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Integer programming

Integer programming feasibility problem

P1 P2

Given a rational polyhedron P := {x ∈ Rn : Ax ≤ b} where A ∈ Qm×n and
b ∈ Qm, decide whether P ∩ Zn = ∅.

• It is a classical NP-complete problem!

• We still hope to find a “meaningful class” of easy instances.

• What makes integer programming hard?
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Chvátal closure

• The Chvátal closure of a rational polyhedron P = {x ∈ Rn : Ax ≤ b} is
defined as

P ′ :=
⋂
c∈Zn

{x ∈ Rn : cx ≤ bmax{cy : y ∈ P}c}

• The kth closure of P is defined as

P(k) := ((P ′)′ · · · )′︸ ︷︷ ︸
k

Theorem [Chvátal, 1973, Schrijver, 1980]

Let P be a rational polyhedron. There exists a positive integer k such that
P(k) = PI .

• The Chvátal rank of P is the smallest integer k such that P(k) = PI .
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• The Chvátal rank of P is the smallest integer k such that P(k) = PI .

Dabeen Lee On Rational Polytopes with Chvátal Rank 1
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Chvátal closure

Chvátal rank measures how “close” a polyhedron is to its integer hull.

P
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6/23
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Question

Can we use Chvátal rank to measure computational complexity of integer
programming?

• Big Chvátal rank makes integer programming hard?

• Smaller Chvátal rank implies easier integer programming?

• Let’s look at the rational polyhedra with Chvátal rank 1.

Question

Let P ⊂ Rn be a rational polyhedron with Chvátal rank 1. Can we decide
whether P ∩ Zn = ∅ in polynomial time?

• Does the Chvátal rank 1 condition make any differences?

• In fact, this problem belongs to NP∩ co-NP. [Boyd and Pulleyblank, 2009]

• This is the main motivation.
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whether P ∩ Zn = ∅ in polynomial time?
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whether P ∩ Zn = ∅ in polynomial time?
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• Smaller Chvátal rank implies easier integer programming?

• Let’s look at the rational polyhedra with Chvátal rank 1.
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Example: Satisfiability problem

Satisfiability problem with Chvátal rank 1

Formula in conjunctive normal form Polytope in [0, 1]n

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ x4)
{x ∈ [0, 1]4 : x1 + (1− x2) + x3 ≥ 1,

(1− x3) + x4 ≥ 1}

• We say a formula has Chvátal rank 1 if the corresponding polytope does.

• Given a Chvátal rank 1 formula, decide whether it has a satisfying
assignment.

Theorem [Cornuéjols, Lee, and Li, 2016]

Let ϕ be a Chvátal rank 1 formula with at least 3 variables in each clause.
There is a polynomial algorithm to decide satisfiability of ϕ.
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Formula in conjunctive normal form Polytope in [0, 1]n

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ x4)

{x ∈ [0, 1]4 : x1 + (1− x2) + x3 ≥ 1,
(1− x3) + x4 ≥ 1}
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General problem

Let us look at more general problem.

P1 P2

If a polyhedron is not “flat”, it will contain an integer point.

How do you measure “flatness”?
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Integer width

Let d ∈ Zn \ {0} be a nonzero integer vector.

Zn can be decomposed into parallel hyperplanes all orthogonal to d .

d ∈ Zn \ {0}

dx = k k + 1 k + 2 k + 3 k + 4

P
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Integer width

d ∈ Zn \ {0}

dx = k k + 1 k + 2 k + 3 k + 4

P

The integer width of P along d is

bmax{dx : x ∈ P}c − dmin{dx : x ∈ P}e+ 1.

The integer width of P is

infd∈Zn\{0}bmax{dx : x ∈ P}c − dmin{dx : x ∈ P}e+ 1.
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Integer width

d ∈ Zn \ {0}

dx = k k + 1 k + 2 k + 3 k + 4

P

• In this figure, the integer width of P along d is 3.

• You can check that the integer width of P is 2.

• Integer width indeed measures “flatness” of a polyhedron.
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Flatness theorem

Is a polyhedron containing no integer point “flat” (in at least one direction)?

P1 P2

Theorem [Rudelson, 2000]

Let K ⊂ Rn be a compact convex set. Then, either K contains an integer point

or the integer width of K is O
(
n

4
3 polylog(n)

)
.
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Flatness theorem

Is a Chvátal rank 1 polyhedron containing no integer point “more flat” than
general lattice-free convex sets?

P1 P2

Theorem [Cornuéjols, Lee, and Li, 2016]

Let K ⊂ Rn be a closed convex set whose Chvátal closure is equal to its integer
hull. Then, K contains an integer point or the integer width of K is at most n.

• There exists a polytope whose Chvátal closure is empty with its integer
width exactly n − 1.
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Theorem [Cornuéjols, Lee, and Li, 2016]

Let K ⊂ Rn be a closed convex set whose Chvátal closure is equal to its integer
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14/23

Flatness theorem
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Remark

Remark

• The flatness theorem implies the existence of a 2O(n)nn time Lenstra-type
algorithm to solve the integer feasibility problem over a given rational
polyhedron with Chvátal rank 1.

• It does not improve Dadush’s algorithm for integer programming over
general convex sets.

• We cannot improve the bound on the integer width of a closed convex set
whose Chvátal closure is empty (It is really tight).

• Is there another way to get a better algorithm?
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• It does not improve Dadush’s algorithm for integer programming over
general convex sets.

• We cannot improve the bound on the integer width of a closed convex set
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Difficulty

We are analyzing difference between IP over a general polyhedron and IP over
a Chvátal rank 1 polyhedron.

The only information about Chvátal rank 1 polyhedra we have is a better
bound on the integer width.

• Can we use more information about Chvátal rank 1 polyhedra?

• Can we even characterize Chvátal rank 1 polyhedra?

Question

Is there a characterization of Chvátal rank 1 polyhedra which can be efficiently
checked?

• This is the second topic of this talk.
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Question
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Question
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Question
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Is there a characterization of Chvátal rank 1 polyhedra which can be efficiently
checked?

• This is the second topic of this talk.

Dabeen Lee On Rational Polytopes with Chvátal Rank 1
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Hardness results

However, the answer is probably NO!

Theorem [Cornuéjols and Li, 2016]

Let P ⊂ Rn be a rational polytope. Even when PI = ∅, the problem of deciding
whether P ′ = PI is NP-hard.

In fact,

Theorem [Cornuéjols, Lee, and Li, 2016]

• Let P ⊆ [0, 1]n be a rational polytope. Even when PI = ∅, the problem of
deciding whether P ′ = PI is NP-hard.

• Let P ⊂ Rn be a rational simplex. Even when PI = ∅, the problem of
deciding whether P ′ = PI is NP-hard.
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Hardness results

As a result,

Corollary [Cornuéjols, Lee, and Li, 2016]

• Given a rational polytope P ⊆ [0, 1]n, the separation and optimization
problems of the Chvátal closure over P are NP-hard.

• Given a rational simplex P ⊂ Rn, the separation and optimization
problems of the Chvátal closure over P are NP-hard.
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Reduction

Theorem [Cornuéjols, Lee, and Li, 2016]

Let P ⊆ [0, 1]n be a rational polytope. Even when PI = ∅, the problem of
deciding whether P ′ = PI is NP-complete.

Proof.

Let a1, . . . , an, b be positive integers such that 1 ≤ a1, . . . , an < b.

Equality Knapsack Problem

Let Q := {x ∈ Zn :
∑n

i=1 aixi = b, x ≥ 0}. Decide whether Q 6= ∅.

• This problem is NP-complete.

• We are going to construct a 0,1 polytope P ⊆ [0, 1]n+4 such that PI = ∅
using the data a1, . . . , an, b.

• Then, we will prove that P ′ = ∅ if and only if Q 6= ∅.
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Reduction

Proof.

1 · · · n n + 1 n + 2 n + 3 n + 4
v 1 = ( 1

2b
, · · · , 0, 0, 1

2b
, 0, 0 )

...
vn = ( 0, · · · , 1

2b
, 0, 1

2b
, 0, 0 )

vn+1 = ( 0, · · · , 0, 0, 1/2, 1/2, 1/2 )
vn+2 = ( 1, · · · , 1, 1, 1/2, 1/2, 1/2 )
vn+3 = ( 1/2, · · · , 1/2, 1/2, 1, 1, 1 )
vn+4 = ( 1/4, · · · , 1/4, 1/4, 1/4, 1/4, 1/4 )
vn+5 = ( 1/2, · · · , 1/2, 1/2, 1, 1, 1/2 )
vn+6 = ( 1/2, · · · , 1/2, 1/2, 0, 0, 1/2 )
vn+7 = ( 1/2, · · · , 1/2, 1/2, 1/2, 1, 1 )
vn+8 = ( 1/2, · · · , 1/2, 1/2, 1/2, 0, 0 )
vn+9 = ( a1

2b
, · · · , an

2b
, 0, 0, 1

2
− 1

4b
, 0 )

vn+10 = ( 1− a1
2b
, · · · , 1− an

2b
, 1, 1

2
+ 1

4b
, 0, 0 )

Let P := conv{v 1, . . . , vn+10}. We get a linear description for P in
polytime. P ′ = ∅ if and only if Q 6= ∅.
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Hardness results

In addition,

Theorem [Cornuéjols, Lee, and Li, 2016]

• Given a rational polytope P ⊆ [0, 1]n, deciding whether adding at most 1
Chvátal inequality is sufficient to describe its integer hull is NP-hard.

• Given a rational simplex P ⊂ Rn, deciding whether adding at most 1
Chvátal inequality is sufficient to describe its integer hull is NP-hard.

• These hardness results imply that we should not expect to find a “simple”
characterization of polyhedra with Chvátal rank 1.
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Chvátal inequality is sufficient to describe its integer hull is NP-hard.

• Given a rational simplex P ⊂ Rn,

deciding whether adding at most 1
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Chvátal inequality is sufficient to describe its integer hull is NP-hard.

• Given a rational simplex P ⊂ Rn, deciding whether adding at most 1
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Final remark

• However, meaningful algorithmic “properties” of Chvátal rank 1 polyhedra
have not been studied (widely open).

• More information will lead to better algorithm.

• We need better understanding about Chvátal rank 1 polyhedra.
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Thank you for your attention!

Paper available on (integer.tepper.cmu.edu)
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