POLYTOPES IN THE 0/1-CUBE WITH BOUNDED CHVÁTAL-GOMORY RANK

Yohann Benchetrit, Samuel Fiorini, Tony Huynh Université Libre de Bruxelles

Stefan Weltge ETH Zürich Cutting-plane proofs and Chvátal-Gomory closures

Cutting-plane proofs

Given a polytope $R = \{x \in \mathbb{R}^n : Ax \le b\}$ with $S = R \cap \mathbb{Z}^n$, how can we prove that a certain linear inequality is valid for *S*?

Cutting-plane proof

Start with $Ax \leq b$, and iteratively

- $\cdot\,$ add a conic combination of previous inequalitites, and
- possibly round down its right-hand side if the left-hand side has only integer coefficients.

Gomory 1958

Every linear inequality that is valid for S can be obtained after a finite number of iterations.

Cutting-plane proofs (2)

Example

 $\begin{aligned} x_1 + x_2 &\leq 1, \ x_2 + x_3 \leq 1, \ x_3 + x_4 \leq 1, \ x_4 + x_5 \leq 1, \ x_1 + x_5 \leq 1 \\ &\Rightarrow 2x_1 + \dots + 2x_5 \leq 5 \\ &\Rightarrow x_1 + \dots + x_5 \leq 2.5 \\ &\Rightarrow x_1 + \dots + x_5 \leq \lfloor 2.5 \rfloor = 2 \end{aligned}$

Chvátal-Gomory

Definition

Given a polytope $P \subseteq \mathbb{R}^n$, the first Chvátal-Gomory (CG) closure of P is

$$P' := \{ x \in \mathbb{R}^n : c^{\mathsf{T}} x \ge \lceil \min_{y \in P} c^{\mathsf{T}} y \rceil \ \forall \ c \in \mathbb{Z}^n \}$$

 $P^{(0)} := P, P^{(t)} := (P^{(t-1)})'$ is the *t*-th CG closure of *P*.

Definition

The smallest t such that $P^{(t)} = \operatorname{conv}(P \cap \mathbb{Z}^n)$ is the <u>CG-rank</u> of P.

Chvátal 1973

The CG-rank of every polytope is finite.

Chvátal-Gomory (2)

Fact

Let $R \subseteq \mathbb{R}^n$ be a polytope R with CG-rank k. Then every linear inequality that is valid for $S := R \cap \mathbb{Z}^n$ has a cutting-plane proof of length at most

 $(n^{k+1}-1)/(n-1).$

Fact

Even if we fix $S = \{(0,0), (0,1)\} \subseteq \mathbb{R}^2$, the CG-rank of R can be arbitarily large.

... but not if $R \subseteq [0, 1]^n!$

Reverse CG-rank

Definition

For $S \subseteq \{0,1\}^n$ let cgr(S) denote the largest CG-rank of a polytope $R \subseteq [0,1]^n$ with $R \cap \mathbb{Z}^n = S$.

Similar to *Conforti, Del Pia, Di Summa, Faenza, Grappe (SIAM J. Discrete Math, 2015)*, but here we restrict to polytopes in $[0, 1]^n$

Eisenbrand, Schulz 2003Image: Schulz 2003Let $S \subseteq \{0,1\}^n$. Then $cgr(S) \le \mathcal{O}(n^2 \log n)$.Image: Schulz 2013Rothvoß, Sanità 2013Image: Schulz 2013There exist $S \subseteq \{0,1\}^n$ with $cgr(S) \ge \Omega(n^2)$.Image: Schulz 2013

Today: What properties of $S \subseteq \{0,1\}^n$ ensure that cgr(S) is bounded by a constant?

- $\cdot \ \bar{S} := \{0,1\}^n \setminus S$
- $H[\bar{S}] :=$ undirected graph with vertices \bar{S} , two vertices are adjacent iff they differ in one coordinate

Easy

If $H[\overline{S}]$ is a stable set, then $cgr(S) \leq 1$.

Cornuéjols, Lee 2016

If $H[\overline{S}]$ is a forest, then $cgr(S) \leq 3$.

Cornuéjols, Lee 2016

If the treewidth of $H[\overline{S}]$ is at most 2, then $cgr(S) \leq 4$.

What makes cgr(S) large?

A large pitch!

Definition

The pitch of $S \subseteq \{0,1\}^n$ is the smallest number $p \in \mathbb{Z}_{\geq 0}$ such that every *p*-dimensional face of $[0,1]^n$ intersects *S*.

(If the pitch is p, there is a p-1-dimensional face of $[0,1]^n$ disjoint from S)

Fact

If $S \subseteq \{0,1\}^n$ with pitch p, then $cgr(S) \ge p-1$.

Large coefficients!

Definition

The gap of $S \subseteq \{0,1\}^n$ is the smallest number $\Delta \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{conv}(S)$ can be described by inequalities of the form

$$\sum_{i \in I} c_i x_i + \sum_{j \in J} c_j (1 - x_j) \ge \delta$$

with $I, J \subseteq [n]$ disjoint, $\delta, c_1, \ldots, c_n \in \mathbb{Z}_{\geq 0}$ with $\delta \leq \Delta$.

Fact If $S \subseteq \{0,1\}^n$ with gap Δ , then $\operatorname{cgr}(S) \ge \frac{\log \Delta}{\log n} - 1$.

Second parameter (2)

Proof ingredients:

Easy

For every $S \subseteq \{0,1\}^n$, there exists a polytope $R \subseteq [0,1]^n$ with $R \cap \mathbb{Z}^n = S$ such that R can be described by linear inequalities with coefficients in $\{-1,0,1\}$.

Lemma

Let $P = \{x \in \mathbb{R}^n \mid Ax \ge b\}$, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$. Letting P' denote the first CG-closure of P, there is a description $P' = \{x \in \mathbb{R}^n \mid Bx \ge c\}$ with B and c integer such that $||B||_{\infty} \le n||A||_{\infty}$.

Theorem

If $S \subseteq \{0,1\}^n$ with pitch p and gap Δ , then

 $\operatorname{cgr}(S) \leq p + \Delta - 1.$

Corollary

Let $S \subseteq \{0,1\}^n$ and let t be the treewidth of $H[ar{S}]$. Then ${\sf cgr}(S) \leq t + 2t^{t/2}.$

Comparing to treewidth

Bounded treewidth implies bounded pitch and gap:

Proposition

Let $S \subseteq \{0,1\}^n$ with pitch p and gap Δ . If t is the treewidth of $H[\overline{S}]$, then we have $p \leq t+1$ and $\Delta \leq 2t^{t/2}$.

- $\cdot\,$ induction on the rhs of the inequality to obtain
- every inequality of the form $\sum_{i \in I} x_i \ge 1$ can be obtained after n + 1 |I| rounds of CG.
- \cdot note that $\textit{n}+1-|\textit{I}| \leq \textit{p}$
- $\cdot \rightsquigarrow$ all inequalities with rhs 1 can be obtained after *p* rounds.
- $\cdot\,$ for inequalities with larger rhs, proof by example

· suppose that $7x_1 + 3x_2 + 2x_3 \ge 5$ is valid for *S*, then also

$$(7-1)x_1 + 3x_2 + 2x_3 \ge 4$$

 $7x_1 + (3-1)x_2 + 2x_3 \ge 4$
 $7x_1 + 3x_2 + (2-1)x_3 \ge 4$

are valid for S

- \cdot induction: all obtained after p + 4 1 rounds
- · thus, we also already have obtained $(7 - \varepsilon)x_1 + (3 - \varepsilon)x_2 + (2 - \varepsilon)x_3 \ge 4$
- · and therefore also $7x_1 + 3x_2 + 2x_3 \ge 4 + \varepsilon'$
- $\cdot\,$ rounding up the rhs, we obtain the desired inequality

Further properties of sets with bounded pitch

Proposition

For every $S \subseteq \{0,1\}^n$ with pitch p and every $c \in \mathbb{R}^n$, the problem $\min\{c^{\mathsf{T}}s : s \in S\}$ can be solved using $\mathcal{O}(n^p)$ oracle calls to S.

Proof:

- · may assume that $c_1, \ldots, c_n \geq 0$
- \cdot note: optimal solution over $\{0,1\}^n$ would be $\mathbb O$
- \cdot claim: only need to check all vectors with support at most p

Bounded pitch allows for fast approximation:

Corollary

Let $S \subseteq \{0,1\}^n$ with pitch p and let R be any relaxation of S. Let $\varepsilon \in (0,1)$ with $p\varepsilon^{-1} \in \mathbb{Z}$. If

$$\sum_{i \in I} c_i x_i + \sum_{j \in J} c_j (1 - x_j) \ge \delta$$

with $\delta \ge c_1, \ldots, c_n \ge 0$ is valid for *S*, then the inequality

$$\sum_{i\in I} c_i x_i + \sum_{j\in J} c_j (1-x_j) \geq (1-arepsilon) \delta$$

is valid for $R^{(p\varepsilon^{-1}-1)}$.