

Approximation and Min-Max Results for the Steiner Connectivity Problem

Marika Karbstein joint work with Ralf Borndörfer Zuse Institute Berlin

DFG Research Center MATHEON *Mathematics for key technologies*

The Steiner Connectivity Problem

- \triangleright undirected graph G = (V, E)
- \triangleright set of terminal nodes $T \subseteq V$
- \triangleright set of (simple) paths ${\mathcal P}$
- riangleright nonnegative cost $c \in \mathbb{R}_+^{\mathcal{P}}$

The Steiner Connectivity Problem

- \triangleright undirected graph G = (V, E)
- \triangleright set of terminal nodes $T \subseteq V$
- \triangleright set of (simple) paths ${\mathcal P}$
- riangleright nonnegative cost $c \in \mathbb{R}_+^{\mathfrak{P}}$

Steiner connectivity problem (SCP)

Find a set of paths $\mathcal{P}' \subseteq \mathcal{P}$ such that $c(\mathcal{P}') := \sum_{p \in \mathcal{P}'} c_p$ is minimal and all terminals T are connected.

Line Planning

- ▶ Input: public transport network, demands (OD-Matrix), operating cost, travel times
- Output: lines in network and frequencies s.t. demand is satisfied
- Dijective: minimize operating cost, travel time, number transfers

Line Planning

- ▷ Input: public transport network, demands (OD-Matrix), operating cost, travel times
- Dutput: lines in network and frequencies s.t. demand is satisfied
- ▷ Objective: minimize operating cost, travel time, number transfers

SCP in line planning (one case study)

- ▷ ignore travel times
- assume "unlimited" capacities
- □ connect OD-nodes by choosing a set of lines with minimal cost

- 1 Relation to Steiner Trees and |T| = constant
- Relation to Set Cover Problems and T = V
- Primal Dual Approximation Algorithm

- 1 Relation to Steiner Trees and |T| = constant
- 2 Relation to Set Cover Problems and T = V
- 3 Primal Dual Approximation Algorithm

The SCP is a generalization of the (undirected) Steiner tree problem (STP) $(|p| = 1 \text{ for all } p \in \mathcal{P}).$

The SCP is a generalization of the (undirected) Steiner tree problem (STP) $(|p| = 1 \text{ for all } p \in \mathcal{P}).$

The SCP is a generalization of the (undirected) Steiner tree problem (STP) $(|p| = 1 \text{ for all } p \in \mathcal{P}).$

The SCP is a generalization of the (undirected) Steiner tree problem (STP) $(|p| = 1 \text{ for all } p \in \mathcal{P}).$

The SCP is a generalization of the (undirected) Steiner tree problem (STP) $(|p| = 1 \text{ for all } p \in \mathcal{P}).$

The SCP is a generalization of the (undirected) Steiner tree problem (STP) $(|p| = 1 \text{ for all } p \in \mathcal{P}).$

all "path"-arcs receive cost of the corresponding path all other arcs receive cost 0

SCP and associated DSTP

Proposition

For each solution of one problem exists a solution of the other problem with the same objective value. The optimal objective value is independent of the choice of the root node.

Corollary

SCP is solvable in polynomial time for |T| = k, k constant.

This follows from the complexity results for the directed Steiner tree problem, e.g., Feldman and Ruhl (1999)

An st-connecting set of paths connects two nodes s and t. An st-disconnecting set of paths breaks all st-connecting sets.

An st-connecting set of paths connects two nodes s and t. An st-disconnecting set of paths breaks all st-connecting sets.

 \rightsquigarrow directed shortest path problem in associated directed graph

An st-connecting set of paths connects two nodes s and t. An st-disconnecting set of paths breaks all st-connecting sets.

→ directed shortest path problem in associated directed graph

Proposition (Version of Menger's theorem)

The minimum cardinality of an st-disconnecting set is equal to the maximum number of path-disjoint st-connecting sets.

Follows from hypergraph theory.

An st-connecting set of paths connects two nodes s and t. An st-disconnecting set of paths breaks all st-connecting sets.

→ directed shortest path problem in associated directed graph

Proposition (Max-flow-min-cut theorem w.r.t. paths)

The minimum weight of an st-disconnecting set is equal to the maximum flow w.r.t. paths.

Follows from general max-flow-min-cut theorem (Hoffman).

 $|\mathcal{T}|=2$: problem can also be solved in original graph via an adapted shortest path algorithm

Advantages:

- \triangleright no transformation (directed graph can have $O(|\mathcal{P}|^2)$ arcs)
- better complexity
- extended to a primal dual algorithm it can be used to prove the companion theorem to Menger

Proposition (companion to Menger's theorem)

The minimum cardinality of an st-connecting set is equal to the maximum number of path-disjoint st-disconnecting sets.

seems to be natural (for hypergraphs) but found no proof

- \blacksquare Relation to Steiner Trees and |T| = constant
- 2 Relation to Set Cover Problems and T = V
- 3 Primal Dual Approximation Algorithm

Proposition

The Steiner connectivity problem is NP-hard for T = V.

Reduction from set covering problem.

$$S = \{a, b, c, d, e\}, (\{a, c\}, \{b, d\}, \{b, c\}, \{c, e\}, \{a, d, e\})$$

Submodular Set Covering Problem

Let $N=\{1,\ldots,n\}$ and $z:2^N\to\mathbb{R}$ be a nondecreasing, submodular function. Then

$$\min_{S\subseteq N} \{ \sum_{j\in S} c_j : z(S) = z(N) \}$$

is a *submodular set covering problem*. It is integer-valued if $z: 2^N \to \mathbb{Z}$.

Observation

The SCP with T=V can be interpreted as an integer-valued submodular set covering problem. Here, $z(\mathfrak{P}')$, $\mathfrak{P}'\subseteq \mathfrak{P}$, is the maximum number of edges in $(V, E(\mathfrak{P}'))$ containing no cycle. $(z(p)=|p|, p\in \mathfrak{P}, z(\mathfrak{P})=|V|-1, z(\emptyset)=0)$

Theorem (Wolsey, 1982)

A greedy heuristic gives an $H(k) = \sum_{i=1}^{k} \frac{1}{i}$ approximation guarantee for integer-valued submodular set covering problems where $k = \max_{j \in N} z(\{j\}) - z(\emptyset)$.

Corollary

A greedy heuristic gives an $H(k) = \sum_{i=1}^{k} \frac{1}{i}$ approximation guarantee for the Steiner connectivity problem where k is the maximum number of edges in a path.

This logarithmic bound is asymptotically optimal (Feige, 1998).

- Relation to Set Cover Problems and T = V
- Primal Dual Approximation Algorithm

General approximation technique of Goemans and Williamson (1995)

init: Steiner tree
$$F = \emptyset$$

 $y_S = 0$, $S \subseteq V$,
 $\emptyset \neq S \cap T \neq T$

General approximation technique of Goemans and Williamson (1995)

- init: Steiner tree $F = \emptyset$ $y_S = 0, S \subseteq V,$ $\emptyset \neq S \cap T \neq T$
- ▷ raise y_S (S minimal with δ(S) ∩ F = ∅) uniformly until some edge e goes "tight" $F = F ∪ \{e\}$

General approximation technique of Goemans and Williamson (1995)

- init: Steiner tree $F = \emptyset$ $y_S = 0$, $S \subseteq V$, $\emptyset \neq S \cap T \neq T$
- ▷ raise y_S (S minimal with δ(S) ∩ F = ∅) uniformly until some edge e goes "tight" $F = F ∪ \{e\}$

General approximation technique of Goemans and Williamson (1995)

- init: Steiner tree $F = \emptyset$ $y_S = 0, S \subseteq V,$ $\emptyset \neq S \cap T \neq T$
- ▷ raise y_S (S minimal with $\delta(S) \cap F = \emptyset$) uniformly until some edge e goes "tight" $F = F \cup \{e\}$

General approximation technique of Goemans and Williamson (1995)

- ▷ init: Steiner tree $F = \emptyset$ $y_S = 0$, $S \subseteq V$, $\emptyset \neq S \cap T \neq T$
- ▷ raise y_S (S minimal with $\delta(S) \cap F = \emptyset$) uniformly until some edge e goes "tight" $F = F \cup \{e\}$

General approximation technique of Goemans and Williamson (1995)

- ▷ init: Steiner tree $F = \emptyset$ $y_S = 0$, $S \subseteq V$, $\emptyset \neq S \cap T \neq T$
- ▷ raise y_S (S minimal with $\delta(S) \cap F = \emptyset$) uniformly until some edge e goes "tight" $F = F \cup \{e\}$

General approximation technique of Goemans and Williamson (1995)

- ▷ init: Steiner tree $F = \emptyset$ $y_S = 0$, $S \subseteq V$, $\emptyset \neq S \cap T \neq T$
- ▷ raise y_S (S minimal with $\delta(S) \cap F = \emptyset$) uniformly until some edge e goes "tight" $F = F \cup \{e\}$

General approximation technique of Goemans and Williamson (1995)

- ⇒ init: Steiner tree $F = \emptyset$ $y_S = 0$, $S \subseteq V$, $\emptyset \neq S \cap T \neq T$
- ▷ raise y_S (S minimal with $\delta(S) \cap F = \emptyset$) uniformly until some edge e goes "tight" $F = F \cup \{e\}$

General approximation technique of Goemans and Williamson (1995)

- init: Steiner tree $F = \emptyset$ $y_S = 0$, $S \subseteq V$, $\emptyset \neq S \cap T \neq T$
- ▶ raise y_S (S minimal with $\delta(S) \cap F = \emptyset$) uniformly until some edge e goes "tight" $F = F \cup \{e\}$
- ▷ reverse delete: consider edges in F in reverse order: delete e if
 F = F \ {e} is feasible

General approximation technique of Goemans and Williamson (1995)

- init: Steiner tree $F = \emptyset$ $y_S = 0$, $S \subseteq V$, $\emptyset \neq S \cap T \neq T$
- ▶ raise y_S (S minimal with $\delta(S) \cap F = \emptyset$) uniformly until some edge e goes "tight" $F = F \cup \{e\}$
- reverse delete: consider edges in F in reverse order: delete e if
 F = F \ {e} is feasible

Primal Dual Programs – STP

Let
$$S = \{ S \subseteq V : \emptyset \neq S \cap T \neq T \}$$

Proposition (Goemans and Williamson (1995))

The general approximation technique of Goemans and Williamson yields a 2-approximation algorithm for the Steiner tree problem.

Proof:

$$\sum_{e \in F} c_e = \sum_{e \in F} \sum_{S \in \mathcal{S}: e \in \delta(S)} y_S = \sum_{S \in \mathcal{S}} \sum_{e \in \delta(S) \cap F} y_S = \sum_{S \in \mathcal{S}} \deg_F(S) y_S \le 2 \sum_{S \in \mathcal{S}} y_S$$

The last inequality follows since the average degree on a terminal node in a Steiner tree is 2.

Primal Dual Programs – SCP

Let
$$S = \{S \subseteq V : \emptyset \neq S \cap T \neq T\}$$

Proposition

The general approximation technique of Goemans and Williamson applied to the SCP yields a (k+1)-approximation algorithm with k being the minimum of

- (a) the maximal number of edges in a path,
- (b) the maximal number of terminal nodes in a path.

Approximation Results for SCP

(a) the maximal number of edges in a path is k

Fujito (1999) observed: idea of proof for STP can be generalized to get a (k+1) appr. for hypergraphs

$$\sum_{p \in \mathcal{P}'} c_p = \sum_{p \in \mathcal{P}'} \sum_{\substack{S \in \mathcal{S} \\ p \in \delta(S)}} y_S = \sum_{S \in \mathcal{S}} \sum_{p \in \delta(S) \cap \mathcal{P}'} y_S = \sum_{S \in \mathcal{S}} \deg_{\mathcal{P}'}(S) y_S \overset{(!)}{\leq} (k+1) \sum_{S \in \mathcal{S}} y_S$$

Assumption: the average degree of a terminal node in a (inclusion wise minimal) solution for the SCP is at most k+1 \Leftrightarrow the average degree of a node $t \in T$ in a minimal T-connecting hypergraph is k+1

Approximation Results for SCP

(a) the maximal number of edges in a path is k

Fujito (1999) observed: idea of proof for STP can be generalized to get a (k+1) appr. for hypergraphs

$$\sum_{p \in \mathcal{P}'} c_p = \sum_{p \in \mathcal{P}'} \sum_{\substack{S \in \mathcal{S} \\ p \in \delta(S)}} y_S = \sum_{S \in \mathcal{S}} \sum_{p \in \delta(S) \cap \mathcal{P}'} y_S = \sum_{S \in \mathcal{S}} \deg_{\mathcal{P}'}(S) y_S \overset{(!)}{\leq} (k+1) \sum_{S \in \mathcal{S}} y_S$$

Assumption: the average degree of a terminal node in a (inclusion wise minimal) solution for the SCP is at most k+1 \Leftrightarrow the average degree of a node $t \in T$ in a minimal T-connecting hypergraph is k+1 (seems to be

natural but found no proof)

Lemma

The average degree of a terminal node in an inclusion wise minimal solution for the SCP is at most (k + 1) with k being the minimum of (a) the maximal number of edges in a path,

(b) the maximal number of terminal nodes in a path.

(Equivalent to:

The average degree of a node $t \in T$ in a minimal T-connecting hypergraph is at most k+1.)

Average Degree – Proof

 $\triangleright \{p_1, p_2, p_3\}\{p_4\}$

 $ightharpoonup \mathcal{P}'$ minimal; consider only paths that intersect terminal nodes order paths according to connected components

Average Degree – Proof

- $\triangleright \{p_1, p_2, p_3\}\{p_4\}$
- $ightharpoonup T_1 = T_2 = \{A, B\}$
- $\triangleright T_3 = \{A, B, C\}$
- $\triangleright T_4 = \{A, B, C, D\}$
- \mathcal{P}' minimal; consider only paths that intersect terminal nodes order paths according to connected components
- \triangleright T_i set of terminal nodes that are covered by p_1, \ldots, p_i

Average Degree – Proof

- $\triangleright \{p_1, p_2, p_3\}\{p_4\}$
- $ightharpoonup T_1 = T_2 = \{A, B\}$
- $\triangleright T_3 = \{A, B, C\}$
- $\triangleright T_4 = \{A, B, C, D\}$
- $ightarrow \, \mathcal{P}'$ minimal; consider only paths that intersect terminal nodes order paths according to connected components
- \triangleright T_i set of terminal nodes that are covered by p_1, \ldots, p_i
- \triangleright $r_i = |T_i \setminus T_{i-1}|$ additional terminal nodes covered by p_i

- $\triangleright \{p_1, p_2, p_3\}\{p_4\}$
- $\triangleright T_1 = T_2 = \{A, B\}$
- $T_3 = \{A, B, C\}$
- $\triangleright T_4 = \{A, B, C, D\}$
- $\triangleright \mathcal{P}'$ minimal; consider only paths that intersect terminal nodes order paths according to connected components
- \triangleright T_i set of terminal nodes that are covered by p_1, \ldots, p_i
- $\triangleright r_i = |T_i \setminus T_{i-1}|$ additional terminal nodes covered by p_i
 - $r_i \geq 1$: p_i increase degree on all terminal nodes by
 - (a) $r_i + \min(|T_{i-1}| 1, k + 1 r_i)$ (path length $\leq k$)

 - (b) $r_i + \min(|T_{i-1}| 1, k r_i)$ (path contains $\leq k$ terminals)

Average Degree - Proof

- $\triangleright \{p_1, p_2, p_3\}\{p_4\}$
- $\triangleright T_1 = T_2 = \{A, B\}$
- $\triangleright T_3 = \{A, B, C\}$
- $\ \ \, \triangleright \ \, T_4=\{A,B,C,D\}$
- $ightharpoonup \mathcal{P}'$ minimal; consider only paths that intersect terminal nodes order paths according to connected components
- ho T_i set of terminal nodes that are covered by p_1, \ldots, p_i
- \triangleright $r_i = |T_i \setminus T_{i-1}|$ additional terminal nodes covered by p_i
 - $r_i \ge 1$: p_i increase degree on all terminal nodes by
 - (a) $r_i + \min(|T_{i-1}| 1, k+1-r_i)$ (path length $\leq k$)
 - (b) $r_i + \min(|T_{i-1}| 1, k r_i)$ (path contains $\leq k$ terminals)
 - $r_i = 0$: $\exists p_h, h > i$ with $V(p_i) \cap V(p_h) \neq \emptyset$, $T_i \cap V(p_h) = \emptyset$ and p_h adds $r_h \geq 1$ "new" terminals; move p_h at position i + 1
 - p_i, p_h increase degree by $r_h + \min(|T_{i-1}| 1, k)$

- $\triangleright \{p_1, p_2, p_3\}\{p_4\}$
- $\triangleright T_1 = T_2 = \{A, B\}$
- $T_3 = \{A, B, C\}$
- $\triangleright T_4 = \{A, B, C, D\}$
- ▶ final order: set of paths and pairs of paths that increase degree on terminal nodes by at most $r_i + \min(|T_{i-1}| 1, k)$

$$\begin{split} & \sum_{t \in T} \mathsf{deg}_{\mathcal{P}'}(t) \\ & = r_1 + r_2 + \min\{k, |T_1| - 1\} + \ldots + r_m + \min\{k, |T_{m-1}| - 1\} \\ & \leq r_1 + r_2 + \min\{k, r_1 - 1\} + \ldots + r_m + \min\{k, (\sum_{i=1}^{m-1} r_i) - 1\} \\ & \leq |T| + (r_1 - 1) + \ldots + (r_1 + \ldots + r_{j-1} - 1) + (m - j)k \\ & \ldots \\ & \leq (|T| - 1)(k + 1). \quad \Box \end{split}$$

- ▷ n nodes in the rim, k nodes in the middle; all nodes are terminal nodes (plus n nodes in the inner rim)
- ▷ all paths are minimal T-connecting set
- \triangleright total degree: $n \cdot 1 + k \cdot n = n(k+1)$
- \triangleright average degree: $\frac{n(k+1)}{n+k} \stackrel{n \to \infty}{\longrightarrow} k+1$

Comparison: STP vs. SCP

	STP	SCP
general case	\mathcal{NP} -hard	
T = k	polynomial	
T = 2	version of Menger's and companion theorem holds	
T = V	polynomial	NP-hard
	min. spanning tree	Greedy: $H(k)$ -appr. k max. number edges in paths
primal-dual alg.	2-approximation	(k+1)-approximation k minimum of (a) max. number edges/path, (b) max. number terminals/path

Polyhedral Aspects (Borndörfer, K., Pfetsch, 2012):

- ▶ Can generalize structures such as partition inequalities to the SCP.
- ▶ Can also obtain a directed formulation dominating natural formulation.