The quadratic assignment problem is easy for Robinsonian matrices

Matteo Seminaroti

Centrum Wiskunde & Informatica (CWI), Amsterdam

joint work with Monique Laurent

5 January 2015, Aussois
Introduction

Seriation

Sir W.M. Flinders Petrie (1899)
Robinsonian similarities and Seriation

Definition (Robinson similarity)

$A \in S^n$ is a **Robinson similarity** if the values of its entries **decrease** monotonically along rows and columns when moving away from the diagonal.

Example:

$$A = \begin{pmatrix} 5 & 4 & 2 & 1 \\ 4 & 5 & 3 & 2 \\ 2 & 3 & 5 & 4 \\ 1 & 2 & 4 & 5 \end{pmatrix} \quad \begin{pmatrix} * & \text{←} \\ \text{↔} & * \\ \text{→} & * \end{pmatrix}$$
Robinsonian similarities and Seriation

Definition (Robinson similarity)

$A \in S^n$ is a **Robinson similarity** if the values of its entries **decrease** monotonically along rows and columns when moving away from the diagonal.

Example:

$$A = \begin{pmatrix} 5 & 4 & 2 & 1 \\ 4 & 5 & 3 & 2 \\ 2 & 3 & 5 & 4 \\ 1 & 2 & 4 & 5 \end{pmatrix}$$

$$A_{ik} \leq \min\{A_{ij}, A_{jk}\}, \quad 1 \leq i < j < k \leq n$$
Robinsonian similarities and Seriation

Definition (Robinson similarity)

\(A \in S^n \) is a **Robinson similarity** if the values of its entries decrease monotonically along rows and columns when moving away from the diagonal.

Example:

\[
A = \begin{pmatrix}
5 & 4 & 2 & 1 \\
4 & 5 & 3 & 2 \\
2 & 3 & 5 & 4 \\
1 & 2 & 4 & 5
\end{pmatrix}
\]

Definition (Robinsonian similarity)

\(A \in S^n \) is a **Robinsonian similarity** if there exists a permutation \(\pi \) such that \(A_\pi := \left(A_{\pi(i), \pi(j)} \right)_{i,j=1}^n \) is a **Robinson similarity**.
Robinsonian similarities and Seriation

Definition (Robinson similarity)

$A \in S^n$ is a **Robinson similarity** if the values of its entries **decrease** monotonically along rows and columns when moving away from the diagonal.

Example:

$$A = \begin{pmatrix}
5 & 4 & 2 & 1 \\
4 & 5 & 3 & 2 \\
2 & 3 & 5 & 4 \\
1 & 2 & 4 & 5
\end{pmatrix} = \begin{pmatrix}
* & \leftarrow \\
* & \downarrow \\
\uparrow & * \\
\rightarrow & *
\end{pmatrix}$$

Definition (Robinsonian similarity)

$A \in S^n$ is a **Robinsonian similarity** if there exists a permutation π such that $A_\pi := \left(A_{\pi(i),\pi(j)} \right)_{i,j=1}^n$ is a **Robinson similarity**.

\Rightarrow the **Seriation** problem consists in finding such a π!
Seriation and QAP

...what if A is not Robinsonian?
...what if A is not Robinsonian?

2-SUM:

$$\min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij}(\pi(i) - \pi(j))^2$$

This is a special case of a well known problem ([Koopmans-Beckmann](#)): **QAP**

$$\text{QAP}(A,B): \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij}B_{\pi(i)\pi(j)}$$

cost inferred by assigning object i to position $\pi(i)$ and object j to position $\pi(j)$

Sahni and Gonzalez [1976]

QAP is NP-hard and cannot be approximated within a constant factor in polynomial time.

IDEA:

find "easy cases" solvable by a fixed permutation (approximation algorithms, heuristics)
Seriation and QAP

...what if A is not Robinsonian?

$$\text{2-SUM: } \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij}(\pi(i) - \pi(j))^2$$

This is a special case of a well known problem (Koopmans-Beckmann):

$$\text{QAP}(A,B): \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij}B_{\pi(i)\pi(j)}$$

(cost inferred by assigning object i to position $\pi(i)$ and object j to position $\pi(j)$)
Seriation and QAP

...what if A is not Robinsonian?

2-SUM: \[
\min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij} (\pi(i) - \pi(j))^2
\]

This is a special case of a well known problem (Koopmans-Beckmann):

QAP(A,B): \[
\min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij} B_{\pi(i)\pi(j)}
\]

cost inferred by assigning object i to position $\pi(i)$
and object j to position $\pi(j)$

Sahni and Gonzalez [1976]

QAP is NP-hard and cannot be approximated within a constant factor in polynomial time.
Seriation and QAP

...what if A is not Robinsonian?

$$\text{2-SUM: } \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij} (\pi(i) - \pi(j))^2$$

This is a special case of a well known problem (Koopmans-Beckmann):

$$\text{QAP}(A,B): \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{ij} B_{\pi(i)\pi(j)}$$

cost inferred by assigning object i to position $\pi(i)$
and object j to position $\pi(j)$

Sahni and Gonzalez [1976]

QAP is NP-hard and cannot be approximated within a constant factor in polynomial time.

\textbf{IDEA:} find “easy cases” solvable by a \textit{fixed permutation} (approximation algorithms, heuristics)
Robinsonian dissimilarities

Definition (Robinson dissimilarity)

\[A \in S^n \] is a **Robinson dissimilarity** if the values of its entries *increase* monotonically along rows and columns when moving away from the diagonal.

Example:

\[
A = \begin{pmatrix}
0 & 1 & 3 & 4 \\
1 & 0 & 2 & 3 \\
3 & 2 & 0 & 1 \\
4 & 3 & 1 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
* & \rightarrow \\
* & \uparrow \\
\downarrow & * \\
\leftarrow & *
\end{pmatrix}
\]
Definition (Robinson dissimilarity)

\(A \in S^n \) is a **Robinson dissimilarity** if the values of its entries **increase** monotonically along rows and columns when moving away from the diagonal.

Example:

\[
A = \begin{pmatrix}
0 & 1 & 3 & 4 \\
1 & 0 & 2 & 3 \\
3 & 2 & 0 & 1 \\
4 & 3 & 1 & 0
\end{pmatrix}
\]

Definition (Robinsonian dissimilarity)

\(A \in S^n \) is a **Robinsonian dissimilarity** if it exists a permutation \(\pi \) such that \(A_\pi \) is a Robinson dissimilarity.
Robinsonian dissimilarities

Definition (Robinson dissimilarity)

$A \in S^n$ is a **Robinson dissimilarity** if the values of its entries increase monotonically along rows and columns when moving away from the diagonal.

Example:

$$A = \begin{pmatrix}
0 & 1 & 3 & 4 \\
1 & 0 & 2 & 3 \\
3 & 2 & 0 & 1 \\
4 & 3 & 1 & 0
\end{pmatrix} \quad \begin{pmatrix}
* & \rightarrow \\
* & \uparrow \\
\downarrow & * \\
\leftarrow & *
\end{pmatrix}$$

Definition (Robinsonian dissimilarity)

$A \in S^n$ is a **Robinsonian dissimilarity** if it exists a permutation π such that A_π is a **Robinson dissimilarity**.

Observation: A is a **Robinson (Robinsonian) similarity** if and only if $-A$ is a **Robinson (Robinsonian) dissimilarity**.
Definition (Toeplitz matrix)

$B \in S^n$ is a Toeplitz matrix if has constant entries on its diagonals, i.e:

$$B_{ij} = B_{(i+1)(j+1)} \quad \forall 1 \leq i, j \leq n - 1$$

Example:

$$B = \begin{pmatrix}
0 & 1 & 4 & 9 \\
1 & 0 & 1 & 4 \\
4 & 1 & 0 & 1 \\
9 & 4 & 1 & 0
\end{pmatrix}$$
Definition (Toeplitz matrix)

$B \in S^n$ is a Toeplitz matrix if it has constant entries on its diagonals, i.e:

$$B_{ij} = B_{(i+1)(j+1)} \quad \forall 1 \leq i, j \leq n - 1$$

Example:

$$B = \begin{pmatrix}
0 & 1 & 4 & 9 \\
1 & 0 & 1 & 4 \\
4 & 1 & 0 & 1 \\
9 & 4 & 1 & 0
\end{pmatrix} = (|i - j|^2)^n_{i,j=1}$$
Definition (Toeplitz matrix)

$B \in S^n$ is a Toeplitz matrix if has constant entries on its diagonals, i.e:

$$B_{ij} = B_{(i+1)(j+1)} \quad \forall 1 \leq i, j \leq n - 1$$

Example:

$$B = \begin{pmatrix} 0 & 1 & 4 & 9 \\ 1 & 0 & 1 & 4 \\ 4 & 1 & 0 & 1 \\ 9 & 4 & 1 & 0 \end{pmatrix} = (|i - j|^2)_{i,j=1}^n$$

