Integer Quadratic Programming is in NP

Alberto Del Pia1 \quad Santanu S. Dey2 \quad Marco Molinaro 3

1University of Wisconsin-Madison

2Georgia Institute of Technology

3TU Delft

Slides by Santanu
1 Introduction and Main Result
Integer Quadratic Program: Definition

Definition (IQP)

\[
\min \quad x^T Q x + c^T x \\
\text{s.t.} \quad Ax \leq b \\
x \in \mathbb{Z}^n,
\]
Integer Quadratic Program: Definition

Definition (IQP)

\[
\begin{align*}
\min & \quad x^\top Qx + c^\top x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{Z}^n,
\end{align*}
\]

We do not assume that \(x^\top Qx \) is convex
Integer Quadratic Program: Definition

Definition (IQP)

\[
\begin{align*}
\min & \quad x^\top Q x + c^\top x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{Z}^n,
\end{align*}
\]

We do not assume that \(x^\top Q x\) is convex

Decision Version of IQP

Does there exist \(x\) satisfying:

\[
\begin{align*}
x^\top Q x + c^\top x + d & \leq 0 \\
Ax & \leq b \\
x & \in \mathbb{Z}^n,
\end{align*}
\]

\[\mathcal{F}(Q, c, d, A, b)\]

where we assume all the data is rational.
Main Result

Theorem

Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. If $F(Q, c, d, A, b)$ is non-empty, then there exists $x \in F(Q, c, d, A, b)$ such that the binary encoding size of x is bounded from above by a polynomial function of the size of binary encoding of Q, c, d, A, b.

Consequences

1. Integer Quadratic Programming is in NP. In particular, the decision version of IQP is NP-complete.
2. Broadly speaking, this implies that there exists an algorithm to solve IQP, i.e. not undecidable.
Main Result

Theorem

Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. If $\mathcal{F}(Q, c, d, A, b)$ is non-empty, then there exists $x \in \mathcal{F}(Q, c, d, A, b)$ such that the binary encoding size of x is bounded from above by a polynomial function of the size of binary encoding of Q, c, d, A, b.

Consequences

1. Integer Quadratic Programming is in NP. In particular, the decision version of IQP is NP-complete.
2. Broadly speaking, this implies that there exists an algorithm to solve IQP, i.e. not undecidable.
Main Result

Theorem

Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. If $\mathcal{F}(Q, c, d, A, b)$ is non-empty, then there exists $x \in \mathcal{F}(Q, c, d, A, b)$ such that the binary encoding size of x is bounded from above by a polynomial function of the size of binary encoding of Q, c, d, A, b.
Main Result

Theorem
Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. If $\mathcal{F}(Q, c, d, A, b)$ is non-empty, then there exists $x \in \mathcal{F}(Q, c, d, A, b)$ such that the binary encoding size of x is bounded from above by a polynomial function of the size of binary encoding of Q, c, d, A, b.

Consequences

1. **Integer Quadratic Programming is in NP.** In particular, the decision version of IQP is NP-complete.

2. Broadly speaking, this implies that there exists an algorithm to solve IQP, i.e. not undecidable.
Comparison 1: More quadratic inequalities?

1. Number of quadratic inequalities: $2(58^2) + 58 + 1 = 3424$.

2. Number of linear inequalities: 58.

3. Number of integer variables: $(58^2 + 2 \times 58) = 1769$.

is undecidable.

Jones 82, discussion and additional references in Köppe 12.
Comparison 1: More quadratic inequalities?

Undecidable!

Determining the feasibility of a system with

1. Number of quadratic inequalities: $2 \left(\binom{58}{2} + 58 + 1 \right) = 3424$.

2. Number of linear inequalities: 58

3. Number of integer variables: $\left(\binom{58}{2} + 2 \times 58 \right) = 1769$.

is undecidable.

Jones 82, discussion and additional references in Köppe 12.
Comparison 2: Two quadratic inequalities?

Consider the system for \(d = 2n^2 + 1 \):

\[
\begin{align*}
x^2 - dy^2 + 1 & \leq 0, \\
x^2 - dy^2 - 1 & \leq 0,
\end{align*}
\]

\(x, y \in \mathbb{Z} \).

1. The binary encoding length of the smallest integer solution with minimal binary encoding length has an encoding length of: \(\Omega(5^n) \).

2. The binary encoding length of instance: \(\Theta(n) \).

Lagarias 80, discussion and additional references in Köppe 12
Comparison 2: Two quadratic inequalities?

Exponential size solution!
Consider the system for \(d = 5^{2n+1} \):

\[
\begin{align*}
x^2 - dy^2 + 1 &\leq 0, \\
-x^2 + dy^2 - 1 &\leq 0
\end{align*}
\]

\(x, y \in \mathbb{Z} \).

1. The binary encoding length of smallest integer solution with minimal binary encoding length has an encoding length of: \(\Omega(5^n) \).
2. The binary encoding length of instance: \(\Theta(n) \).

Lagarias 80, discussion and additional references in Köppe 12
Comparison 3: More convex quadratic inequalities?

Consider the system:

\[x_1 \geq 2x_j \geq x_{2j} - 1 \quad \forall j \in \{2, \ldots, n\} \]

\[x_j \in \mathbb{Z} \quad \forall j \in \{1, \ldots, n\}. \]

1. The binary encoding length of smallest size solution is: \(\Omega(2^n) \).

2. The binary encoding length of instance: \(\Theta(n) \).
Comparison 3: More convex quadratic inequalities?

Exponential size solution!

Consider the system:

\[
\begin{align*}
 x_1 & \geq 2 \\
 x_j & \geq x_{j-1}^2 \quad \forall j \in \{2, \ldots, n\} \\
 x_j & \in \mathbb{Z} \quad \forall j \in \{1, \ldots, n\}.
\end{align*}
\]

1. The binary encoding length of smallest size solution is: $\Omega(2^n)$.
2. The binary encoding length of instance: $\Theta(n)$.
In Conclusion...

Exactly one rational quadratic inequality is the threshold where we can guarantee existence of poly-size feasible solutions.
2
Proof Outline
Getting Started

- small size = poly-size = numerators/denominators have size polynomial wrt to input size
Getting Started

- small size = poly-size = numerators/denominators have size polynomial wrt to input size

\[x^TQx + c^Tx + d \leq 0 \]
\[x \in \mathcal{P} \]
\[x \in \mathbb{Z}^n \]
Getting Started

- small size = poly-size = numerators/denominators have size polynomial wrt to input size

\[x^T Q x + c^T x + d \leq 0 \]
\[x \in \mathcal{P} \]
\[x \in \mathbb{Z}^n \]

- Assume feasible
- Show that there is feasible solution of small size
Getting Started

- small size = poly-size = numerators/denominators have size polynomial wrt to input size

\[x^T Qx + c^T x + d \leq 0 \]
\[x \in \mathcal{P} \]
\[x \in \mathbb{Z}^n \]

- Assume feasible
- Show that there is feasible solution of small size

- Suffices to consider case \(\mathcal{P} \) is a cone
 - Only the recession cone matters for bounding the size of solutions
Getting Started

- small size = poly-size = numerators/denominators have size polynomial wrt to input size

\[x^T Qx + c^T x + d \leq 0 \]
\[x \in \mathcal{P} \]
\[x \in \mathbb{Z}^n \]

- Assume feasible
- Show that there is feasible solution of small size

- Suffices to consider case \(\mathcal{P} \) is a cone
 - Only the recession cone matters for bounding the size of solutions

- Focus \(x^T Qx + c^T x + d \leq 0 \)
Getting Started

- small size = poly-size = numerators/denominators have size polynomial wrt to input size

\[x^T Qx + c^T x + d \leq 0 \]
\[x \in \mathcal{P} \]
\[x \in \mathbb{Z}^n \]

- Assume feasible
- Show that there is feasible solution of small size

- Suffices to consider case \(\mathcal{P} \) is a cone
 - Only the recession cone matters for bounding the size of solutions

- Focus \(x^T Qx + c^T x + d \leq 0 \)
- **Strategy:** Focus on higher-order term \(x^T Qx \).
Getting Started

- "Slice" the cone \mathcal{P} with a "carefully selected" hyperplane \mathcal{H}
"Slice " the cone \mathcal{P} with a "carefully selected" hyperplane \mathcal{H}

Let x^* be a poly-size rational optimal solution to the problem

$$x^* \top Q x^* := \min_x x \top Q x$$

s.t. $x \in \mathcal{P} \cap \mathcal{H}$
Getting Started

- "Slice" the cone \(\mathcal{P} \) with a "carefully selected" hyperplane \(\mathcal{H} \)
- Let \(x^* \) be a poly-size rational optimal solution to the problem

\[
x^* \top Q x^* := \min \ x \top Q x \\
\text{s.t. } x \in \mathcal{P} \cap \mathcal{H}
\]

- The quadratic problem \(\min \{ x \top V x \mid x \in \text{rational polytope} \} \) (where \(V \) is a rational matrix) has a rational globally optimal solution of poly-size with respect to the size of the instance. [Vavasis 1990]
Case 1: $x^* \top Q x^* < 0$
Case 1: $x^* \top Q x^* < 0$

Question: Can $x^* \top Q x^*$ be arbitrarily close to zero?
Case 1: $x^* \top Q x^* < 0$

Question: Can $x^* \top Q x^*$ be arbitrarily close to zero?

No: x^* poly-size \Rightarrow $x^* \top Q x^*$ poly-size \Rightarrow poly-size bounded away from zero
Case 1: $x^* \top Q x^* < 0$

Question: Can $x^* \top Q x^*$ be arbitrarily close to zero?

No: x^* poly-size \Rightarrow $x^* \top Q x^*$ poly-size \Rightarrow poly-size bounded away from zero

Scale and find a poly-size feasible solution
Case 1: $x^* \top Qx^* < 0$

Question: Can $x^* \top Qx^*$ be arbitrarily close to zero?

No: x^* poly-size $\Rightarrow x^* \top Qx^*$ poly-size \Rightarrow poly-size bounded away from zero

Scale and find a poly-size feasible solution

- There is λ such that $\lambda x^* \in P \cap \mathbb{Z}^n$ and $(\lambda x^*)^\top Q(\lambda x^*) + c^\top (\lambda x^*) + d \leq 0$
Case 1: $x^* \top Qx^* < 0$

Question: Can $x^* \top Qx^*$ be arbitrarily close to zero?

No: x^* poly-size $\Rightarrow x^* \top Qx^*$ poly-size \Rightarrow poly-size bounded away from zero

Scale and find a poly-size feasible solution

- There is λ such that $\lambda x^* \in \mathcal{P} \cap \mathbb{Z}^n$ and $(\lambda x^*) \top Q(\lambda x^*) + c \top (\lambda x^*) + d \leq 0$
- Poly-size λ suffices
Case 2: $x^* \top Q x^* > 0$
Case 2: $x^* \top Q x^* > 0$

Higher-order term $x \top Q x$ is strictly positive on $\mathcal{P} \cap \mathcal{H}$
Case 2: $x^*^\top Qx^* > 0$

Higher-order term $x^\top Qx$ is strictly positive on $\mathcal{P} \cap \mathcal{H}$

Bound size of all potential solutions
Case 2: \(x^*^\top Qx^* > 0 \)

Higher-order term \(x^\top Qx \) is strictly positive on \(\mathcal{P} \cap \mathcal{H} \)

Bound size of all potential solutions

- Again poly-size, bounded away from 0
Case 2: $x^* \top Q x^* > 0$

Higher-order term $x \top Q x$ is strictly positive on $\mathcal{P} \cap \mathcal{H}$

Bound size of all potential solutions

- Again poly-size, bounded away from 0
- \Rightarrow any solution more than poly-size far away from $\mathcal{P} \cap \mathcal{H}$ has $x \top Q x + c \top x + d > 0$, infeasible
Case 3: $x^* \top Q x^* = 0$

x^* such that $x^* \top Q x^* = 0$
Case 3: $x^* \top Qx^* = 0$

Not easy to find feasible solution of small size
Not easy to bound size of feasible solution
Lemma

There exists a family of cones C^i, $i \in I$ such that

(a) $\bigcup_{i \in I} C^i = \mathcal{P}$,

(b) each C^i has poly-size description

(c) for every C^i, if a face F of C^i has point x with $x^\top Qx = 0$, then there exists an extreme ray v of F with $v^\top Qv = 0$,

Decomposing cone \mathcal{P}

Lemma
There exists a family of cones $C^i, i \in I$ such that

(a) $\bigcup_{i \in I} C^i = \mathcal{P}$,

(b) each C^i has poly-size description

(c) for every C^i, if a face F of C^i has point x with $x^\top Qx = 0$, then there exists an extreme ray v of F with $v^\top Qv = 0$,
Decomposing cone \mathcal{P}

Lemma
There exists a family of cones C^i, $i \in I$ such that

(a) $\bigcup_{i \in I} C^i = \mathcal{P}$,

(b) each C^i has poly-size description

(c) for every C^i, if a face F of C^i has point x with $x^\top Qx = 0$, then there exists an extreme ray v of F with $v^\top Qv = 0$,
Working with one of these cones \mathcal{C}

1. \mathcal{C} has integral extreme rays r^1, \ldots, r^k.

2. $x \in \mathcal{C} \cap \mathbb{Z}^n$ can be written $x = x_0 + \sum_{j=1}^{k} r_j y_j$, $y_j \in \mathbb{Z}^+$ for $x_0 \in X_0$.

Converse: this gives only points in $\mathcal{C} \cap \mathbb{Z}^n$.

3. For each ray r_j with $r_j^\top Q r_j = 0$ function decomposes nicely:

$$x^\top Q x + c^\top x + d = y_j \cdot \text{affine}(x_0, y_j) + f(x_0, y_j)$$

4. If there is ray r_j with $r_j^\top Q r_j = 0$ and $\text{affine}(x_0, y_j) < 0$ for some x_0, y_j ⇒ find feasible poly-sized solution

5. Else all rays with $r_j^\top Q r_j = 0$ have $\text{affine}(x_0, y_j) \geq 0$ ⇒ ignore them

6. Working on face induced by rays with $r_j^\top Q r_j > 0$: by decomposition have $x^\top Q x > 0$ in the whole face ⇒ bound size of solutions
Working with one of these cones \mathcal{C}

1. \mathcal{C} has integral extreme rays r^1, \ldots, r^k.

2. $x \in \mathcal{C} \cap \mathbb{Z}^n$ can be written

 $$x = x_0 + \sum_{j=1}^{k} r^j y_j, \quad y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \ldots, k\}.$$

 for $x_0 \in \mathcal{X}_0$.

Working with one of these cones \mathcal{C}

1. \mathcal{C} has integral extreme rays r^1, \ldots, r^k.
2. $x \in \mathcal{C} \cap \mathbb{Z}^n$ can be written

\[
x = x_0 + \sum_{j=1}^{k} r^j y_j, \quad y_j \in \mathbb{Z}_+ \quad \forall j \in \{1, \ldots, k\}.
\]

for $x_0 \in \mathcal{X}_0$. **Converse:** this gives only points in $\mathcal{C} \cap \mathbb{Z}^n$.
Working with one of these cones \mathcal{C}

1. \mathcal{C} has integral extreme rays r^1, \ldots, r^k.

2. $x \in \mathcal{C} \cap \mathbb{Z}^n$ can be written

$$x = x_0 + \sum_{j=1}^{k} r^j y_j, \quad y_j \in \mathbb{Z}_+ \quad \forall j \in \{1, \ldots, k\}.$$ for $x_0 \in \mathcal{X}_0$. **Converse:** this gives only points in $\mathcal{C} \cap \mathbb{Z}^n$.

3. For each ray r^j with $r^j \top Q r^j = 0$ function decomposes nicely:

$$x \top Q x + c \top x + d = y_j \cdot \text{affine}(x_0, y_{-j}) + f(x_0, y_{-j})$$
Working with one of these cones C

1. C has integral extreme rays r^1, \ldots, r^k.
2. $x \in C \cap \mathbb{Z}^n$ can be written

$$x = x_0 + \sum_{j=1}^{k} r^j y_j, \quad y_j \in \mathbb{Z}_+ \quad \forall j \in \{1, \ldots, k\}.$$

for $x_0 \in X_0$. **Converse:** this gives only points in $C \cap \mathbb{Z}^n$.

