A. Formica

FINITE SATISFIABILITY OF
OBJECT-ORIENTED DATABASE INTEGRITY
CONSTRAINTS WITH INEQUALITY AND
NULL-VALUES

R. 538 Dicembre 2000

Anna Formica – Istituto di Analisi dei Sistemi ed Informatica del CNR, viale Manzoni 30 - 00185 Roma, Italy. Email: {formica}@iasi.rm.cnr.it.

ISSN: 1128–3378
Abstract

In this paper, a method for checking finite satisfiability of a specific class of database integrity constraints is presented. In particular, this work starts from a previous result of the author concerning a decidable, sound, and complete method for checking finite satisfiability of \(\theta \)-constraints. \(\theta \)-constraints are a sort of path constraints, where \(\theta \) stands for one of the comparison operators \(>, \geq, <, \leq, = \). In this paper such a method is extended to deal with a more expressive constraint language including the inequality operator and null-values. The proposed extension is formally characterized by providing the necessary and sufficient conditions that allow finite satisfiability of this wider class of integrity constraints to be checked.
1. Introduction

Database constraints satisfiability and, in particular, finite satisfiability are key problems in database design. Checking satisfiability of database constraints consists in verifying the existence of at least one database that is a model of the constraint set, i.e., the absence of contradictions within the set of integrity constraints independently of any given database. This problem differs from the constraint satisfaction problem, whose goal is to verify whether or not a given database is a model of, or satisfies, a set of integrity constraints.

Furthermore, database constraints have to be finitely satisfiable, that is, the existence of at least one finite model is required. In other words, database constraints have to be free of axioms of infinity, i.e., sets of constraints that admit only infinite models \([7, 17]\). For instance, consider the following database constraints:

- every person has one age, that is an integer, and one child, that is a person;
- the age of a person has to be strictly greater than the age of his/her child.

This is an axiom of infinity. In fact, every database that is a model of it is necessarily infinite. In this regard, in \([18]\) a decidable, sound, and complete method for checking finite satisfiability of a specific class of integrity constraints, namely the \(\theta\)-constraints, has been presented. \(\theta\)-constraints, where \(\theta\) stands for one of the comparison operators \(>, \geq, <, \leq, \) and \(=\), are an integral part of the database schema. They are defined by paths, that are dot-separated sequences of properties that allow navigation through the types of the schema.

In this paper, an extension of the method presented in \([18]\) has been proposed. In particular, such a method has been revisited in order to check finite satisfiability of a wider set of integrity constraints containing also the inequality operator and null-values. Null-values have been extensively addressed in the literature, with several different semantics, such us, for instance, the unknown \([14]\), or the does not exist \([31, 42]\) meanings. In this paper null-values are addressed with the does not exist meaning only.

Of course, due to the richer expressive power, the extended constraint language allows the designer to describe the application domain at a finer level of detail. For instance, in the presence of null-values the first integrity constraint of the previous example can be modified as follows:

- every person has one age, that is an integer, and at most one child, that is a person.

In this case, the description of a person is closer to the reality, i.e., for a person there is the possibility, not the need, of having one child. Notice that the presence of null-values has an important impact on the expressive power of the language and on satisfiability. For instance, by allowing child to be a null-value, the above set of integrity constraints becomes finitely satisfiable.

Let us now consider the inequality operator. Also in the restrictive form of \(\theta\)-constraints, the inequality constraint (\(\neq\)-constraint) allows finer details of the application domain to be described as illustrated in the following example:

- every person has one father, that is a person, and drives one vehicle, that is a car;
- every car has one owner, that is a person;
- the owner of the vehicle the person drives is his/her father.
• a person is the owner of the vehicle he/she drives.

This is a finitely satisfiable set of integrity constraints (it will be described in Subsection 3.2). However, in every model that can be defined for it, a person necessarily will coincide with his/her father. The possibility of expressing \(\neq\)-constraints allows us to specify the further constraint:

• a person does not coincide with his/her father.

The addition of this constraint impacts on the satisfiability of the set of statements. In fact, the set of constraints, from finitely satisfiable, becomes unsatisfiable.

In this paper an extension of the language \(TQL^+\), on which the method presented in [18] is based, has been presented. Such a language has been referred to as \(TQL^+_in\) (where \(i\) and \(n\) stand for inequality and null-values, respectively). In order to extend the mentioned method to database constraints including the inequality operator and null-values, the theory presented in [18] has been revisited. In particular, a decidable, sound and complete method for finite satisfiability checking of \(TQL^+_in\) schemas has been defined.

The paper is organized as follows. In Section 2, the syntax and the semantics of the language \(TQL^+_in\) are given. In Section 3, the extended method is informally presented via examples, by focusing first on null-values and then on inequality. Finally in Section 4, the characterization of the extended method is formally introduced. In particular, in that section, the key definitions that differ from the ones given in [18] are given, whereas in the Appendix all the remaining definitions are recalled for reader’s convenience. In Section 5, the conclusion and future work are briefly presented. Below the related work follows.

1.1. Related work

The satisfiability checking of a set of integrity constraints has not been widely addressed in the literature. There are some results concerning this problem in different data model as, for instance, in the network data model [1], in the Entity Relationship model [32, 16], or in the Object-Oriented data model [9]. However, the data models proposed in these papers do not allow the modeling of explicit integrity constraints involving comparison operators similar to \(\theta\)-constraints. Such constraints have been addressed for instance in [5], in regard to Object-Oriented database schemas. In particular, in such a paper path relations have been addressed that are very similar to the \(\theta\)-constraints, including the \(\neq\) operator and the possibility of specifying null-values. However, the results provided in that paper do not allow finite satisfiability to be checked for schemas containing both recursive definitions and path relations, that are required to express, for instance, the examples illustrated in the Introduction.

The class of integrity constraints addressed in this paper can be also seen as a restricted form of cyclic referential constraints as defined in [43] (i.e., corresponding to inclusion dependencies). In particular, a \(\theta\)-constraint can be seen as a cyclic referential constraint where the antecedent is defined by one unary predicate, the consequent contains unary and binary predicates at most, constants are not allowed, and the variables obey to a sort of concatenation law as defined by the formal semantic of the language \(TQL^+_in\). In [43] (where the \(\neq\) operator and null-values are also allowed), the problem of reasoning with implication constraints (that are a generalization of functional dependencies) and referential constraints has been addressed. Since the implication
problem for functional and inclusion dependencies is undecidable, in the mentioned paper acyclic referential constraints have been addressed, and a novel characterization for the implication and referential constraints-refuting problem has been proved.

In the context of deductive databases, schema consistency checking has been widely investigated by relying on theorem prover techniques. For instance in Sic [6], formerly known as Satchmo [7, 8], a schema is a set of first order logic formulas, and schema consistency checking is performed by using semidecidable procedures. Furthermore, it is well-known that such procedures are rather inefficient in the presence of the equality operator. The problem of dealing with equality is one of the main points addressed by the method proposed in [18], where a decidable method for checking finite satisfiability of recursive schemas enriched with θ-constraints has been presented. Such a method is based on a graph-theoretic approach, where θ operators are modeled by labeled arcs. In particular, the nodes connected through arcs labeled with the equality operator are collapsed, therefore avoiding the proliferation of equality predicates typical of the theorem prover approach. This method will be briefly recalled in the following sections in order to extend it to null-values and inequality.

Finally, it is worth recalling that the presence of ISA hierarchies in the data model, independently of any other kind of integrity constraints, may be source of contradictions in the schema, due to the well-known inheritance conflicts [2, 28]. The problem of checking the consistency of Object-Oriented database schemas organized according to ISA hierarchies has been analyzed in [4, 19, 20] and goes beyond the scope of this paper.

2. Formal Basis

In this section the language TQL^{++}_in is presented. Such a language is a fragment of TQL^{++} [33], aimed at modeling the structural aspects and the integrity constraints of an Object-Oriented database (ODB) application.

2.1. TQL^{++}_in Syntax

In TQL^{++}_in, a schema is defined by a set of types. A type describes the structure of the objects that populate the related type extension (also called class), and the integrity constraints these objects have to satisfy. For instance the first example informally illustrated in the Introduction, in TQL^{++}_in is expressed as follows:

Example 2.1.

\[
\text{person} := \text{name : string, age : integer, child : \{person\}}
\]
\[
\text{ic : this.age} > \text{this.child.age}
\]

In TQL^{++}_in, a type has a label (t_{term}) and a tuple that is defined by a set of typed properties (tp). In the above example, only one type is present, whose type label is person. In a tuple, a property is identified by a label (p_{term}), as for instance name or child in the example above, and is associated with a type. In particular, a property can be either an attribute or a relationship if the associated type is respectively: (i) an atomic type (a_{type}), e.g., integer or string, as for instance, in the example, name; (ii) a t_{term} as, in the example, child, establishing an explicit
link (or association) between two types. Recursive types are allowed (in this case, person is
a recursive type due to the self recursive relationship child). In \(\text{TQL}_{in}^+ \), properties may be
\textit{single-valued} or \textit{null-valued}. With respect to single-valued properties, null-valued properties
are denoted by curly braces. For instance child, in the example, is a null-valued property,
whereas name and age are single-valued. Notice that in a tuple, multiple occurrences of
the same property labels are not allowed. Types can also be organized according to a generalization
hierarchy, declared by means of the ISA construct [10].

As already mentioned in the Introduction, \(\text{TQL}_{in}^+ \) explicit integrity constraints are \(\theta \)-\textit{constraints},
where \(\theta \) stands for a comparison operator, such as \("=", "\geq", "\geq", "\neq" \), and, in addition to \(\text{TQL}^+ \), also
\("\neq" \). In the previous example, we have a simple \(\theta \)-constraint stating that the age of a person
must be strictly greater than the age of his/her child. Notice that in a \(\theta \)-constraint a left and a
right hand sides are present, each of which is specified by the keyword this followed by a path.
The keyword this refers to a single object in the extension of the type the integrity constraint
is associated with. A path is a sequence of \textit{p/terms}, expressed according to the dot-notation
formalism, that allows navigation through types. In a path, the same property labels may occur
more than once. For instance, the second example discussed in the Introduction in \(\text{TQL}_{in}^+ \) can
be represented as follows:

\textbf{Example 2.2.}

\begin{verbatim}
person := [name : string, father : person, vehicle : car]
 ic1 : this.father = this.vehicle.owner
 ic2 : this.vehicle.owner = this
 ic3 : this.father \neq this
car := [owner : person, maker : string, color : string]
\end{verbatim}

The formal syntax of \(\text{TQL}_{in}^+ \) is presented below: non-terminal symbols are enclosed between
angle brackets, terminal symbols are in bold, symbols in italics represent user-defined strings,
whereas symbols enclosed between curly braces followed by \(\ast \) are optional (the underscore
character stands for iteration).

\textbf{Definition 2.1. [Syntax of \(\text{TQL}_{in}^+ \)]}

\begin{verbatim}
\langle type \rangle ::= \langle \text{t/term} \rangle := \langle \text{type-definition} \rangle \{, \langle \text{c/expr}_1 \rangle, \ldots, \langle \text{c/expr}_n \rangle \} \ast
\langle \text{type-definition} \rangle ::= \text{ISA} \ \langle \text{t/term}_1 \rangle \ldots \langle \text{t/term}_k \rangle \{ \langle \text{tuple} \rangle \} \ast
\langle \text{tuple} \rangle ::= \langle \langle \text{tp}_1 \rangle, \ldots, \langle \text{tp}_m \rangle \rangle
\langle \text{tp} \rangle ::= \langle \text{p/term} \rangle : \langle \text{body} \rangle
\langle \text{body} \rangle ::= \langle \text{t/term} \rangle
\langle \text{a/ype} \rangle ::= \text{integer}
\langle \text{c/expr} \rangle ::= \text{label: this.path} \langle \theta \rangle \text{this}\{ \langle \text{path} \rangle \}
\langle \text{path} \rangle ::= \langle \text{p/term}_1 \rangle \ldots \langle \text{p/term}_k \rangle
\langle \theta \rangle ::= \leq | < | \geq | = | \neq
\end{verbatim}

\[\square\]
The previous examples are both TQL_{in}^+ schemas. The notion of a TQL_{in}^+ schema coincides with the one given in [18], that is informally recalled below. Essentially, it concerns the uniqueness of type labels, the absence of dangling type labels, the acyclicity of inheritance hierarchies and, furthermore, the definedness of integrity constraints.

Definition 2.2. [TQL_{in}^+ schema] A finite set of types is a TQL_{in}^+ schema (schema, for short) iff:

- every type label is uniquely defined (i.e., the same \(t_{\text{term}} \) is not associated with more than one type-definition);
- there are no dangling type labels (i.e., every \(t_{\text{term}} \) declared in the schema is defined);
- inheritance is acyclic (i.e., a type has not itself as supertype, up in the hierarchy);
- for each type \(\tau \) and each associated integrity constraint, every property of a path has to be present in the tuple of the traversed type. Furthermore, in the case of equality \(\theta \)-constraints, the two paths of each integrity constraint have to lead to the same type.

Notice that integrity constraints of the form:

\[
\text{ic: this.child.age > this.child}
\]

for instance associated with person of the Example 2.1 would be rejected at a pre-processing stage, by using a type-checker.

Structural inheritance hierarchies in OBD schemas have been extensively investigated, see for instance [19, 20, 4]. Therefore, in this paper, types are supposed to have all their typed properties explicitly given, and types defined with the ISA construct will be not addressed.

2.2. Semantics of TQL_{in}^+

In this section the formal semantics of TQL_{in}^+ is given. It is inspired by the descriptive semantics presented in [36]. Notice that, with respect to TQL^+, below the point related to null-valued properties and, in the constraint extension, the \(\neq \) operator have been added.

Definition 2.3. [Extension function] Let \(D \) be a (possibly infinite) set of oids [26] representing a given state of the Application Domain, \(T \) the set of TQL_{in}^+ sentences, and \(P (\subseteq T) \) the set of p_{term}. Consider a function:

\[
\mathcal{E}: T \rightarrow \wp(D)
\]

where \(\wp \) is the powerset, and a function:

\[
\mathcal{P}: P \rightarrow \wp(D \times D).
\]

Then, \(\mathcal{E} \) is an extension function over \(D \) with respect to the type:

\[
t_{\text{term}} := \text{type-definition}, c_{\text{expr}1}, ..., c_{\text{expr}n}
\]

iff the values of \(\mathcal{E} \) on type-definition and \(c_{\text{expr}j} \), \(j = 1..n \), are constructed starting from the values of their components as follows.

Given a path \(p_{\text{term}} \ldots p_{\text{term}} \), let \(S_{p_{\text{term}}, x} \) be defined as follows:

\[
S_{p_{\text{term}}, x} = \{ x \} \quad \text{if } n = 0;
\]

\[
S_{p_{\text{term}}, x} = \{ y \in D \mid < x, y > \in \mathcal{P}(p_{\text{term}}_1) \} \quad \text{if } n = 1;
\]

\[
S_{p_{\text{term}}, x} = \{ y \in D \mid \exists (y_1, \ldots, y_{n-1}) < x, y_1 > \in \mathcal{P}(p_{\text{term}}_1), < y_1, y_2 > \in \mathcal{P}(p_{\text{term}}_2), \ldots, < y_{n-1}, y > \in \mathcal{P}(p_{\text{term}}_n) \} \quad \text{if } n \geq 2.
\]
Type Extension:

- $\mathcal{E}(t_{\text{term}}) \subseteq \mathcal{D}$
- $\mathcal{E}(\text{type-definition}) = \mathcal{E}([tp, \ldots, tp]) = \bigcap_j \mathcal{E}([tp_j])$
- $\mathcal{E}(a_{\text{type}}) =$
 - $\mathcal{E}(\text{integer}) = \mathbb{Z} \cap \mathcal{D}$
 - $\mathcal{E}(\text{real}) = \mathbb{R} \cap \mathcal{D}$
 - $\mathcal{E}(\text{boolean}) = \{\text{true, false}\} \cap \mathcal{D}$
 - $\mathcal{E}(\text{string}) = \mathbb{S} \cap \mathcal{D}$ (where \mathbb{S} is the set of all the possible strings)

$\mathcal{E}([tp]) = \mathcal{E}(\{p_{\text{term:body}}\}) = \{x \in \mathcal{D} \mid \|S_{p_{\text{term,x}}\|} = 1, \forall y \in S_{p_{\text{term,x}}}, y \in \mathcal{E}(\text{body})\}$

$\mathcal{E}([tp]) = \mathcal{E}(\{p_{\text{term:body}}\}) = \{x \in \mathcal{D} \mid \|S_{p_{\text{term,x}}\|} \leq 1, \forall y \in S_{p_{\text{term,x}}}, y \in \mathcal{E}(\text{body})\}$

where $\|S_{p_{\text{term,x}}\|}$ stands for the cardinality of the set $S_{p_{\text{term,x}}}$.

Integrity Constraint Extension:

- $\mathcal{E}(c_{\text{expr}}) = \mathcal{E}(\text{label : this.path}_i \theta \text{this.path}_j) = \{x \in \mathcal{D} \mid \forall y, z, y \in S_{\text{path}_i,x}, z \in S_{\text{path}_j,x} \Rightarrow \ y \theta z \}$
 where, according to the syntax, θ is one of the comparison operators: $>, \geq, <, \leq, =, \neq$.

Below, the notions of interpretation, model, satisfiability, and finite satisfiability of a TQL_{in}^+ schema (that coincide with the ones of TQL_{in}^+), are recalled for reader’s convenience.

Definition 2.4. [Interpretation of a TQL_{in}^+ schema] An interpretation of a TQL_{in}^+ schema is a triple $\mathcal{I} = \langle \mathcal{D}, \mathcal{E}, \mathcal{P} \rangle$ where \mathcal{D} is a set representing the Application Domain, \mathcal{P} is a function as defined above, and \mathcal{E} is an extension function over \mathcal{D} with respect to each type of the schema.

Definition 2.5. [Model of a TQL_{in}^+ schema] A model of a TQL_{in}^+ schema is an interpretation $\mathcal{I} = \langle \mathcal{D}, \mathcal{E}, \mathcal{P} \rangle$ such that, for each type:

$\text{t}_{\text{term}} := \text{type-definition, c}_{\text{expr1}}, \ldots, c_{\text{exprn}}$

of the schema, we have:

$\mathcal{E}(t_{\text{term}}) \subseteq \mathcal{E}(\text{type-definition}) \cap (\bigcap_j \mathcal{E}(c_{\text{exprj}}))$.

Definition 2.6. [Satisfiable TQL_{in}^+ schema] A TQL_{in}^+ schema is satisfiable iff there exists at least one non-empty model, i.e., one model $\mathcal{I} = \langle \mathcal{D}, \mathcal{E}, \mathcal{P} \rangle$ such that for each t_{term} of the schema, we have:

$\mathcal{E}(t_{\text{term}}) \neq \emptyset$.

Definition 2.7. [Finitely Satisfiable TQL_{in}^+ schema] A TQL_{in}^+ schema is finitely satisfiable iff there exists at least one non-empty model that is finite, i.e., one model $\mathcal{I} = \langle \mathcal{D}, \mathcal{E}, \mathcal{P} \rangle$ such that \mathcal{D} is finite.
3. The Extended Finite Satisfiability Checking Method

In this section, the method for checking finite satisfiability of a $TQL^+\delta$ schema presented in [18] is informally recalled, and its extension to the language TQL^+_in is introduced via the examples informally discussed in the Introduction. In particular, in the first subsection the extension concerning null-values will be addressed, whereas in the second one, the extension related to the inequality operator will be illustrated. Before introducing the examples, below an informal description of the graph on which the method is based is briefly given.

The approach proposed in [18] is based on the construction of a graph, one for each type of the schema. Such a graph is referred to as $\mathcal{F}(G_{\text{Sat}}^e)$ (where Sat stands for satisfiability, and eq stands for equality). In particular, $\mathcal{F}(G_{\text{Sat}}^e)$ is a schema graph, i.e., it is a graph having the nodes labeled with t_terms or atomic types, and the arcs labeled with properties or comparison operators. Furthermore, in a schema graph different nodes with the same type label may be present and, for each node, outgoing arcs with the same property label and different destination nodes are not allowed. Roughly, the main idea behind the $\mathcal{F}(G_{\text{Sat}}^e)$ graph is that each node of the graph stands for an instance (i.e., an oid or a value) of the type labeling that node, and each arc establishes an association between type instances, according to the structure of the types, or a relation according to the integrity constraints associated with the types. The $\mathcal{F}(G_{\text{Sat}}^e)$ graph associated with a type is in general not connected. In particular, in such a graph, each node labeled with a t_term is the origin of a pair of paths, one for each integrity constraint associated with the type labeled with the t_term. These paths are labeled according to the sequences of properties defining the right and the left hand sides (i.e., the paths) of the related integrity constraint. Notice that the presence of equality constraints plays a special role. In fact, since the nodes connected through arcs labeled with the equality operator denote the same oids, they are collapsed into a single node.

3.1. Null-valued properties

Consider the following schema, slightly different with respect to the one of the Example 2.1:

Example 3.1.

\[
\text{person} := [\text{name} : \text{string}, \text{age} : \text{integer}, \text{child} : \text{person}]
\]

\[
\text{i.c} : \text{this.age} > \text{this.chil\text{age}}
\]

In this case the child property is single-valued, that is, we are addressing the language component that does not include null-values. As already mentioned in the Introduction, in this case we have an axiom of infinity: only databases with an infinite number of person oids can satisfy it. According to [18], the $\mathcal{F}(G_{\text{Sat}}^e)$ graph associated with this type is the one shown in Figure 1.

In this case, the $\mathcal{F}(G_{\text{Sat}}^e(\text{person}))$ graph is not connected. In both the connected components we can see that starting from each of the nodes labeled with person, at least two paths originate: one labeled with the age property, corresponding to the left hand side of the integrity constraint i.c, the other one labeled with the sequence $\text{chil\text{age}}$ corresponding to the right hand side of i.c. Notice that, for each arc, the destination node is labeled with the type of the property labeling the arc, as defined in the schema (for instance, the destination node of the arc labeled with child is labeled with person, as defined by the tuple of person).

Furthermore, an arc between the final nodes of the paths modeling the integrity constraint is present, labeled with the related comparison operator (we assumed that arcs labeled with
Figure 1: $\mathcal{F}(G_{S_{at}}^{eq}(\text{person}))$ graph - Example 3.1

collection operators are directed according to the "$>" operator, but the opposite choice could be adopted as well.

According to the theory presented in [18], the above schema is finitely satisfiable if and only if in the $\mathcal{F}(G_{S_{at}}^{eq}(\text{person}))$ graph there exists at least one connected component free of cycles labeled with strict comparison operators (that are referred to as monotonic cycles). Therefore, in this case, since both the connected components of $\mathcal{F}(G_{S_{at}}^{eq}(\text{person}))$ contain such cycles, the schema is not finitely satisfiable.¹

Suppose now to deal with the language TQL_{in}^+, i.e., to have the possibility of expressing null-values, and consider the Example 2.1 where the \textit{child} property is null-valued. The extension of the mentioned method to null-values is quite immediate. In fact, it is possible to deal with them by simply ignoring the paths of the graph in correspondence to the null-valued properties. More in general, in the construction of the graph, only the integrity constraints do not containing null-valued properties have to be considered. Therefore, in the example, rather than the $\mathcal{F}(G_{S_{at}}^{eq}(\text{person}))$ graph of Figure 1, one single node labeled with \text{person} will be considered. As a result, the schema is finitely satisfiable, trivially.

3.2. The inequality operator

The extension of the method to the inequality θ-constraints is less immediate with respect to the previous one. Consider the second example mentioned in the Introduction, without the inequality constraint.

\textbf{Example 3.2.}

$\text{person} := [\text{name : string, father : person, vehicle : car}]$

$ic1 : this.father = this.vehicle.owner$

$ic2 : this.vehicle.owner = this$

$\text{car} := [\text{owner : person, maker : string, color : string}]$

¹Notice that the presence of three nodes labeled with \text{person} is due to a sort of "expansion" mechanism on which the construction of the $\mathcal{F}(G_{S_{at}}^{eq})$ graph is based. See the Appendix, where the basic definitions given in [18] have been recalled for reader's convenience.
One of the key points of the $\mathcal{F}(G_{Sat}^{eq})$ graph is that the arcs labeled with equality operators do not appear. In fact, since they connect nodes that have to coincide (according to the formal semantics of the language), they are always removed and the connected nodes collapsed. In the above example, two integrity constraints with the equality operator are present. It is easy to see that after the removal of the equality arcs, the resulting graph is the one shown in Figure 2. Since in such a graph there are no monotonic cycles, this schema is finitely satisfiable.

As already mentioned in the Introduction, any model that satisfies this schema necessarily requires that a person coincides with his/her father. Therefore, the addition of the further constraint $ic3$ defined in the Example 2.2 makes the schema unsatisfiable. In the extended method, inequality constraints are initially treated similarly to the other θ-constraints. Therefore, rather than the graph of Figure 2, a graph with an additional arc labeled with the \neq operator will be considered, as shown in Figure 3. Such a graph is referred to as $\mathcal{F}(G_{Sat}^{eq,in})$.

In the extended method, a loop labeled with the \neq operator (\neq-loop) in all the connected components of the $\mathcal{F}(G_{Sat}^{eq,in})$ (in this case it is only one) is a sufficient condition to derive that the schema is not finitely satisfiable.

In the general case, the method requires a further step. It concerns the removal from the graph of all the \neq-arcs labeling cycles that are not loops. This is due to the fact that, in the absence of the \neq operator in the data model, a cycle of θ-arcs labeled with strict comparison operators (once the equality arcs have been removed) denotes a contradiction, whereas in the presence of \neq-arcs, such a cycle does not denote any contradiction. Just to show an example about this, consider the following schema:
Example 3.3.

\[\text{person} := [\text{salary} : \text{integer}, \text{vehicle} : \text{car}], \]
\[\text{icl} : \text{this.salary} > \text{this.vehicle.price} \]
\[\text{car} := [\text{price} : \text{integer}, \text{owner} : \text{person}], \]
\[\text{ic2} : \text{this.price} > \text{this.owner.salary} \]

This is an axiom of infinity. In fact, it requires an infinite chain of \text{person} and \text{car} oids to be defined in the database. The \(\mathcal{F}(G^\text{eq}_{\text{Sat}}(\text{person})) \) graph associated with \text{person} in this case is shown in Figure 4.

![Figure 4: \(\mathcal{F}(G^\text{eq}_{\text{Sat}}(\text{person})) \) graph - Example 3.3](image)

Such a schema is not finitely satisfiable due to the presence of a monotonic cycle in the \(\mathcal{F}(G^\text{eq}_{\text{Sat}}(\text{person})) \) graph (we have considered \text{person}, but the type \text{car} could be considered as well). Now, suppose to modify such a schema by simply replacing the \(> \) operator of the integrity constraint \text{ic2} with the \(\neq \) operator, as follows:

Example 3.4.

\[\text{person} := [\text{salary} : \text{integer}, \text{vehicle} : \text{car}], \]
\[\text{icl} : \text{this.salary} > \text{this.vehicle.price} \]
\[\text{car} := [\text{price} : \text{integer}, \text{owner} : \text{person}], \]
\[\text{ic2} : \text{this.price} \neq \text{this.owner.salary} \]

In this case, the schema is finitely satisfiable. The \(\mathcal{F}(G^\text{eq\text{-}\text{in}}_{\text{Sat}}(\text{person})) \) graph is shown in Figure 5, where the \(\neq \)-arc has been removed and no monotonic cycle is present.

In the next section, the method proposed in [18] will be revisited in order to deal with null-valued properties and inequality \(\theta \)-constraints.

4. Characterization of Finitely Satisfiable Schemas

In this section, the extension of the method is formally addressed. Below, we start by introducing the notion of a \textit{non-null} integrity constraint. Such a notion will be used in order to consider,
in the construction of the graph, only the integrity constraints do not containing null-valued properties.

Notationally, given a type τ, $I(\tau)$ denotes the set of explicit integrity constraints of τ.

Definition 4.1. [Non-null integrity constraint] Given a schema Σ, a type τ of Σ such that $I(\tau) \neq \emptyset$, and an integrity constraint $ic \in I(\tau)$. Then, ic is non-null iff all the properties defining it are not null-valued properties.

Staring from this notion, all the formal definitions that are at the basis of the construction of the $F(G_{Sat}^{eq})$ graph can be reformulated very similarly to the definitions given in [18]. For this reason, and also in order to better address the contribution of this paper with respect to [18], the revisitation of the construction of the $F(G_{Sat}^{eq})$ graph is given in the Appendix (where essentially only the Definition A.4 has been modified in order to deal with null-valued properties).

Therefore, below we assume that the reader is familiar with the definitions of a schema graph (see Definition A.2), and a $F(G_{Sat}^{eq})$ graph (see Definition A.15). Furthermore, it is worth recalling below the notion of monotonic cycle, that is the same of the paper [18], although now strict comparison operators include also \neq.

Definition 4.2. [Monotonic cycle] Given a schema Σ, a monotonic cycle of a schema graph is a loop or a cycle of θ-arcs labeled with at least one strict comparison operator (i.e., \neq, $>$, or $<$).

Now, we are able to give the definition of a $F(G_{Sat}^{eq,in})$ graph.

Definition 4.3. [The $F(G_{Sat}^{eq,in})$ graph] Given a schema Σ, the $F(G_{Sat}^{eq,in})$ graph if the $F(G_{Sat}^{eq})$ graph where all the \neq-arcs labeling cycles that are not loops have been removed.

This definition allows an immediate extension of the formal characterization of finitely satisfiable schemas in the presence of inequality and null-values.
Theorem 4.1. [Characterization of finitely satisfiable schemas] A schema Σ is finitely satisfiable iff for each type τ of Σ such that $I(\tau) \neq \emptyset$ the schema graph $F(G_{Sat}^{\lor \land}(\tau))$ has at least one connected component free of monotonic cycles.

Proof. It is similar to the one given in [18], taking into account the following points.

Given a type τ, the $F(G_{Sat}^{\lor \land}(\tau))$ graph is constructed by recursively expanding some of the paths of a tree modeling the integrity constraints of the type τ, that is referred to as $T_{Path}(\tau)$ tree (see in the Appendix, the Definition A.8). In particular, in [18] it has been proved that any further expansion of such a tree is not relevant to the presence of monotonic cycle in the connected components of the $F(G_{Sat}^{\lor \land}(\tau))$. This statement also holds in the case of the $F(G_{Sat}^{\lor \land}(\tau))$ graph because its construction derives from an additional step performed on the $F(G_{Sat}^{\lor \land}(\tau))$.

Furthermore, any cycle of θ-arcs labeled with $>$, \geq, and at least one \neq operator, does not denote any contradiction because it can always be "instantiated" with a set of values satisfying the related inequalities. □

With regard to the complexity of the method, the proposed extension does not affect the analysis performed in [18]. In fact, the presence of null-values simply inhibits the construction of some of the paths defined in the $F(G_{Sat})$ graph. Furthermore, with respect to the previous approach, only one further visit of the graph is required, in order to remove the \neq-arcs that are not loops. Therefore, also the extended method has an exponential worst case. However, we recall that such a worst case rarely occurs when dealing with the application domains usually addressed in the database field.

5. Conclusion and Future work

In this paper a method for checking finite satisfiability of a specific class of database constraints has been presented. In future work, possible extensions of the expressive power of the language will be analyzed, for instance including constraint expressions comparing attribute values with constants. However, since the more expressive the language the harder the reasoning with the language expressions, a deep preliminary analysis about the trade-off between the expressive power of the language and the possibility of reasoning with it is required. Such an activity, i.e., the identification of fragments of formal logic that allow decidable reasoning methods to be defined, is one of the main challenges of conceptual modeling.

A. Appendix

In this section, the notions that are on the basis of the method presented in [18] are revisited according to the proposed extension TQL_{in}^\ast. In the remainder of the paper, for sake of simplicity, a type will indicate either a type label, i.e., a t-term, or an atomic type.

Below, we start with the notion of the T function.

Definition A.1. [The T function] Given a schema Σ, the T function is defined on a t-term τ followed by a sequence of n ($n \geq 1$) p-terms of Σ, as follows:

- $T(\tau.p_1..p_n) = \sigma.p_2..p_n$ if τ has the typed property $"p_1 : \sigma"$, i.e.,

 $\tau := [\ldots, p_1 : \sigma, \ldots]$
\[T(\tau.p_1...p_n) \text{ is undefined otherwise.} \]

For \(1 \leq k \leq n \), \(T^k \) is the composition of the \(T \) function \(k \) times, i.e.:
\[T^k(\tau.p_1...p_n) = T(T(...(T(\tau.p_1...p_n)))...) \]

For instance, in Example 2.1:
\[T(person.child.age) = person.age \]
and:
\[T^2(person.child.age) = integer. \]

Definition A.2. [The Schema graph] Given a schema \(\Sigma \), a **schema graph associated with \(\Sigma \)** (schema graph, for short) is a directed labeled graph whose sets \(N \) and \(A \) of nodes and arcs, respectively, are labeled as follows:

- a node \(n \in N \) is labeled with a set of types of \(\Sigma \), that is indicated as \(e(n) \). In general, different nodes may have the same label;
- an arc \(a \in A \) is an ordered pair of nodes, \(n, m \in N \), labeled with a:
 1. \(p_{\text{Term}} \), say \(p \), defined in \(\Sigma \). It is indicated as:
 \[<n,m>_p, \]
 and is referred to as a **property-arc**;
 2. \(\theta \) operator defined in \(\Sigma \). It is indicated as:
 \[<n,m>_{\theta}, \]
 and is referred to as a **\(\theta \)-arc**;
- for each node \(n \in N \), if there exist two **property-arcs** such that:
 \[<n,m>_p \text{ and } <n,q>_p \]
 then: \(m \equiv q \),
 i.e., for each node, the outgoing arcs with the same property labels have the same destination nodes.

Definition A.3. [The Schema tree] Given a schema \(\Sigma \), a **schema tree** is a schema graph that is a tree, directed from the root to the leaves, whose arcs are all **property-arcs**.

Based on the definition of a schema graph, the notion of a schema tree is given below.

In order to formally define the notion of \(G_{Sat} \) graph tree, below the \(left_r \) and \(right_r \) sets are presented, that are related to the modeling of the left and the right hand sides of an integrity constraint, respectively.

Given a schema \(\Sigma \) and a type \(\tau \) of \(\Sigma \), we recall that \(I(\tau) \) indicates the set of \(\theta \)-constraints associated with \(\tau \) in \(\Sigma \).

Below, the definition of \(left_r \) and \(right_r \) sets is given. With respect to the one given in [18], here only the non-null integrity constraints are considered (see Definition 4.1).
Definition A.4. [The left, and right, sets] Consider a schema Σ, a type τ of Σ such that $I(\tau) \neq \emptyset$, and a non-null integrity constraint $ic \in I(\tau)$, defined as follows:

$$ic = \text{label: this.p}_1...\text{p}_n \theta \text{this.q}_1...\text{q}_v$$

Then, the left$_\tau(\tau, ic)$ and right$_\tau(\tau, ic)$ are two sets of property-arcs of a schema graph originating from the node r and defined, respectively, as follows:

$$\text{left}_\tau(\tau, ic) = \{< \tau, r_2 >_{p_1}, < r_2, r_3 >_{p_2}, ..., < r_n, r_{n+1} >_{p_n} \}$$

$$\text{right}_\tau(\tau, ic) = \{< \tau, s_2 >_{q_1}, < s_2, s_3 >_{q_2}, ..., < s_v, s_{v+1} >_{q_v} \}$$

where:

- $e(r) = \{\tau\}$;
- $e(r_{k+1}) = \{T^k(\tau, p_1...p_k)\}$, for $k = 1...n$;
- $e(s_{h+1}) = \{T^h(\tau, q_1...q_h)\}$, for $h = 1...v$.

(In the case of $v = 0$, right$_\tau(\tau, ic)$ is formed by the r node only.)