Observation

$B = (|i - j|^p)_{i,j=1}^n$ is a Toeplitz Robinson dissimilarity matrix, for $p \geq 1$.
Toeplitz Robinson dissimilarities

Definition (Toeplitz matrix)

$B \in S^n$ is a Toeplitz matrix if has constant entries on its diagonals, i.e:

$$B_{ij} = B_{(i+1)(j+1)} \quad \forall 1 \leq i, j \leq n - 1$$

Example:

$$B = \begin{pmatrix} 0 & 1 & 4 & 9 \\ 1 & 0 & 1 & 4 \\ 4 & 1 & 0 & 1 \\ 9 & 4 & 1 & 0 \end{pmatrix} = (|i - j|^{2})_{i,j=1}^{n}$$

Observation

$B = (|i - j|^{p})_{i,j=1}^{n}$ is a **Toeplitz Robinson dissimilarity** matrix, for $p \geq 1$.

\Rightarrow we can generalize the Seriation problem
The main result

\[\text{QAP}(A,B): \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{\pi(i)\pi(j)} B_{ij} \]
The main result

\[
QAP(A,B): \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{\pi(i)\pi(j)} B_{ij}
\]

Theorem [Laurent & Seminaroti, 2014]

Given \(A, B \in S^n \), suppose \(A \) is a **Robinson similarity** and \(B \) is a **Robinson dissimilarity**, and \(A \) or \(B \) is a **Toeplitz** matrix. Then, the identity permutation is optimal for \(QAP(A, B) \).
The main result

\[\text{QAP}(A,B) : \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{\pi(i)\pi(j)}B_{ij} \]

Theorem [Laurent & Seminaroti, 2014]

Given \(A, B \in S^n \), suppose \(A \) is a **Robinson similarity** and \(B \) is a **Robinson dissimilarity**, and \(A \) or \(B \) is a **Toeplitz** matrix. Then, the identity permutation is optimal for \(\text{QAP}(A,B) \).

This result is a generalization of two previous results:

1. (Fogel et al., 2013)
 - \(A \) is a conic combination of interval CUT matrices;
 - \(B = (|i-j|^2)^n \) \(i,j=1 \).

2. (Christopher et al., 1996)
 - \(A \) is the adjacency matrix of the path \((1, \ldots, n)\);
 - \(B \) is a Robinson dissimilarity **metric** and **strongly monotonic**.
Intuition behind the main result

\[
\sum_{i,j=1}^{n} A_{\pi(i)\pi(j)} B_{ij} \geq \sum_{i,j=1}^{n} A_{ij} B_{ij}
\]

where:

\[
A = \begin{pmatrix}
* & \leftarrow & \downarrow \\
\uparrow & * & \downarrow \\
\rightarrow & * & \\
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
* & \rightarrow & \uparrow \\
\downarrow & * & \uparrow \\
& \leftarrow & *
\end{pmatrix}
\]
Intuition behind the main result

\[\sum_{i,j=1}^{n} A_{\pi(i)\pi(j)} B_{ij} \geq \sum_{i,j=1}^{n} A_{ij} B_{ij} \]

where:

\[A = \begin{pmatrix} * & \leftarrow & \downarrow \\ \uparrow & * & \downarrow \\ \rightarrow & \downarrow & * \end{pmatrix} \quad \quad B = \begin{pmatrix} * & \rightarrow & \uparrow \\ \downarrow & * & \uparrow \\ \leftarrow & \uparrow & * \end{pmatrix} \]

This is the analogous for matrices of the rearrangement inequality:

\[\sum_{i=1}^{n} x_{\pi(i)} y_i \geq \sum_{i=1}^{n} x_i y_i \]

where:

\[x_1 \geq \cdots \geq x_n \]
\[y_1 \leq \cdots \leq y_n \]
QAP is easy over Robinsonian matrices

\[
\text{QAP}(A,B): \quad \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{\pi(i)\pi(j)} B_{ij}
\]

Theorem [Laurent & Seminaroti, 2014]

Given \(A, B \in S^n \), suppose \(A \) is a **Robinson similarity** and \(B \) is a **Robinson dissimilarity**, and \(A \) or \(B \) is a **Toeplitz** matrix. Then, the identity permutation is optimal for \(QAP(A,B) \).