3. For each ray r^j with $r^j \top Q r^j = 0$ function decomposes nicely:

$$x \top Q x + c \top x + d = y_j \cdot \text{affine}(x_0, y_{-j}) + f(x_0, y_{-j})$$

4. If there is ray r^j with $r^j \top Q r^j = 0$ and $\text{affine}(x_0, y_{-j}) < 0$ for some x_0, y_{-j}

\Rightarrow find feasible poly-sized solution
Working with one of these cones \mathcal{C}

1. \mathcal{C} has integral extreme rays r^1, \ldots, r^k.

2. $x \in \mathcal{C} \cap \mathbb{Z}^n$ can be written

$$x = x_0 + \sum_{j=1}^{k} r^j y_j, \quad y_j \in \mathbb{Z}_+ \quad \forall j \in \{1, \ldots, k\}.$$

for $x_0 \in \mathcal{X}_0$. Converse: this gives only points in $\mathcal{C} \cap \mathbb{Z}^n$.

3. For each ray r^j with $r^j \mathsf{T} Q r^j = 0$ function decomposes nicely:

$$x \mathsf{T} Q x + c \mathsf{T} x + d = y_j \cdot \text{affine}(x_0, y_{-j}) + f(x_0, y_{-j})$$

4. If there is ray r^j with $r^j \mathsf{T} Q r^j = 0$ and $\text{affine}(x_0, y_{-j}) < 0$ for some x_0, y_{-j}

\Rightarrow find feasible poly-sized solution

5. Else all rays with $r^j \mathsf{T} Q r^j = 0$ have $\text{affine}(x_0, y_{-j}) \geq 0 \Rightarrow$ ignore them
Working with one of these cones C

1. C has integral extreme rays r^1, \ldots, r^k.
2. $x \in C \cap \mathbb{Z}^n$ can be written

$$x = x_0 + \sum_{j=1}^{k} r^j y_j, \quad y_j \in \mathbb{Z}_+ \quad \forall j \in \{1, \ldots, k\}.$$

for $x_0 \in \mathcal{X}_0$. Converse: this gives only points in $C \cap \mathbb{Z}^n$.

3. For each ray r^j with $r^j \top Q r^j = 0$ function decomposes nicely:

$$x \top Q x + c \top x + d = y_j \cdot \text{affine}(x_0, y_j) + f(x_0, y_j)$$

4. If there is ray r^j with $r^j \top Q r^j = 0$ and $\text{affine}(x_0, y_j) < 0$ for some x_0, y_j ⇒ find feasible poly-sized solution

5. Else all rays with $r^j \top Q r^j = 0$ have $\text{affine}(x_0, y_j) \geq 0$ ⇒ ignore them

6. Working on face induced by rays with $r^j \top Q r^j > 0$: by decomposition have $x \top Q x > 0$ in the whole face ⇒ bound size of solutions
Working with one of these cones C

1. C has integral extreme rays r^1, \ldots, r^k.

2. $x \in C \cap \mathbb{Z}^n$ can be written

$$x = \underbrace{x_0}_{\text{poly-size integer point}} + \sum_{j=1}^{k} r^j y_j, \quad y_j \in \mathbb{Z}_+ \quad \forall j \in \{1, \ldots, k\}. \quad \text{for } x_0 \in \mathcal{X}_0. \text{ Converse: this gives only points in } C \cap \mathbb{Z}^n.$$

3. For each ray r^j with $r^j \top Qr^j = 0$ function decomposes nicely:

$$x \top Qx + c \top x + d = y_j \cdot \text{affine}(x_0, y_{-j}) + f(x_0, y_{-j}).$$

4. If there is ray r^j with $r^j \top Qr^j = 0$ and affine$(x_0, y_{-j}) < 0$ for some x_0, y_{-j}

\Rightarrow find feasible poly-sized solution

5. Else all rays with $r^j \top Qr^j = 0$ have affine$(x_0, y_{-j}) \geq 0$ \Rightarrow ignore them

6. Working on face induced by rays with $r^j \top Qr^j > 0$: by decomposition

have $x \top Qx > 0$ in the whole face \Rightarrow bound size of solutions
Open Problem

Is Integer Quadratic Programming in P for \textit{fixed dimension}?
Thank You!