The T_{Path} tree is introduced below. It models, essentially, the component of the G_{Sat} graph containing only property-arcs.

Definition A.5. [The T_{Path} tree] Given a schema Σ, consider a type τ of Σ whose associated set of integrity constraints $I(\tau)$ is non-empty.

Then, the T_{Path} tree of root r associated with τ, indicated as $T_{Path,r}(\tau)$, is the schema tree whose set of arcs, say A_r, is defined as follows:

$$A_r = \bigcup_{ic \in I(\tau)} (\text{left}_\tau(\tau, ic) \cup \text{right}_\tau(\tau, ic))$$

and whose set of nodes is completely characterized by the set A_r.

Notice that, since $T_{Path,r}(\tau)$ is a schema tree, if there exist two property-arcs such that:

$< n_1, m_1 >_p$ and $< n_2, m_2 >_p$

then the nodes m_1 and m_2 are replaced by a single node m, such that:

$$e(m) = e(m_1) \cup e(m_2).$$

The short form $T_{Path}(\tau)$ indicates the $T_{Path,r}(\tau)$ tree, where r is any root.

Notice that, since we have a schema, in the above definition the labels of the nodes m_1 and m_2 are singletons that coincide.

Definition A.6. [The \cup operator] Given a schema Σ, let S be the forest of all its possible schema trees. Then, the \cup operation between two schema trees $T, T' \in S$, $T = (N, A)$ and $T' = (N', A')$, returns the forest, say T'', of schema trees defined as follows:

$$T'' = T \cup T' = (N'', A'')$$

where:

$$N'' = N \cup N', A'' = A \cup A'.$$

Definition A.7. [The Expand function] Consider a schema Σ, and the forest S of all its possible schema trees. Given a schema tree $T = (N, A)$, let N^{-} be the set:

$$N^{-} = \{m \in N \mid e(m) = \{\gamma\}, \gamma \text{ is a term of } \Sigma, \text{ and } I(\gamma) \neq \emptyset \}.$$

Then, the Expand function is defined as follows:

$$\text{Expand} : S \rightarrow S$$

and, when applied to T, returns the schema tree:

$$\text{Expand}(T) = \bigcup_{\delta \in N^{-}} (T_{Path,n}(\delta)) \cup T$$

where $e(n) = \{\delta\}$.
Notice that, since the \textit{Expand} function returns a schema tree, if there exist two \textit{property-arcs} such that:
\[< n, m_1 >_p \text{ and } < n, m_2 >_p \]
then the nodes \(m_1 \) and \(m_2 \) are replaced by a single node \(m \), such that:
\[e(m) = e(m_1) \cup e(m_2). \]

\begin{definition}{The \(T_{Path}^{rec} \) tree} Given a schema \(\Sigma \) and a type \(\tau \) of \(\Sigma \) such that \(I(\tau) \neq \emptyset \), the \(T_{Path}^{rec}(\tau) \) tree is a schema tree, that is a supergraph of \(T_{Path}(\tau) \), defined as follows. Let \(\text{Expand}^h(T) \) be the composition of the \textit{Expand} function \(h \) times. Furthermore, assume that:
\[T_{Path}(\tau) = \text{Expand}^h(T_{Path}(\tau)) \]
and let \(N^h \) be the set of the nodes of the \(\text{Expand}^h(T_{Path}(\tau)) \) tree, for \(h \geq 0 \). Then:
\[T_{Path}^{rec}(\tau) = \text{Expand}^{k+1}(T_{Path}(\tau)) \]
where \(k \geq 0 \) is the smallest nonnegative integer such that the following condition holds:
\(\forall n \in (N^{k+1} \setminus N^k) \) whose label does not contain atomic types, if \(q \) is the path of the tree:
\[\text{Expand}^{k+1}(T_{Path}(\tau)) \]
connecting the root to the node \(n \), and \(q^- \) is the subpath of \(q \) belonging to the tree:
\[\text{Expand}^{k}(T_{Path}(\tau)) \]
then, there exists a node \(m \) in the path \(q^- \) such that \(e(n) = e(m) \) and, furthermore, \(m \) has at least all the outgoing \textit{property-arcs} of \(n \). \qed
\end{definition}

\begin{proposition}{The \(T_{Path}^{rec} \) tree size} Given a schema \(\Sigma \), for any type \(\tau \) of \(\Sigma \) such that \(I(\tau) \neq \emptyset \), the \(T_{Path}^{rec}(\tau) \) tree is defined and has a finite number of nodes.
Proof. See \cite{18}. \qed
\end{proposition}

The \(\Theta_r \) set, introduced below, identifies the set of \textit{\(\theta \)-arcs} that need to be added to the \(T_{Path}^{rec} \) tree to obtain the \(G_{Sat} \) graph.

\begin{definition}{The \(\Theta_r \) set} Given a schema \(\Sigma \), a type \(\tau \) of \(\Sigma \) such that \(I(\tau) \neq \emptyset \), and a schema graph \(G \). Consider an integrity constraint associated with \(\tau \), say \(ic \), defined as follows:
\[\text{ic} = \text{label} : \text{this} \ p_1...p_n \ \theta \text{ this} \ q_1...q_v. \]
If in \(G \) there exist the paths:
\[\text{left}_r(\tau, ic) = \{ < \tau, r_2 > r_1, < r_2, r_3 > r_2, ..., < r_n, r_{n+1} > r_n \} \]
\[\text{right}_r(\tau, ic) = \{ < \tau, s_2 > q_1, < s_2, s_3 > q_2, ..., < s_v, s_{v+1} > q_v \} \]
defined according to Def.A.4, then:
\[\Theta_r(\tau, ic) = \{ < r_{n+1}, s_{v+1} > \theta \} \text{ if } \theta \text{ is } >, \geq, =; \]
\[\Theta_r(\tau, ic) = \{ < s_{v+1}, r_{n+1} > \theta \} \text{ if } \theta \text{ is } <, \leq. \]
In all the other cases:
\[\Theta_r(\tau, ic) = \emptyset. \] \qed
\end{definition}

