Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel Machine Scheduling

Sven Jäger Martin Skutella

Combinatorial Optimization
and Graph Algorithms
Technische Universität Berlin

22nd Combinatorial Optimization Workshop, Aussois
Problem $P\|\sum w_j C_j$

Given: Weights $w_j \geq 0$ and processing times $p_j \geq 0$ of jobs $j = 1, \ldots, n$ and number m of machines.

Task: Process each job nonpreemptively for p_j time units on one of the m machines such that the total weighted completion time $\sum_{j=1}^n w_j C_j$ is minimized.
The WSPT Rule

WSPT rule

Whenever a machine becomes idle, start the available job with largest ratio w_j/p_j on it.

The WSPT rule is optimal for a single machine (Smith (1956)) and for unit weights (Conway, Maxwell, Miller (1967)).
The WSPT Rule

WSPT rule
Whenever a machine becomes idle, start the available job with largest ratio w_j/p_j on it.

The WSPT rule is optimal for a single machine (Smith (1956)) and for unit weights (Conway, Maxwell, Miller (1967)).

Theorem (Kawaguchi, Kyan (1986))
The WSPT rule is a $\frac{1}{2}(1 + \sqrt{2})$-approximation, and this bound is tight.
Problem $P|p_j \sim \text{stoch}| \mathbb{E}\left[\sum w_j C_j\right]$

Given: Weights $w_j \geq 0$ and distributions of independent random processing times $p_j \geq 0$ of jobs $j = 1, \ldots, n$ and number m of machines.

Task: Find a nonpreemptive scheduling policy Π for m identical parallel machines such that the expected weighted sum of completion times is minimized.
Problem \(P|p_j \sim \text{stoch}| E[\sum w_j C_j] \)

Given: Weights \(w_j \geq 0 \) and distributions of independent random processing times \(p_j \geq 0 \) of jobs \(j = 1, \ldots, n \) and number \(m \) of machines.

Task: Find a nonpreemptive scheduling policy \(\Pi \) for \(m \) identical parallel machines such that the expected weighted sum of completion times is minimized.

A policy must be nonanticipative, i.e. a decision made at time \(t \) may only depend on the information known at time \(t \).
The WSEPT Rule

WSEPT rule

Whenever a machine becomes idle, start the available job with largest ratio $w_j / E[p_j]$ on it.
Known Results

- WSEPT has no constant performance guarantee (even for unit weights). (Cheung et al. (2014), Im, Moseley, Pruhs (2015))
Known Results

- WSEPT has no constant performance guarantee (even for unit weights). (Cheung et al. (2014), Im, Moseley, Pruhs (2015))

+ WSEPT is optimal if
 - there is only one machine (Rothkopf (1966)),
 - all jobs have unit weight and processing times are pairwise stochastically comparable (Weber, Varaiya, Walrand (1986)).
Known Results

- WSEPT has no constant performance guarantee (even for unit weights). (Cheung et al. (2014), Im, Moseley, Pruhs (2015))

+ WSEPT is optimal if
 - there is only one machine (Rothkopf (1966)),
 - all jobs have unit weight and processing times are pairwise stochastically comparable (Weber, Varaiya, Walrand (1986)).

+ If \(\frac{\text{Var}[p_j]}{E[p_j]^2} \leq \Delta \) for all \(j \), then WSEPT has performance guarantee

\[
1 + \frac{(m - 1)}{2m} \cdot (1 + \Delta) \leq 1 + \frac{1}{2} \cdot (1 + \Delta).
\]

(Möhring, Schulz, Uetz (1999))
Performance Guarantees

\[\frac{1}{2} (1 + \sqrt{2}) = \frac{7}{6} \]

\[1 + \frac{1}{2} (1 + \Delta) \]
Performance Guarantees

S. Jäger, M. Skutella (TU Berlin) Generalizing the KK Bound to Stoch. Scheduling C.O.W. 2018
Performance Guarantees

\[1 + \frac{1}{2}(\sqrt{2} - 1)(1 + \Delta) \]

\[\frac{1}{2}(1 + \sqrt{2}) \]

this talk: \[1 + \frac{1}{2}(\sqrt{2} - 1)(1 + \Delta) \]
Auxiliary Objective Function

Given: Smith ratios ρ_j and distributions of independent random processing times $p_j \geq 0$ of jobs $j = 1, \ldots, n$ and number m of machines.

