problem. In particular, we establish that the maximum stable set prob-
lem in two natural average case models and encodings does not admit a polynomial size linear
programming formulation, even in the unlikely case that P = NP.

Uniform model In the uniform model the polytope P containing the feasible solutions to the stable
set problem is independent of the instances. The instances will be solely encoded into the
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objective functions. This ensures that no complexity of the problem is leaked into an instance-
specific formulation. A good example of a uniform model is the TSP polytope over Kn with
which we can test for Hamiltonian cycles in any graph with at most n vertices by choosing an
appropriate objective function. In the uniformmodel, we show that if we sample each graph
on at most n vertices with probability p > 2−(

n/4
2 )+n then with probability at least 1− 2−2n

every LP “solving” the resulting set of instances has at least 2Ω(n/ log n) constraints.

Non-uniform model In the non-uniform modelwe consider the stable set polytope for a specific but
random graph. The polyhedral description may depend heavily on the chosen graph. We
sample a graph G in the Erdős–Rényi G(n, p)model. We then analyze the stable set polytope
STAB(G) of G. If p is small enough, so that the obtained graph is sufficiently sparse, it will
contain an induced subgraph of sufficient sizewhose corresponding face of STAB(G) projects
to the correlation polytope. Via this embedding we can then derive strong lower bounds on
the size of any LP expressing STAB(G) that hold with high probability. We establish su-
perpolynomial lower bounds for p ranging between ω((log6+ε n)/n) and O(log−1n) like for
p = n−ε and ε < 1/4 the LP has at least 2Ω(

√
nε log n) constraints, and for p = c(log6+ε) n)n−1

we get a lower bound of n(log 3/2) log1+ε/4 n.

1.3 Outline
In Section 2 we recall extended formulations. We introduce the uniform model for the maximum
stable set problem in Section 3. We then establish bounds on the average case complexity for the
uniform model in Section 4. In Section 5 we consider the non-uniform model and derive lower
bounds as well as upper bounds. We conclude with a conjecture in Section 6.

2 Preliminaries
We start by briefly recalling basics of extended formulations, stated in geometric terms. We refer
the interested reader to Fiorini et al. [2012] for more details. After that we state the main source of
lower bounds in the non-uniform case.

Let P ⊆ Rd and L ⊆ Re be two polyhedra. Then L is called an extension (or lift) of P if there exists
an affine map π : Rd → Re, so that π(L) = P. Defining the size of polyhedron L as its number of
facets, the extension complexity of polyhedron P is theminimum size of any of its extensions L, and is
denoted by xc(P). Hereweuse the notions of extension and extended formulation interchangeably;
the latter is simply an equivalent way to describe an extension.

The following monotonicity lemma from Fiorini et al. [2012] provides a reduction mechanism
to lower bound the extension complexity.

Lemma 2.1 (Monotonicity of extended formulations). Let P be a polyhedron. Then the following hold:

(i) if F is a face of P, then xc(F) 6 xc(P);

(ii) if L is an extension of P, then xc(P) 6 xc(L).

As usual, COR(n) := conv ({bbᵀ ∈ Rn×n | b ∈ {0, 1}n}) denotes the correlation polytope and
STAB(G) := conv

({
χS ∈ RV(G)

∣∣∣ S stable set of G
})

is the stable set polytope of graph G. (Recall
that the characteristic vector χS has χS

v = 1 if v ∈ S and χS
v = 0 otherwise.) Let log denote the

base-2 logarithm.

Theorem 2.2. xc(COR(n)) > 2(log 3/2)n.
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The factor log 3/2 ≈ 0.581 in the exponent is the current best one due to Kaibel and Weltge
[2013]; for various approximate case versions see Braun et al. [2012], Braverman andMoitra [2012],
Braun and Pokutta [2013].

The notion of extension directly generalizes to pairs of nested polyhedra. If P ⊆ Q ⊆ Rd are
two polyhedra, an extension of the pair P, Q is a polyhedron L ⊆ Re such that P ⊆ π(L) ⊆ Q for
some affinemap π : Rd → Re. The extension complexity xc(P, Q) of pair P, Q is the minimum size
of an extension of that pair.

3 A uniform model for maximum stable set
Faithful linear encodings were introduced in Braun et al. [2012] to study the polyhedral hardness
of approximation of various problems. They are tools leading to a polyhedral pair capturing the
complexity of the problem.

Here we recall only the polyhedral pair arising from the standard encoding of the maximum
stable set problem. We refer the reader to Appendix A for more details.

We consider a class G of graphs with vertex set included in [n] := {1, . . . , n}. For each graph
G with V(G) ⊆ [n], we define an objective function wG ∈ Rn×n by letting wG

ij = 1 if i = j and
i ∈ V(G), but wG

ij = wG
ji = −1 if ij ∈ E(G), and finally wG

ij = 0 otherwise. We define a polyhedron

Q(G) :=
{

x ∈ Rn×n
+

∣∣∣ ∀G ∈ G : 〈wG, x〉 6 α(G)
}

,

where 〈wG, x〉 = ∑i,j wG
i,jxi,j denotes the Frobenius inner product of matrices wG and x, and α(G) is

the stability number of G. We let STABu(G, ρ) denote the pair of nested polyhedra (P, (1+ ρ)Q(G))
with P = COR(n) and ρ > 0 defining the dilation factor. If ρ = 0, we simply denote the pair by
STABu(G).

Recall from Braun et al. [2012] that the extension complexity of a polyhedral pair is equal to the
nonnegative rank of any of its slack matrices up to a difference of 1, this is called the factorization
theorem (see Theorem 10 in Appendix A). For the pair (P, (1 + ρ)Q(G)) a slack matrix S has rows
indexed by all the characteristic vectors b ∈ {0, 1}n of the subsets of [n], corresponding to the vertex
bbᵀ of P, and columns indexed by G. The entries are S(b, G) = (1 + ρ)α(G)− 〈wG, b〉.

For example, when G is the set of all cliques, we reindex the cliques by the characteristic vectors
a ∈ {0, 1}n of their vertex sets. We obtain a matrix M as a slack matrix with rows and columns
indexed by a, b ∈ {0, 1}n, and with entries M(a, b) = (1− aᵀb)2 + ρ. Thus, in particular,

M(a, b) =

{
ρ if aᵀb = 1
1 + ρ if aᵀb = 0.

For ρ = 0, this is known as the unique disjointness (UDISJ) (partial) matrix. For general ρ > 0, this
is called the ρ-shifted UDISJ matrix. We shall need the following theorem from Braun and Pokutta
[2013] to bound the nonnegative rank of certain submatrices of the (ρ-shifted) UDISJ matrix.

Theorem 3.1. For the ρ-shifted UDISJ matrix M, let Mk be the submatrix for sets of size k. Let S be any
submatrix of Mk obtained by deleting at most an α-fraction of rows and at most a β-fraction of columns for
some 0 6 α, β < 1. Then for 0 < ε < 1:

rank+ S > 2(1/8(ρ+1)−(α+β)H[1/4])n−O(n1−ε) for k = n/4 + O(n1−ε).

We refer the reader to Appendix A.3 for more information on UDISJ.
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4 Average case complexity in the uniform model
We will now establish our main result for the uniform average case complexity model. We obtain
that for any random collection of graphs where each graph is picked independently with proba-
bility p, the polyhedral complexity of solving the stable set problem over that particular collection
of graphs is high, or more precisely, the extension complexity of the corresponding pair is high.
This shows in particular that the instances of the stable set problem resulting in high extension
complexity are not localized in a set of small density.

Main Theorem 4.1 (Super-polynomial xc of STABu(G) w.h.p.). Let n > 40 and p ∈ [0, 1] with p >

2−(
n/4

2 )+n. Pick a family G of graphs by selecting each graph G with V(G) ⊆ [n] independently with
probability p. Then

P
[
xc(STABu(G)) > 2Ω(n/ log n)

]
> 1− 2−2n

.

A crucial point of the proof is a concentration result on α(G). It is well-known that almost
all graphs G on n vertices have stability number α(G) ∼ 2 log n. However, the following rough
estimate will be sufficient for our purpose. We include an easy proof for completeness.

Lemma 4.1. Let n > 10. The probability that a uniformly sampled random graph G with V(G) = [n] has
α(G) > 3 log n is at most n−1.

Proof. We follow closely [Diestel, 2005, Chapter 11, page 304]. Notice that G(n, 1/2) induces the
uniform distribution on all graphs with vertex set [n]. So we assume G = G(n, 1/2). Letting
k := 3 log n, we have n > k > 2 and

P [α(G) > k] 6
(

n
k

)(
1
2

)(k
2)

6 nk
(

1
2

)(k
2)

= n
3
2 (1−log n) 6 n−1

where the first inequality follows from the union bound.

We are ready to prove the main theorem of this section.

of Main Theorem 1. The main idea of the proof is that, with large enough probability, we have
max

{
〈wK, x〉

∣∣ x ∈ Q(G)
}

= O(log n) for many cliques K with V(K) ⊆ [n] and Θ(n) vertices.
This implies that some slack matrix of the pair STABu(G) contains the O(log n)-shifted UDISJ as a
submatrix obtained by picking a large fraction of the rows (and all columns). We apply Theorem
3.

Consider a clique K with V(K) ⊆ [n], and size k := dn/4e. We say that a graph G is good for K
if V(G) = V(K) and α(G) 6 3 log n. Clique K is said to be good if some graph G ∈ G is good for K.
Otherwise, K is called bad.

We claim that, with high probability, the total fraction of bad cliques among all k-cliques K is
at most α := 1/(24 log n). By Lemma 4, the total number of graphs G with V(G) = V(K) that are
not good for a fixed k-clique K is at most k−12(

k
2). Thus

P [K is bad] = P [G contains no good graph for K]

6 (1− p)(1−k−1)2(
k
2) 6 e−p(1−k−1)2(

k
2) 6 2−

9
10 2n log e 6 α 2−2n

.

where the second inequality follows from k > n/4 > 10 and p > 2−(
n/4

2 )+n. Let X denote the
random variable that counts the number of bad k-cliques K. By Markov’s inequality,

P

[
X > α

(
n
k

)]
6 2−2n

.
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If clique K is good and G is a good graph for K, the inequality 〈wG, x〉 6 3 log n is valid for
Q(G). Thus the inequality 〈wK, x〉 6 3 log n is also valid for Q(G), because x > 0 is valid for Q(G),
and wK 6 wG.

Suppose that the fraction of cliques K with V(K) ⊆ [n] and size k = dn/4e that are bad is at
most α. We have shown that this holds with probability at least 1− 2−2n . By what precedes, we
can define a slackmatrix for the pair STABu(G) that contains a (3 log n)-shift of UDISJ with at most
an α-fraction of the rows thrown away. From Theorem 3 and from the factorization theorem, the
extension complexity of the pair STABu(G) is at least 2(1/8(3 log n+1)−αH[1/4])·n−O(n1−ε) = 2Ω(n/ log n).

A close inspection of the proof of Main Theorem 1 shows that we can immediately apply the
framework in Braun et al. [2012] to obtain a lower bound on the average case approximate extension
complexity. We obtain the following result. The proof is identical, except that we choose α :=
1/24(1 + ρ) log n, and the inequalities that yield the slack matrix are of the form 〈wK, x〉 6 (1 +
ρ)3 log n for all good cliques K with k = dn/4e vertices, which are all valid for (1 + ρ)Q(G).

Corollary 4.2 (Super-polynomial xc of STABu(G, ρ)w.h.p.). As in Main Theorem 1, let G be a random
set of such that each graph G with V(G) ⊆ [n] is contained in G with probability p > 2−(

n/4
2 )+n independent

of the other graphs. Then the ρ-approximate pair STABu(G, ρ) with ρ 6 n1−ε

log n for some 0 < ε < 1/2 has
extension complexity 2Ω(nε), with probability at least 1− 2−2n .

Observe that the approximation factor in Corollary 5 can be larger than 3 log n. The reason
why this is possible, contradicting initial intuition, is that the hardness arises from having many
different graphs and hence many objective functions to consider simultaneously and the encoding
is highly non-monotone. Roughly speaking, graphs with different vertex sets are independent of
each other, even if one is an induced subgraph of the other.

5 Average case complexity in the non-uniform model
We now turn our attention to the non-uniform model, where we consider the stable set polytope
over a specific but random graph G and analyze its extension complexity. Our strategy is to em-
bed certain gadget graphs as induced subgraphs of G, using the probabilistic method. Here we
consider the Erdős–Rényi graph model and sample G from G(n, p).

We begin by defining the gadget graphs we use and seeing how an induced gadget forces up
the extension complexity of STAB(G) when the underlying template graph is a complete graph.

Fix a graph T. This graph serves as a template for defining the gadget graph of T, denoted
as TD: the graph obtained by replacing each edge ij of T with an edge gadget Eij, which is a 5-
cycle with possibly additional connecting paths (hairs) as shown in Figure 1. In total, TD has
v := |V(T)| + (2` + 3) |E(T)| vertices and e := (2` + 5) |E(T)| with hairs of length ` (i.e., every
hair has `many edges). We allow ` = 0, in this case the grey and black vertices of Figure 1 coincide.

The hairs are used to decrease the average degree of induced subgraphs of the gadget graph,
as shown in the following lemma.

Lemma 5.1. For any graph T, the average degree of any induced subgraph of TD is at most 2+ 4/(2`+ 3)
for ` > 1. For ` = 0 the average degree is at most 4.

Proof. Let G be an induced subgraph of TD. We shall prove the stronger claim that |E(G)| / |V(G) \V(T)|
is upper bounded by 2 if ` = 0 and by 1+ 2/(2`+ 3) if ` > 1 (in other words, we ignore the original
vertices of T at the estimation).
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i u(1)
ij u(2)

ij j

u(3)
ij

. . .` . . .`

Figure 1: Edge gadget Eij replacing edge ij of T in the gadget graph TD. Black vertices represent
vertices of the template graph T, white and grey vertices represent new vertices added to construct
TD. There are ` > 0 many edges between the black and grey vertices.

