Publications of Paolo Ventura

This page shows all publications that appeared in the IASI annual research reports. Authors currently affiliated with the Institute are always listed with the full name.

You can browse through them using either the links of the following line or those associated with author names.

Show all publications of the year  ALL, with author Ventura P., in the category ALL (or show them all):   (Items found: 50)


2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

2020  [top]
  • Tiziano Bacci, Sara Mattia, Paolo Ventura: A Branch and Cut algorithm for the Restricted Block Relocation Problem, European Journal of Operational Research in press, DOI 10.1016/j.ejor.2020.05.029, 2020

2019  [top]
  • Tiziano Bacci, Conte S., Matera D., Sara Mattia, Paolo Ventura: A New Software System for Optimizing the Operations at a Container Terminal, In: Dell'Amico M., Gaudioso M., Stecca G. (eds) A View of Operations Research Applications in Italy, 2018. AIRO Springer Series, vol 2, pp.41--50. Springer, Cham. DOI: 10.1007/978-3-030-25842-9_4, 2019
  • Tiziano Bacci, Sara Mattia, Paolo Ventura: The Bounded Beam Search algorithm for the Block Relocation Problem, Computers & Operations Research 103, 252-264, 2019
  • Bacci T., Sara Mattia, Paolo Ventura: AN IP-BASED EXACT ALGORITHM FOR THE RESTRICTED BLOCK RELOCATION PROBLEM, IASI-CNR, R. 19-02, 2019

2018  [top]

2017  [top]

2016  [top]

2015  [top]

2014  [top]
  • Arbib C., Marinelli F., Paolo Ventura: One-dimensional cutting stock with a limited number of open stacks: bounds and solutions from a new integer linear programming model, International Transactions in Operational Research 11, 47-63, 2014
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are G-perfect, Journal of Combinatorial Theory Series B 108, 1-28, 2014
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect, Journal of Combinatorial Theory Series B 107, 92-122, 2014

2013  [top]

2012  [top]
  • Anna Galluccio, Claudio Gentile, Paolo Ventura: The stable set polytope of claw-free graphs with stability number greater than three, in: Operations Research Proceedings 2011, Selected Papers of the International Conference on Operations Research (OR 2011), August 30 - September 2, 2011, Zurich, Switzerland, Schmedders K., Luethi H.-J., Klatte D. eds., Operations Research Proceedings, Springer Heidelberg Germania, 47-52, 2012

2011  [top]

2010  [top]

2009  [top]

2008  [top]

2007  [top]

2006  [top]

2005  [top]
  • Eisenbrand F., Oriolo G., Stauffer G., Paolo Ventura: Circular Ones Matrices and the Stable Set Polytope of Quasi-Line Graphs, in: Integer Programming and Combinatorial Optimization - IPCO XI, Lecture Notes in Computer Science, 3509, 291-305, 2005
  • Paolo Ventura: The Stable Set Polytope of Quasi-Line Graphs: A Proof of Ben Rebea's Conjecture. Part 2, AIRO 2005, Camerino, 6-9 Settembre, 2005
  • Paolo Ventura: Mod-2 cuts generation yelds the convex hull of bounded integer feasible sets, 9th Combinatorial Optimization Workshop, Aussois, 3-15 Marzo, 2005

2004  [top]

2003  [top]

2002  [top]
  • Eisenbrand F., Giovanni Rinaldi, Paolo Ventura: 0/1 Optimization and 0/1 Primal Separation are Equivalent, in the Proceedings of Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 920-926, 2002
  • Eisenbrand F., Paolo Ventura: A compact linear program for testing optimality of perfect matchings, IASI-CNR, R. 573, 2002
  • Paolo Ventura: Some contributions to primal and dual separation for integer programming, Ph.D. Thesis in Operation Research, University "La Sapienza" of Rome. Advisor: Dr. Giovanni Rinaldi, 2002

2001  [top]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -