The Aussois Shortest Path Problem (ASSP)

• After some lengthy activities at the bar, you eventually want to go to bed.
• Task: find the shortest path from the bar to your bedroom!

Researchers discussing the ASSP
The Aussois Shortest Path Problem (ASSP)

- Graph is connected
 - Anyone did not reach their bedrooms?
- Graph does not contain negative cycles
 - At least I did not see any
- Conclusion: Problem always has an optimal solution and can be solved in polynomial time
- Thus, the problem can easily be solved!?
 - NO!
 - Still unsolved since 22 years!
 - Why?
- There seems to be a disconnect between theory and practice!
The Biggest Challenge in Practice: Data

• Lack of data
 • Industry partner (Gurobi) does not deliver the data
 • Industry partner is not even aware of the fact that you are waiting for data
 • During the first 14 years of the project, your industry partner did not even exist!

• Eventually, they ask some low-level underpaid engineer (me) to generate the data
 • Yesterday night I walked multiple times through the building to draw a graph and measure distances to obtain edge lengths.

• Result of industry data collection
 • Data is incomplete
 • Doesn’t include lecture hall, lobby, restaurant and bar areas – topology just too trivial!
 • Data is wrong
 • Data was collected after having a few glasses of wine
 • Estimated distances by steps
 • Rounded lengths to integer values in some arbitrary way
 • Data comes in a format that is completely useless
 • Hand-written barely readable sheet of paper
 • Not much better: Powerpoint
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other.
- 81 bedrooms, often (but not always) two behind a common entrance door.
- 1 elevator that connects the levels.
- Graph has 74 nodes.
- Graph has about 90 edges.
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
The ASPP Graph

• Bedroom area has 11 levels that are connected in a random fashion to each other
• 81 bedrooms, often (but not always) two behind a common entrance door
• 1 elevator that connects the levels
• Graph has 74 nodes
• Graph has about 90 edges
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
The ASPP Graph

• Bedroom area has 11 levels that are connected in a random fashion to each other
• 81 bedrooms, often (but not always) two behind a common entrance door
• 1 elevator that connects the levels
• Graph has 74 nodes
• Graph has about 90 edges
The ASPP Graph

- Bedroom area has 11 levels that are connected in a random fashion to each other
- 81 bedrooms, often (but not always) two behind a common entrance door
- 1 elevator that connects the levels
- Graph has 74 nodes
- Graph has about 90 edges
From the Bar to Room 519

• My current incumbent solution:
 • Take stairs up to restaurant level
From the Bar to Room 519

- My current incumbent solution:
 - Take stairs up to restaurant level
 - Switch to level H and go down to the end
From the Bar to Room 519

- My current incumbent solution:
 - Take stairs up to restaurant level
 - Switch to level H and go down to the end
 - Switch to level E and enter my room
From the Bar to Room 519

• My current incumbent solution:
 • Take stairs up to restaurant level
 • Switch to level H and go down to the end
 • Switch to level E and enter my room

• But this is sub-optimal!

• Instead, I should:
 • Avoid the stairs, exit bar through level I
 • Switch to level H, passing the elevator
 • Go down to the end
 • Switch to level E and enter my room
 • Most importantly: don't get lost on my way!