First we apply somemodifications to G which do not decrease the factor |E(G)| / |V(G) \V(T)|
if it was already at least 1. We add the original vertices of T to G (togetherwith the edges connecting
them to vertices already in G), and then we successively remove degree-1 vertices of G in the edge
gadgets. Hence we may assume without loss of generality, that G has no degree-1 vertices of the
edge gadgets, and it contains the original vertices of T. So for a fixed Eij, the graph G contains
either only the original vertices of T, or both the degree-3 (grey) vertices of the 5-cycle. In the latter
case, from every path connecting these and i, j, the graph G contains either the whole path, or only
the end points. We claim that if ` > 1 then adding the missing paths will not decrease the factor
|E(G)| / |V(G) \V(T)| below 1 + 2/(2` + 3) if it was greater than this value. Indeed, for every
path, the ratio of added edges and vertices is at least 1 + 2/(2`+ 3), namely, 1 + 1/(`− 1), 2 or
3/2. Therefore we may assume that every edge gadget Eij is either completely contained in G or
only the two vertices i and j of T are contained in G. Let k denote the number of Eij completely
contained in G, then |E(G)| = k(2`+ 5) and |V(G) \V(T)| = k(2`+ 3), and their ratio is exactly
1 + 2/(2`+ 3), finishing the proof in case ` > 1.

If ` = 0 then a similar argument applies, except that adding the shorter path (containing u(3)
ij )

and removing the longer path (u(1)
ij , u(2)

ij ) will not decrease the factor |E(G)| / |V(G) \V(T)| below
2 if it were already larger.

In the next lemma, we denote by COR(T) the projection of the |V(T)| × |V(T)| correlation
polytope COR(|V(T)|) on the variables xii for i ∈ V(T) and xij for ij ∈ E(T). We call this polytope
the correlation polytope of graph T. In particular, COR(Kt) = COR(t).

Lemma 5.2. If graph G contains TD (with arbitrary even hair length `) as an induced subgraph, then

xc(STAB(G)) > xc(COR(T)).

In particular, for T = Kt we get xc(STAB(G)) > 2(log 3/2)t.

Proof. Let F be the face of STAB(G) whose vertices are the characteristic vectors of stable sets of
TD containing the maximum number vertices in each edge gadget Eij. Thus, F is defined by in-
tersecting STAB(G) with the (face inducing) hyperplanes ∑v∈V(Eij) xv = ` + 2 for all ij ∈ E(T).

Here xv is the coordinate for vertex v in TD. For simplicity, we denote by x(k)ij the coordinate for

the additional vertex u(k)
ij of the 5-cycle in Eij, see Figure 1.

Then it can be easily verified that F is an extension of COR(T) via the affine map π : x 7→ y =
π(x) where

yij =

{
xi if i = j,

1− x(1)ij − x(2)ij if i 6= j.
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In this definition, the yij are the correlation variables, with i, j ∈ V(T) and either i = j or ij ∈ E(T).
Now Lemma 1 gives

xc(STAB(G)) > xc(F) > xc(COR(T)).

For T = Kt, using Theorem 2, we have

xc(STAB(G)) > xc(COR(t)) > 2(log 3/2)t.

5.1 Existence of gadgets in random graphs
In this section, we estimate the probability that a random Erdős–Rényi graph G = G(n, p) contains
an induced copy of a graph H. Recall that in the G(n, p) model, each of the (n

2) pairs of vertices is
connected by an edge with probability p, independently from the other edges.

Lemma 5.3. Let H be a graph with v vertices and with all induced subgraphs having average degree at most
d. Let 0 < p 6 1/2 and

g = g(n, p, v) :=
v2 p−

d
2 (1− p)−

v
2

n− v
.

The probability of G(n, p) not containing an induced copy of H satisfies

P

[
H

ind
6⊆ G(n, p)

]
6 c0g2 ≈ 1.23g2,

where c0 := exp(2W(1/
√

2))/2 and W is the Lambert W-function, the inverse of x → x exp x.

Proof. The proof is via the second-moment method.
Let S be any graph isomorphic to H with V(S) ⊆ V(G). Let XS be the indicator random

variable of S being an induced subgraph of G. Obviously, the total number of induced subgraphs
of G isomorphic to H satisfies X = ∑S XS. We estimate the expectation and variance of X. Let
e denote the number of edges of H, and let Aut(H) denote the automorphism group of H. The
expectation is clearly

E [X] = ∑
S

E [XS] =

(
n
v

)
v!

|Aut(H)| p
e(1− p)(

v
2)−e.

The variance needs more preparations. Let now S and T be two graphs isomorphic to H with
V(S), V(T) ⊆ V(G). Using that XS and XT are independent and thus Cov [XS, XT] = 0 when
|V(S) ∩V(T)| 6 1 we get

Var [X] = ∑
S,T

Cov [XS, XT] 6 ∑
|V(S)∩V(T)|>2

E [XSXT]

= ∑
|V(S)∩V(T)|>2

E [XS]E [XT |XS = 1] = E [X] ∑
T : |V(S)∩V(T)|>2

E [XT |XS = 1] .

Note that in the last sum S is fixed, and by symmetry, the sum is independent of the actual value
of S. That is why we could factor it out. We obtain via Chebyshev’s inequality,

P

[
H

ind
6⊆ G(n, p)

]
= P [X = 0] 6

Var [X]

E [X]2
6

∑T : |V(S)∩V(T)|>2 E [XT |XS = 1]
E [X]

.
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We shall estimate E [XT |XS = 1], which is the probability that H is induced in G provided S is
induced in G, as a function of k := |V(S) ∩V(T)|. We assume that S and T coincide on V(S) ∩
V(T), and therefore have at most dk/2 edges in common, as their intersection is isomorphic to an
induced subgraph of H, and therefore have average degree at most d by assumption. Hence as
p 6 1/2

E [XT |XS = 1] = P

[
T

ind
⊆ G

∣∣∣∣ S
ind
⊆ G

]
6 pe− d

2 k(1− p)(
v
2)−e−(k

2)+
d
2 k.

This is clearly also true if S and T do not coincide on V(S)∩V(T), as then the probability is 0. Now
we can continue our estimation by summing up for all possible T with k > 2:

∑T E [XT |XS = 1]
E [X]

6
∑v

k=2 (
v
k)(

n−v
v−k)

v!
|Aut H| p

e− d
2 k(1− p)(

v
2)−e−(k

2)+
d
2 k

(n
v)

v!
|Aut H| p

e(1− p)(
v
2)−e

=
v

∑
k=2

(v
k)(

n−v
v−k)

(n
v)

p−
d
2 k

(1− p)
d+1−k

2︸ ︷︷ ︸
6(1−p)−

v
2


k

6
v

∑
k=2

vk

2(k− 2)!

(
v

n− v

)k (
p−

d
2 (1− p)−

v
2

)k

=
1
2

g2
v

∑
k=2

1
(k− 2)!

gk−2 6
1
2

g2 exp(g),

as
(v

k)(
n−v
v−k)

(n
v)

6
(v

k)
(n−v)v−k

(v−k)!
(n−v)v

v!

=

(
v
k

)2 k!
(n− v)k 6

1
k!

(
v

n− v

)k

.

The lemma follows: the probability of H not being an induced subgraph is at most egg2/2. This
upper bound is 1 exactly if g = 2W(1/

√
2). For g 6 2W(1/

√
2), we obtain the upper bound in

the lemma. For g > 2W(1/
√

2), the upper bound in the lemma is at least 1, so the statement is
obvious.

5.2 High extension complexity with high probability
In order to obtain lower bounds on the extension complexity of the stable set polytope of G =

G(n, p), we use Lemma 8 together with Lemma 7, taking H to be KD
t .

Main Theorem 5.1 (Super-polynomial xc of STAB(G(n, p)) w.h.p.). For p > 1/ 4
√

n and for every
constant c > 0, we have

P

[
xc(STAB(G(n, p))) > 2c(log 3/2)

√
ln n

p

]
> 1− (c1 + o(1))

n3c2/2−2+o(1) ln4 n
p8 , (1)

where c1 := 81c0c8

16 . In particular, for ε < 1/4, taking c 6
√

2(1− 4ε)/3,

P
[
xc(STAB(G(n, n−ε)) > 2c(log 3/2)

√
nε ln n

]
> 1− (c1 + o(1))n−1+4ε+o(1) ln4 n, (2)

and (at the other end of the range) for fixed δ > 0, taking c = 1,

P
[
xc(STAB(G(n, δ ln−1 n))) > n(log 3/2)δ−1/2

]
> 1− (c1 + o(1))

n−1/2+o(1) ln12 n
δ8 . (3)
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Moreover, for p = n−1+ε and any fixed 0 < ε < 8/11

P
[
xc(STAB(G(n, n−1+ε))) > 2nε/8 log 3/2

]
> 1− c0(1 + o(1))

(
2(2− ε)

ε

)4

n−ε/2. (4)

Finally, for c, k > 0 and p = c(log4k+2 n)/n

P
[
xc(STAB(G(n, c(log4k+2 n)/n))) > 2log 3/2 logk n

]
> 1− c0(1 + o(1))

4
c2 . (5)

Proof. We apply Lemma 8 to the graph H := KD
t together with Lemma 7 to obtain:

P
[
xc(STAB(G(n, p))) > 2(log 3/2)t

]
> P

[
KD

t

ind
⊆ G(n, p)

]
> 1− c0

v4 p−d(1− p)−v

(n− v)2

> 1− c0 (1 + o(1))
v4 p−depv

v2 if v = o(n).

