## On Rational Polytopes with Chvátal Rank 1

#### Dabeen Lee

Tepper School of Business, Carnegie Mellon University

January 9, 2017

(Joint work with Gérard Cornuéjols and Yanjun Li)





Given a rational polyhedron  $P:=\{x\in\mathbb{R}^n:\,Ax\leq b\}$  where  $A\in\mathbb{Q}^{m\times n}$  and  $b\in\mathbb{Q}^m$ , decide whether  $P\cap\mathbb{Z}^n=\emptyset$ .



Given a rational polyhedron  $P:=\{x\in\mathbb{R}^n:\ Ax\leq b\}$  where  $A\in\mathbb{Q}^{m\times n}$  and  $b\in\mathbb{Q}^m$ , decide whether  $P\cap\mathbb{Z}^n=\emptyset$ .

• It is a classical NP-complete problem!



Given a rational polyhedron  $P:=\{x\in\mathbb{R}^n:\ Ax\leq b\}$  where  $A\in\mathbb{Q}^{m\times n}$  and  $b\in\mathbb{Q}^m$ , decide whether  $P\cap\mathbb{Z}^n=\emptyset$ .

- It is a classical NP-complete problem!
- We still hope to find a "meaningful class" of easy instances.



Given a rational polyhedron  $P:=\{x\in\mathbb{R}^n: Ax\leq b\}$  where  $A\in\mathbb{Q}^{m\times n}$  and  $b\in\mathbb{Q}^m$ , decide whether  $P\cap\mathbb{Z}^n=\emptyset$ .

- It is a classical NP-complete problem!
- We still hope to find a "meaningful class" of easy instances.
- What makes integer programming hard?

$$P':=\bigcap_{c\in\mathbb{Z}^n}\{x\in\mathbb{R}^n:\ cx\leq\lfloor\max\{cy:\ y\in P\}\rfloor\}$$

$$P':=\bigcap_{c\in\mathbb{Z}^n}\{x\in\mathbb{R}^n:\ cx\leq\lfloor\max\{cy:\ y\in P\}\rfloor\}$$

• The kth closure of P is defined as

$$P^{(k)} := \underbrace{((P')' \cdots)'}_{k}$$

$$P':=\bigcap_{c\in\mathbb{Z}^n}\{x\in\mathbb{R}^n:\ cx\leq\lfloor\max\{cy:\ y\in P\}\rfloor\}$$

• The kth closure of P is defined as

$$P^{(k)} := \underbrace{((P')' \cdots)'}_{k}$$

## Theorem [Chvátal, 1973, Schrijver, 1980]

Let P be a rational polyhedron. There exists a positive integer k such that  $P^{(k)} = P_l$ .

$$P':=\bigcap_{c\in\mathbb{Z}^n}\{x\in\mathbb{R}^n:\ cx\leq\lfloor\max\{cy:\ y\in P\}\rfloor\}$$

• The kth closure of P is defined as

$$P^{(k)} := \underbrace{((P')' \cdots)'}_{k}$$

## Theorem [Chvátal, 1973, Schrijver, 1980]

Let P be a rational polyhedron. There exists a positive integer k such that  $P^{(k)} = P_1$ .

• The Chvátal rank of P is the smallest integer k such that  $P^{(k)} = P_I$ .

Chvátal rank measures how "close" a polyhedron is to its integer hull.



Chvátal rank measures how "close" a polyhedron is to its integer hull.



Chvátal rank measures how "close" a polyhedron is to its integer hull.



## Question

Can we use Chvátal rank to measure computational complexity of integer programming?

• Big Chvátal rank makes integer programming hard?

- Big Chvátal rank makes integer programming hard?
- Smaller Chvátal rank implies easier integer programming?

- Big Chvátal rank makes integer programming hard?
- Smaller Chvátal rank implies easier integer programming?
- Let's look at the rational polyhedra with Chvátal rank 1.

- Big Chvátal rank makes integer programming hard?
- Smaller Chvátal rank implies easier integer programming?
- Let's look at the rational polyhedra with Chvátal rank 1.

#### Question

Let  $P \subset \mathbb{R}^n$  be a rational polyhedron with Chvátal rank 1. Can we decide whether  $P \cap \mathbb{Z}^n = \emptyset$  in polynomial time?

- Big Chvátal rank makes integer programming hard?
- Smaller Chvátal rank implies easier integer programming?
- Let's look at the rational polyhedra with Chvátal rank 1.

#### Question

Let  $P \subset \mathbb{R}^n$  be a rational polyhedron with Chvátal rank 1. Can we decide whether  $P \cap \mathbb{Z}^n = \emptyset$  in polynomial time?

• Does the Chvátal rank 1 condition make any differences?

- Big Chvátal rank makes integer programming hard?
- Smaller Chvátal rank implies easier integer programming?
- Let's look at the rational polyhedra with Chvátal rank 1.

#### Question

Let  $P \subset \mathbb{R}^n$  be a rational polyhedron with Chvátal rank 1. Can we decide whether  $P \cap \mathbb{Z}^n = \emptyset$  in polynomial time?

- Does the Chvátal rank 1 condition make any differences?
- In fact, this problem belongs to NP ∩ co-NP. [Boyd and Pulleyblank, 2009]

- Big Chvátal rank makes integer programming hard?
- Smaller Chvátal rank implies easier integer programming?
- Let's look at the rational polyhedra with Chvátal rank 1.

#### Question

Let  $P \subset \mathbb{R}^n$  be a rational polyhedron with Chvátal rank 1. Can we decide whether  $P \cap \mathbb{Z}^n = \emptyset$  in polynomial time?

- Does the Chvátal rank 1 condition make any differences?
- In fact, this problem belongs to NP ∩ co-NP. [Boyd and Pulleyblank, 2009]
- This is the main motivation.

## Example: Satisfiability problem

## Satisfiability problem with Chvátal rank 1

Formula in conjunctive normal form Polytope in  $[0,1]^n$ 

## Example: Satisfiability problem

## Satisfiability problem with Chvátal rank 1

Formula in conjunctive normal form Polytope in  $[0,1]^n$ 

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4)$$

Formula in conjunctive normal form

Polytope in 
$$[0,1]^n$$

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4)$$

$$\begin{cases} x \in [0,1]^4 : x_1 + (1-x_2) + x_3 & \geq 1, \\ (1-x_3) + x_4 & \geq 1 \end{cases}$$

Formula in conjunctive normal form

Polytope in  $[0,1]^n$ 

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4)$$
 
$$\{x \in [0,1]^4 : x_1 + (1-x_2) + x_3 \ge 1,$$
 
$$(1-x_3) + x_4 \ge 1 \}$$

• We say a formula has Chvátal rank 1 if the corresponding polytope does.

Formula in conjunctive normal form

Polytope in 
$$[0,1]^n$$

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4)$$
 
$$\{x \in [0,1]^4 : x_1 + (1-x_2) + x_3 \ge 1,$$
 
$$(1-x_3) + x_4 \ge 1 \}$$

- We say a formula has Chvátal rank 1 if the corresponding polytope does.
- Given a Chvátal rank 1 formula, decide whether it has a satisfying assignment.

Formula in conjunctive normal form

Polytope in  $[0,1]^n$ 

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4)$$
 
$$\{x \in [0,1]^4 : x_1 + (1-x_2) + x_3 \ge 1,$$
 
$$(1-x_3) + x_4 \ge 1 \}$$

- We say a formula has Chvátal rank 1 if the corresponding polytope does.
- Given a Chvátal rank 1 formula, decide whether it has a satisfying assignment.

## Theorem [Cornuéjols, Lee, and Li, 2016]

Let  $\varphi$  be a Chvátal rank 1 formula with at least 3 variables in each clause. There is a polynomial algorithm to decide satisfiability of  $\varphi$ .

Let us look at more general problem.



Let us look at more general problem.



If a polyhedron is not "flat", it will contain an integer point.

Let us look at more general problem.



If a polyhedron is not "flat", it will contain an integer point.

How do you measure "flatness"?

Let  $d \in \mathbb{Z}^n \setminus \{0\}$  be a nonzero integer vector.

# Integer width

Let  $d \in \mathbb{Z}^n \setminus \{0\}$  be a nonzero integer vector.

 $\mathbb{Z}^n$  can be decomposed into parallel hyperplanes all orthogonal to d.

Let  $d \in \mathbb{Z}^n \setminus \{0\}$  be a nonzero integer vector.

 $\mathbb{Z}^n$  can be decomposed into parallel hyperplanes all orthogonal to d.



Let  $d \in \mathbb{Z}^n \setminus \{0\}$  be a nonzero integer vector.

 $\mathbb{Z}^n$  can be decomposed into parallel hyperplanes all orthogonal to d.







The integer width of P along d is

$$\lfloor \max\{dx:\ x\in P\}\rfloor - \lceil \min\{dx:\ x\in P\}\rceil + 1.$$



The integer width of P along d is

$$\left\lfloor \max\{dx:\ x\in P\}\right\rfloor - \left\lceil \min\{dx:\ x\in P\}\right\rceil + 1.$$

The integer width of P is

$$\inf_{d\in\mathbb{Z}^n\setminus\{0\}}\lfloor\max\{dx:\ x\in P\}\rfloor-\lceil\min\{dx:\ x\in P\}\rceil+1.$$



• In this figure, the integer width of P along d is 3.



- In this figure, the integer width of P along d is 3.
- You can check that the integer width of *P* is 2.



- In this figure, the integer width of P along d is 3.
- You can check that the integer width of P is 2.
- Integer width indeed measures "flatness" of a polyhedron.

# Flatness theorem

Is a polyhedron containing no integer point "flat" (in at least one direction)?

Is a polyhedron containing no integer point "flat" (in at least one direction)?



Is a polyhedron containing no integer point "flat" (in at least one direction)?



## Theorem [Rudelson, 2000]

Let  $K \subset \mathbb{R}^n$  be a compact convex set.

Is a polyhedron containing no integer point "flat" (in at least one direction)?



## Theorem [Rudelson, 2000]

Let  $K \subset \mathbb{R}^n$  be a compact convex set. Then, either K contains an integer point or the integer width of K is  $O\left(n^{\frac{4}{3}}\operatorname{polylog}(n)\right)$ .





# Theorem [Cornuéjols, Lee, and Li, 2016]

Let  $K \subset \mathbb{R}^n$  be a closed convex set whose Chvátal closure is equal to its integer hull.



# Theorem [Cornuéjols, Lee, and Li, 2016]

Let  $K \subset \mathbb{R}^n$  be a closed convex set whose Chvátal closure is equal to its integer hull. Then, K contains an integer point or the integer width of K is at most n.



# Theorem [Cornuéjols, Lee, and Li, 2016]

Let  $K \subset \mathbb{R}^n$  be a closed convex set whose Chvátal closure is equal to its integer hull. Then, K contains an integer point or the integer width of K is at most n.

• There exists a polytope whose Chvátal closure is empty with its integer width exactly n-1.

The flatness theorem implies the existence of a 2<sup>O(n)</sup> n<sup>n</sup> time Lenstra-type algorithm to solve the integer feasibility problem over a given rational polyhedron with Chvátal rank 1.

- The flatness theorem implies the existence of a  $2^{O(n)} n^n$  time Lenstra-type algorithm to solve the integer feasibility problem over a given rational polyhedron with Chvátal rank 1.
- It does not improve Dadush's algorithm for integer programming over general convex sets.

- The flatness theorem implies the existence of a 2<sup>O(n)</sup> n<sup>n</sup> time Lenstra-type algorithm to solve the integer feasibility problem over a given rational polyhedron with Chvátal rank 1.
- It does not improve Dadush's algorithm for integer programming over general convex sets.
- We cannot improve the bound on the integer width of a closed convex set whose Chvátal closure is empty (It is really tight).

- The flatness theorem implies the existence of a 2<sup>O(n)</sup> n<sup>n</sup> time Lenstra-type algorithm to solve the integer feasibility problem over a given rational polyhedron with Chvátal rank 1.
- It does not improve Dadush's algorithm for integer programming over general convex sets.
- We cannot improve the bound on the integer width of a closed convex set whose Chvátal closure is empty (It is really tight).
- Is there another way to get a better algorithm?

# Difficulty

We are analyzing difference between IP over a general polyhedron and IP over a Chvátal rank 1 polyhedron.

# Difficulty

We are analyzing difference between IP over a general polyhedron and IP over a Chvátal rank 1 polyhedron.

The only information about Chvátal rank 1 polyhedra we have is a better bound on the integer width.

The only information about Chvátal rank 1 polyhedra we have is a better bound on the integer width.

Can we use more information about Chvátal rank 1 polyhedra?

The only information about Chvátal rank 1 polyhedra we have is a better bound on the integer width.

- Can we use more information about Chvátal rank 1 polyhedra?
- Can we even characterize Chvátal rank 1 polyhedra?

The only information about Chvátal rank 1 polyhedra we have is a better bound on the integer width.

- Can we use more information about Chvátal rank 1 polyhedra?
- Can we even characterize Chvátal rank 1 polyhedra?

### Question

Is there a characterization of Chvátal rank 1 polyhedra which can be efficiently checked?

The only information about Chvátal rank 1 polyhedra we have is a better bound on the integer width.

- Can we use more information about Chvátal rank 1 polyhedra?
- Can we even characterize Chvátal rank 1 polyhedra?

### Question

Is there a characterization of Chvátal rank 1 polyhedra which can be efficiently checked?

• This is the second topic of this talk.

# Hardness results

However, the answer is probably NO!

## Theorem [Cornuéjols and Li, 2016]

Let  $P \subset \mathbb{R}^n$  be a rational polytope. Even when  $P_I = \emptyset$ , the problem of deciding whether  $P' = P_I$  is NP-hard.

## Theorem [Cornuéjols and Li, 2016]

Let  $P \subset \mathbb{R}^n$  be a rational polytope. Even when  $P_I = \emptyset$ , the problem of deciding whether  $P' = P_I$  is NP-hard.

In fact,

## Theorem [Cornuéjols and Li, 2016]

Let  $P \subset \mathbb{R}^n$  be a rational polytope. Even when  $P_I = \emptyset$ , the problem of deciding whether  $P' = P_I$  is NP-hard.

In fact,

# Theorem [Cornuéjols, Lee, and Li, 2016]

 Let P ⊆ [0, 1]<sup>n</sup> be a rational polytope. Even when P<sub>I</sub> = ∅, the problem of deciding whether P' = P<sub>I</sub> is NP-hard.

### Theorem [Cornuéjols and Li, 2016]

Let  $P \subset \mathbb{R}^n$  be a rational polytope. Even when  $P_I = \emptyset$ , the problem of deciding whether  $P' = P_I$  is NP-hard.

In fact,

# Theorem [Cornuéjols, Lee, and Li, 2016]

- Let P ⊆ [0, 1]<sup>n</sup> be a rational polytope. Even when P<sub>I</sub> = ∅, the problem of deciding whether P' = P<sub>I</sub> is NP-hard.
- Let P ⊂ ℝ<sup>n</sup> be a rational simplex. Even when P<sub>I</sub> = ∅, the problem of deciding whether P' = P<sub>I</sub> is NP-hard.

# Hardness results

As a result,

# Corollary [Cornuéjols, Lee, and Li, 2016]

• Given a rational polytope  $P \subseteq [0,1]^n$ ,

# Corollary [Cornuéjols, Lee, and Li, 2016]

 Given a rational polytope P ⊆ [0,1]<sup>n</sup>, the separation and optimization problems of the Chvátal closure over P are NP-hard.

# Corollary [Cornuéjols, Lee, and Li, 2016]

- Given a rational polytope  $P \subseteq [0,1]^n$ , the separation and optimization problems of the Chvátal closure over P are NP-hard.
- Given a rational simplex  $P \subset \mathbb{R}^n$ ,

# Corollary [Cornuéjols, Lee, and Li, 2016]

- Given a rational polytope P ⊆ [0,1]<sup>n</sup>, the separation and optimization problems of the Chvátal closure over P are NP-hard.
- Given a rational simplex  $P \subset \mathbb{R}^n$ , the separation and optimization problems of the Chvátal closure over P are NP-hard.

# Theorem [Cornuéjols, Lee, and Li, 2016]

Let  $P \subseteq [0,1]^n$  be a rational polytope. Even when  $P_I = \emptyset$ , the problem of deciding whether  $P' = P_I$  is NP-complete.

#### Proof.

Let  $a_1, \ldots, a_n, b$  be positive integers such that  $1 \le a_1, \ldots, a_n < b$ .

# Theorem [Cornuéjols, Lee, and Li, 2016]

Let  $P \subseteq [0,1]^n$  be a rational polytope. Even when  $P_I = \emptyset$ , the problem of deciding whether  $P' = P_I$  is NP-complete.

### Proof.

Let  $a_1, \ldots, a_n, b$  be positive integers such that  $1 \le a_1, \ldots, a_n < b$ .

## Equality Knapsack Problem

Let 
$$Q := \{x \in \mathbb{Z}^n : \sum_{i=1}^n a_i x_i = b, x \ge 0\}$$
. Decide whether  $Q \ne \emptyset$ .

# Theorem [Cornuéjols, Lee, and Li, 2016]

Let  $P \subseteq [0,1]^n$  be a rational polytope. Even when  $P_1 = \emptyset$ , the problem of deciding whether  $P' = P_I$  is NP-complete.

