Congestion Games Viewed from M-convexity

Satoru Fujishige
Research Institute for Mathematical Sciences
Kyoto University, Japan

19th Aussois Workshop on Combinatorial Optimization
Aussois, January 5–9, 2014

Joint work with
Michel Goemans (MIT), Tobias Harks (Maastricht University),
Britta Peis (RWTH Aachen), and Rico Zenklusen (ETH Zurich)
A congestion game is given by a tuple $\Gamma = (N, A, (\mathcal{P}^{(i)} | i \in N), (c_a | a \in A))$, where

(a) N: a finite nonempty set of players,
(b) A: a set of resources,
(c) for each $i \in N$: $\mathcal{P}^{(i)}$ is a strategy set of subsets of A,
(d) for each $a \in A$: nondecreasing cost $c_a : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ with $c_a(0) = 0$.

Each player $i \in N$ selects a set $P_i \in \mathcal{P}^{(i)}$.
$\mathcal{P} = (P_i | i \in N)$: a strategy configuration
For $\forall a \in A$ define: $\nu_\mathcal{P}(a) = |\{i \in N | a \in P_i\}|$.
The incurred individual cost of player i is given by

$$\pi_i(\mathcal{P}) = \sum_{a \in P_i} c_a(\nu_\mathcal{P}(a)).$$

$\forall i \in N, Q \in \mathcal{P}^{(i)}$: $(\mathcal{P}_{-i}, Q) = (\mathcal{P}$ with P_i replaced by $Q)$
Potential Game (Rosenthal (1973))

A potential function $\Phi(\mathcal{P})$ for $\mathcal{P} = (P_i \mid i \in N)$:

$$\Phi(\mathcal{P}) = \sum_{a \in A} \hat{c}_a(\nu_P(a)),$$

$$\hat{c}_a(k) = \sum_{\ell=0}^k c_a(\ell) \quad (\forall a \in A, \forall k \in \mathbb{Z}_{\geq 0}).$$

We then have the following relation

$$\Phi(\mathcal{P}_{-i}, Q) - \Phi(\mathcal{P}) = \pi_i(\mathcal{P}_{-i}, Q) - \pi_i(\mathcal{P})$$

for any strategy configuration \mathcal{P}, $i \in N$, and $Q \in \mathcal{P}^{(i)}$.

Hence every (local) minimizer of Φ is a pure Nash equilibrium.
A congestion game $\Gamma = (N, A, (P^i \mid i \in N), (c_a \mid a \in A))$: P^i: a set of paths from source s to sink t (st-paths) in graph $G = (V, A)$ with vertex set V and arc set A (Arcs in A are regarded as resources.)

Congestion games on extension-parallel networks (Holzman and Law-yone (2003))

An extension-parallel network with a source and a sink: constructed by finitely many repeated operations of source/sink extension and parallel join, starting from finitely many networks, each consisting of a single arc.
Consider a symmetric game Γ such that $\forall i : \mathcal{P}^{(i)} = \mathcal{P}^{\text{all}}$ (the set of all st-paths in an extension-parallel network G).

Theorem (Fotakis (2010)): For any symmetric congestion game $\Gamma = (N, A, \mathcal{P}^{\text{all}}, (c_a \mid a \in A))$ on an extension-parallel network any best-response sequence reaches a pure Nash equilibrium in $n(= |N|)$ steps.

Procedure (*Best* _Response_)

1. Start from any strategy configuration $\mathcal{P} = (P_i \mid i \in N)$. Let (i_1, i_2, \cdots, i_n) be any permutation of N.

2. For each $i = i_1, i_2, \cdots, i_n$ do the following.
 - Let $\hat{P} \in \mathcal{P}^{\text{all}}$ be a minimizer of $\Phi((\mathcal{P}_{-i}, P))$ in $P \in \mathcal{P}^{\text{all}}$.
 - Put $\mathcal{P} \leftarrow (\mathcal{P}_{-i}, \hat{P})$.

3. The obtained strategy configuration $\mathcal{P} = (P_i \mid i \in N)$ is a minimizer of $\Phi(\cdot)$ (a pure Nash equilibrium).
Q_a (∀$a \in A$): the set of st-paths containing arc a

Lemma: The family \mathcal{F} of path sets Q_a ($a \in A$) is laminar, i.e., for any $a, a' \in A$ we have $Q_a \cap Q_{a'} = \emptyset$, $Q_a \subseteq Q_{a'}$, or $Q_a \supseteq Q_{a'}$.

