Conclusions from classical parametric integer programming for stochastic optimization

Matthias Claus

University of Duisburg-Essen

January 4, 2016
From parametric optimization to two-stage SP

Take a parametric mixed-integer program

$$(P_z) \quad \min_{x,y} \{c(x) + q(y) \mid x \in X, \ y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}\},$$
From parametric optimization to two-stage SP

Take a parametric mixed-integer program

\[(P_z) \quad \min_{x,y} \{c(x) + q(y) \mid x \in X, \; y \in C(x, z), \; y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}\},\]

add an information constraint

decide \(x \rightarrow\) observe \(z \rightarrow\) decide \(y\)

Task: Pick an “optimal” random variable taking into account risk aversion.

→ Mean risk models:

\[
\min_{x} \{\rho(f(x, z(\omega))) \mid x \in X\},
\]

M. Claus
From parametric optimization to two-stage SP

Take a parametric mixed-integer program

\[
(P_z) \quad \min_{x,y} \{c(x) + q(y) \mid x \in X, y \in C(x,z), y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \},
\]

add an information constraint

decide \(x \) \(\rightarrow \) observe \(z \) \(\rightarrow \) decide \(y \)

and assume purely exogenous stochastic uncertainty \(z = z(\omega) \).
Take a parametric mixed-integer program

\[
(P_z) \quad \min_{x,y} \{ c(x) + q(y) \mid x \in X, \ y \in C(x,z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \},
\]

add an information constraint
decide \(x\) → observe \(z\) → decide \(y\)

and assume purely exogenous stochastic uncertainty \(z = z(\omega)\).

→ Two-stage-formulation:

\[
\min \{ c(x) + \min \{ q(y) \mid y \in C(x,z(\omega)), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \mid x \in X \}
= : f(x,z(\omega))
\]
From parametric optimization to two-stage SP

Take a parametric mixed-integer program

\[(P_z) \quad \min_{x,y} \{c(x) + q(y) \mid x \in X, \ y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}\},\]

add an information constraint

decide \(x \rightarrow\) observe \(z \rightarrow\) decide \(y\)

and assume purely exogenous stochastic uncertainty \(z = z(\omega)\).

\[\rightarrow\text{Two-stage-formulation:}\]

\[\min \{c(x) + \min \{q(y) \mid y \in C(x, z(\omega)), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}\} \mid x \in X\}\]

\[=: f(x,z(\omega))\]

Task: Pick an "optimal" random variable taking into account risk aversion.
Take a parametric mixed-integer program

\[(P_z) \min_{x,y} \{ c(x) + q(y) \mid x \in X, \ y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \}, \]

add an information constraint

decide \(x \) \(\rightarrow \) observe \(z \) \(\rightarrow \) decide \(y \)

and assume purely exogenous stochastic uncertainty \(z = z(\omega) \).

\[\rightarrow \text{Two-stage-formulation:} \]

\[\min \{ c(x) + \min \{ q(y) \mid y \in C(x, z(\omega)), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \mid x \in X \} \]

\[=: f(x, z(\omega)) \]

Task: Pick an "optimal" random variable taking into account risk aversion.

\[\rightarrow \text{Mean risk models:} \]

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]
Stability in two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

is a parametric problem w.r.t. the distribution of \(z \).

→ Stability of optimal values, solution sets?

For \(\epsilon \neq 0 \), every integer is an optimal solution with value 0.

Conclusion: No stability in two-stage SP if the underlying deterministic mixed-integer problem is not “well behaved.”
Stability in two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

is a parametric problem w.r.t. the distribution of \(z \).

→ Stability of optimal values, solution sets?

Example:

\[\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_{\{0\}}(z(\omega))(x^2 + \lambda)], \]

where \(\lambda \in \mathbb{R} \) is fixed and \(\mathbb{P}(z(\omega) = 0) = 1 \).
Stability in two-stage SP

\[
\min \{ \rho(f(x, z(\omega))) \mid x \in X \}
\]

is a parametric problem w.r.t. the distribution of \(z \).

→ Stability of optimal values, solution sets?

Example:

\[
\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_{\{0\}}(z(\omega))(x^2 + \lambda)],
\]

where \(\lambda \in \mathbb{R} \) is fixed and \(P(z(\omega) = 0) = 1 \).

→ Unique optimal solution \(x = 0 \) yields the value \(\lambda \).
Stability in two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

is a parametric problem w.r.t. the distribution of \(z \).

→ Stability of optimal values, solution sets?

Example:

\[\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_0(z(\omega))(x^2 + \lambda)], \]

where \(\lambda \in \mathbb{R} \) is fixed and \(\mathbb{P}(z(\omega) = 0) = 1 \).

→ Unique optimal solution \(x = 0 \) yields the value \(\lambda \).

