Undirected Graph Exploration with $\Theta(\log \log n)$ Pebbles

Yann D., Jan Hackfeld, Max Klimm
TU Berlin
Intro
Graph Exploration

- **agent:**
 - oblivious of graph and location
 - all vertices look the same
 - algorithm producing a color sequence
 → move strategy

- **goal:** visit all vertices

- **graph:**
 - undirected
 - regular ($\Delta = \text{const}$)
 - edge-colored
 (locally unique)
 - connected
 - starting location v
Exhaustive Search

- Is exploration possible, or can we get “trapped”?

- **obs:** some $2(n-1)$-sequence explores the graph

- **algorithm:**
 1. try next sequence
 2. backtrack
 3. repeat

- **issues:**
 - exponential runtime
 - linear memory

- **Can we do better?**
Are \(b \) bits of memory enough?
- e.g. right-hand rule for simple mazes needs \(b = O(1) \)
- in general: \(s = 2^b \) different states

again: behaviour is indep. of graph

try infinite 3-regular tree
- after \(2^b \) steps a state repeats
- close loop
 \[\rightarrow \text{“trap” of size } 2^b \text{ for one state} \]

agent needs \(b = \Omega(\log n) \) bits

[Fragniaud, Ilcinkas, Peer, Pelc, Peleg; TCS’05]
• **DFS:**
 1. try next sequence
 2. backtrack
 3. repeat

• **random walk:**
 • runtime $O(\Delta^2 n^3 \log n)$ w.h.p
 [Aleliunas, Karp, Lipton, Lovasz, Rackoff; FOCS’79]
 • constant memory

• **sophisticated, deterministic:**
 • DFS on expander
 [Reingold; J.ACM’08]
 • needs $O(\log n)$ memory

• **main issue:**
 • cannot recognise vertices
Pebbles

- **issue:**
 - cannot recognise vertices
 - If we can “mark” vertices?

- **pebbles:**
 - can be dropped, recognised, picked up

- with $\Theta(n)$ pebbles:
 - DFS with constant memory

- with $\Theta(\log n)$ pebbles:
 - simulate $\Theta(\log n)$ memory

- **Can we do with fewer?**
Results

• **question:**
 Amount of pebbles and memory to not get trapped?

• **known bounds** \((p \text{ pebbles, } s=2^b \text{ states})\):

 • If \(p = 0\), then \(b = \Theta(\log n)\) bits are necessary&sufficient

 [Fragniaud, Ilcinkas, Peer, Pelc, Peleg; TCS’05] & [Reingold; J.ACM’08]

 • \(n = O(s^{s^{s^{\ddots^{s}}}})\) \((\Theta(p) \text{ levels in the exponent})\) for exploration

 [Rollik; Acta Inf. ’80] & [Fragniaud, Ilcinkas, Rajsbaum, Tixeuil; TCS’06]

• **new results** \([D., Hackfeld, Klimm; SODA’16]\):

 • \(b=O((\log n)^{1-\epsilon})\) memory \(\Rightarrow p=\Omega(\log \log n)\) pebbles needed

 [more precisely: \(n = O(s^{8p+1})\)]

 • algorithm for \(b = p = O(\log \log n)\)
Lower Bound
Barriers

• **recall** (s states, 0 pebbles):
 • $c=s$ possible configurations
 • size $n=c$ trap for state s_0
 ⇒ size $n=c^2$ trap for any state

• **issue** (for $p>0$):
 • $c = s \cdot n^p > n$ configurations
 (state & pebble locations)

• **idea:**
 • ensure pebbles stay “close-by”
Recursive Construction

- **0-barrier** B_0:
 - $c_0 = s$ configurations, size $|B_0| = s^2$

- **1-barrier** B_1:
 - $c_1 > s$ configurations
 - replace edges of B_0 with 0-barriers
 \Rightarrow must carry pebble along
 - B_1 must work independent of which of the p pebbles we have with us
 - use p copies, one per pebble
 - $|B_1| \approx p \cdot |B_0| \cdot c_1^2$

- **r-barrier** B_r:
 - recursion $\Rightarrow |B_r| \approx \binom{p}{r} \cdot |B_{r-1}| \cdot c_r^2$

- **Result**: $|B_p| = O(s^{8p+1})$
Exploration Algorithm
Exploration Algorithm

- **recall** (0 pebbles):
 - $\Theta(\log n)$ memory is enough [Reingold; J.ACM’08]
- **idea**:
 - start with $m_0 = O(1)$ memory bits
 - run Reingold’s algorithm
 - discover $\Omega(2^{m_0})$ vertices
 - **Lemma**: get tour T with $\Omega(2^{m_0})$ vertices
 - place $a = O(1)$ pebbles along T
 - $|T|^a$ configurations
 \rightarrow encodes $m_1 = \log |T|^a \approx am_0$ memory bits
 - repeat procedure with m_1 starting bits
- **after $\log \log n$ steps**:
 - $a^{\log \log n} = \Omega(\log n)$ memory bits \rightarrow enough
 - **Lemma**: steps take $O(1)$ pebbles&memory
- **Result**: expl. with $O(\log \log n)$ pebbles&memory
Summary
If you don’t want to get lost, take

$\Theta(\log n)$ memory

or

$\Theta(\log \log n)$ pebbles (& memory).

Thank you!