### Proof.

Let  $a_1, \ldots, a_n, b$  be positive integers such that  $1 \le a_1, \ldots, a_n < b$ .

### Equality Knapsack Problem

Let  $Q := \{x \in \mathbb{Z}^n : \sum_{i=1}^n a_i x_i = b, x \ge 0\}$ . Decide whether  $Q \ne \emptyset$ .

- This problem is NP-complete.
- We are going to construct a 0,1 polytope  $P \subseteq [0,1]^{n+4}$  such that  $P_I = \emptyset$ using the data  $a_1, \ldots, a_n, b$ .
- Then, we will prove that  $P' = \emptyset$  if and only if  $Q \neq \emptyset$ .



#### Proof.

### Proof.

Let  $P := \text{conv}\{v^1, \dots, v^{n+10}\}.$ 

#### Proof.

Let  $P := \text{conv}\{v^1, \dots, v^{n+10}\}$ . We get a linear description for P in polytime.

#### Proof.

Let  $P := \text{conv}\{v^1, \dots, v^{n+10}\}$ . We get a linear description for P in polytime.  $P' = \emptyset$  if and only if  $Q \neq \emptyset$ .

## Hardness results

In addition,

# Theorem [Cornuéjols, Lee, and Li, 2016]

• Given a rational polytope  $P \subseteq [0,1]^n$ ,

# Theorem [Cornuéjols, Lee, and Li, 2016]

Given a rational polytope P ⊆ [0,1]<sup>n</sup>, deciding whether adding at most 1
 Chvátal inequality is sufficient to describe its integer hull is NP-hard.

### Theorem [Cornuéjols, Lee, and Li, 2016]

- Given a rational polytope P ⊆ [0,1]<sup>n</sup>, deciding whether adding at most 1
   Chvátal inequality is sufficient to describe its integer hull is NP-hard.
- Given a rational simplex  $P \subset \mathbb{R}^n$ ,

## Theorem [Cornuéjols, Lee, and Li, 2016]

- Given a rational polytope P ⊆ [0,1]<sup>n</sup>, deciding whether adding at most 1
   Chvátal inequality is sufficient to describe its integer hull is NP-hard.
- Given a rational simplex  $P \subset \mathbb{R}^n$ , deciding whether adding at most 1 Chvátal inequality is sufficient to describe its integer hull is NP-hard.

## Theorem [Cornuéjols, Lee, and Li, 2016]

- Given a rational polytope P ⊆ [0, 1]<sup>n</sup>, deciding whether adding at most 1
   Chvátal inequality is sufficient to describe its integer hull is NP-hard.
- Given a rational simplex P ⊂ ℝ<sup>n</sup>, deciding whether adding at most 1
   Chvátal inequality is sufficient to describe its integer hull is NP-hard.
- These hardness results imply that we should not expect to find a "simple" characterization of polyhedra with Chvátal rank 1.

#### Final remark

• However, meaningful algorithmic "properties" of Chvátal rank 1 polyhedra have not been studied (widely open).

#### Final remark

- However, meaningful algorithmic "properties" of Chvátal rank 1 polyhedra have not been studied (widely open).
- More information will lead to better algorithm.

- However, meaningful algorithmic "properties" of Chvátal rank 1 polyhedra have not been studied (widely open).
- More information will lead to better algorithm.
- We need better understanding about Chvátal rank 1 polyhedra.

Thank you for your attention!

Paper available on (integer.tepper.cmu.edu)



Facet Generating Techniques, pages 33–55.

Springer Berlin Heidelberg, Berlin, Heidelberg.



Edmonds polytopes and a hierarchy of combinatorial problems.

Discrete Mathematics, 4(4):305 – 337.



Deciding emptiness of the Gomory-Chvátal closure is NP-complete, even for a rational polyhedron containing no integer point.

In Louveaux, Q. and Skutella, M., editors, *Proceedings of the 18th International Conference on Integer Programming and Combinatorial Optimization*, pages 387–397. Springer.



Enumerative lattice algorithms in any norm via  $\emph{M}$ -ellipsoid coverings.

In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pages 580–589. IEEE.

Rudelson, M. (2000).

Distances between non-symmetric convex bodies and the  $mm^*$ -estimate. Positivity, 4(2):161-178.



On cutting planes.

Annals of Discrete Mathematics, 9:291 - 296.