Consider the random variables \(z_\epsilon(\cdot) \) defined by \(\mathbb{P}(z_\epsilon(\omega) = \epsilon) = 1 \) and solve

\[\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_0(z_\epsilon(\omega))(x^2 + \lambda)]. \]
Stability in two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

is a parametric problem w.r.t. the distribution of \(z \).

\[\rightarrow \text{Stability of optimal values, solution sets?} \]

Example:

\[\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_{\{0\}}(z(\omega))(x^2 + \lambda)], \]

where \(\lambda \in \mathbb{R} \) is fixed and \(\mathbb{P}(z(\omega) = 0) = 1 \).

\[\rightarrow \text{Unique optimal solution } x = 0 \text{ yields the value } \lambda. \]

Consider the random variables \(z_\epsilon(\cdot) \) defined by \(\mathbb{P}(z_\epsilon(\omega) = \epsilon) = 1 \) and solve

\[\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_{\{0\}}(z_\epsilon(\omega))(x^2 + \lambda)]. \]

\[\rightarrow \text{For } \epsilon \neq 0, \text{ every integer is an optimal solution with value } 0. \]
Stability in two-stage SP

\[
\min \{ \rho(f(x, z(\omega))) \mid x \in X \}
\]

is a parametric problem w.r.t. the distribution of \(z \).

→ Stability of optimal values, solution sets?

Example:

\[
\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_{\{0\}}(z(\omega))(x^2 + \lambda)],
\]

where \(\lambda \in \mathbb{R} \) is fixed and \(\mathbb{P}(z(\omega) = 0) = 1 \).

→ Unique optimal solution \(x = 0 \) yields the value \(\lambda \).

Consider the random variables \(z_\epsilon(\cdot) \) defined by \(\mathbb{P}(z_\epsilon(\omega) = \epsilon) = 1 \) and solve

\[
\min_{x \in \mathbb{Z}} \mathbb{E}[\chi_{\{0\}}(z_\epsilon(\omega))(x^2 + \lambda)].
\]

→ For \(\epsilon \neq 0 \), every integer is an optimal solution with value 0.

Conclusion: No stability in two-stage SP if the underlying deterministic mixed-integer problem is not "well behaved".
Stability in two-stage SP

Question: What has to be assumed of

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \]
Stability in two-stage SP

Question: What has to be assumed of
\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} ? \]

Sufficient: \(f \) is defined by a MILP
\[
 f(x, z) = c^\top x + \min \{ q^\top y \mid Wy = z - Tx, \ y \in \mathbb{R}_{\geq 0}^{m_1} \times \mathbb{Z}_{\geq 0}^{m_2} \},
\]
the matrix \(W \) is rational and
\[
 (A1) \ W(\mathbb{R}_{\geq 0}^{m_1} \times \mathbb{Z}_{\geq 0}^{m_2}) = \mathbb{R}^s,
\]
\[
 (A2) \ \{ u \in \mathbb{R}^s \mid W^\top u \leq q \} \neq \emptyset.
\]

→ Schultz, Tiedemann (2006), Römisch, Vigerske (2008), ...

Improvement by Claus, Krätzschmer, Schultz (2015): Assume that \(f \) is continuous almost everywhere and fulfills a growth condition:
\[
 (G) \text{ There is a locally bounded mapping } \eta : \mathbb{R}^n \to (0, \infty) \text{ and a constant } \gamma > 0 \text{ such that } \]
\[
 |f(x, z)| \leq \eta(x)(\|z\|^{\gamma} + 1) \text{ for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s.
\]
Stability in two-stage SP

Question: What has to be assumed of

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \]?

Sufficient: \(f \) is defined by a MILP

\[f(x, z) = c^\top x + \min \{ q^\top y \mid Wy = z - Tx, \ y \in \mathbb{R}_{\geq 0}^{m_1} \times \mathbb{Z}_{\geq 0}^{m_2} \}, \]

the matrix \(W \) is rational and

(A1) \(W(\mathbb{R}_{\geq 0}^{m_1} \times \mathbb{Z}_{\geq 0}^{m_2}) = \mathbb{R}^s \),

(A2) \(\{ u \in \mathbb{R}^s \mid W^\top u \leq q \} \neq \emptyset \).

\[\rightarrow \text{Schultz, Tiedemann (2006), Römisch, Vigerske (2008),} \ldots \]
Question: What has to be assumed of
\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \]?

Sufficient: \(f \) is defined by a MILP
\[f(x, z) = c^\top x + \min\{ q^\top y \mid Wy = z - Tx, \ y \in \mathbb{R}^{m_1}_{\geq 0} \times \mathbb{Z}^{m_2}_{\geq 0} \}, \]
the matrix \(W \) is rational and
\begin{align*}
(A1) \quad & W(\mathbb{R}^{m_1}_{\geq 0} \times \mathbb{Z}^{m_2}_{\geq 0}) = \mathbb{R}^s, \\
(A2) \quad & \{ u \in \mathbb{R}^s \mid W^\top u \leq q \} \neq \emptyset.
\end{align*}

\[\rightarrow \text{Schultz, Tiedemann (2006), R"omisch, Vigerske (2008), \ldots} \]

Improvement by Claus, Kr"atschmer, Schultz (2015): Assume that \(f \) is continuous almost everywhere and fulfills a growth condition:
\[(G) \quad \text{There is a locally bounded mapping } \eta : \mathbb{R}^n \to (0, \infty) \text{ and a constant } \gamma > 0 \text{ such that}
\]
\[|f(x, z)| \leq \eta(x) (\|z\|^{\gamma} + 1) \quad \text{for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s. \]
Back to parametric mixed integer programming

\[f(x, z) = c^\top x + \min\{q^\top y \mid Wy = z - Tx, \ y \in \mathbb{R}^{m_1}_{\geq 0} \times \mathbb{Z}^{m_2}_{\geq 0}\} \]
Back to parametric mixed integer programming

\[f(x, z) = c^\top x + \min \{ q^\top y \mid W y = z - T x, \ y \in \mathbb{R}^{m_1}_{\geq 0} \times \mathbb{Z}^{m_2}_{\geq 0} \} \]

Theorem (Blair, Jeroslow 1977)

Assume (A1), (A2) and the rationality of \(W \). Then

(i) \(f \) is real valued and lower semicontinuous on \(\mathbb{R}^n \times \mathbb{R}^s \).

(ii) \(f \) is continuous on \((\mathbb{R}^n \times \mathbb{R}^s) \setminus A \), where the \((n + s)\)-dim. Lebesgue measure of

\[A = (-T, I)^{-1}(\text{bd } W(\mathbb{R}^{m_1}_{\geq 0} \times \mathbb{Z}^{m_2}_{\geq 0})) \]

is equal to zero.

(iii) There exist constants \(C, D \geq 0 \) such that

\[|f(x, z) - f(x', z')| \leq C \|(x, z) - (x', z')\| + D \]

for all \((x, z), (x', z') \in \mathbb{R}^n \times \mathbb{R}^s \).
(G) There is a locally bounded mapping $\eta : \mathbb{R}^n \rightarrow (0, \infty)$ and a constant $\gamma > 0$ such that

$$|f(x, z)| \leq \eta(x)(\|z\|^\gamma + 1) \quad \text{for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s.$$
(G) There is a locally bounded mapping \(\eta : \mathbb{R}^n \rightarrow (0, \infty) \) and a constant \(\gamma > 0 \) such that

\[
|f(x, z)| \leq \eta(x)(\|z\|^\gamma + 1) \quad \text{for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s.
\]

MILP case:

\[
|f(x, z)| \leq |f(x, z) - f(0, 0)| + |f(0, 0)| \leq C\|(x, z)\| + D + |f(0, 0)|
\]
There is a locally bounded mapping $\eta : \mathbb{R}^n \to (0, \infty)$ and a constant $\gamma > 0$ such that

$$|f(x, z)| \leq \eta(x)(\|z\|^\gamma + 1) \quad \text{for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s.$$

MILP case:

$$|f(x, z)| \leq |f(x, z) - f(0, 0)| + |f(0, 0)| \leq C\|(x, z)\| + D + |f(0, 0)|$$

\Rightarrow (G) holds with $\eta(x) := C\|x\| + D + |f(0, 0)| + 1.$
(G) There is a locally bounded mapping $\eta : \mathbb{R}^n \to (0, \infty)$ and a constant $\gamma > 0$ such that

$$|f(x, z)| \leq \eta(x)(\|z\|^\gamma + 1) \text{ for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s.$$

MILP case:

$$|f(x, z)| \leq |f(x, z) - f(0, 0)| + |f(0, 0)| \leq C\|(x, z)\| + D + |f(0, 0)|$$

\rightarrow (G) holds with $\eta(x) := C\|x\| + D + |f(0, 0)| + 1.$

Observation: (x, z) can be replaced with $h(x, z)$ if the growth condition is fulfilled for the mapping $(x, z) \mapsto |h(x, z)|$. In this case, $\gamma_f = \gamma_h$.

\rightarrow This is especially the case if h is Hölder continuous.
There is a locally bounded mapping $\eta : \mathbb{R}^n \rightarrow (0, \infty)$ and a constant $\gamma > 0$ such that

$$|f(x, z)| \leq \eta(x)(\|z\|^\gamma + 1) \quad \text{for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s.$$

MILP case:

$$|f(x, z)| \leq |f(x, z) - f(0, 0)| + |f(0, 0)| \leq C\|(x, z)\| + D + |f(0, 0)|$$

\rightarrow (G) holds with $\eta(x) := C\|x\| + D + |f(0, 0)| + 1$.

Observation: (x, z) can be replaced with $h(x, z)$ if the growth condition is fulfilled for the mapping $(x, z) \mapsto |h(x, z)|$. In this case, $\gamma_f = \gamma_h$.

\rightarrow This is especially the case if h is Hölder continuous.

Conclusion: The proposed growth condition is more general than the standard MILP setting.
(G) There is a locally bounded mapping $\eta : \mathbb{R}^n \rightarrow (0, \infty)$ and a constant $\gamma > 0$ such that

$$|f(x,z)| \leq \eta(x)(\|z\|^\gamma + 1) \quad \text{for all } (x,z) \in \mathbb{R}^n \times \mathbb{R}^s.$$

MILP case:

$$|f(x,z)| \leq |f(x,z) - f(0,0)| + |f(0,0)| \leq C\|(x,z)\| + D + |f(0,0)|$$

\rightarrow (G) holds with $\eta(x) := C\|x\| + D + |f(0,0)| + 1$.

Observation: (x, z) can be replaced with $h(x, z)$ if the growth condition is fulfilled for the mapping $(x, z) \mapsto |h(x, z)|$. In this case, $\gamma_f = \gamma_h$.

\rightarrow This is especially the case if h is Hölder continuous.

Conclusion: The proposed growth condition is more general than the standard MILP setting.

\rightarrow Which other (mixed-)integer parametric problems are covered?
Theorem (Cook, Gerards, Schrijver, Tardos 1986)

Assume that

(i) A is an integral matrix,

(ii) $Ay \leq b$ has an integral solution and

(iii) $\min\{q^\top y \mid Ay \leq b\}$ exists.

Then

$$d_\infty(\arg\min\{q^\top y \mid Ay \leq b\}, \arg\min\{q^\top y \mid Ay \leq b, y \in \mathbb{Z}^m\}) \leq m\Delta(A).$$

Here, $\Delta(A)$ denotes the maximum of the absolute values of the determinants of square submatrices of A.
Theorem (Cook, Gerards, Schrijver, Tardos 1986)

Assume that

(i) \(A \) is an integral matrix,
(ii) \(Ay \leq b \) has an integral solution and
(iii) \(\min\{q^\top y \mid Ay \leq b\} \) exists.

Then

\[d_\infty(\text{argmin} \{q^\top y \mid Ay \leq b\}, \text{argmin} \{q^\top y \mid Ay \leq b, y \in \mathbb{Z}^m\}) \leq m\Delta(A). \]

Here, \(\Delta(A) \) denotes the maximum of the absolute values of the determinants of square submatrices of \(A \).

→ This proximity result can be generalized to quadratic integer problems.
Back to parametric integer programming

\[f(x, z) = c(x) + \min \{ y^\top Q y + q^\top y \mid Ay \leq h(x, z), \ y \in \mathbb{Z}^m \} \]
Back to parametric integer programming

\[f(x, z) = c(x) + \min \{ y^\top Q y + q^\top y \mid Ay \leq h(x, z), \ y \in \mathbb{Z}^m \} \]

Theorem (Garnot, Skorin-Kapov 1990)

Assume that

(i) \(A \) is integral, rank \(A = m \) and \(Q \) is a positive definite diagonal matrix,

(ii) \(\{ y \in \mathbb{Z}^m \mid Ay \leq h(x, z) \} \neq 0 \) for all \((x, z) \in \mathbb{R}^n \times \mathbb{R}^s \) and

(iii) \(\min \{ y^\top Q y + q^\top y \mid Ay \leq b \} \) exists.

Then \(f \) is finite, the infimum is attained and there exists constants \(C, D \geq 0 \) such that

\[|f(x, z)| \leq C \Delta(x, z) \|(x, z)\| + D \]

holds true for all \((x, z) \in \mathbb{R}^n \times \mathbb{R}^s \). Here, \(\Delta(x, z) \) denotes the maximum of the absolute values of the determinants of square submatrices of

\[
\begin{pmatrix}
A & 0 & h(x, z) \\
-sQ & A^\top & q
\end{pmatrix}.
\]
\[\Delta(x, z) = \max \{| \det B | \mid B \text{ is a square sub-matrix of } \begin{pmatrix} A & 0 \\ -sQ & A^\top \\ q & \end{pmatrix} \} \]
\[\Delta(x, z) = \max \{ |\det B| \mid B \text{ is a square sub-matrix of } \begin{pmatrix} A & 0 \\ -sQ & A^\top \\ h(x, z) & q \end{pmatrix} \} \]

→ Laplace expansion yields a constant \(E \) such that
\[\Delta(x, z) \leq E(\|h(x, z)\| + 1) \]
for all \((x, z) \in \mathbb{R}^n \times \mathbb{R}^s\).
Back to parametric integer programming

\[\Delta(x, z) = \max\{|\det B| \mid B \text{ is a square sub-matrix of } \begin{pmatrix} A & 0 & h(x, z) \\ -sQ & A^\top & q \end{pmatrix} \} \]

→ Laplace expansion yields a constant \(E \) such that
\[\Delta(x, z) \leq E(\|h(x, z)\| + 1) \]
for all \((x, z) \in \mathbb{R}^n \times \mathbb{R}^s\).

→ If the growth condition holds for \((x, z) \mapsto |h(x, z)|\) and \(c\), then it also holds for \(f\) with \(\gamma_f = \max\{\gamma_c, 2\gamma_h\}\).
\[\Delta(x, z) = \max\{|\det B| \mid B \text{ is a square sub-matrix of } \begin{pmatrix} A & 0 \\ -sQ & A^\top \end{pmatrix} \begin{pmatrix} h(x, z) \\ q \end{pmatrix} \} \]

→ Laplace expansion yields a constant \(E \) such that
\[\Delta(x, z) \leq E(\|h(x, z)\| + 1) \]
for all \((x, z) \in \mathbb{R}^n \times \mathbb{R}^s\).

→ If the growth condition holds for \((x, z) \mapsto |h(x, z)|\) and \(c\), then it also holds for \(f\) with \(\gamma_f = \max\{\gamma_c, 2\gamma_h\}\).

