Paolo Ventura
Paolo Ventura Paolo Ventura
Researcher

Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti"
Via dei Taurini, 19
00185 Roma - Italy

Office n. 510
Tel.: +39 06 4993 7122
Fax: +39 06 4993 7137
Personal web page: http://www.iasi.cnr.it/~ventura
email

Research interests
  • Mixed integer programming
  • Polyhedral aspects of combinatorial optimization

Research groups

Selected publications
  • Tiziano Bacci, Sara Mattia, Paolo Ventura: The Bounded Beam Search algorithm for the Block Relocation Problem, Computers & Operations Research 103, 252-264, 2019
  • Tiziano Bacci, Sara Mattia, Paolo Ventura: A new lower bound for the Block Relocation Problem, in the Proceedings of ICCL 2018, Lecture Notes in Computer Science, 11184, pp. 168–174, 2018
  • Pfetsch M.E., Giovanni Rinaldi, Paolo Ventura: Optimal patchings for consecutive ones matrices, IASI-CNR, R. 18-10, 11/2018
  • Arbib C., Servilio M, Paolo Ventura: An improved integer linear pro- gramming formulation for the closest 0-1 string problem, Computers & Operations Research 80, 2017
  • Tiziano Bacci, Sara Mattia, Paolo Ventura: Some Complexity Results for the Minimum Blocking Items Problem, in the Proceedings of ODS 2017, Springer Proceedings in Mathematics & Statistics, 217, pp. 475-483, 2017
  • Arbib C., Giovanni Felici, Servilio M, Paolo Ventura: Optimum Solution of the Closest String Problem via Rank Distance, Lecture Notes in Computer Science 9849, 297-307, 2016
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: A note on the stable set prolytope of three-cliqued graphs, IASI-CNR, R. 15-04, 2015
  • Arbib C., Marinelli F., Paolo Ventura: One-dimensional cutting stock with a limited number of open stacks: bounds and solutions from a new integer linear programming model, International Transactions in Operational Research 11, 47-63, 2014
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect, Journal of Combinatorial Theory Series B 107, 92-122, 2014
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are G-perfect, Journal of Combinatorial Theory Series B 108, 1-28, 2014
  • De Giovanni L., Massi G., Pezzella F., Pfetsch M.E., Giovanni Rinaldi, Paolo Ventura: A heuristic and an exact method for the gate matrix connection cost minimization problem, International Transactions in Operational Research 20, 627-643, 2013
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: 2-clique-bond of stable set polyhedra, Discrete Applied Mathematics 161, 1988-2000, 2013
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs with stability number greater than three, in: Operations Research Proceedings 2011, Selected Papers of the International Conference on Operations Research (OR 2011), August 30 - September 2, 2011, Zurich, Switzerland, Schmedders K., Luethi H.-J., Klatte D. eds., Operations Research Proceedings, Springer Heidelberg Germania, 47-52, 2012
  • Faenza Y, Oriolo G., Stauffer G., Paolo Ventura: Stable Sets in Claw- Free Graphs: A Journey Through Algorithms and Polytopes, In "In Progress in Combinatorial Optimization", R. Majoub ed., Wiley (2011)., 2011
  • Oriolo G., Stauffer G., Paolo Ventura: Stable set in claw-free graphs: re- cent achievement and future challenges, Operations Research 86, 1-8, 2011
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs with large stability number, Electronic Notes in Discrete Mathematics, ISCO 2010 International Symposium on Combinatorial Optimization, 2010
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: Gear Composition of stable set polytopes and G-perfection, Mathematics of Operations Research 34, 813-836, 2009
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The k-gear composition and the stable set polytope, in the Proceedings of 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Paris, June 2-4, Liberti L., Cafieri S., Mucherino A., Nannicini G., Tarissan F. eds., 2009
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs I: XX-strip composition versus gear composition, IASI-CNR, R. 09-05, 2009
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs II: XX-graphs are G-perfect, IASI-CNR, R. 09-08, 2009
  • Eisenbrand F., Oriolo G., Stauffer G., Paolo Ventura: The stable set polytope of quasi-line graphs, Combinatorica 28 (1), 45-67, 2008
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: Gear composition and the Stable Set Polytope, Operations Research Letters 36, 419-423, 2008
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: On the stable set polytope of claw-free graphs, in: COCOA 2008, Lecture Notes in Computer Science, 5165, 339-350, 2008
  • Claudio Gentile, Paolo Ventura, Weismantel R.: Mod-2 Cuts Generation Yields the Convex Hull of Bounded Integer Feasible Sets, SIAM Journal on Discrete Mathematics 20 (4), 913-919, 2006
  • Eisenbrand F., Oriolo G., Stauffer G., Paolo Ventura: Circular Ones Matrices and the Stable Set Polytope of Quasi-Line Graphs, in: Integer Programming and Combinatorial Optimization - IPCO XI, Lecture Notes in Computer Science, 3509, 291-305, 2005
  • Eisenbrand F., Giovanni Rinaldi, Paolo Ventura: Primal separation for 0/1 polytopes, Mathematical Programming 95, 475-491, 2003
  • Paolo Ventura, Eisenbrand F.: A compact linear program for testing optimality of perfect matching, Operations Research Letters 31, 429-434, 2003
  • Eisenbrand F., Giovanni Rinaldi, Paolo Ventura: 0/1 Optimization and 0/1 Primal Separation are Equivalent, in the Proceedings of Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 920-926, 2002
  • Paolo Ventura: Some contributions to primal and dual separation for integer programming, Ph.D. Thesis in Operation Research, University "La Sapienza" of Rome. Advisor: Dr. Giovanni Rinaldi, 2002
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -