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The Steiner Connectivity Problem

. undirected graph G = (V ,E )

. set of terminal nodes T ⊆ V

. set of (simple) paths P

. nonnegative cost c ∈ RP
+

a
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e f g

Steiner connectivity problem (SCP)
Find a set of paths P′ ⊆ P such
that c(P′) := ∑

p∈P′ cp is minimal
and all terminals T are connected.
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Application

Line Planning
. Input: public transport network, demands (OD-Matrix), operating
cost, travel times

. Output: lines in network and frequencies s.t. demand is satisfied

. Objective: minimize operating cost, travel time, number transfers

SCP in line planning (one case study)
. ignore travel times
. assume “unlimited” capacities
. connect OD-nodes by choosing a set of lines with minimal cost
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Outline

1 Relation to Steiner Trees and |T | = constant
2 Relation to Set Cover Problems and T = V
3 Primal Dual Approximation Algorithm
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Relation to Steiner Trees
The SCP is a generalization of the (undirected) Steiner tree
problem (STP)
(|p| = 1 for all p ∈ P).

The SCP can be transformed to the directed Steiner tree
problem (DSTP):

a

db

c e

f

a f

b

c

all “path”-arcs receive cost of the corresponding path
all other arcs receive cost 0
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SCP and associated DSTP

a

db

c e

f a f
b

c

Proposition
For each solution of one problem exists a solution of the other
problem with the same objective value. The optimal objective value is
independent of the choice of the root node.

Corollary
SCP is solvable in polynomial time for |T | = k, k constant.

This follows from the complexity results for the directed Steiner tree
problem, e.g., Feldman and Ruhl (1999)
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Min-Max Results for |T | = 2
An st-connecting set of paths connects two nodes s and t.
An st-disconnecting set of paths breaks all st-connecting sets.
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 directed shortest path problem in associated directed graph

Proposition (Max-flow-min-cut theorem w.r.t. paths)
The minimum weight of an st-disconnecting set is equal to the maximum
flow w.r.t. paths.
Follows from general max-flow-min-cut theorem (Hoffman).
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Proposition (Version of Menger’s theorem)
The minimum cardinality of an st-disconnecting set is equal to the
maximum number of path-disjoint st-connecting sets.
Follows from hypergraph theory.
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Min-Max Results for |T | = 2

|T | = 2: problem can also be solved in original graph via an adapted
shortest path algorithm
Advantages:
. no transformation (directed graph can have O(|P|2) arcs)
. better complexity
. extended to a primal dual algorithm it can be used to prove the
companion theorem to Menger

Proposition (companion to Menger’s theorem)
The minimum cardinality of an st-connecting set is equal to the
maximum number of path-disjoint st-disconnecting sets.

seems to be natural (for hypergraphs) but found no proof
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Complexity for T = V
Proposition
The Steiner connectivity problem is NP-hard for T = V .

Reduction from set covering problem.
S = {a, b, c , d , e}, ({a, c}, {b, d}, {b, c}, {c , e}, {a, d , e})

s a b c d e

s a b c d e
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Submodular Set Covering Problem

Let N = {1, . . . , n} and z : 2N → R be a nondecreasing, submodular
function. Then

min
S⊆N
{

∑
j∈S

cj : z(S) = z(N)}

is a submodular set covering problem. It is integer-valued if
z : 2N → Z.

Observation
The SCP with T = V can be interpreted as an integer-valued
submodular set covering problem. Here, z(P′), P′ ⊆ P, is the
maximum number of edges in (V ,E (P′)) containing no cycle.
(z(p) = |p|, p ∈ P, z(P) = |V | − 1, z(∅) = 0)
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Approximation for T = V

Theorem (Wolsey, 1982)
A greedy heuristic gives an H(k) = ∑k

i=1
1
i approximation guarantee

for integer-valued submodular set covering problems where
k = maxj∈N z({j})− z(∅).

Corollary
A greedy heuristic gives an H(k) = ∑k

i=1
1
i approximation guarantee

for the Steiner connectivity problem where k is the maximum number
of edges in a path.

This logarithmic bound is asymptotically optimal (Feige, 1998).
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General Approximation Technique – STP
General approximation technique of Goemans and Williamson (1995)

Example for the Steiner tree problem

. init: Steiner tree F = ∅
yS = 0, S ⊆ V ,
∅ 6= S ∩ T 6= T

. raise yS (S minimal with
δ(S) ∩ F = ∅) uniformly
until some edge e goes
“tight” F = F ∪ {e}

. reverse delete: consider
edges in F in reverse
order: delete e if
F = F \ {e} is feasible
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Primal Dual Programs – STP
Let S = {S ⊆ V : ∅ 6= S ∩ T 6= T}

min
∑

e∈E
ce xe max

∑
S∈S

yS

s.t.
∑

e∈δ(S)
xe ≥ 1 ∀S ∈ S s.t.

∑
S∈S:e∈δ(S)

yS ≤ ce ∀ e ∈ E

xe ≥ 0 ∀ e ∈ E yS ≥ 0 ∀S ∈ S.

Proposition (Goemans and Williamson (1995))
The general approximation technique of Goemans and Williamson
yields a 2-approximation algorithm for the Steiner tree problem.

Proof:∑
e∈F

ce =
∑
e∈F

∑
S∈S:e∈δ(S)

yS =
∑
S∈S

∑
e∈δ(S)∩F

yS =
∑
S∈S

degF (S)yS ≤ 2
∑
S∈S

yS

The last inequality follows since the average degree on a terminal
node in a Steiner tree is 2.
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Primal Dual Programs – SCP
Let S = {S ⊆ V : ∅ 6= S ∩ T 6= T}

min
∑

p∈P
cp xp max

∑
S∈S

yS

s.t.
∑

p∈Pδ(S)

xp ≥ 1 ∀S ∈ S s.t.
∑

S∈S:p∈Pδ(S)

yS ≤ cp ∀ p ∈ P

xp ≥ 0 ∀ p ∈ P yS ≥ 0 ∀S ∈ S.

Proposition
The general approximation technique of Goemans and Williamson
applied to the SCP yields a (k+1)-approximation algorithm with k
being the minimum of
(a) the maximal number of edges in a path,
(b) the maximal number of terminal nodes in a path.
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Approximation Results for SCP
(a) the maximal number of edges in a path is k

Fujito (1999) observed: idea of proof for STP can be generalized to
get a (k + 1) appr. for hypergraphs

∑
p∈P′

cp =
∑
p∈P′

∑
S∈S

p∈δ(S)

yS =
∑
S∈S

∑
p∈δ(S)∩P′

yS =
∑
S∈S

degP′(S)yS
(!)
≤ (k+1)

∑
S∈S

yS

Assumption: the average degree of
a terminal node in a (inclusion
wise minimal) solution for the SCP
is at most k + 1
⇔ the average degree of a node
t ∈ T in a minimal T -connecting
hypergraph is k + 1

(seems to be
natural but found no proof)

a

b c d

e f g
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Average Degree

Lemma
The average degree of a terminal node in an inclusion wise minimal
solution for the SCP is at most (k + 1) with k being the minimum of
(a) the maximal number of edges in a path,
(b) the maximal number of terminal nodes in a path.

(Equivalent to:
The average degree of a node t ∈ T in a minimal T -connecting
hypergraph is at most k + 1.)
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Average Degree – Proof
A D

B C

p1

p2 p3

p5

p4

A D

B C

. {p1, p2, p3}{p4}

. T1 = T2 = {A,B}

. T3 = {A,B,C}

. T4 = {A,B,C ,D}

. P′ minimal; consider only paths that intersect terminal nodes
order paths according to connected components

. Ti set of terminal nodes that are covered by p1, . . . , pi

. ri = |Ti \ Ti−1| additional terminal nodes covered by pi

ri ≥ 1: pi increase degree on all terminal nodes by
(a) ri +min(|Ti−1| − 1, k + 1− ri) (path length ≤ k)
(b) ri +min(|Ti−1| − 1, k − ri) (path contains ≤ k terminals)

ri = 0: ∃ph, h > i with V (pi)∩V (ph) 6= ∅, Ti ∩V (ph) = ∅ and ph adds
rh ≥ 1 “new” terminals; move ph at position i + 1
pi , ph increase degree by rh +min(|Ti−1| − 1, k)
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Average Degree – Proof
A D

B C

p1

p2 p3

p5

p4

A D

B C

. {p1, p2, p3}{p4}

. T1 = T2 = {A,B}

. T3 = {A,B,C}

. T4 = {A,B,C ,D}

. final order: set of paths and pairs of paths that increase degree on
terminal nodes by at most ri +min(|Ti−1| − 1, k)∑

t∈T
degP′(t)

= r1 + r2 +min{k, |T1| − 1}+ . . . + rm +min{k, |Tm−1| − 1}
≤ r1 + r2 +min{k, r1 − 1}+ . . . + rm +min{k, (

∑m−1
i=1 ri)− 1}

≤ |T |+ (r1 − 1) + . . . + (r1 + . . . + rj−1 − 1) + (m − j)k
. . .

≤ (|T | − 1)(k + 1).
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Worst Case Example

. n nodes in the rim, k nodes in the middle; all nodes are terminal
nodes (plus n nodes in the inner rim)

. n paths: each path contains one node in the (inner) rim and all
nodes in the middle

. all paths are minimal T -connecting set

. total degree: n · 1+ k · n = n(k + 1)

. average degree: n(k+1)
n+k

n→∞−→ k + 1
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Comparison: STP vs. SCP
STP SCP

general case NP-hard
|T | = k polynomial
|T | = 2 version of Menger’s and companion theorem holds

T = V polynomial NP-hard
min. spanning tree Greedy: H(k)-appr.

k max. number edges in paths
primal-dual alg. 2-approximation (k + 1)-approximation

k minimum of
(a) max. number edges/path,
(b) max. number terminals/path

Polyhedral Aspects (Borndörfer, K., Pfetsch, 2012):
. Can generalize structures such as partition inequalities to the SCP.
. Can also obtain a directed formulation dominating natural formulation.
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