→ If \(c\) and \(h\) are continuous and \(h^{-1}(\mathbb{R}^k \setminus (\mathbb{R} \setminus \mathbb{Z})^k)\) has Lebesgue measure zero, then the Lebesgue measure of the set of discontinuities of \(f\) is equal to zero.
Back to parametric integer programming

\[\Delta(x, z) = \max \{| \det B | \mid B \text{ is a square sub-matrix of } \begin{pmatrix} A & 0 \\ -sQ & A^\top \\ h(x, z) \end{pmatrix} \} \]

→ Laplace expansion yields a constant \(E \) such that

\[\Delta(x, z) \leq E(\| h(x, z) \| + 1) \]

for all \((x, z) \in \mathbb{R}^n \times \mathbb{R}^s \).

→ If the growth condition holds for \((x, z) \mapsto | h(x, z) | \) and \(c \), then it also holds for \(f \) with \(\gamma_f = \max \{ \gamma_c, 2\gamma_h \} \).

→ If \(c \) and \(h \) are continuous and \(h^{-1}(\mathbb{R}^k \setminus (\mathbb{R} \setminus \mathbb{Z})^k) \) has Lebesgue measure zero, then the Lebesgue measure of the set of discontinuities of \(f \) is equal to zero.

Conclusion: Our approach allows to derive stability for two-stage SPs with QIP recourse problems.
Consider the case where

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \]

is defined by

\[C(x, z) = \{ y \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \mid g(y) \leq h(x, z) \}, \]

q is convex and $g = (g_1, \ldots, g_k)^\top$ is such that g_i is convex and $\text{epi } g_i$ is closed for every $i = 1, \ldots, k$.

Helpful fact: Convex functions are Lipschitz continuous on bounded subsets.

Assumptions:

(C1) $C(0, 0)$ is bounded and

(C2) $C(x, z) \cap (\mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}) \neq \emptyset$ for all $(x, z) \in \mathbb{R}^n \times \mathbb{R}^s$.

M. Claus

Conclusions from classical parametric integer programming

January 4, 2016
Consider the case where

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \]

is defined by

\[C(x, z) = \{ y \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \mid g(y) \leq h(x, z) \}, \]

\(q \) is convex and \(g = (g_1, \ldots, g_k)^\top \) is such that \(g_i \) is convex and \(\text{epi} \ g_i \) is closed for every \(i = 1, \ldots, k \).

→ **Helpful fact:** Convex functions are Lipschitz continuous on bounded subsets.
Consider the case where
\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \} \]
is defined by
\[C(x, z) = \{ y \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \mid g(y) \leq h(x, z) \}, \]
\(q \) is convex and \(g = (g_1, \ldots, g_k)^\top \) is such that \(g_i \) is convex and \(\text{epi} \ g_i \) is closed for every \(i = 1, \ldots, k \).

→ **Helpful fact:** Convex functions are Lipschitz continuous on bounded subsets.

Assumptions:

(C1) \(C(0, 0) \) is bounded and
(C2) \(C(x, z) \cap (\mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}) \neq \emptyset \) for all \((x, z) \in \mathbb{R}^n \times \mathbb{R}^s \).
A stability result from convex analysis

Theorem (Auslender, Crouzeix 1988)

Assume (C1) and (C2), then for every $R > 0$ there exists a constant $K(R)$, such that

$$d_\infty(C(x, z), C(x', z')) \leq K(R)\|h(x, z) - h(x', z')\|$$

whenever $\|(x, z) - (x', z')\| \leq R$. Set

$$\Theta(x, z, y) := (\max\{g_1(y) - h_1(x, z), 0\}, \ldots, \max\{g_k(y) - h_k(x, z), 0\})^\top \in \mathbb{R}^k,$$

then

$$K(R) = \sup_{(x, z, y): \|h(x, z)\| \leq R, y \notin C(x, z)} \frac{d_{C(x, z)}(y)}{\|\Theta(x, z, y)\|_\infty} < \infty$$

holds.
A stability result from convex analysis

Theorem (Auslender, Crouzeix 1988)

Assume (C1) and (C2), then for every $R > 0$ there exists a constant $K(R)$, such that

$$d_\infty(C(x, z), C(x', z')) \leq K(R)\|h(x, z) - h(x', z')\|$$

whenever $\|(x, z) - (x', z')\| \leq R$. Set

$$\Theta(x, z, y) := (\max\{g_1(y) - h_1(x, z), 0\}, \ldots, \max\{g_k(y) - h_k(x, z), 0\})^\top \in \mathbb{R}^k,$$

then

$$K(R) = \sup_{(x, z, y): \|h(x, z)\| \leq R, y \notin C(x, z)} \frac{d_C(x, z)(y)}{\|\Theta(x, z, y)\|_\infty} < \infty$$

holds.

→ $C(x, z)$ is compact for all $(x, z) \in \mathbb{R}^n \times \mathbb{R}^s$.
A stability result from convex analysis

Theorem (Auslender, Crouzeix 1988)

Assume (C1) and (C2), then for every \(R > 0 \) there exists a constant \(K(R) \), such that

\[
d_{\infty}(C(x, z), C(x', z')) \leq K(R) \| h(x, z) - h(x', z') \|
\]

whenever \(\| (x, z) - (x', z') \| \leq R \). Set

\[\Theta(x, z, y) := (\max\{g_1(y) - h_1(x, z), 0\}, \ldots, \max\{g_k(y) - h_k(x, z), 0\})^\top \in \mathbb{R}^k,\]

then

\[K(R) = \sup_{(x, z, y): \| h(x, z) \| \leq R, y \notin C(x, z)} \frac{d_{C(x, z)}(y)}{\| \Theta(x, z, y) \|_\infty} < \infty\]

holds.

\[\rightarrow C(x, z) \text{ is compact for all } (x, z) \in \mathbb{R}^n \times \mathbb{R}^s.\]

\[\rightarrow \text{The continuous relaxation is solvable.}\]
Consequences for the recourse problem

Setting

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \}, \]

\[C(x, z) = \{ y \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \mid g(y) \leq h(x, z) \} \]
Consequences for the recourse problem

Setting

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \}, \]
\[C(x, z) = \{ y \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \mid g(y) \leq h(x, z) \} \]

→ For \(y_2 \in \mathbb{Z}^{m_2} \) define \(C_{y_2}(x, z) := \{ (y_1, y_2) \in C(x, z) \} \). Then
\[C(x, z) \cap (\mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}) = \bigcup_{y_2 \in \mathbb{Z}^{m_2}} C_{y_2}(x, z). \]
Consequences for the recourse problem

Setting

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \}, \]
\[C(x, z) = \{ y \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \mid g(y) \leq h(x, z) \} \]

→ For \(y_2 \in \mathbb{Z}^{m_2} \) define \(C_{y_2}(x, z) := \{ (y_1, y_2) \in C(x, z) \} \). Then
\[C(x, z) \cap (\mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}) = \bigcup_{y_2 \in \mathbb{Z}^{m_2}} C_{y_2}(x, z). \]

→ \(C(x, z) \) is compact, hence \(Z(x, z) := \{ y_2 \in \mathbb{Z}^{m_2} \mid C_{y_2} \neq \emptyset \} \) is finite.
Consequences for the recourse problem

Setting

\[f(x, z) = c(x) + \min \{ q(y) \mid y \in C(x, z), \ y \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \}, \]
\[C(x, z) = \{ y \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \mid g(y) \leq h(x, z) \} \]

→ For \(y_2 \in \mathbb{Z}^{m_2} \) define \(C_{y_2}(x, z) := \{ (y_1, y_2) \in C(x, z) \} \). Then
\[C(x, z) \cap (\mathbb{R}^{m_1} \times \mathbb{Z}^{m_2}) = \bigcup_{y_2 \in \mathbb{Z}^{m_2}} C_{y_2}(x, z). \]

→ \(C(x, z) \) is compact, hence \(Z(x, z) := \{ y_2 \in \mathbb{Z}^{m_2} \mid C_{y_2} \neq \emptyset \} \) is finite.

Consequence: If \(c \) is real-valued \(c \), then so is
\[f(x, z) = c(x) + \min_{y_2 \in Z(x, z)} \min_{y_1 \in C_{y_2}(x, z)} q(y). \]
Consequences for the recourse problem

Additional assumptions:

(C3) There exist constants $\beta_1, L_1 > 0$ such that $L(r) \leq L_1 r^{\beta_1}$ for all $r > 0$, where $L(r)$ denotes the (minimal) Lipschitz constant for q on $B_r(0)$.

(C4) There exist constants $\beta_2, L_2 > 0$ such that $K(R) \leq L_2 R^{\beta_2}$ for all $R > 0$.
Additional assumptions:

(C3) There exist constants $\beta_1, L_1 > 0$ such that $L(r) \leq L_1 r^{\beta_1}$ for all $r > 0$, where $L(r)$ denotes the (minimal) Lipschitz constant for q on $B_r(0)$.

(C4) There exist constants $\beta_2, L_2 > 0$ such that $K(R) \leq L_2 R^{\beta_2}$ for all $R > 0$.

Theorem

Assume that the growth condition is fulfilled for c and $(x, z) \mapsto |h(x, z)|$ and that (C1) - (C4) hold true. Then the growth condition is also fulfilled for f with $\gamma_f = \max\{\gamma_c, (\beta_1 + \beta_2 + 1)\gamma_h\}$.
Consequences for the recourse problem

Additional assumptions:

(C3) There exist constants $\beta_1, L_1 > 0$ such that $L(r) \leq L_1 r^{\beta_1}$ for all $r > 0$, where $L(r)$ denotes the (minimal) Lipschitz constant for q on $B_r(0)$.

(C4) There exist constants $\beta_2, L_2 > 0$ such that $K(R) \leq L_2 R^{\beta_2}$ for all $R > 0$.

Theorem

Assume that the growth condition is fulfilled for c and $(x, z) \mapsto |h(x, z)|$ and that (C1) - (C4) hold true. Then the growth condition is also fulfilled for f with $\gamma_f = \max\{\gamma_c, (\beta_1 + \beta_2 + 1)\gamma_h\}$.

Conclusion: Under a compactness condition, our approach allows to derive stability for two-stage SPs with recourse problems from a fairly general class.
Conclusion for two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]
Conclusion for two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

Assumption on the recourse problem:
The growth condition is fulfilled for \(f \).
Conclusion for two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

Assumption on the recourse problem:

The growth condition is fulfilled for \(f \).