Task: Find a nonpreemptive scheduling policy for m identical parallel machines such that the expected weighted sum of completion times is minimized, where each job is weighted with its Smith ratio times its actual processing time.
Auxiliary Objective Function

Given: Smith ratios ρ_j and distributions of independent random processing times $p_j \geq 0$ of jobs $j = 1, \ldots, n$ and number m of machines.

Task: Find a nonpreemptive scheduling policy for m identical parallel machines such that the expected weighted sum of completion times is minimized, where each job is weighted with its Smith ratio times its actual processing time.

- The weight of a job is a random variable $w_j = \rho_j p_j$.
- The Smith ratio ρ_j of a job is deterministic.
Auxiliary Objective Function

Given: Smith ratios ρ_j and distributions of independent random processing times $p_j \geq 0$ of jobs $j = 1, \ldots, n$ and number m of machines.

Task: Find a nonpreemptive scheduling policy for m identical parallel machines such that the expected weighted sum of completion times is minimized, where each job is weighted with its Smith ratio times its actual processing time.

- The weight of a job is a random variable $w_j = \rho_j p_j$.
- The Smith ratio ρ_j of a job is deterministic.

Remark
List scheduling the jobs in nonincreasing order of their Smith ratios ρ_j is a $\frac{1}{2}(1 + \sqrt{2})$-approximation for the auxiliary objective function.
Proof of WSEPT’s Performance Guarantee

Claim

The WSEPT rule is a $1 + \frac{1}{2}(\sqrt{2} - 1) \cdot (1 + \Delta)$-approximation for $P|p_j \sim \text{stoch}| E[\sum w_j C_j]$.
Proof of WSEPT’s Performance Guarantee

Claim

The WSEPT rule is a $1 + \frac{1}{2}(\sqrt{2} - 1) \cdot (1 + \Delta)$-approximation for $P|p_j \sim \text{stoch}| \mathbb{E}[\sum w_j C_j]$. Consider auxiliary objective function with weight factors $\rho_j := \frac{w_j}{\mathbb{E}[p_j]}$.

Proof of WSEPT’s Performance Guarantee

Claim

The WSEPT rule is a $1 + \frac{1}{2}(\sqrt{2} - 1) \cdot (1 + \Delta)$-approximation for $P|p_j \sim \text{stoch}| E[\sum w_j C_j]$.

Consider auxiliary objective function with weight factors $\rho_j := w_j / E[p_j]$.

Then, for every policy Π:

$$\text{Obj}(\Pi) = \sum_{j=1}^{n} \rho_j E[p_j] E[C_{j}^{\Pi}]$$

original objective function value
Proof of WSEPT’s Performance Guarantee

Claim

The WSEPT rule is a $1 + \frac{1}{2}(\sqrt{2} - 1) \cdot (1 + \Delta)$-approximation for $P|\mathbf{p}_j \sim \text{stoch}| \mathbb{E}[\sum w_j C_j]$.

Consider auxiliary objective function with weight factors $\rho_j := w_j / \mathbb{E}[\mathbf{p}_j]$.

Then, for every policy Π:

$$\text{Obj}(\Pi) = \sum_{j=1}^{n} \rho_j \mathbb{E}[\mathbf{p}_j] \mathbb{E}[C_j^\Pi]$$

$$\text{Obj}'(\Pi) = \sum_{j=1}^{n} \rho_j \mathbb{E}[\mathbf{p}_j C_j^\Pi]$$

original objective function value
auxiliary objective function value
Proof of WSEPT’s Performance Guarantee

Claim

The WSEPT rule is a $1 + \frac{1}{2} (\sqrt{2} - 1) \cdot (1 + \Delta)$-approximation for $P|p_j \sim \text{stoch}| E[\sum w_j C_j]$.

