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BOUNDED CHVÁTAL-GOMORY RANK

Yohann Benchetrit, Samuel Fiorini, Tony Huynh

Université Libre de Bruxelles

Stefan Weltge

ETH Zürich



Cutting-plane proofs and
Chvátal-Gomory closures



Cutting-plane proofs

Given a polytope R = {x ∈ Rn : Ax ≤ b} with S = R ∩ Zn, how
can we prove that a certain linear inequality is valid for S?

Cutting-plane proof

Start with Ax ≤ b, and iteratively

· add a conic combination of previous inequalitites, and

· possibly round down its right-hand side if the left-hand side
has only integer coefficients.

Gomory 1958

Every linear inequality that is valid for S
can be obtained after a finite number of
iterations.



Cutting-plane proofs (2)

Example

x1 + x2 ≤ 1, x2 + x3 ≤ 1, x3 + x4 ≤ 1, x4 + x5 ≤ 1, x1 + x5 ≤ 1

⇒ 2x1 + · · ·+ 2x5 ≤ 5

⇒ x1 + · · ·+ x5 ≤ 2.5

⇒ x1 + · · ·+ x5 ≤ b2.5c = 2



Chvátal-Gomory

Definition

Given a polytope P ⊆ Rn, the first Chvátal-Gomory (CG) closure
of P is

P ′ := {x ∈ Rn : cᵀx ≥ dmin
y∈P

cᵀye ∀ c ∈ Zn}

P(0) := P, P(t) := (P(t−1))′ is the t-th CG closure of P.

Definition

The smallest t such that P(t) = conv(P ∩Zn) is the CG-rank of P.

Chvátal 1973

The CG-rank of every polytope is finite.



Chvátal-Gomory (2)

Fact

Let R ⊆ Rn be a polytope R with CG-rank k . Then every linear
inequality that is valid for S := R ∩Zn has a cutting-plane proof of
length at most

(nk+1 − 1)/(n − 1).

Fact

Even if we fix S = {(0, 0), (0, 1)} ⊆ R2, the CG-rank of R can be
arbitarily large.

. . . but not if R ⊆ [0, 1]n!



Reverse CG-rank

Definition

For S ⊆ {0, 1}n let cgr(S) denote the largest CG-rank of a
polytope R ⊆ [0, 1]n with R ∩ Zn = S .

Similar to Conforti, Del Pia, Di Summa, Faenza, Grappe (SIAM J. Discrete Math,

2015), but here we restrict to polytopes in [0, 1]n

Eisenbrand, Schulz 2003

Let S ⊆ {0, 1}n. Then cgr(S) ≤ O(n2 log n).

Rothvoß, Sanità 2013

There exist S ⊆ {0, 1}n with cgr(S) ≥ Ω(n2).



Today: What properties of S ⊆ {0, 1}n ensure that
cgr(S) is bounded by a constant?



Previous work

· S̄ := {0, 1}n \ S
· H[S̄ ] := undirected graph with vertices S̄ , two vertices are

adjacent iff they differ in one coordinate

Easy

If H[S̄ ] is a stable set, then cgr(S) ≤ 1.

Cornuéjols, Lee 2016

If H[S̄ ] is a forest, then cgr(S) ≤ 3.

Cornuéjols, Lee 2016

If the treewidth of H[S̄ ] is at most 2, then cgr(S) ≤ 4.



What makes cgr(S) large?



First parameter

A large pitch!

Definition

The pitch of S ⊆ {0, 1}n is the smallest number p ∈ Z≥0 such that
every p-dimensional face of [0, 1]n intersects S .

(If the pitch is p, there is a p − 1-dimensional face of [0, 1]n

disjoint from S)

Fact

If S ⊆ {0, 1}n with pitch p, then cgr(S) ≥ p − 1.



Second parameter

Large coefficients!

Definition

The gap of S ⊆ {0, 1}n is the smallest number ∆ ∈ Z≥0 such that
conv(S) can be described by inequalities of the form∑

i∈I
cixi +

∑
j∈J

cj(1− xj) ≥ δ

with I , J ⊆ [n] disjoint, δ, c1, . . . , cn ∈ Z≥0 with δ ≤ ∆.

Fact

If S ⊆ {0, 1}n with gap ∆, then cgr(S) ≥ log ∆
log n − 1.



Second parameter (2)

Proof ingredients:

Easy

For every S ⊆ {0, 1}n, there exists a polytope R ⊆ [0, 1]n with
R ∩ Zn = S such that R can be described by linear inequalities
with coefficients in {−1, 0, 1}.

Lemma

Let P = {x ∈ Rn | Ax ≥ b}, where A ∈ Zm×n and b ∈ Zm.
Letting P ′ denote the first CG-closure of P, there is a description
P ′ = {x ∈ Rn | Bx ≥ c} with B and c integer such that
||B||∞ ≤ n||A||∞.



Our main result

Theorem

If S ⊆ {0, 1}n with pitch p and gap ∆, then

cgr(S) ≤ p + ∆− 1.

Corollary

Let S ⊆ {0, 1}n and let t be the treewidth of H[S̄ ]. Then

cgr(S) ≤ t + 2tt/2.



Comparing to treewidth

Bounded treewidth implies bounded pitch and gap:

Proposition

Let S ⊆ {0, 1}n with pitch p and gap ∆. If t is the treewidth of
H[S̄ ], then we have p ≤ t + 1 and ∆ ≤ 2tt/2.



Proof idea of main theorem

· induction on the rhs of the inequality to obtain

· every inequality of the form
∑

i∈I xi ≥ 1 can be obtained after
n + 1− |I | rounds of CG.

· note that n + 1− |I | ≤ p

·  all inequalities with rhs 1 can be obtained after p rounds.

· for inequalities with larger rhs, proof by example



Proof idea (2)

· suppose that 7x1 + 3x2 + 2x3 ≥ 5 is valid for S , then also

(7− 1)x1 + 3x2 + 2x3 ≥ 4

7x1 + (3− 1)x2 + 2x3 ≥ 4

7x1 + 3x2 + (2− 1)x3 ≥ 4

are valid for S

· induction: all obtained after p + 4− 1 rounds

· thus, we also already have obtained
(7− ε)x1 + (3− ε)x2 + (2− ε)x3 ≥ 4

· and therefore also 7x1 + 3x2 + 2x3 ≥ 4 + ε′

· rounding up the rhs, we obtain the desired inequality



Further properties of sets
with bounded pitch



Optimizing

Proposition

For every S ⊆ {0, 1}n with pitch p and every c ∈ Rn, the problem
min{cᵀs : s ∈ S} can be solved using O(np) oracle calls to S .

Proof:

· may assume that c1, . . . , cn ≥ 0

· note: optimal solution over {0, 1}n would be O
· claim: only need to check all vectors with support at most p



Approximating

Bounded pitch allows for fast approximation:

Corollary

Let S ⊆ {0, 1}n with pitch p and let R be any relaxation of S . Let
ε ∈ (0, 1) with pε−1 ∈ Z. If∑

i∈I
cixi +

∑
j∈J

cj(1− xj) ≥ δ

with δ ≥ c1, . . . , cn ≥ 0 is valid for S , then the inequality∑
i∈I

cixi +
∑
j∈J

cj(1− xj) ≥ (1− ε)δ

is valid for R(pε−1−1).