Assumption on the risk measure:

The risk measure \(\rho \) is induced by a mapping that is convex, nondecreasing w.r.t. the \(\mathbb{P} \)-almost sure partial order and law invariant.
Conclusion for two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

Assumption on the recourse problem:

The growth condition is fulfilled for \(f \).

Assumption on the risk measure:

The risk measure \(\rho \) is induced by a mapping that is convex, nondecreasing w.r.t. the \(\mathbb{P} \)-almost sure partial order and law invariant.

Examples:

- Every convex risk measure, especially every coherent one
Conclusion for two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

Assumption on the recourse problem:
The growth condition is fulfilled for \(f \).

Assumption on the risk measure:
The risk measure \(\rho \) is induced by a mapping that is convex, nondecreasing w.r.t. the \(\mathbb{P} \)-almost sure partial order and law invariant.

Examples:
- Every convex risk measure, especially every coherent one
- (Expectation)
Conclusion for two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

Assumption on the recourse problem:

The growth condition is fulfilled for \(f \).

Assumption on the risk measure:

The risk measure \(\rho \) is induced by a mapping that is convex, nondecreasing \(\mathbb{P} \)-almost sure partial order and law invariant.

Examples:

- Every convex risk measure, especially every coherent one
- (Expectation)
- Upper semideviation of order \(q \geq 1 \) from target: \(\mathbb{E}[(X - t)^+]^q \)
Conclusion for two-stage SP

\[\min \{ \rho(f(x, z(\omega))) \mid x \in X \} \]

Assumption on the recourse problem:
The growth condition is fulfilled for \(f \).

Assumption on the risk measure:
The risk measure \(\rho \) is induced by a mapping that is convex, nondecreasing w.r.t. the \(\mathbb{P} \)-almost sure partial order and law invariant.

Examples:
- Every convex risk measure, especially every coherent one
- (Expectation)
- Upper semideviation of order \(q \geq 1 \) from target: \(\mathbb{E}[(X - t)^q_+] \)
- Upper semideviation of order \(q \geq 1 \): \(\mathbb{E}[X] + \lambda \mathbb{E}[(X - \mathbb{E}[X])^q_+]^{1/q}, \lambda \in (0, 1) \)
Conclusion for two-stage SP

$$\min \{ \rho(f(x, z(\omega))) \mid x \in X \}$$

Assumption on the recourse problem:
The growth condition is fulfilled for f.

Assumption on the risk measure:
The risk measure ρ is induced by a mapping that is convex, nondecreasing w.r.t. the \mathbb{P}-almost sure partial order and law invariant.

Examples:
- Every convex risk measure, especially every coherent one
- (Expectation)
- Upper semideviation of order $q \geq 1$ from target: $\mathbb{E}[(X - t)_+^q]$
- Upper semideviation of order $q \geq 1$: $\mathbb{E}[X] + \lambda \mathbb{E}[(X - \mathbb{E}[X])_+^q]^{\frac{1}{q}}$, $\lambda \in (0, 1)$
- Conditional Value-at-risk: Expectation of the $(1 - \alpha) \times 100\%$ worst outcomes
Conclusion for two-stage SP

$$\min \{ \rho(f(x, z(\omega))) \mid x \in X \}$$

Assumption on the recourse problem:

The growth condition is fulfilled for f.

Assumption on the risk measure:

The risk measure ρ is induced by a mapping that is convex, nondecreasing w.r.t. the \mathbb{P}-almost sure partial order and law invariant.

Examples:

- Every convex risk measure, especially every coherent one
- (Expectation)
- Upper semideviation of order $q \geq 1$ from target: $\mathbb{E}[(X - t)^q_+]$
- Upper semideviation of order $q \geq 1$: $\mathbb{E}[X] + \lambda \mathbb{E}[(X - \mathbb{E}[X])^q_+]^{\frac{1}{q}}, \lambda \in (0, 1)$
- Conditional Value-at-risk: Expectation of the $(1 - \alpha) \times 100\%$ worst outcomes
- Every conic combination of covered risk functionals
Conclusion for two-stage SP

Reformulation of the objective function:

\[\rho(f(x, z(\omega))) = Q(x, \nu) = R_\rho ((\delta_x \otimes \nu) \circ f^{-1}), \text{ where } \nu = \mathbb{P} \circ z^{-1} \]
Reformulation of the objective function:

\[\rho(f(x, z(\omega))) = Q(x, \nu) = R_\rho \left((\delta_x \otimes \nu) \circ f^{-1} \right), \text{ where } \nu = \mathbb{P} \circ z^{-1} \]

Theorem (Claus, Krätschmer, Schultz 2015)

Let \(M \subseteq M_\gamma^p \) be a locally uniformly \(\| \cdot \|_{s,2}^p \)-integrating subset, and let \(D_f \) denote the set of discontinuity points of \(f \). If \(x \in \mathbb{R}^n \) and \(\nu \in M \) satisfy \(\delta_x \otimes \nu(D_f) = 0 \), then under the growth condition \((G)\) the mapping \(Q|_{\mathbb{R}^n \times M} \) is continuous at \((x, \nu) \) with respect to the product topology of the standard topology on \(\mathbb{R}^n \) and the relative topology of weak convergence on \(M \).
Conclusion for two-stage SP