Consider auxiliary objective function with weight factors $\rho_j := \frac{w_j}{E[p_j]}$.

Then, for every policy Π:

$$\text{Obj}(\Pi) = \sum_{j=1}^{n} \rho_j E[p_j] E[C_j^\Pi]$$

$$\text{Obj}'(\Pi) = \sum_{j=1}^{n} \rho_j E[p_j C_j^\Pi]$$

original objective function value auxiliary objective function value

$$E[p_j C_j^\Pi] = E[p_j (S_j^\Pi + p_j)] = E[p_j S_j^\Pi] + E[p_j^2]$$
Proof of WSEPT’s Performance Guarantee

Claim

The WSEPT rule is a $1 + \frac{1}{2}(\sqrt{2} - 1) \cdot (1 + \Delta)$-approximation for $P|p_j \sim \text{stoch}| E[\sum w_j C_j]$.

Consider auxiliary objective function with weight factors $\rho_j := w_j / E[p_j]$.

Then, for every policy Π:

$$\text{Obj}(\Pi) = \sum_{j=1}^{n} \rho_j E[p_j] E[C_j^\Pi]$$

original objective function value

$$\text{Obj}'(\Pi) = \sum_{j=1}^{n} \rho_j E[p_j C_j^\Pi]$$

auxiliary objective function value

$$E[p_j C_j^\Pi] = E[p_j (S_j^\Pi + p_j)] = E[p_j S_j^\Pi] + E[p_j^2]$$

nonanticipativity
Proof of WSEPT’s Performance Guarantee

Hence,

\[\text{Obj}^{'}(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \]

\[\leq: c \]
Proof of WSEPT’s Performance Guarantee

Hence,

$$\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j].$$

\[= c \leq \Delta \text{OPT} \]

\[=: c \leq \Delta \text{OPT} \]
Proof of WSEPT’s Performance Guarantee

Hence,

\[\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j]. \]

\[=: c \leq \Delta \text{OPT} \leq \frac{1}{2}(1 + \sqrt{2}) \]
Proof of WSEPT’s Performance Guarantee

Hence,

\[
\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j] \leq \Delta \text{OPT}.
\]

\[
\text{OPT} \quad \text{WSEPT} \quad \text{OPT}' \quad \text{WSEPT}'
\]

\[
WSEPT \quad c \quad c
\]

\[
\leq \frac{1}{2} (1 + \sqrt{2})
\]

S. Jäger, M. Skutella (TU Berlin) Generalizing the KK Bound to Stoch. Scheduling C.O.W. 2018
Proof of WSEPT’s Performance Guarantee

Hence,

\[
\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j].
\]

\[\leq \Delta \text{OPT}\]

\[\leq \frac{1}{2}(1 + \sqrt{2})\]

\[
\text{WSEPT} = \text{WSEPT}' - c
\]
Proof of WSEPT’s Performance Guarantee

Hence,

\[
\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j].
\]

\[
\leq \Delta \text{OPT}
\]

\[
\leq \frac{1}{2} (1 + \sqrt{2}) \text{OPT}.
\]

\[
\text{WSEPT} = \text{WSEPT}' - c \leq \frac{1}{2} (1 + \sqrt{2}) \text{OPT}' - c
\]
Proof of WSEPT’s Performance Guarantee

Hence,

\[\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j]. \]

\[=: c \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j]. \]

\[\leq \frac{1}{2} (1 + \sqrt{2}) \]

\[WSEPT = WSEPT' - c \leq \frac{1}{2} (1 + \sqrt{2}) \text{OPT}' - c \]

\[= \frac{1}{2} (1 + \sqrt{2}) (\text{OPT} + c) - c \]
Proof of WSEPT’s Performance Guarantee

Hence,

\[\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j] \leq c \leq \text{Obj}'(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j] \leq \Delta \text{OPT} \]

\[\frac{1}{2}(1 + \sqrt{2}) \]

\[\text{WSEPT} = \text{WSEPT}' - c \leq \frac{1}{2}(1 + \sqrt{2}) \text{OPT}' - c \]

\[= \frac{1}{2}(1 + \sqrt{2})(\text{OPT} + c) - c = \text{OPT} + \frac{1}{2}((\sqrt{2} - 1)(\text{OPT} + c)) \]
Proof of WSEPT’s Performance Guarantee

Hence,

\[
\text{Obj}'(\Pi) = \text{Obj}(\Pi) + \sum_{j=1}^{n} \rho_j \text{Var}[p_j] \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j].
\]

\[
=:c \leq \text{Obj}(\Pi) + \sum_{j=1}^{n} \Delta w_j \text{E}[p_j] \leq \Delta \text{OPT}.
\]

\[
\leq 1 + \frac{1}{2}(\sqrt{2} - 1)(1 + \Delta)
\]

\[
\leq \frac{1}{2}(1 + \sqrt{2})
\]

\[
\text{OPT} \quad \text{WSEPT} \quad \text{OPT}' \quad \text{WSEPT}'
\]

\[
\text{WSEPT} = \text{WSEPT}' - c \leq \frac{1}{2}(1 + \sqrt{2}) \text{OPT}' - c
\]

\[
= \frac{1}{2}(1 + \sqrt{2})(\text{OPT} + c) - c = \text{OPT} + \frac{1}{2}(\sqrt{2} - 1)(\text{OPT} + c)
\]

\[
c \leq \Delta \text{OPT} \leq (1 + \frac{1}{2}(\sqrt{2} - 1)(1 + \Delta)) \text{OPT}
\]
Remarks

- Considering α-points instead of completion times reduces the constant c, and thus yields the better performance guarantee.
Remarks

- Considering α-points instead of completion times reduces the constant c, and thus yields the better performance guarantee.
- The derived performance guarantee is the best known performance ratio of any algorithm for $P|p_j \sim \text{stoch}| \sum w_j \mathbf{C}_j$.

For exponentially distributed processing times, WSEPT’s approximation ratio lies in $[1, \frac{4}{3}]$ (lower bound by Jagtenberg, Schwiegelshohn, Uetz (2013)). Even in this special case no better approximation is known.

The performance guarantee can be refined for fixed numbers of machines.
Remarks

- Considering α-points instead of completion times reduces the constant c, and thus yields the better performance guarantee.
- The derived performance guarantee is the best known performance ratio of any algorithm for $P|p_j \sim \text{stoch}| E[\sum w_j C_j]$.
- For exponentially distributed processing times, WSEPT’s approximation ratio lies in $[1.243, 4/3]$ (lower bound by Jagtenberg, Schwiegelshohn, Uetz (2013)). Even in this special case no better approximation is known.
Remarks

- Considering α-points instead of completion times reduces the constant c, and thus yields the better performance guarantee.

- The derived performance guarantee is the best known performance ratio of any algorithm for $P|\text{p}_j \sim \text{stoch}| \mathbb{E}[\sum w_j C_j]$.

- For exponentially distributed processing times, WSEPT’s approximation ratio lies in $[1.243, 4/3]$ (lower bound by Jagtenberg, Schwiegelshohn, Uetz (2013)). Even in this special case no better approximation is known.

- The performance guarantee can be refined for fixed numbers of machines.
Thank you!
Literature

- W. C. Cheung, F. Fischer, J. Matuschke, and N. Megow: *A \(\Omega(\Delta^{1/2})\) gap example for the WSEPT policy*, cited as personal communication on an exercise sheet by Marc Uetz from the MDS Autumn School 2014