\(\Rightarrow \) Can we recognize Robinsonian matrices in polynomial time? **YES!**
QAP is easy over Robinsonian matrices

\[\text{QAP}(A,B) : \min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{\pi(i)\pi(j)} |i - j|^2 \]

Theorem [Laurent & Seminaroti, 2014]

Given \(A, B \in S^n \), suppose \(A \) is a **Robinson similarity** and \(B \) is a **Robinson dissimilarity**, and \(A \) or \(B \) is a **Toeplitz** matrix. Then, the identity permutation is optimal for \(\text{QAP}(A,B) \).

Corollary

Given \(A \in S^n \) and \(B = (|i - j|^2) \), assume that \(A \) is a **Robinsonian similarity** and \(\pi \) is a permutation which reorders \(A \) as a Robinson similarity. Then \(\pi \) is optimal for \(\text{QAP}(A,B) \).
QAP is easy over Robinsonian matrices

QAP(A,B): \(\min_{\pi \in \mathcal{P}} \sum_{i,j=1}^{n} A_{\pi(i)\pi(j)} |i - j|^2 \)

Theorem [Laurent & Seminaroti, 2014]
Given \(A, B \in S^n \), suppose \(A \) is a **Robinson similarity** and \(B \) is a **Robinson dissimilarity**, and \(A \) or \(B \) is a **Toeplitz** matrix. Then, the identity permutation is optimal for \(QAP(A, B) \).

Corollary
Given \(A \in S^n \) and \(B = (|i - j|^2) \), assume that \(A \) is a **Robinsonian similarity** and \(\pi \) is a permutation which reorders \(A \) as a Robinson similarity. Then \(\pi \) is optimal for \(QAP(A, B) \).

⇒ Can we recognize Robinsonian matrices in polynomial time? **YES!**
Given a graph $G(V, E)$:
Given a graph $G(V, E)$:

1. **Closed neighborhood:**

 $N[x] = N(x) \cup \{x\}, \forall x \in V$

2. **Block:**

 $x, y \in B \iff N[x] = N[y]$

3. **Adjacent blocks:**

 B_i, B_j adjacent if $x \in B_i, y \in B_j$ and $xy \in E$

4. **Straight enumeration:**

 A linear order of the blocks of G such that for every block, the block and its neighboring blocks are consecutive.
Given a graph $G(V, E)$:

1. **Closed neighborhood:**
 \[N[x] = N(x) \cup \{x\}, \forall x \in V \]

2. **Block:** $x, y \in B \iff N[x] = N[y]$
Given a graph $G(V, E)$:

1. **Closed neighborhood**:

 \[N[x] = N(x) \cup \{ x \}, \forall x \in V \]

2. **Block**:

 \[x, y \in B \iff N[x] = N[y] \]

3. **Adjacent blocks**:

 B_i, B_j adjacent if
 \[x \in B_i, y \in B_j \text{ and } xy \in E \]
Straight enumeration of a graph

Given a graph $G(V, E)$:

1. **Closed neighborhood:**

 $N[x] = N(x) \cup \{x\}, \forall x \in V$

2. **Block:** $x, y \in B \iff N[x] = N[y]$

3. **Adjacent blocks:** B_i, B_j adjacent if $x \in B_i, y \in B_j$ and $xy \in E$

4. **Straight enumeration:** a linear order of the blocks of G such that for every block, the block and its neighboring blocks are consecutive
Given a graph $G(V, E)$:

1. **Closed neighborhood:**
 \[N[x] = N(x) \cup \{x\}, \forall x \in V \]

2. **Block:** $x, y \in B \iff N[x] = N[y]$

3. **Adjacent blocks:** B_i, B_j adjacent if $x \in B_i, y \in B_j$ and $xy \in E$

4. **Straight enumeration:** a linear order of the blocks of G such that for every block, the block and its neighboring blocks are consecutive

![Diagram](image)

- **Example:**
 - $B_1 \rightarrow B_2 \rightarrow B_3$ is a straight enumeration
 - $B_2 \rightarrow B_1 \rightarrow B_3$ is NOT a straight enumeration
A graph $G(V, E)$ is an **unit interval graph** (uig) if there exists unit intervals I_1, \ldots, I_n of the real line such that, for each $x \neq y \in V$, then:

$$
\{x, y\} \in E \iff I_x \cap I_y \neq \emptyset
$$

Theorem (Deng et al., 1996)

G is a uig if and only if it has a straight enumeration. Furthermore, if G is connected, then such a straight enumeration is unique (up to reversal).
Unit interval graphs (uigs)

A graph $G(V, E)$ is an **unit interval graph** (uig) if there exists unit intervals I_1, \ldots, I_n of the real line such that, for each $x \neq y \in V$, then:

$$\{x, y\} \in E \iff I_x \cap I_y \neq \emptyset$$

Theorem (Deng et al., 1996)

G is a uig if and only if it has a straight enumeration. Furthermore, if G is connected, then such a straight enumeration is unique (up to reversal).
A straight enumeration \((B_1, \ldots, B_p)\) of \(G(V, E)\) is an ordered partition of \(V\) and (thus) induces a **weak linear order** \(\psi\):

- \(x =_{\psi} y\) if \(x, y \in B_i\)
- \(x <_{\psi} y\) if \(x \in B_i, y \in B_j\) and \(i < j\)

A linear order \(\pi\) of \(V\) is compatible with \(\psi\) if:

- \(x <_{\pi} y\) implies \(x \leq_{\psi} y\) for all \(x, y \in V\) with \(x \neq y\)
Binary Robinsonian matrices

A straight enumeration \((B_1, \ldots, B_p)\) of \(G(V, E)\) is an ordered partition of \(V\) and (thus) induces a \textbf{weak linear order} \(\psi\):

- \(x =_\psi y\) if \(x, y \in B_i\)
- \(x <_\psi y\) if \(x \in B_i, y \in B_j\) and \(i < j\)

A linear order \(\pi\) of \(V\) is \textbf{compatible} with \(\psi\) if:

\[x <_\pi y \implies x \leq_\psi y \quad \forall x \neq y \in V \]

Lemma

Let \(G(V, E)\) be a graph and \(A_G\) its extended adjacency matrix. Then:

- \(A_G\) is Robinsonian if and only if \(G\) is uig;
- A linear order \(\pi\) of \(V\) reorders \(A_G\) as a Robinson matrix if and only if there exists a straight enumeration \(\psi\) of \(G\) compatible with \(\pi\).
Binary Robinsonian matrices

A straight enumeration \((B_1, \ldots, B_p)\) of \(G(V, E)\) is an ordered partition of \(V\) and (thus) induces a **weak linear order** \(\psi\):

- \(x =_{\psi} y\) if \(x, y \in B_i\)
- \(x <_{\psi} y\) if \(x \in B_i, y \in B_j\) and \(i < j\)

A linear order \(\pi\) of \(V\) is **compatible** with \(\psi\) if:

\[
x <_{\pi} y \implies x \leq_{\psi} y \quad \forall x \neq y \in V
\]

Lemma

Let \(G(V, E)\) be a graph and \(A_G\) its extended adjacency matrix. Then:

- \(A_G\) is Robinsonian if and only if \(G\) is uig;
- A linear order \(\pi\) of \(V\) reorders \(A_G\) as a Robinson matrix if and only if there exists a straight enumeration \(\psi\) of \(G\) compatible with \(\pi\).
Binary Robinsonian matrices

A straight enumeration \((B_1, \ldots, B_p)\) of \(G(V, E)\) is an ordered partition of \(V\) and (thus) induces a weak linear order \(\psi\):

- \(x =_\psi y\) if \(x, y \in B_i\)
- \(x <_\psi y\) if \(x \in B_i\), \(y \in B_j\) and \(i < j\)

A linear order \(\pi\) of \(V\) is compatible with \(\psi\) if:

\[x <_\pi y \implies x \leq_\psi y \quad \forall x \neq y \in V\]

Lemma

Let \(G(V, E)\) be a graph and \(A_G\) its extended adjacency matrix. Then:

- \(A_G\) is Robinsonian if and only if \(G\) is uig;
- A linear order \(\pi\) of \(V\) reorders \(A_G\) as a Robinson matrix if and only if there exists a straight enumeration \(\psi\) of \(G\) compatible with \(\pi\).

⇒ What about general Robinsonian matrices?
Definition (Level graphs)

Given a non-negative matrix $A \in S^n$, we let $0 < \alpha_1 < \cdots < \alpha_L$ denote the distinct values taken by its entries. For $\ell \in [L]$, the ℓ-th level graph $G^{(\ell)} = (V, E_\ell)$ of A is defined as:

- $V = [n]$
- $\{x, y\} \in E_\ell$ if $A_{xy} \geq \alpha_\ell$
Robinson matrix decomposition in uigs

Definition (Level graphs)
Given a non-negative matrix $A \in S^n$, we let $0 < \alpha_1 < \cdots < \alpha_L$ denote the distinct values taken by its entries. For $\ell \in [L]$, the ℓ-th level graph $G^{(\ell)} = (V, E^\ell)$ of A is defined as:
- $V = [n]$
- $\{x, y\} \in E^\ell$ if $A_{xy} \geq \alpha_\ell$