Reformulation of the objective function:

\[\rho(f(x, z(\omega))) = Q(x, \nu) = R_{\rho} \left((\delta_x \otimes \nu) \circ f^{-1} \right), \text{ where } \nu = \mathbb{P} \circ z^{-1} \]

Theorem (Claus, Krätschmer, Schultz 2015)

Let \(\mathcal{M} \subseteq \mathcal{M}_{\gamma p}^{\gamma p} \) be a locally uniformly \(\| \cdot \|_{\gamma p, 2} \)-integrating subset, and let \(D_f \) denote the set of discontinuity points of \(f \). If \(x \in \mathbb{R}^n \) and \(\nu \in \mathcal{M} \) satisfy \(\delta_x \otimes \nu(D_f) = 0 \), then under the growth condition (G) the mapping \(Q|_{\mathbb{R}^n \times \mathcal{M}} \) is continuous at \((x, \nu) \) with respect to the product topology of the standard topology on \(\mathbb{R}^n \) and the relative topology of weak convergence on \(\mathcal{M} \).

Key idea: Considering \(\Psi \)-weak topologies on suitable subclasses of Borel probability measures.
Implications for stability

\[\varphi(\nu) := \inf \{ Q(x, \nu) \mid x \in X \} \]
Implications for stability

\[\varphi(\nu) := \inf \{ Q(x, \nu) \mid x \in X \} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(\mathcal{D}_f) = 0 \) hold for all \(x \in X \). Then \(\varphi|_M \) is upper semicontinuous in \(\nu \) with respect to the relative topology of weak convergence.
Implications for stability

\[\varphi(\nu) := \inf\{Q(x, \nu) \mid x \in X\} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(D_f) = 0 \) hold for all \(x \in X \). Then \(\varphi|_M \) is upper semicontinuous in \(\nu \) with respect to the relative topology of weak convergence.

\[\Phi(\nu) := \{x \in X \mid Q(x, \nu) = \varphi(\nu)\} \]
Implications for stability

\[\varphi(\nu) := \inf \{ Q(x, \nu) \mid x \in X \} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(D_f) = 0 \) hold for all \(x \in X \). Then \(\varphi|_M \) is upper semicontinuous in \(\nu \) with respect to the relative topology of weak convergence.

\[\Phi(\nu) := \{ x \in X \mid Q(x, \nu) = \varphi(\nu) \} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(D_f) = 0 \) hold for all \(x \in X \) and \(X \) be compact. Then \(\varphi|_M \) is continuous on \(M \) and \(\Phi|_M \) is upper semicontinuous on \(M \) with respect to the relative topology of weak convergence.
Implications for stability

\[\varphi(\nu) := \inf \{ Q(x, \nu) \mid x \in X \} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(D_f) = 0 \) hold for all \(x \in X \). Then \(\varphi|_M \) is upper semicontinuous in \(\nu \) with respect to the relative topology of weak convergence.

\[\Phi(\nu) := \{ x \in X \mid Q(x, \nu) = \varphi(\nu) \} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(D_f) = 0 \) hold for all \(x \in X \) and \(X \) be compact. Then \(\varphi|_M \) is continuous on \(M \) and \(\Phi|_M \) is upper semicontinuous on \(M \) with respect to the relative topology of weak convergence.

Upper semicontinuity: For any \(\mu_0 \in M \) and any open set \(\mathcal{O} \subseteq \mathbb{R}^n \) such that \(\Phi|_M(\mu_0) \subseteq \mathcal{O} \) there exists a neighborhood \(\mathcal{N} \) of \(\mu_0 \) with respect to the topology of weak convergence such that \(\Phi|_M(\mu) \subseteq \mathcal{O} \) for all \(\mu \in \mathcal{N} \).
Implications for stability

\[\varphi(\nu) := \inf \{ Q(x, \nu) \mid x \in X \} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(D_f) = 0 \) *hold for all* \(x \in X \). *Then* \(\varphi|_M \) *is upper semicontinuous in* \(\nu \) *with respect to the relative topology of weak convergence.*

\[\Phi(\nu) := \{ x \in X \mid Q(x, \nu) = \varphi(\nu) \} \]

Corollary

In addition to the previous assumptions, let \(\delta_x \otimes \nu(D_f) = 0 \) *hold for all* \(x \in X \) *and* \(X \) *be compact. Then* \(\varphi|_M \) *is continuous on* \(M \) *and* \(\Phi|_M \) *is upper semicontinuous on* \(M \) *with respect to the relative topology of weak convergence.*

Upper semicontinuity: For any \(\mu_0 \in M \) and any open set \(\mathcal{O} \subseteq \mathbb{R}^n \) such that \(\Phi|_M(\mu_0) \subseteq \mathcal{O} \) there exists a neighborhood \(\mathcal{N} \) of \(\mu_0 \) with respect to the topology of weak convergence such that \(\Phi|_M(\mu) \subseteq \mathcal{O} \) for all \(\mu \in \mathcal{N} \).

→ **Interpretation:** The solution set does not ”explode” under small perturbations.
Thank you for your attention!