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Model

Model

We consider sets of the form

X = X (R, S) := {x ∈ Rn
+ : Rx ∈ S}

where

{
R = [r1 . . . rn] is a real, q × n matrix,

S ⊂ Rq is a nonempty, closed set with 0 /∈ S .

Observation

0 /∈ S ⇒ 0 /∈ convX .

We are interested in cuts
c>x ≥ 1

that separate the origin from X .
Such cuts were studied by Johnson (1981) and Conforti et al. (2013).
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Motivation

Motivation: Integer Programming

Let P := {(x , y) ∈ Rn
+ × Rm : Ax + y = b} and b /∈ Zm.

P ∩ (Zn
+ × Zm) is the set considered by Gomory (1969).

Its convex hull is the well-known corner polyhedron:[
x
y

]
∈ P ∩ (Zn

+ × Zm)⇔
[

x
y = b − Ax

]
∈ Zn

+ × Zm

⇔
[

I
−A

]
︸ ︷︷ ︸

R

x ∈ Zn × (Zm − b)︸ ︷︷ ︸
S

, x ∈ Rn
+.

Note b /∈ Zm ⇒ 0 /∈ S .
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Motivation

Motivation: Mixed Integer Programming

Again, P := {(x , y) ∈ Rn
+ × Rm : Ax + y = b} and b /∈ Zm.

P ∩ (Rn
+ × Zm) is the set considered by Andersen et al. (2007) and

Borozan and Cornuéjols (2009):[
x
y

]
∈ P ∩ (Rn

+ × Zm)⇔
[

x
y = b − Ax

]
∈ Rn

+ × Zm

⇔ −A︸︷︷︸
R

x ∈ Zm − b︸ ︷︷ ︸
S

, x ∈ Rn
+.

Note b /∈ Zm ⇒ 0 /∈ S .
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Motivation

Motivation: Complementarity Problems

Let E ⊆ {1, . . . ,m}2 and C := {y ∈ Rm
+ : yiyj = 0∀ (i , j) ∈ E}.

As before, P := {(x , y) ∈ Rn
+ × Rm : Ax + y = b} and b /∈ C .

The set P ∩ (Rn
+ × C ) appears in complementarity problems:[

x
y

]
∈ P ∩ (Rn

+ × C )⇔
[

x
y = b − Ax

]
∈ Rn

+ × C

⇔ −A︸︷︷︸
R

x ∈ C − b︸ ︷︷ ︸
S

, x ∈ Rn
+.

Note b /∈ C ⇒ 0 /∈ S .
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Motivation

Common Features

X = X (R, S) := {x ∈ Rn
+ : Rx ∈ S}

In all of these examples

S is a fixed and highly structured set which defines the problem,

R is an arbitrary matrix which defines the problem instance, and

we want to generate cuts to obtain a better description of the set X
that corresponds to a given pair (R,S).
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Problem & Known Results

Cut-Generating Functions

Let S be fixed.

A function ρ : Rq 7→ R is a cut-generating function if

n∑
j=1

ρ(rj)xj ≥ 1

is a valid cut for X for any choice of n and R = [r1 . . . rn].

Important: ρ is allowed to depend explicitly on S , but not on R.

Well-known example from integer programming: Gomory function.
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Problem & Known Results

The Geometric Perspective: S-Free Sets

A CGF ρ′ dominates another CGF ρ if ρ′ ≤ ρ (recall X ⊂ Rn
+).

Theorem (Conforti et al. 2013)

Every CGF is dominated by a sublinear CGF.

A closed, convex neighborhood of the origin is S-free if its interior contains
no point of S .

Theorem (Conforti et al. 2013)

Let the sublinear function ρ : Rq 7→ R and the closed, convex
neighborhood V satisfy V = {r : ρ(r) ≤ 1}. Then ρ is a CGF if and only
if V is S-free.
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Problem & Known Results

The Question of Sufficiency

Now assume that both S and R are fixed.

Question: For every cut c>x ≥ 1 that is valid for X , does there exist a
CGF ρ such that cj ≥ ρ(rj) for all j?

Conforti et al. (2010):
Yes, when S = Zm − b.

Conforti et al. (2013):
Yes, when rec(convX ) = Rn

+

and coneR = Rq.

All cuts c>x ≥ 1 have c ∈ Rn
+.

Conforti et al. (2013) also show that the answer to this question is “No”
in general.
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Our Result & Proof

Our Main Result

Can we find sufficient conditions under which CGFs can generate all cuts
of the form c>x ≥ 1 for general S?

A cut d>x ≥ 1 dominates another cut c>x ≥ 1 if dj ≤ cj for all j (again,
recall X ⊂ Rn

+).

Theorem (Cornuéjols, Wolsey, Y.)

Suppose S ⊂ coneR. Then any cut separating the origin from X is
dominated by a cut obtained from a CGF.
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Our Result & Proof

Our Main Result

Consider the following example from Conforti et al. (2013):

S :=
{[

0
1

]}
∪ (Z× {−1}), r1 :=

[
1
0

]
, r2 :=

[
0
1

]
. Then X =

{[
0
1

]}
.

−x1 + x2 ≥ 1 is a valid cut for X , but there is no CGF ρ with ρ(r1) < 0.

Our result: There is a CGF which yields a cut that dominates −x1 + x2 ≥ 1 when

S is replaced with S ′ := S ∩ coneR =
{[

0
1

]}
. (Note X (R,S) = X (R,S ′).)
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Our Result & Proof

Proof Sketch
We consider the case spanR = Rq only.

Define ρ : Rq 7→ R ∪ {∞} by

ρ(r) := min c>x
Rx = r ,
x ≥ 0.

Observation

ρ is a sublinear function which is finite on coneR.

ρ(rj) ≤ cj for all j .

ρ(r) ≥ 1 for all r ∈ S .

If coneR = Rq,

V := {r : ρ(r) ≤ 1} is an closed, convex, S-free neighborhood of the
origin, and

ρ is a CGF.
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Our Result & Proof

Proof Sketch
Example: R :=

[
1 1.5 2
3 1.5 −1

]
and c :=

[
1
1
−1

]
.

r1

r2

r3

V
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Our Result & Proof

Proof Sketch

If coneR ( Rq, we want to extend ρ into a function ρ′ which is finite
everywhere.

The idea:

Introduce a vector r0 ∈ − ri(coneR) into the collection {r1, . . . , rn}:
cone [r0 R] = Rq,

define c0 := supr∈coneR, α>0
ρ(r)−ρ(r+α(−r0))

α , and

let
ρ′(r) := min c0x0 + c>x

r0x0 + Rx = r ,
x0, x ≥ 0.

Because S ⊂ coneR,

V ′ := {r : ρ′(r) ≤ 1} is S-free, and

ρ′ is a CGF.

Because ρ′(rj) = ρ(rj) ≤ cj for all j , we are done.
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α , and

let
ρ′(r) := min c0x0 + c>x

r0x0 + Rx = r ,
x0, x ≥ 0.

Because S ⊂ coneR,

V ′ := {r : ρ′(r) ≤ 1} is S-free, and

ρ′ is a CGF.

Because ρ′(rj) = ρ(rj) ≤ cj for all j , we are done.
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Our Result & Proof

Proof Sketch
Example: R :=

[
1 1.5 2
3 1.5 −1

]
and c :=

[
1
1
−1

]
.

Let r0 :=
[ −5
−1

]
. Then c0 = 1.

r1

r2

r3

V
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Conclusion

Future Directions

What are the sets S for which the same result holds for all R?

Other / less restrictive sufficient conditions for general S?

FIN

Questions / Comments?
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