Lemma (Roberts, 1978)
Let $A \in S^n$ a non-negative matrix with level graphs $G^{(1)}, \ldots, G^{(L)}$. Then:

i. $A = \sum_{\ell=1}^L (\alpha_\ell - \alpha_{\ell-1}) A_{G^{(\ell)}}$
Robinson matrix decomposition in uigs

Definition (Level graphs)

Given a non-negative matrix $A \in S^n$, we let $0 < \alpha_1 < \cdots < \alpha_L$ denote the distinct values taken by its entries. For $\ell \in [L]$, the ℓ-th level graph $G^{(\ell)} = (V, E_\ell)$ of A is defined as:

- $V = [n]$
- $\{x, y\} \in E_\ell$ if $A_{xy} \geq \alpha_\ell$

Lemma (Roberts, 1978)

Let $A \in S^n$ a non-negative matrix with level graphs $G^{(1)}, \ldots, G^{(L)}$. Then:

i. $A = \sum_{\ell=1}^{L} (\alpha_\ell - \alpha_{\ell-1}) A_{G^{(\ell)}}$

ii. A is Robinsonian if there exists a permutation π such that $(A_{G^{(\ell)}})_\pi$ is a Robinson matrix for all $\ell \in [L]$
Definition (Level graphs)

Given a non-negative matrix $A \in S^n$, we let $0 < \alpha_1 < \cdots < \alpha_L$ denote the distinct values taken by its entries. For $\ell \in [L]$, the ℓ-th level graph $G^{(\ell)} = (V, E_\ell)$ of A is defined as:

- $V = [n]$
- $\{x, y\} \in E_\ell$ if $A_{xy} \geq \alpha_\ell$

Lemma (Roberts, 1978)

Let $A \in S^n$ a non-negative matrix with level graphs $G^{(1)}, \ldots, G^{(L)}$. Then:

i. $A = \sum_{\ell=1}^L (\alpha_\ell - \alpha_{\ell-1}) A_{G^{(\ell)}}$

ii. A is Robinsonian if there exists a permutation π such that $(A_{G^{(\ell)}})_\pi$ is a Robinson matrix for all $\ell \in [L]$

How can I find π?
Example

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 0 & 2 & 1 & 1 & 1 \\
2 & 0 & 2 & 1 & 0 & 0 & 0 \\
3 & 2 & 1 & 2 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 & 2 & 2 & 1 \\
5 & 1 & 0 & 0 & 2 & 2 & 2 \\
6 & 1 & 0 & 0 & 1 & 2 & 2 \\
\end{pmatrix}
\]

\[\alpha_1 = 1, \quad \alpha_2 = 2\]

\[
A_G^{(1)} = \begin{pmatrix}
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 \\
\end{pmatrix}
\]

\[
A_G^{(2)} = \begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
\end{pmatrix}
\]
Common refinement of two compatible weak linear orders

\[\psi = (B_1, \ldots, B_p) \]
Common refinement of two compatible weak linear orders

\[\psi = (B_1, \ldots, B_p) \]

\[\phi = (C_1, \ldots, C_q) \]
Common refinement of two compatible weak linear orders

\[\psi = (B_1, \ldots, B_p) \]

\[\phi = (C_1, \ldots, C_q) \]

common refinement

\[\Phi = (B'_1, \ldots, B'_r) \]
The common refinement does not always exist

\[\psi = (B_1, \ldots, B_p) \]

\[\phi = (C_1, \ldots, C_q) \]
The common refinement does not always exist

\[\psi = (B_1, \ldots, B_p) \]

\[\phi = (C_1, \ldots, C_q) \]

1 \(\prec_\psi \) 3 and 3 \(\prec_\psi \) 1 \(\Rightarrow \) \(\psi \) and \(\phi \) are NOT compatible!
Theorem (Laurent & Seminaroti, 2014)

Let $A \in S^n$ non-negative with level graphs $G^{(1)}, \ldots, G^{(L)}$. Then:

i. A is a Robinsonian matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$ whose corresponding weak linear orders ψ_1, \ldots, ψ_L are pairwise compatible;

ii. a linear order π of V reorders A as a Robinson matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$, whose corresponding common refinement is compatible with π.

Idea: Given a symmetric non-negative matrix A:

1. compute the level graphs $G^{(1)}, \ldots, G^{(L)}$ of A;
2. compute straight enumerations ψ_1, \ldots, ψ_L of the level graphs;
3. find their common refinement.
Theorem (Laurent & Seminaroti, 2014)

Let $A \in S^n$ non-negative with level graphs $G^{(1)}, \ldots, G^{(L)}$. Then:

i. A is a Robinsonian matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$ whose corresponding weak linear orders ψ_1, \ldots, ψ_L are pairwise compatible;

ii. a linear order π of V reorders A as a Robinson matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$, whose corresponding common refinement is compatible with π.