(Proof) $a \in A(G_1), a' \in A(G_2), G_1$ and G_2 joined $\implies Q_a \cap Q_{a'} = \emptyset$, $a \in A(G_1), G_1$ is extended by a' $\implies Q_a \subseteq Q_{a'}$.
Consider a mapping of $\mathcal{P} = (P_i \mid i \in N)$ to $x_\mathcal{P} \in \mathbb{Z}\mathcal{P}^{\text{all}}$ given by

$$x_\mathcal{P} = \sum_{i \in N} \chi_{P_i},$$

where χ_{P_i} is a unit vector in $\mathbb{Z}\mathcal{P}^{\text{all}}$ such that $\chi_{P_i}(P) = 1$ if $P = P_i$ and $= 0$ otherwise.

For a given strategy configuration $\mathcal{P} = (P_i \mid i \in N)$,

$$\Phi(\mathcal{P}) = \sum_{a \in A} \hat{c}_a(\nu_\mathcal{P}(a)) = \sum_{a \in A} \hat{c}_a(x_\mathcal{P}(Q_a)) \equiv \tilde{\Phi}(x_\mathcal{P}),$$

where $x_\mathcal{P}(Q_a) = \sum_{P \in Q_a} x_\mathcal{P}(P)$ for each $a \in A$.

The function $\tilde{\Phi}(x)$ in $x \in \mathbb{Z}\mathcal{P}^{\text{all}}$ is a laminar convex function with its effective domain

$$\Delta_n = \{x \in \mathbb{Z}_{\geq 0}^{\mathcal{P}^{\text{all}}} \mid x(\mathcal{P}^{\text{all}}) = n\},$$

where $n = |N|$.
Laminar convex functions are known to be M-convex functions (Danilov-Koshevoy-Murota (2001)).

Lemma: The function $\tilde{\Phi}(x)$ is an M-convex function.

The M-convexity of $\tilde{\Phi}$ validates the n step convergence of any best-response sequence, due to Fotakis (2010).
M-convex Function (Murota (1996))

W: a finite nonempty set

$f : \mathbb{Z}^W \rightarrow \mathbb{R} \cup \{+\infty\}$

$\text{dom}(f) = \{x \in \mathbb{Z}^W \mid f(x) < +\infty\}$

$f : \mathbb{Z}^W \rightarrow \mathbb{R} \cup \{+\infty\}$ is called an M-convex function if $\text{dom}(f) \neq \emptyset$ and it satisfies:

(M-EXC) $\forall x, y \in \mathbb{Z}^W, \forall u \in W$ with $x(u) > y(u)$, $\exists v \in W$ with $x(v) < y(v)$ such that

$$f(x) + f(y) \geq f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v),$$

where χ_u is the characteristic vector of $\{u\}$ and we allow $+\infty \geq +\infty$.

\rightarrow
Proposition (A characterization of M-convex functions):

\(f : \mathbb{Z}^W \rightarrow \mathbb{R} \cup \{+\infty\} \): a convex-extensible function with bounded \(\text{dom}(f) \neq \emptyset \).

\(\tilde{f} \): the convex extension of \(f \).

Then \(f \) is an M-convex function if and only if for every non-vertical edge \(L \) of the epigraph \(\text{epi}(\tilde{f}) \)

- a direction vector of the line segment obtained by the projection \(((x, \beta) \mapsto x \text{ onto } \mathbb{R}^W) \) of \(L \) belongs to

\[\{ \chi_u - \chi_v \mid u, v \in W, u \neq v \}. \]
Proposition (A characterization of M-convex functions):

$f: \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\}$: a convex-extensible function with bounded $\text{dom}(f) \neq \emptyset$.

Then f is an M-convex function if and only if for every non-vertical edge L of the epigraph $\text{epi}(\tilde{f})$ a direction vector of the line segment obtained by the projection $((x, \beta) \mapsto x$ onto \mathbb{R}^W) of L belongs to $\{\chi_u - \chi_v \mid u, v \in W, u \neq v\}$.
$f: \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\}$: an M-convex function with
\[\text{dom}(f) \subseteq \mathbb{Z}^W_{\geq 0}, \quad \forall x \in \text{dom}(f): x(W) = n \geq 1 \]
\[N = \{1, 2, \ldots, n\} \quad \text{(We call the integer } n \text{ the \textbf{rank} of } f.) \]

\section*{Greedy Procedure}

1. Start from any $x = x_0 \in \text{dom}(f)$.
 Choose any mapping $\sigma: N \to W$ such that $x = \sum_{i \in N} \chi_{\sigma(i)}$.

2. For each $i = 1, 2, \ldots, n$ do the following.
 - Find an element w^* of W such that
 \[(*) \quad f(x - \chi_{\sigma(i)} + \chi_{w^*}) = \min \{ f(x - \chi_{\sigma(i)} + \chi_w) \mid w \in W \}. \]
 - Put $x \leftarrow x - \chi_{\sigma(i)} + \chi_{w^*}$.

3. The obtained x is a minimizer of f.

\rightarrow

12
Theorem: The greedy procedure described above computes a minimizer of any M-convex function $f : \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\}$ with $\text{dom}(f) \subseteq \mathbb{Z}^W_{\geq 0}$ in n steps, where n is the rank of f.

Fotakis’ theorem (the n-step convergence of best-response sequences) is a special case of this theorem.
Theorem: The greedy procedure described above computes a minimizer of any M-convex function $f : \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\}$ with $\text{dom}(f) \subseteq \mathbb{Z}^W_{\geq 0}$ in n steps, where n is the rank of f.

(Proof) Let x_i be the x obtained after the ith execution of Step 2 for $i = 1, 2, \cdots, n$. Also denote by w_i^* the element $w^* \in W$ found at the ith execution of Step 2. It suffices to prove the following local optimality (Murota 1996):

$$\forall u, v \in W : f(x_n - \chi_u + \chi_v) \geq f(x_n). \quad (1)$$

We show that for any M-convex function $f : \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\}$ of rank $n \geq 1$ the greedy procedure obtains $x = x_n$ satisfying (1), by induction on the rank n of f, where the effective domain of f lies on the hyperplane $x(W) = n$. Note that we fix W in the following arguments.

For any M-convex function of rank $n = 1$, (1) holds. Hence, let k be an integer with $k \geq 1$ and suppose that for any M-convex function of rank $n = k$ the greedy procedure obtains $x = x_n$ satisfying (1), i.e., the greedy procedure finds a minimizer of any M-convex function f when $x(W) = k$ for all $x \in B \equiv \text{dom}(f)$.

→
Now suppose $n = k + 1$. Since f remains to be M-convex by the restriction of its effective domain B to

$$B_1 = B \cap \{ x \in \mathbb{Z}^W \mid x(\sigma(n)) \geq 1 \},$$

it follows from the induction hypothesis that

(*) x_{n-1} is a minimizer of f restricted on B_1.

For any fixed distinct $u, v \in W$ consider $y = x_n - \chi_u + \chi_v$. We show $f(y) \geq f(x_n)$. Hence we assume $y \in \text{dom}(f)$, i.e., $f(y) < +\infty$. If $v = \sigma(n)$, then since $y \in B_1$ and by (*) we have

$$f(y) \geq f(x_{n-1}) \geq f(x_n).$$

(2)

Hence suppose $v \neq \sigma(n)$.

If $x_n = x_{n-1}$ and $u \neq \sigma(n)$, then y belongs to B_1, so that we have $f(y) \geq f(x_{n-1}) = f(x_n)$. Also, if $x_n = x_{n-1}$ and $u = \sigma(n)$, then $f(y) = f(x_{n-1} - \chi_{\sigma(n)} + \chi_v) \geq f(x_n)$ by the definition of x_n. Hence we further suppose $x_n \neq x_{n-1}$, i.e., $x_n(\sigma(n)) < x_{n-1}(\sigma(n))$ and $w^*_n \neq \sigma(n)$.
Now, since \(y(\sigma(n)) = x_n(\sigma(n)) < x_{n-1}(\sigma(n)) \), there exists \(p \in \{v, w^*_n\} \) such that

\[
f(x_{n-1}) + f(y) \geq f(x_{n-1} - \chi_{\sigma(n)} + \chi_p) + f(y + \chi_{\sigma(n)} - \chi_p).
\]

(3)

Because of the optimality of \(x_{n-1} \) within \(B_1 \) we have

\[
f(y + \chi_{\sigma(n)} - \chi_p) \geq f(x_{n-1})
\]

(4)

since \(p \neq \sigma(n) \) and \(y + \chi_{\sigma(n)} - \chi_p \in B_1 \). Also, because of the definition of \(x_n \) we have

\[
f(x_{n-1} - \chi_{\sigma(n)} + \chi_p) \geq f(x_n).
\]

(5)

It follows from (3)–(5) that \(f(y) \geq f(x_n) \) since \(f(x_{n-1}) < +\infty \).

This completes the proof. \(\Box \)
Similarly as shown by Dress-Wenzel (1990) for valuated matroids, we have a converse of this theorem, which shows the equivalence between the greediness and M-convexity.

Theorem: Let \(f : \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\} \) be a function with \(\emptyset \neq \text{dom}(f) \subseteq \mathbb{Z}^W_{\geq 0} \). Suppose that \(f \) is convex-extensible on \(\mathbb{R}^W \).

Then, \(f \) is an M-convex function if and only if for every \(d \in \mathbb{R}^W \)

Greedy Procedure works for the function

\[
f^d(x) = f(x) + \langle d, x \rangle.
\]
Similarly as shown by Dress-Wenzel (1990) for valuated matroids, we have a converse of this theorem, which shows the equivalence between the greediness and M-convexity.

Theorem: Let $f : \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\}$ be a function with $\emptyset \neq \text{dom}(f) \subseteq \mathbb{Z}^W_{\geq 0}$. Suppose that f is convex-extensible on \mathbb{R}^W.

Then, f is an M-convex function if and only if for every $d \in \mathbb{R}^W$

Greedy Procedure works for the function

$$f^d(x) = f(x) + \langle d, x \rangle.$$

(Proof) It suffices to show the if part.

Since f is convex-extensible, denoting by \tilde{f} the convex extension of f, it suffices to prove that every non-vertical edge vector of the epigraph of \tilde{f} projected onto \mathbb{R}^W belongs to

$$\{\chi_u - \chi_v \mid u, v \in W, u \neq v\},$$

due to Proposition on a characterization of M-convex functions.
Let L be an arbitrary non-vertical edge of the epigraph of \bar{f} and let \hat{L} be the projection (onto \mathbb{R}^W) of L. Also let $x_1, x_2 \in B$ be the end points of \hat{L}. Let $z \in B$ be the point in $(\hat{L} \setminus \{x_1\}) \cap B$ nearest to x_1. Then there exists a vector $d \in \mathbb{R}^W$ such that x_1 is the unique minimizer of f^d and

$$\{x \in B \mid f^d(x) \leq f^d(z)\} = \{z, x_1\}.$$

Hence, starting from z, Greedy Procedure for f^d must move from z to x_1 by the first improving step. By the definition of Greedy Procedure the direction of the movement from z to x_1, which is a direction vector of \hat{L}, belongs to $\{\chi_u - \chi_v \mid u, v \in W, u \neq v\}$.

\square

\rightarrow
We call a transformation from $x \in \mathbb{Z}^W$ to $x - \chi_u + \chi_v$ for $u, v \in W$ a basic local transformation.

Theorem: Let $f : \mathbb{Z}^W \to \mathbb{R} \cup \{+\infty\}$ be a convex-extensible function with a nonempty bounded $\text{dom}(f)$. Suppose that there exists a procedure P such that for every $d \in \mathbb{R}^W$ and every initial solution $x_0 \in \text{dom}(f)$ Procedure P finds a finite sequence of solutions (x_0, x_1, \cdots, x_k) for some integer $k \geq 0$ satisfying

(a) $f^d(x_0) \geq f^d(x_1) \geq \cdots \geq f^d(x_k)$,

(b) each x_i for $i = 1, \cdots, k$ is obtained by a basic local transformation of x_{i-1}.

(c) x_k is a minimizer of f^d.

Then, f is an M-convex function.