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Abstract

The concept of cut-generating function has its origin in the work of Gomory and Johnson
from the 1970s. It has received renewed attention in the past few years. Recently Conforti,
Cornuéjols, Daniilidis, Lemaréchal, and Malick proposed a general framework for studying cut-
generating functions. However, they gave an example showing that not all cuts can be produced
by cut-generating functions in this framework. They conjectured a natural condition under
which cut-generating functions might be sufficient. This note settles this open problem.
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1 Introduction

We consider sets of the form

X = X(R,S) := {x ∈ Rn+ : Rx ∈ S}, (1a)

where

{
R = [r1, . . . , rn] is a real q × n matrix,

S ⊂ Rq is a nonempty closed set with 0 /∈ S.
(1b)

This model has been studied in [Joh81] and [CCD+13]. It arises in integer programming when
studying Gomory’s corner relaxation [Gom69, GJ72] or the relaxation proposed by Andersen, Lou-
veaux, Weismantel, and Wolsey [ALWW07]. It also arises in other optimization problems such as
complementarity problems [JSRF06]. In framework (1) the goal is to generate inequalities that are
valid for X but not for the origin. Such cutting planes are well-defined [CCD+13, Lemma 2.1] and
can be written as

c>x > 1. (2)
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Let S ⊂ Rq be a given nonempty, closed set with 0 /∈ S. The set S is assumed to be fixed in
this paragraph. [CCD+13] introduces the notion of a cut-generating function: This is any function
ρ : Rq 7→ R that produces coefficients cj := ρ(rj) of a cut (2) valid for X(R,S) for any choice
of n and R = [r1, . . . , rn]. It is shown in [CCD+13] that cut-generating functions enjoy significant
structure, generalizing earlier work in integer programming [DW10, BCCZ10]. For instance, the
minimal ones are sublinear and are closely related to S-free neighborhoods of the origin. We say
that a closed, convex set is S-free if it contains no point of S in its interior. For any minimal
cut-generating function ρ, there exists a closed, convex, S-free set V ⊂ Rq such that 0 ∈ intV and
V = {r ∈ Rq : ρ(r) 6 1}. A cut (2) with coefficients cj := ρ(rj) is called an S-intersection cut.

Now assume that both S and R are fixed. Noting X ⊂ Rn+, we say that a cutting plane c>x > 1
dominates b>x > 1 if cj 6 bj for j ∈ [n]. (In this note we use the notation [n] := {1, . . . , n}.)
A natural question is whether every cut (2) valid for X is dominated by an S-intersection cut.
[CCZ10] proves that this is true for Gomory’s corner relaxation. However, [CCD+13] gives an
example showing that this is not always the case in the more general framework (1). This example
has the peculiarity that S contains points that cannot be obtained as Rx for any x ∈ Rn+. [CCD+13]
proposes the following open problem: Assuming S ⊂ coneR, is it true that every cut (2) valid for
X(R,S) is dominated by an S-intersection cut? Our main theorem shows that this is indeed the
case. This generalizes the main result of [CCZ10] as well as Theorem 1 in [Zam09] and Theorem 6.3
in [CCD+13], all of which consider the case where c ∈ Rn+.

Theorem 1.1. Suppose S ⊂ coneR. Then any valid inequality c>x > 1 separating the origin from
X is dominated by an S-intersection cut.

2 Proof of the Main Theorem

Our proof of Theorem 1.1 will use several lemmas. We first introduce some notation and terminol-
ogy. Given a set W ⊂ Rd, let convW , coneW , and spanW denote the convex, conical, and linear
hull of W , and let linW and recW denote the lineality space and recession cone of W , respectively.
Given a set W ⊂ Rd, let W ◦ := {u ∈ Rd : u>w 6 0,∀w ∈ W} and W ∗ := −W ◦ denote the polar
and dual cone of W , respectively. Let σW (u) := supw∈W u>w be the support function of a set
W ⊂ Rd. A function ρ : Rd 7→ R ∪ {+∞} is said to be positively homogeneous if ρ(λu) = λρ(u)
for all λ > 0 and u ∈ Rd and subadditive if ρ(u1) + ρ(u2) > ρ(u1 + u2) for all u1, u2 ∈ Rd. More-
over, ρ is sublinear if it is both positively homogeneous and subadditive. Sublinear functions are
known to be convex, and it is not difficult to show that support functions are sublinear and satisfy
σW = σconvW (see, e.g., [HUL04, Chapter C]). Given a closed, convex neighborhood V of the origin,
a representation of V is any sublinear function ρ : Rq 7→ R such that V = {r ∈ Rq : ρ(r) 6 1}.
Minkowski’s gauge function is a representation of V , but there can be other representations when
V is unbounded. S-intersection cuts are generated via representations of closed, convex, S-free
neighborhoods of the origin.

Throughout this section we assume that X 6= ∅ and c>x > 1 is a valid inequality separating
the origin from X.

Lemma 2.1. If u ∈ Rn+ and Ru = 0, then c>u > 0. Equivalently, c ∈ Rn+ + ImR>.

Proof. Let x ∈ X. Note that R(x+ tu) = Rx ∈ S and x+ tu > 0 for all t > 0. By the validity of
c, we have c>(x + tu) > 1 for all t > 0. Observing tc>u > 1 − c>x and letting t → +∞ implies
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c>u > 0 as desired. Because u is an arbitrary vector in Rn+∩KerR, we can write c ∈ (Rn+∩KerR)∗.
The equality (Rn+ ∩KerR)∗ = Rn+ + ImR> follows from the facts (Rn+)∗ = Rn+, (KerR)∗ = ImR>,
and Rn+ + ImR> is closed (see, e.g., [Roc70, Cor. 16.4.2]).

Given the valid inequality c>x > 1, we now construct a sublinear function hc : Rq 7→ R∪{+∞}
that produces a valid inequality

∑n
j=1 hc(rj)xj > 1 dominating c>x > 1, i.e., the coefficients of the

inequality satisfy hc(rj) 6 cj , j ∈ [n]. Let

hc(r) := min c>x
Rx = r,
x > 0.

(3)

Remark 2.2.

1. hc(rj) 6 cj for all j ∈ [n].

2. hc(r) > 1 for all r ∈ S.

Proof. The first claim follows directly from the observation that the jth unit vector is feasible to
the linear program (3) associated with r = rj . To prove the second claim, let r ∈ S. If the linear
program (3) associated with r = r is infeasible, hc(r) = +∞ > 1. Otherwise, any feasible solution x
to this linear program satisfies x ∈ X and c>x > 1 by the validity of c>x > 1. Hence, hc(r) > 1.

Lemma 2.3. hc is a piecewise-linear, sublinear function which is finite on coneR.

Proof. The linear program (3) is feasible if and only if r ∈ coneR. Hence, hc(r) < +∞ for
r ∈ coneR and hc(r) = +∞ for r ∈ Rq \ coneR. The dual of (3) is

max r>y
R>y 6 c.

(4)

Let P := {y ∈ Rq : R>y 6 c}. By Lemma 2.1, c = c′ + c′′ where c′ ∈ Rn+ and c′′ ∈ ImR>. Because
c′′ ∈ ImR>, there exists y′′ ∈ Rq such that R>y′′ = c′′ 6 c. Hence, y′′ ∈ P which shows that the
dual linear program is always feasible, strong duality holds, and hc = σP > −∞. This shows that
hc is a sublinear function and finite on coneR.

Now let r ∈ coneR. Let W be a finite set of points for which P = convW + recP . Observe
that recP = (coneR)◦ and r>u 6 0 for all u ∈ recP . Thus, r>(w + u) 6 r>w for all w ∈ convW
and u ∈ recP , which implies

σP (r) := sup
p∈P

r>p 6 σconvW (r) := sup
w∈convW

r>w = σW (r).

Since W ⊂ P implies σW 6 σP , we have σP (r) = σW (r). Therefore, hc(r) = σP (r) = σW (r) =
maxw∈W r>w where the last equality follows from the finiteness of W . This and the fact that
coneR is polyhedral imply that hc is piecewise-linear.

Lemma 2.3 implies in particular that hc(0) = 0.

Proposition 2.4. Theorem 1.1 holds when coneR = Rq.
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Proof. In this case hc is finite everywhere. Let Vc := {r ∈ Rq : hc(r) 6 1}. Vc is a closed, convex
neighborhood of the origin because hc is sublinear and finite everywhere, and hc(0) = 0. Because the
Slater condition is satisfied with hc(0) = 0, we have intVc = {r ∈ Rq : hc(r) < 1} (see, e.g., [HUL04,
Prop. D.1.3.3]). Then Vc is also S-free since hc(r) > 1 for all r ∈ S by Remark 2.2 (ii). The function
hc is a cut-generating function because it represents the closed, convex, S-free neighborhood of
the origin Vc by definition, and

∑n
j=1 hc(rj)xj > 1 is an S-intersection cut that can be obtained

from Vc. By Remark 2.2 (i), hc(rj) 6 cj for all j ∈ [n]. This shows that the S-intersection cut∑n
j=1 hc(rj)xj > 1 dominates c>x > 1.

We now consider the case where coneR ( Rq. We want to extend the definition of hc to the
whole of Rq and show that this extension is a cut-generating function. We will first construct a
function h′c such that 1) h′c is finite everywhere on spanR, 2) h′c coincides with hc on coneR. If
rank(R) < q, we will further extend h′c to the whole of Rq by letting h′c(r) = h′c(r

′) for all r ∈ Rq,
r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′ + r′′. Our proof of Theorem 1.1 will show that this
procedure yields a function h′c that is the desired extension of hc.

Let r0 ∈ − ri(coneR) where ri(·) denotes the relative interior. Note that this guarantees cone(R∪
{r0}) = spanR since there exist ε > 0 and d := rank(R) linearly independent vectors a1, . . . , ad ∈
spanR such that −r0 ± εai ∈ coneR for all i ∈ [d] which implies ±ai ∈ cone(R ∪ {r0}). Now we
define c0 as

c0 := sup
r ∈ coneR
α > 0

hc(r)− hc(r + α(−r0))
α

. (5)

Lemma 2.5. c0 is finite.

Proof. Any pair r ∈ coneR and α > 0 yields a lower bound on c0: Our choice of r0 ensures
r + α(−r0) ∈ coneR and c0 >

hc(r)−hc(r+α(−r0))
α . To get an upper bound on c0, consider the linear

programs (3) and (4). Let r̃ ∈ coneR and α̃ > 0. Observe that r̃ + α̃(−r0) ∈ coneR and as in
the proof of Lemma 2.3, one can show that both linear programs are feasible when we plug in
r̃ + α̃(−r0) for r. Therefore, strong duality holds and hc(r̃ + α̃(−r0)) = σP (r̃ + α̃(−r0)) where
P := {y ∈ Rq : R>y 6 c} is the feasible region of (4). Let W be a finite set of points for which
P = convW + recP . Because recP = (coneR)◦, we have (r̃ + α̃(−r0))>u 6 0 for all u ∈ recP .
This implies σP (r̃ + α̃(−r0)) = σW (r̃ + α̃(−r0)), and we can write

c0 = sup
r ∈ coneR
α > 0

σW (r)− σW (r + α(−r0))
α

6 sup
r ∈ coneR
α > 0

σW (αr0)

α

= σW (r0)

where we have used the sublinearity of σW in the inequality and the second equality. The conclusion
follows now from the fact that W is a finite set.

Remark 2.6. If we scale r0 by a positive scalar λ, c0 is scaled by λ as well.
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Proof. This follows from hc(r)−hc(r+α(−λr0))
α = λhc(r/λ)−hc(r/λ+α(−r0))α (positive homogeneity of hc)

and the fact that r ∈ coneR if and only if r/λ ∈ coneR.

Proposition 2.7. c0x0 + c>x > 1 is a valid inequality for X([r0, R], S).

Proof. Let (x0, x) ∈ X([r0, R], S) and r := r0x0 +Rx ∈ S. Then

c0x0 + c>x > c0x0 +
n∑
j=1

hc(rj)xj > c0x0 + hc(Rx) = c0x0 + hc(r + x0(−r0))

where the first inequality follows from Remark 2.2 (i) and the second from the sublinearity of hc.
Using the definition of c0 and applying Remark 2.2 (ii), we conclude c0x0 + c>x > c0x0 + hc(r +
x0(−r0)) > hc(r) > 1.

We define the function h′c on spanR by

h′c(r) := min c0x0 + c>x
r0x0 +Rx = r,
x0 > 0, x > 0.

(6)

The function h′c is real-valued, piecewise-linear, and sublinear on spanR as a consequence of
Lemma 2.3 applied to the matrix [r0, R] and the inequality c0x0 + c>x > 1 which is valid for
X([r0, R], S) by Proposition 2.7.

Lemma 2.8. The function h′c coincides with hc on coneR.

Proof. It is clear from the definitions (3) and (6) that h′c 6 hc on spanR. Let r ∈ coneR and
suppose h′c(r) < hc(r). Then there exists (x0, x) satisfying r0x0 + Rx = r, x > 0, x0 > 0 and
c0x0 + c>x < hc(r). Rearranging the terms and using Remark 2.2 (i), we obtain

c0 <
hc(r)− c>x

x0
6
hc(r)−

∑n
j=1 hc(rj)xj

x0
.

Finally, the sublinearity of hc and the observation that Rx = r − r0x0 give

c0 <
hc(r)−

∑n
j=1 hc(rj)xj

x0
6
hc(r)− hc(Rx)

x0
=
hc(r)− hc(r − r0x0)

x0
.

This contradicts the definition of c0 and proves the claim.

Lemma 2.8 and Remark 2.2 yield the following corollary.

Corollary 2.9.

1. h′c(rj) 6 cj for all j ∈ [n].

2. Suppose S ⊂ coneR. Then h′c(r) > 1 for all r ∈ S.

If rank(R) < q, we extend the function h′c defined in (6) to the whole of Rq by letting

h′c(r) = h′c(r
′) for all r ∈ Rq, r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′ + r′′. (7)

Note that this extension preserves the sublinearity of h′c.
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Proof of Theorem 1.1. Let h′c be defined as in (6) and (7) and let V ′c := {r ∈ Rq : h′c(r) 6 1}.
Observe that V ′c is a closed, convex neighborhood of the origin because h′c is sublinear and finite
everywhere, and h′c(0) = 0. Furthermore, intV ′c = {r ∈ Rq : h′c(r) < 1} by the Slater property
h′c(0) = 0. This implies that V ′c is also S-free since h′c(r) > 1 for all r ∈ S by Corollary 2.9 (ii). The
function h′c is a cut-generating function because it represents V ′c , and

∑n
j=1 h

′
c(rj)xj > 1 is an S-

intersection cut. By Corollary 2.9 (i), h′c(rj) 6 cj for all j ∈ [n]. This shows that the S-intersection
cut

∑n
j=1 h

′
c(rj)xj > 1 dominates c>x > 1.

3 Constructing the S-Free Convex Neighborhood of the Origin

Here we give a geometric interpretation for the proof of Theorem 1.1 and explicitly describe the
S-free neighborhood of the origin V ′c := {r ∈ Rq : h′c(r) 6 1} in terms of the vectors r1, . . . , rn.

As in Section 1, we let c>x > 1 be a valid inequality separating the origin from X. Assume
without any loss of generality that the vectors r1, . . . , rn have been normalized so that cj ∈ {0,±1}
for all j ∈ [n]. Define the sets J+ := {j ∈ [n] : cj = +1}, J− := {j ∈ [n] : cj = −1} and
J0 := {j ∈ [n] : cj = 0}. Let C := conv({0} ∪ {rj : j ∈ J+}) and K := cone({rj : j ∈
J0∪J−}∪{rj +ri : j ∈ J+, i ∈ J−}). Let Q := C+K. See Figure 1(a) for an illustration. Defining
hc as in (3), one can show Q = {r ∈ Rq : hc(r) 6 1}.

When coneR 6= Rq, the origin lies on the boundary of Q. This happens in the example of
Figure 1. In the proof of Theorem 1.1, we overcame the difficulty occurring when coneR 6= Rq
by extending hc into a function h′c which is defined on the whole of Rq and coincides with hc on
coneR. The geometric counterpart is to extend the set Q into a set Q′ that contains the origin in
its interior. Let r0 ∈ − ri(coneR) and let c0 be as defined in (5). When c0 6= 0, scale r0 so that
c0 ∈ {±1} (this is possible by Remark 2.6). Introduce r0 into the relevant subset of [n] according
to the sign of c0: If c0 = +1, let J ′+ := J+ ∪ {0}, J ′0 := J0 and J ′− := J−; if c0 = 0, let J ′+ := J+,
J ′0 := J0 ∪ {0} and J ′− := J−; and if c0 = −1, let J ′+ := J+, J ′0 := J0 and J ′− := J− ∪ {0}. Finally,
let C ′ := conv({0} ∪ {rj : j ∈ J ′+}), K ′ := cone({rj : j ∈ J ′0 ∪ J ′−} ∪ {rj + ri : j ∈ J ′+, i ∈ J ′−})
and Q′ := C ′ + K ′ + (spanR)⊥. Figures 1(b) and 1(c) illustrate examples of this procedure with
c0 = +1 and c0 = −1, respectively.

The following proposition shows that the function h′c defined in (6) and (7) represents the set
Q′ defined above.

Proposition 3.1. Q′ = {r ∈ Rq : h′c(r) 6 1} where h′c is defined as in (6) and (7).

Proof. Let V ′c := {r ∈ Rq : h′c(r) 6 1}. Note that V ′c is convex by the sublinearity of h′c. We have
h′c(rj) 6 cj = 1 for all j ∈ J ′+, h′c(rj) 6 cj 6 0 for all j ∈ J ′0∪J ′− and h′c(rj + ri) 6 h′c(rj) +h′c(ri) 6
cj + ci = 0 for all j ∈ J ′+ and i ∈ J ′−. Moreover, h′c(r) = h′c(r+ r′) for all r ∈ Rq and r′ ∈ (spanR)⊥

by the definition of h′c. Hence, C ′ ⊂ V ′c , K ′ ⊂ recV ′c , and (spanR)⊥ ⊂ linV ′c which together give
us Q′ = C ′ +K ′ + (spanR)⊥ ⊂ V ′c .

To prove the converse, let r ∈ Rq be such that h′c(r) 6 1. We need to show r ∈ Q′. We
consider two distinct cases: h′c(r) 6 0 and 0 < h′c(r) 6 1. First, let us suppose h′c(r) 6 0.
Then the definition of h′c implies that there exist (x0, x) ∈ R × Rn and r′ ∈ (spanR)⊥ such that
(x0, x) > 0,

∑
j∈J ′+

xj−
∑

i∈J ′−
xi 6 0, and r0x0+Rx = r−r′. Consider the cone Γ := {(x0, x) > 0 :∑

j∈J ′+
xj −

∑
i∈J ′−

xi 6 0} defined by the first two sets of inequalities. The extreme rays of Γ have

all their components equal to 0 except for one or two components. Therefore, it is easy to verify
by inspection that Γ is generated by the rays {ej : j ∈ J ′0 ∪ J ′−} ∪ {ej + ei : j ∈ J ′+, i ∈ J ′−}. This
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shows r ∈ K ′ + (spanR)⊥ ⊂ Q′. Now suppose 0 < h′c(r) 6 1. Then there exist (x0, x) ∈ R × Rn
and r′ ∈ (spanR)⊥ such that (x0, x) > 0, 0 <

∑
j∈J ′+

xj −
∑

i∈J ′−
xi 6 1, and r0x0 + Rx = r − r′.

Define xji := xi
xj∑

j∈J′+
xj

for all i ∈ J ′− and j ∈ J ′+. These values are well-defined since 0 6∑
i∈J ′−

xi <
∑

j∈J ′+
xj . Observe that

∑
j∈J ′+

xji = xi and r0x0 + Rx =
∑

j∈J ′+
(xj −

∑
i∈J ′−

xji )rj +∑
i∈J ′−

∑
j∈J ′+

xji (ri+rj)+
∑

j∈J ′0
xjrj . We have

∑
j∈J ′+

(xj−
∑

i∈J ′−
xji ) =

∑
j∈J ′+

xj−
∑

i∈J ′−
xi 6 1

together with xj −
∑

i∈J ′−
xji > 0 which is true for all j ∈ J ′+ because

∑
i∈J ′−

xji = xj

∑
i∈J′−

xi∑
j∈J′+

xj
< xj .

Hence,
∑

j∈J ′+
(xj −

∑
i∈J ′−

xji )rj ∈ C ′. Moreover,
∑

i∈J ′−

∑
j∈J ′+

xji (ri + rj) +
∑

j∈J ′0
xjrj ∈ K ′.

These yield r ∈ C ′ +K ′ + (spanR)⊥ = Q′.

As a consequence, the set Q′ can be used to generate an S-intersection cut that dominates c>x >
1. Indeed, the proof of Theorem 1.1 shows that V ′c := {r ∈ Rq : h′c(r) 6 1} is a closed, convex, S-
free neighborhood of the origin. Proposition 3.1 shows that Q′ = V ′c . Therefore,

∑n
j=1 h

′
c(rj)xj > 1

is an S-intersection cut obtained from Q′.
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Figure 1: The vectors r1 = (1, 3), r2 = (1.5, 1.5), and r3 = (2, 1) have cut coefficients c1 = c2 = +1
and c3 = −1. The shaded region in (a) is the set Q. In (b) we add the vector r0 = (−5,−1) to the
collection of vectors {r1, r2, r3}. The new vector r0 has c0 = +1. Its addition expands Q to the set
Q′ that is depicted. In (c) we add the vector r0 = (−4,−5) with c0 = −1 to the original collection
and again obtain Q′.
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