Idea: Given a symmetric non-negative matrix A:

1. compute the level graphs $G^{(1)}, \ldots, G^{(L)}$ of A;
2. compute straight enumerations ψ_1, \ldots, ψ_L of the level graphs;
3. find their common refinement.
Theorem (Laurent & Seminaroti, 2014)

Let $A \in S^n$ non-negative with level graphs $G^{(1)}, \ldots, G^{(L)}$. Then:

i. A is a Robinsonian matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$ whose corresponding weak linear orders ψ_1, \ldots, ψ_L are pairwise compatible;

ii. a linear order π of V reorders A as a Robinson matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$, whose corresponding common refinement is compatible with π.

Idea: Given a symmetric non-negative matrix A:

1. compute the level graphs $G^{(1)}, \ldots, G^{(L)}$ of A;
Robinsonian matrices and straight enumerations

Theorem (Laurent & Seminaroti, 2014)

Let \(A \in S^n \) non-negative with level graphs \(G^{(1)}, \ldots, G^{(L)} \). Then:

i. \(A \) is a Robinsonian matrix if and only if there exist straight enumerations of \(G^{(1)}, \ldots, G^{(L)} \) whose corresponding weak linear orders \(\psi_1, \ldots, \psi_L \) are pairwise compatible;

ii. a linear order \(\pi \) of \(V \) reorders \(A \) as a Robinson matrix if and only if there exist straight enumerations of \(G^{(1)}, \ldots, G^{(L)} \), whose corresponding common refinement is compatible with \(\pi \).

Idea: Given a symmetric non-negative matrix \(A \):

1. compute the level graphs \(G^{(1)}, \ldots, G^{(L)} \) of \(A \);
2. compute straight enumerations \(\psi_1, \ldots, \psi_L \) of the level graphs;
Theorem (Laurent & Seminaroti, 2014)

Let $A \in S^n$ non-negative with level graphs $G^{(1)}, \ldots, G^{(L)}$. Then:

i. A is a Robinsonian matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$ whose corresponding weak linear orders ψ_1, \ldots, ψ_L are pairwise compatible;

ii. a linear order π of V reorders A as a Robinson matrix if and only if there exist straight enumerations of $G^{(1)}, \ldots, G^{(L)}$, whose corresponding common refinement is compatible with π.

Idea: Given a symmetric non-negative matrix A:

1. compute the level graphs $G^{(1)}, \ldots, G^{(L)}$ of A;
2. compute straight enumerations ψ_1, \ldots, ψ_L of the level graphs;
3. find their common refinement.
Example 1/2

\[
A_{G(1)} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 0 & 1 & 1 & 1 \\
2 & 0 & 1 & 1 & 0 & 0 \\
3 & 1 & 1 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 & 1 & 1 \\
5 & 1 & 0 & 0 & 1 & 1 \\
6 & 1 & 0 & 0 & 1 & 1
\end{pmatrix}
\]

\[\psi = (\{2\}, \{3\}, \{1\}, \{4, 5, 6\})\]

\[\phi = (\{2\}, \{1, 3\}, \{4\}, \{5\}, \{6\})\]

The common refinement is:

\[\Phi = (\{2\}, \{3\}, \{1\}, \{4\}, \{5\}, \{6\})\]
Example 1/2

\[A_{G(1)} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 2 & 0 & 1 & 1 & 0 & 0 \\ 3 & 1 & 1 & 1 & 0 & 0 \\ 4 & 1 & 0 & 0 & 1 & 1 \\ 5 & 1 & 0 & 0 & 1 & 1 \\ 6 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \]

\[A_{G(2)} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 1 & 1 \\ 5 & 0 & 0 & 0 & 1 & 1 \\ 6 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \]

\[\psi = (\{2\}, \{3\}, \{1\}, \{4, 5, 6\}) \]

\[\phi = (\{2\}, \{1, 3\}, \{4\}, \{5\}, \{6\}) \]
Example 1/2

\[A_G^{(1)} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 0 & 1 & 1 & 1 \\
2 & 0 & 1 & 1 & 0 & 0 \\
3 & 1 & 1 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 & 1 & 1 \\
5 & 1 & 0 & 0 & 1 & 1 \\
6 & 1 & 0 & 0 & 1 & 1
\end{pmatrix} \]

\[A_G^{(2)} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 0 \\
3 & 1 & 0 & 1 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 1 \\
5 & 0 & 0 & 0 & 1 & 1 \\
6 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \]