Here v is the number of vertices of H, and every induced subgraph of H should have average
degree at most d. We shall use the d provided by Lemma 6.

Now we shall substitute various values for p, t, d, ` to obtain the equations of the theorem.
For Equation (1), we choose

` = 0, t :=

⌈
c

√
ln n

p

⌉
, d = 4.

Note that v = t + 3(t
2) = (1 + o(1)) 3

2 t2 = (1 + o(1)) 3
2 c2 ln n

p = o(n) as p > 1/ 4
√

n, and hence

v4 p−depv

n2 = (1 + o(1))
81
16

c8 p−8n3c2/2−2+o(1) ln4 n.

This finishes the proof of Equation (1). Equations (2) and (3) are special cases of (1).
For Equations (4) and (5) we shall use a positive ` and let

γ :=
2`+ 3

2

to ease computation. Then

d = 2 +
4

2`+ 3
= 2 +

2
γ

,

v = t + (2`+ 3)
(

t
2

)
= (1 + o(1))γt2.

Hence
v4 p−depv

n2 = (1 + o(1))γ4 t8ep(1+o(1))γt2

p2+2/γn2 .

To prove Equation (4), let p = n−1+ε, ` = 2d2/ε− 11/4e and t = nε/8, then γ > 4(1− ε)/ε and
γ < 2(2− ε)/ε therefore

γ4 t8ep(1+o(1))γt2

p2+2/γn2 = (1 + o(1))
(

2(2− ε)

ε

)4

n−ε/2
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proving the claim. Note that γpt2 = o(1) and ` > 0 as ε < 8/11.
For Equation (5), we choose t = dlogk ne, p = c(log4k+2 n)/n and ` = 2d(log n)/2− 3/4e, then

γ > log n and γ = (1 + o(1)) log n leading to

γ4 t8ep(1+o(1))γt2

p2+2/γn2 6 (1 + o(1))
4
c2

proving the claim.

Main Theorem 2 gives super-polynomial lower bounds all the way from p = ω( log6+ε n
n ) to

p = O(1/ log n). The key for being able to cover the whole regime is to have the gadgets depend
on the parameter choice. Notice that for p < 1/n a random graph almost surely will have all its
components of size O(log n), making the stable set problem easy to solve, so that we essentially
leave only a small polylog gap.
5.3 Upper bound on extension complexity with high probability
We now complement Main Theorem 2 with an upper bound, which is close to the lower bound:
there is only an essentially quadratic gap in the exponent.

Theorem 5.4 (Upper bound on the xc of STAB(G(n, p)) w.h.p.). For 0 < p 6 1/2,

P

[
xc(STAB(G)) > 2Ω

(
ln2 n

p

)]
6 n−Ω

(
ln n

p

)
.

In particular, for p = n−ε, we obtain P
[
xc(STAB(G)) > 2Ω(nε ln2 n)

]
= o(1) and similarly for p =

δ ln−1 n, we get P

[
xc(STAB(G)) > nΩ

(
ln2 n

δ

)]
= o(1).

In order to establish the upper bound stated in Theorem 9, we use the following result.

Lemma 5.5. Every polytope P has an extension complexity at most the number of its vertices.

Proof. Let V be the set of vertices of P, and let Q be a simplex with |V| vertices. The simplex Q is an
extension of P viamapping the vertices of Q one-to-one to V in an arbitrary fashion, and extending
to an affine mapping on Q. This extension has size |V|.

We are ready to prove Theorem 9.

Proof of Theorem 9. By standard arguments (see, e.g., [Diestel, 2005, Chapter 11, page 300]), for G =
G(n, p) we have

P [α(G) > r] 6
(

n e−p(r−1)/2
)r

and thus for r = 4 ln n
p we get

P

[
α(G) > 4

ln n
p

]
6
(

n√
e

)−4 ln n
p

.

Therefore, with very high probability, we have α(G) 6 4 ln n
p .

Using the inequality ∑k
i=0 (

n
i ) 6 (n + 1)k, we get

#(stable sets in G) 6 (n + 1)α(G) = 2log(n+1)α(G) = 2(
1

ln 2+o(1)) ln(n)α(G).

The result then follows directly from Lemma 11.
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6 Concluding remarks
We conclude with the following conjecture that would further strengthen the results above as well
as establishing truly exponential lower bounds on the extension complexity of further combinato-
rial problems.

Conjecture 6.1 (Sparse Graph Conjecture). There exists an infinite family (Tk)k∈N of template graphs
such that, denoting by tk the number of vertices of Tk: (i) tk = 2O(k); (ii) Tk has bounded average degree;
(iii) xc(COR(Tk)) = 2Ω(tk).

The existence of such a family would have various consequences.
Exact case. Assuming the Sparse Graph Conjecture we would obtain that the extension complex-
ity of polytopes for important combinatorial problems considered in Fiorini et al. [2012], Avis and
Tiwary [2013], Pokutta andVanVyve [2013] including (among others) the stable set polytope, knap-
sack polytope, and the 3SAT polytope would have truly exponential extension complexity, that is
2Ω(n) extension complexity, where n is the dimension of the polytope.

In particular we would obtain a polyhedral variant of the exponential time hypothesis (ETH),
i.e., in the worst case any LP expressing the 3SAT polytope would require an exponential number
of inequalities independently of P vs. NP. Currently, for all those problems the best lower bound
is 2Ω(

√
n) due to the fact that the template graph used is the complete graph, which has linear

average degree. Moreover, truly exponential lower bounds would imply that for these problems
the extended formulation arising from the convex hull of the vertices is essentially optimal, that is,
up to a constant factor in the exponent.

The recent groundbreaking result of Rothvoß [2013] gives 2Ω(n) bounds for the extension com-
plexity of the matching polytope and TSP polytope. These bounds are also tight up to constants,
but this time the upper bound does not come from the number of vertices but rather from the
number of facets and dynamic programming algorithms, respectively. Notice that the dimension
of both polytopes is d = Θ(n2), thus the bounds are in fact 2Ω(

√
d).

Average case. As observed above, there is a quadratic gap in the best current lower and upper
bounds on the worst-case extension complexity of the stable set polytope: 2Ω(

√
n) versus 2n re-

spectively. This is reflected in the results we obtain here. Assuming the Sparse Graph Conjecture
we could reduce the gap between upper and lower bounds to a logarithmic factor. Moreover, our
results could be strengthened to establish super-polynomial lower bounds on the average-case ex-
tension complexity up to constant probability p.
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A Faithful linear encodings and the uniform model
As mentioned before, faithful linear encodings were introduced in Braun et al. [2012] to study the
polyhedral hardness of approximation of various problems. The purpose of such encodings is to
recast instances as linear programs over a polytope. The crucial feature of faithful linear encodings
is that this polytope is not allowed to depend on the input, which is solely encoded in the objective
function. The same polytope is used for all inputs of the same size.

In general, a (faithful) linear encoding of a combinatorial problem consists of a set F ⊆ {0, 1}∗ of
feasible solutions and a setO ⊆ R∗ of admissible objective functions. An instance of the linear encoding
specifies a dimension d and an admissible objective function w of dimension d. Solving such an
instance means finding x ∈ F ∩ {0, 1}d such that wᵀx is maximum.

For every fixed dimension d, a linear encoding defined by F ⊆ {0, 1}∗ and O ⊆ R∗ yields an
inner 0/1-polytope

P := conv
(
{x ∈ {0, 1}d | x ∈ F}

)
and an outer convex set

Q := {x ∈ Rd | ∀w ∈ O ∩Rd : wᵀx 6 max{wᵀy | y ∈ P}}.

such that P ⊆ Q. Roughly speaking, the inner 0/1-polytope P encodes the feasible solutions to the
problem and the outer polyhedron Q encodes the admissible objective functions.

A.1 Faithful encoding for the maximum stable set problem
In the case of the maximum stable set problem, the feasible solutions are all subsets of vertices, as
potential stable sets, encoded as bbᵀ where b ∈ {0, 1}n is a characteristic vector of a set. That is, we
let

F := {bbᵀ | b ∈ {0, 1}n, n = 0, 1, . . . }.

Recall that for each graph G with V(G) ⊆ [n], the objective function wG ∈ Rn×n is defined by
letting wG

ij = 1 if i = j and i ∈ V(G), wG
ij = wG

ji = −1 if ij ∈ E(G) and wG
ij = 0 otherwise.

Notice that max{〈wG, y〉 | y ∈ F ∩ {0, 1}n2} = α(G), the stability number of G. We collect all
vectors wG ∈ Rn2 to form the set of admissible objective functions. For technical reasons, we add
the vectors −eij for i, j ∈ [n] to the set of admissible objective functions. In other words, we let

O = {wG | G graph } ∪ {−eij | i, j ∈ [n]}.

