A Min-Max Theorem for Transversal Submodular Functions and Its Implications

Satoru Fujishige
Research Institute for Mathematical Sciences
Kyoto University, Japan

18th Aussois Workshop on Combinatorial Optimization
Aussois, January 6–10, 2014

(Joint work with Shin-ichi Tanigawa, RIMS, Kyoto University)
The present talk will

1. introduce a new concept of **transversal submodular function**, a generalization of ordinary submodular set function,

2. show a **min-max relation** between the minimum of a transversal submodular function and the maximum of the negative of a norm composed of ℓ_1 and ℓ_∞ norms, and

3. based on the min-max relation, give a **unifying view over the recent results** on generalizations of submodular set functions:

\(V \): a nonempty finite set

\(\mathcal{U} \equiv \{U_1, U_2, \ldots, U_n\} \): a **partition** of \(V \)

\[\begin{array}{cccc}
U_1 & U_2 & \cdots & U_n \\
\end{array} \]

\(T(\subseteq V) \): a **subtransversal** (or **partial transversal**) of \(\mathcal{U} \)

\(|T \cap U| \leq 1\) for all \(U \in \mathcal{U} \)

\(\mathcal{T} \): the set of all subtransversals of \(\mathcal{U} \)

\(\mathcal{U}(T) = \{U \in \mathcal{U} \mid U \cap T \neq \emptyset\} \) \hspace{1em} (\forall T \in \mathcal{T})

\(U(v) \): the unique \(U \in \mathcal{U} \) that contains \(v \in V \)

We consider a function \(f : \mathcal{T} \to \mathbb{R} \).
Consider two \textbf{binary operations} \triangledown and \triangle on \mathcal{T} satisfying the condition that for all $T_1, T_2 \in \mathcal{T}$

\[
T_1 \triangledown T_2 \in \mathcal{T}, \quad \mathcal{U}(T_1 \triangledown T_2) \subseteq \mathcal{U}(T_1) \cup \mathcal{U}(T_2),
\]
\[
T_1 \triangle T_2 \in \mathcal{T}, \quad \mathcal{U}(T_1 \triangle T_2) \subseteq \mathcal{U}(T_1) \cap \mathcal{U}(T_2).
\]

Define a function $f : \mathcal{T} \to \mathbb{R}$ with $f(\emptyset) = 0$ satisfying

\[
f(T_1) + f(T_2) \geq f(T_1 \triangledown T_2) + f(T_1 \triangle T_2) \quad (\forall T_1, T_2 \in \mathcal{T}).
\]

We call f a \textbf{transversal submodular function} or a \textbf{t-submodular function}, for short.
Example 1: \textit{k-submodular functions} due to Huber and Kolmogorov (ISCO 2012).

For any \(T, T' \in \mathcal{T} \) define \textbf{binary operations} \(\sqcup \) and \(\sqcap \) on \(\mathcal{T} \) by

\[
T \sqcup T' = (T \cup T') \setminus \bigcup\{U \in \mathcal{U} \mid |U \cap (T \cup T')| = 2\},
\]

\[
T \sqcap T' = T \cap T'.
\]

Let \(k = \max\{|U| \mid U \in \mathcal{U}\} \).
A function \(f : \mathcal{T} \to \mathbb{R} \) is called \textbf{k-submodular} if

\[
f(T) + f(T') \geq f(T \sqcup T') + f(T \sqcap T') \quad (\forall T, T' \in \mathcal{T}).
\]

We assume \(f(\emptyset) = 0 \).
Example 1: k-submodular functions due to Huber and Kolmogorov (ISCO 2012).

For any $T, T' \in \mathcal{T}$ define **binary operations** \sqcup and \sqcap on \mathcal{T} by

\[
T \sqcup T' = (T \cup T') \setminus \bigcup \{U \in \mathcal{U} \mid |U \cap (T \cup T')| = 2\}, \\
T \sqcap T' = T \cap T'.
\]

Let $k = \max\{|U| \mid U \in \mathcal{U}\}$.

A function $f : \mathcal{T} \to \mathbb{R}$ is called **k-submodular** if

\[
f(T) + f(T') \geq f(T \sqcup T') + f(T \sqcap T') \quad (\forall T, T' \in \mathcal{T}).
\]

We assume $f(\emptyset) = 0$.

Remark: Bouchet (1997) considered k-submodular functions (monotone nondecreasing and unit-increasing) to define a set system called a **multimatroid** as a generalization of delta-matroids.
Example 2: Submodular functions on product lattices and, in particular, diamonds due to Kuivinen (*Discrete Optimization*, 2011).

0\(_U\): a new element for each \(U \in \mathcal{U} \)

Put \(\hat{U} = U \cup \{0_U\} \) for each \(U \in \mathcal{U} \).

An arbitrary lattice \(\mathcal{L}_U = (\hat{U}, \lor_U, \land_U) \) with lattice operations, join \(\lor_U \) and meet \(\land_U \), for each \(U \in \mathcal{U} \)

0\(_U\): the minimum element of \(\mathcal{L}_U \).

1\(_U\): the maximum element of \(\mathcal{L}_U \).
Let $\mathcal{L} = \bigotimes_{U \in \mathcal{U}} \mathcal{L}_U (= (\bigotimes_{U \in \mathcal{U}} \hat{U}, \vee, \wedge))$ be the product of lattices $\mathcal{L}_U = (\hat{U}, \vee_U, \wedge_U)$ for $U \in \mathcal{U}$.

A function $f : \bigotimes_{U \in \mathcal{U}} \hat{U} \to \mathbb{R}$ is called a submodular function on product lattice \mathcal{L} if

$$f(\hat{T}) + f(\hat{T}') \geq f(\hat{T} \vee \hat{T}') + f(\hat{T} \wedge \hat{T}')$$

for all $\hat{T}, \hat{T}' \in \bigotimes_{U \in \mathcal{U}} \hat{U}$.

This function can be regarded as a special case of t-submodular functions by discarding minimum elements 0_U for all $U \in \mathcal{U}$.
A Min-Max Theorem for T-submodular Functions

Let $f : \mathcal{T} \to \mathbb{R}$ be a \textit{t-submodular function}.
Define a function $F : 2^\mathcal{U} \to \mathbb{R}$ as follows.

$$
F(\mathcal{X}) = \min \{ f(T) \mid T \in \mathcal{T}, \mathcal{U}(T) \subseteq \mathcal{X} \} \quad (\forall \mathcal{X} \subseteq \mathcal{U}).
$$

\textbf{Lemma 1:} $F : 2^\mathcal{U} \to \mathbb{R}$ is a submodular function on $2^\mathcal{U}$ with $F(\emptyset) = 0$.

(Proof) For any $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{U}$ there exist $T_{\mathcal{X}}, T_{\mathcal{Y}} \in \mathcal{T}$ such that

$\mathcal{U}(T_{\mathcal{X}}) \subseteq \mathcal{X}$, $\mathcal{U}(T_{\mathcal{Y}}) \subseteq \mathcal{Y}$, $F(\mathcal{X}) = f(T_{\mathcal{X}})$, $F(\mathcal{Y}) = f(T_{\mathcal{Y}})$.

Hence we have

$$
F(\mathcal{X}) + F(\mathcal{Y}) = f(T_{\mathcal{X}}) + f(T_{\mathcal{Y}}) \\
\geq f(T_{\mathcal{X}} \triangle T_{\mathcal{Y}}) + f(T_{\mathcal{X}} \triangle T_{\mathcal{Y}}) \\
\geq F(\mathcal{X} \cup \mathcal{Y}) + F(\mathcal{X} \cap \mathcal{Y}).
$$

We also have $F(\emptyset) = f(\emptyset) = 0$. \hfill \Box
We can easily see that

\[\min\{f(T) \mid T \in \mathcal{T}\} = \min\{F(\mathcal{X}) \mid \mathcal{X} \subseteq \mathcal{U}\}. \]

Hence we have the following.

__

Lemma 2:

\[\min\{f(T) \mid T \in \mathcal{T}\} = \max\{x(\mathcal{U}) \mid x \leq 0, x \in P(F)\}, \]

where \(P(F) = \{x \in \mathbb{R}^d \mid \forall \mathcal{X} \subseteq \mathcal{U} : x(\mathcal{X}) \leq F(\mathcal{X})\} \), the submodular polyhedron associated with submodular function \(F \) and \(x(\mathcal{X}) = \sum_{U \in \mathcal{X}} x(U) \).

__

(Proof) This follows from Edmonds’ min-max theorem for submodular function minimization. \(\square \)

__

It should be noted that since \(F \) is monotone non-increasing, every \(x \in P(F) \) is nonpositive, so that we may suppress the condition \(x \leq 0 \) appearing in Lemma 2.
For any \(x \in \mathbb{R}^{U} \) define \(z_x \in \mathbb{R}^{V} \) by
\[
z_x(v) = x(U(v)) \quad (\forall v \in V).
\]
Here it should be noted that \(x(U(v)) \) is the value of \(x \in \mathbb{R}^{U} \) for the coordinate \(U(v) \in U \).

Lemma 3: Suppose we are given a nonpositive \(x \in \mathbb{R}^{U} \), i.e., \(x \leq 0 \). Then, we have \(x \in \mathcal{P}(\mathcal{F}) \) if and only if \(z_x \in \mathcal{P}(f) \), where
\[
\mathcal{P}(f) = \{ z \in \mathbb{R}^{V} \mid \forall T \in \mathcal{T} : z(T)(\equiv \sum_{v \in T} z(v)) \leq f(T) \}.
\]

(Proof) Suppose \(x \in \mathcal{P}(\mathcal{F}) \). Then, for any \(T \in \mathcal{T} \)
\[
z_x(T) = x(U(T)) \leq F(U(T)) \leq f(T).
\]
Hence \(z_x \in \mathcal{P}(f) \). Conversely, suppose \(z_x \in \mathcal{P}(f) \) for \(x \in \mathbb{R}^{U} \) with \(x \leq 0 \). Then, for any \(\mathcal{X} \subseteq \mathcal{U} \) and any \(T \in \mathcal{T} \) such that \(U(T) \subseteq \mathcal{X} \) we have
\[
x(\mathcal{X}) \leq x(U(T)) = z_x(T) \leq f(T),
\]
where the first inequality holds since \(x \leq 0 \). This implies
\[
x(\mathcal{X}) \leq \min\{ f(T) \mid T \in \mathcal{T}, \mathcal{U}(T) \subseteq \mathcal{X} \} = F(\mathcal{X}).
\]
Hence \(x \in \mathcal{P}(\mathcal{F}) \). \(\square \)
For any $z \in \mathbb{R}^V$ define

$$||z||_{1,\infty} = \sum_{i=1}^{n} \max_{u \in U_i} |z(u)|.$$

This defines a norm on \mathbb{R}^V, which is a composition of ℓ_1 and ℓ_∞ norms.

Remark: $|| \cdot ||_{1,\infty} = || \cdot ||_1$ if $|U_i| = 1$ for all $i = 1, \ldots, n,$ and $|| \cdot ||_{1,\infty} = || \cdot ||_\infty$ if $n = 1.$
We are now ready to show the following.

Theorem 4: For any t-submodular function \(f \) with \(f(\emptyset) = 0 \) we have the following min-max relation.

\[
\min\{f(T) \mid T \in \mathcal{T}\} = \max\{-\|z\|_{1,\infty} \mid z \in P(f)\}.
\]

Moreover, if \(f \) is integer-valued, there exists an integral vector \(z \) that attains the maximum on the right-hand side.

(Proof) Denote the right-hand side by RHS. It follows from Lemmas 2 and 3 that

\[
\text{RHS} = \max\{-\|z\|_{1,\infty} \mid z \leq 0, z \in P(f)\} = \max\{-\|z_x\|_{1,\infty} \mid x \in \mathbb{R}^\mathcal{U}, x \leq 0, z_x \in P(f)\} = \max\{x(\mathcal{U}) \mid x \leq 0, x \in P(F)\} = \min\{F(\mathcal{X}) \mid \mathcal{X} \subseteq \mathcal{U}\} = \min\{f(T) \mid T \in \mathcal{T}\},
\]

where the first and second equalities are due to the hereditary property of polyhedron \(P(f) \) and the definition of \(\|\cdot\|_{1,\infty} \).

Moreover, if \(f \) is integer-valued, then so is the corresponding submodular function \(F : 2^\mathcal{U} \to \mathbb{R} \). Therefore, there exists an integral \(x \in \mathbb{R}^\mathcal{U} \) that attains the maximum on the right-hand side. Then \(z_x \in \mathbb{R}^V \) defined for Lemma 3 is an integral maximizer of the right-hand side, due to Lemmas 2 and 3.
Consider \textit{k-submodular functions} due to Huber and Kolmogorov (2012).

As a corollary of Theorem 4 we get

\textbf{Corollary 5:} For any \textit{k}-submodular function \(f : \mathcal{T} \rightarrow \mathbb{R} \) with \(f(\emptyset) = 0 \)

\[\min \{ f(T) \mid T \in \mathcal{U} \} = \max \{ -\|z\|_{1,\infty} \mid z \in P(f) \}. \]

Moreover, if \(f \) is integer-valued, then there exists an integral \(z \) that attains the maximum on the right-hand side.

Huber and Kolmogorov (2012) considered

\[P_2(f) = \{ z \in \mathbb{R}^V \mid \forall T \in \mathcal{T} : z(T) \leq f(T), \]

\[\forall U \in \mathcal{U}, \forall X \in \binom{U}{2} : z(X) \leq 0 \}. \]

Note that we have

\[P(f) \cap \mathbb{R}^V_{\leq 0} = P_2(f) \cap \mathbb{R}^V_{\leq 0} \subseteq P_2(f) \subseteq P(f), \quad (1) \]

where \(\mathbb{R}^V_{\leq 0} \) is the set of all nonpositive vectors in \(\mathbb{R}^V \).
For polyhedron $P_2(f)$ considered by Huber and Kolmogorov (2012) we have the following.

Theorem 6: For any k-submodular function $f : \mathcal{T} \to \mathbb{R}$ with $f(\emptyset) = 0$

$$\min\{f(T) \mid T \in \mathcal{U}\} = \max\{-\|z\|_{1,\infty} \mid z \in P_2(f)\}.$$

Moreover, if f is integer-valued, then there exists an integral z that attains the maximum on the right-hand side.
For polyhedron $P_2(f)$ considered by Huber and Kolmogorov (2012) we have the following.

Theorem 6: For any k-submodular function $f : \mathcal{T} \rightarrow \mathbb{R}$ with $f(\emptyset) = 0$

$$\min\{f(T) \mid T \in \mathcal{U}\} = \max\{-||z||_{1,\infty} \mid z \in P_2(f)\}.$$

Moreover, if f is integer-valued, then there exists an integral z that attains the maximum on the right-hand side.

Remark: A good characterization of minimizing k-submodular functions is open.
Now, consider a submodular function f on product lattice $L = \bigotimes_{U \in \mathcal{U}} L_U$, which is identified with a function \bar{f} on T defined by

$$\bar{f}(T) = f(\hat{T}) \quad (\forall T \in T) \quad (\hat{T} \in L).$$

We then have function \bar{f} satisfying

$$\bar{f}(T) + \bar{f}(T') \geq \bar{f}(T \lor_0 T') + \bar{f}(T \land_0 T') \quad (\forall T, T' \in T).$$
Define
\[P(\bar{f}) = \{ z \in \mathbb{R}^V \mid \forall T \in \mathcal{T} : z(T) \leq \bar{f}(T) \}. \]

Here we assume \(\bar{f}(\emptyset) = 0 \).

As a corollary of Theorem 4 we obtain the following.

Corollary 7: For any submodular function \(f \) on the product of lattices with \(\bar{f}(\emptyset) = 0 \)

\[\min \{ \bar{f}(T) \mid T \in \mathcal{U} \} = \max \{ -\|z\|_{1,\infty} \mid z \in P(\bar{f}) \}. \]

Moreover, if \(\bar{f} \) is integer-valued, then there exists an integral \(z \) that attains the maximum on the right-hand side.
Consider the following additional constraint:

\((K1')\) For each \(U \in \mathcal{U}\), \(z(u) + z(v) \leq z(u \lor_U v) + z(u \land_U v)\)
for all \(\{u, v\} \in \binom{\mathcal{U}}{2}\), where \(z(0_U) = 0\) for all \(U \in \mathcal{U}\).

Corollary 8: For any submodular function \(f\) on the product of lattices with \(\bar{f}(\emptyset) = 0\)
\[
\min\{\bar{f}(T) \mid T \in \mathcal{U}\} = \max\{-||z||_{1,\infty} \mid z \in \mathcal{P}(\bar{f}), (K1')\}.
\]
Moreover, if \(\bar{f}\) is integer-valued, then there exists an integral \(z\) that attains the maximum on the right-hand side.
We assume that $|U| \geq 3$ and all the elements in $U \setminus \{1_U\}$ are incomparable in \mathcal{L}_U for each $U \in \mathcal{U}$. Then lattice \mathcal{L}_U on $\hat{U} = U \cup \{0_U\}$ is called a **diamond**.

We assume that for each $U \in \mathcal{U}$ \mathcal{L}_U is a diamond.
Corollary 8 gives a min-max formula for a submodular function on the product lattice of diamonds. Note that in this special case (K1’) is simplified to

(K1’) For each $U \in \mathcal{U}$, $z(u) + z(v) \leq z(1_U)$ for all $\{u, v\} \in \binom{\bar{U}}{2}$, where $\bar{U} = U \setminus \{1_U\}$.

Kuivinen (2011) further considered stronger constraints:

(K1) For each $U \in \mathcal{U}$
$$z(1_U) = \max \{z(u) + z(v) \mid \{u, v\} \in \binom{\bar{U}}{2} \}.$$

(K2) For each $U \in \mathcal{U}$ there exists $p \in \bar{U}$ such that $z(p) \geq z(v)$ for all $v \in \bar{U}$ and $z(u) = z(v)$ for all $u, v \in \bar{U} \setminus \{p\}$. (Such a z is called unified by Kuivinen (2011).)

Note that (K1) implies (K1’).
Kuivinen (2011) showed the following.

Theorem 9:

$$\min\{\bar{f}(T) \mid T \in \mathcal{U}\} = \max\left\{\sum_{U \in \mathcal{U}} z(1_U) \mid z \in \text{P}(\bar{f}), \ z \leq 0, \ (K1), \ (K2)\right\}.$$

Moreover, if \bar{f} is integer-valued, then there exists an integral z that attains the maximum on the right-hand side.

Remark: Kuivinen (2011) showed that this gives a good characterization for submodular functions on diamonds.