\(\psi = (\{2\}, \{3\}, \{1\}, \{4, 5, 6\}) \quad \phi = (\{2\}, \{1, 3\}, \{4\}, \{5\}, \{6\}) \)

The common refinement is:

\(\Phi = (\{2\}, \{3\}, \{1\}, \{4\}, \{5\}, \{6\}) \)
The common refinement is:

$$\pi = (\{2\}, \{3\}, \{1\}, \{4\}, \{5\}, \{6\})$$

$$A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 0 & 2 & 1 & 1 & 1 \\
2 & 0 & 2 & 1 & 0 & 0 & 0 \\
3 & 2 & 1 & 2 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 & 2 & 2 & 1 \\
5 & 1 & 0 & 0 & 2 & 2 & 2 \\
6 & 1 & 0 & 0 & 1 & 2 & 2
\end{pmatrix} \Rightarrow A_\pi = \begin{pmatrix}
1 & 2 & 3 & 1 & 4 & 5 & 6 \\
2 & 2 & 1 & 0 & 0 & 0 & 0 \\
3 & 1 & 2 & 2 & 0 & 0 & 0 \\
1 & 0 & 2 & 2 & 1 & 1 & 1 \\
4 & 0 & 0 & 1 & 2 & 2 & 1 \\
5 & 0 & 0 & 1 & 2 & 2 & 2 \\
6 & 0 & 0 & 1 & 1 & 2 & 2
\end{pmatrix}$$
Recognition algorithms for Robinsonian matrices

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Complexity</th>
<th>Enum.</th>
<th>Sub.</th>
<th>Char.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chepoi & Fichet</td>
<td>1997</td>
<td>$O(n^3)$</td>
<td>no</td>
<td>none</td>
<td>interval hypergraphs</td>
</tr>
<tr>
<td>Préa & Fortin</td>
<td>2014</td>
<td>$O(n^2)$</td>
<td>yes</td>
<td>PQ-tree</td>
<td>interval hypergraphs</td>
</tr>
<tr>
<td>Laurent & Seminaroti</td>
<td>2014</td>
<td>$O(d(m + n))$</td>
<td>yes</td>
<td>Lex-BFS</td>
<td>unit interval graphs</td>
</tr>
</tbody>
</table>

- L: number of distinct values of A
- d: depth of the recursion tree (bounded by L)
- m: number of nonzero entries of A
Open questions

1. Find an efficient “approximation” algorithm for the noisy case
Open questions

1. Find an efficient “approximation” algorithm for the noisy case
 - Robinson ℓ-fitting problem cannot be approximated within a factor $\frac{3}{2}$
Find an efficient “approximation” algorithm for the noisy case
- Robinson ℓ-fitting problem cannot be approximated within a factor $\frac{3}{2}$
- The best approximation algorithm at the moment is factor 16!

V. Chepoi, B. Fichet and M. Seston.
Open questions

1. Find an efficient “approximation” algorithm for the noisy case
 - Robinson ℓ-fitting problem cannot be approximated within a factor $\frac{3}{2}$
 - The best approximation algorithm at the moment is factor 16!

2. Applications!

V. Chepoi, B. Fichet and M. Seston.
Seriation in the Presence of Errors: NP-Hardness of l_∞ Fitting
Robinson Structures to Dissimilarity Matrices, 2009.
Open questions

1. Find an efficient “approximation” algorithm for the noisy case
 - Robinson ℓ-fitting problem cannot be approximated within a factor $\frac{3}{2}$
 - The best approximation algorithm at the moment is factor 16!

2. Applications!
 - any problem where pairwise similarity, dissimilarity, correlation, frequency etc. information is given and the Robinson property is desired

V. Chepoi, B. Fichet and M. Seston.
Open questions

1. Find an efficient “approximation” algorithm for the noisy case
 - Robinson ℓ-fitting problem cannot be approximated within a factor $\frac{3}{2}$
 - The best approximation algorithm at the moment is factor 16!

2. Applications!
 - any problem where pairwise similarity, dissimilarity, correlation, frequency etc. information is given and the Robinson property is desired

V. Chepoi, B. Fichet and M. Seston.

F. Fogel, A. d’ Aspremont, and M. Vojnovic.
References

M. Laurent and M. Seminaroti. The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure, 2014.