The sets F and O define a faithful linear encoding of the maximum stable set problem. The
corresponding polyhedral pair (P, Q) consists of P = COR(n) for the inner 0/1-polytope and
Q = {x ∈ Rn×n

+ | ∀ graphs G such that V(G) ⊆ [n] : 〈wG, x〉 6 α(G)} for the outer polyhedron.
A.2 Extension complexity of a pair
Let P ⊆ Q ⊆ Rd denote any nested pair of polyhedra. Possibly, this pair of polyhedra corre-
sponds to the d-dimensional vectors of a linear encodingF ,O. Recall that the extension complexity
xc(P, Q) is defined as the minimum number of facets of a polyhedron affinely projecting between
P and Q.

In order to analyze the extension complexity of the pair (P, Q), we consider an inner description
of P and an outer description of Q

P := conv ({v1, . . . , vn}) + cone {r1, . . . , rk} Q := {x ∈ Rd | Ax 6 b},
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where the system Ax 6 b consists of m inequalities Aix 6 bi with i ∈ [m]. The slack matrix of the
pair (P, Q) (w.r.t. these inner and outer descriptions) is the m× (n+ k)matrix SP,Q =

[
SP,Q
vertex, SP,Q

ray

]
given by block decomposition into a vertex and ray part:

SP,Q
vertex(i, j) := bi − Aivj, i ∈ [m], j ∈ [n],

SP,Q
ray (i, j) := −Airj, i ∈ [k], j ∈ [n].

Braun et al. [2012] prove the following characterization of xc(P, Q) in terms of the nonnegative rank
rank+(SP,Q) of the slack matrix of the pair (P, Q). It generalizes Yannakakis seminal factorization
theorem (see Yannakakis [1991]); see also Pashkovich [2012].

We recall the definition of the nonnegative rank of a matrix M ∈ Rm×n. A rank-r nonnegative
factorization of M is a factorization of M = TU where T ∈ Rm×r

+ and U ∈ Rr×n
+ . This is equivalent

to M = ∑i∈[r] uiv
ᵀ
i for some (column vectors) ui ∈ Rm

+, vi ∈ Rn
+ with i ∈ [r]. The nonnegative rank of

M, denoted by rank+ M, is the minimum r such that there exists a rank-r nonnegative factorization
of M.

Theorem A.1 (Factorization theorem). For every slackmatrix SP,Q of the pair (P, Q), we have rank+(SP,Q)−
1 6 xc(P, Q) 6 rank+(SP,Q). If the affine hull of P is not contained in Q and the recession cone of Q is not
full-dimensional, we have xc(P, Q) = rank+(SP,Q). In particular, this holds when P and Q are polytopes
of dimension at least 1.

A.3 Unique Disjointness
As we have seen, the hardness of the maximum stable set problem arises from having the unique
disjointness (partial) matrix UDISJ (or its shifted variant) as a submatrix. Recall that the UDISJ
matrix M has 2n rows and 2n columns indexed by 0/1-vectors a and b with entries:

M(a, b) =

{
0 if aᵀb = 1
1 if aᵀb = 0.

(6)

Formally, M is only a partial matrix as not all of its entries are defined; we will refer to it as matrix
from here on. The fact that it is only partial does not matter for our purpose, as we only care for
whether this (partial) matrix occurs as an induced submatrix. UDISJ has been studied in many
disciplines, arguably the most notable being communication complexity.

The seminal work of Razborov [1992] together with an observation in Wolf [2003] is at the core
of the first results establishing high extension complexity for the correlation polytope, cut polytope,
stable set polytope, and the TSP polytope in Fiorini et al. [2012].

Braun et al. [2012] prove that any 2n × 2n matrix M with rows and columns indexed by vectors
in {0, 1}n satisfying (6) has superpolynomial nonnegative rank, and that this remains true even
if we shift the entries of the matrix M by some number ρ = O(n1/2−ε). This results was then
strengthened to ρ = O(n1−ε) in Braverman and Moitra [2012] which then immediately leads to a
polyhedral inapproximability of CLIQUE (for a specific linear encoding!) of O(n1−ε), matching the
Håstad’s hardness result for approximating CLIQUE.

The ρ-shifted unique disjointness (UDISJ) matrix is any 2n × 2n matrix indexed by pairs (a, b)
where a, b ∈ {0, 1}n such that

Mab =

{
ρ if aᵀb = 1
1 + ρ if aᵀb = 0.

In Braun and Pokutta [2013] a new information-theoretic approach for studying the nonnega-
tive rank (and hence the extension complexity) has been developed. This approach allows to lower
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bound the nonnegative rank of various ‘deformations’ of the UDISJ matrix. Theorem 3 above is
one of the quantitative results from Braun and Pokutta [2013], which informally speaking shows
that the UDISJ matrix has high nonnegative matrix almost everywhere.
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