\begin{definition}{The \(G_{Sat} \) graph} Consider a type \(\tau \) of a schema \(\Sigma \) such that \(I(\tau) \neq \emptyset \), and the associated tree \(T_{Path}^{rec}(\tau) = (N,A) \). Let \(N^- \) be the set defined as in Def.A.7, i.e.:
\[N^- = \{ n \in N \mid e(n) = \{ \gamma \}, \gamma \text{ is a } t \text{ erm of } \Sigma, \text{ and } I(\gamma) \neq \emptyset \}. \]
Then, \(G_{Sat}(\tau) = (N_{Sat}, A_{Sat}) \) is the schema graph defined as follows:
- \(N_{Sat} = N \)
- \(A_{Sat} = \bigcup_{m \in N^-} \bigcup_{ic \in I(\delta)} (\Theta_m(\delta, ic)) \cup A \)
where \(e(m) = \{ \delta \} \).
The root of the tree \(T_{Path}(\tau) \) will be referred to as the \textit{owner} of the \(G_{Sat}(\tau) \) graph. \qed
\end{definition}
The following relation, namely the Collapse, is now introduced in order to present the G^eq_{Sat} graph.

Definition A.11. [The Collapse relation] Given a schema Σ, let \mathcal{G} be the set of all its possible schema graphs. Then, let Collapse be the relation:

\[\text{Collapse} : \mathcal{G} \rightarrow \mathcal{G} \]

such that, when applied to a schema graph $G \in \mathcal{G}$, returns a schema graph $G^- \in \mathcal{G}$, defined as follows.

Let $< n_i, n_j >_\theta$ be a θ-arc of G where θ is the “=” operator. Then, in $G^- < n_i, n_j >_\theta$ is removed, and the nodes n_i and n_j are replaced by a node n_k such that:

\[e(n_k) = e(n_j) \cup e(n_i) \]

Notice that, since G^- must be a schema graph, in the case of outgoing property-arcs with the same labels, the same of Def A.7 is applied. □

Definition A.12. [The G^eq_{Sat} graph] Given a type τ of a schema Σ, $I(\tau) \neq \emptyset$, consider the $G_{\text{Sat}}(\tau)$ graph. Then, $G^\text{eq}_{\text{Sat}}(\tau)$ is a schema graph of the same owner of $G_{\text{Sat}}(\tau)$, that is the least fixed point (lfp) of the Collapse applied to the $G_{\text{Sat}}(\tau)$ graph, i.e.:

\[G^\text{eq}_{\text{Sat}}(\tau) = \text{lfp}(\text{Collapse}(G_{\text{Sat}}(\tau))) \]

Notice that, in general, G^eq_{Sat} is a multi-graph, i.e., a pair of nodes may be connected through more arcs (differently labeled). Furthermore, since the Collapse is applied to a G_{Sat} graph, the labels of the nodes to be collapsed are singletons that coincide (see Def 2.2 of a TQL$^+$ schema).

Proposition A.2. [The Collapse lfp] The Collapse has a lfp.

Proof. See [18]. □

Definition A.13. [Pairs of equivalent paths] Given a schema Σ, consider a pair of paths, q_1, q_2 of a schema graph, defined as follows:

\[q_1 = \{ < r_1, r_2 >_{p_1}, < r_2, r_3 >_{p_2}, \ldots, < r_m, r_{m+1} >_{p_m} \} \]

\[q_2 = \{ < r'_1, r'_2 >_{p'_1}, < r'_2, r'_3 >_{p'_2}, \ldots, < r'_{m'}, r'_{m'+1} >_{p'_{m'+1}} \} \]

where each $p_h, p'_k, h = 1 \ldots m, k = 1 \ldots m'$, is a property label or a θ operator. Then the pair of paths s_1, s_2:

\[s_1 = \{ < g_1, g_2 >_{l_1}, < g_2, g_3 >_{l_2}, \ldots, < g_n, g_{n+1} >_{l_n} \} \]

\[s_2 = \{ < g'_1, g'_2 >_{l'_1}, < g'_2, g'_3 >_{l'_2}, \ldots, < g'_{n'}, g'_{n'+1} >_{l'_{n'}} \} \]

(while, again, each $l_q, l'_q, q = 1 \ldots n, v = 1 \ldots n'$, is a property label or a θ operator) is equivalent to the pair q_1, q_2 iff:

- $m = n$ and $m' = n'$;
- $p_h = l_h, \text{ for } h = 1 \ldots m, \text{ and } p'_k = l'_k, \text{ for } k = 1 \ldots m'$;
- $e(r_h) = e(g_h), \text{ for } h = 1 \ldots m + 1, \text{ and } e(r'_k) = e(g'_k), \text{ for } k = 1 \ldots m' + 1$
- if in q_1, q_2 there exist, respectively, two nodes $r_i, r'_j, 1 \leq i \leq m + 1, 1 \leq j \leq m' + 1, \text{ such that } r_i \equiv r'_j \text{ (i.e., } r_i \text{ and } r'_j \text{ coincide) then, in } s_1, s_2: g_i \equiv g'_j \text{.} \] □

Definition A.14. [Induced owner] Given a schema Σ, consider a schema graph $G = (N, A)$ and a node $n \in N$. Then, n is an induced owner in G iff for each pair of paths starting from the owner of a $G^\text{eq}_{\text{Sat}}(\gamma)$ graph, where $\gamma \in e(n)$ and $I(\gamma) \neq \emptyset$, there exists an equivalent pair of paths starting from n in G. □
The notion of a $\mathcal{F}(G)$ graph can now be formally given.

Definition A.15. [The $\mathcal{F}(G)$ graph] Given a schema Σ, let $G=(N,A)$ be a schema graph. Then, $\mathcal{F}(G)$ is the schema graph whose connected components, say $G_k = (N_k, A_k)$, $k = 1\ldots s$, verify the following conditions:
- $N = N_k$,
- $A \subseteq A_k$,
- $\forall n \in N$, n is an induced owner in G_k.

Proposition A.3. [The $\mathcal{F}(G_{Sat}^{eq})$ graph] Given a schema Σ, for any type τ of Σ, $I(\tau) \neq \emptyset$, the graph $\mathcal{F}(G_{Sat}^{eq}(\tau))$ has at least one (non-empty) connected component.
Proof. See [18].

Notice that in the case of non-recursive schemas, $\mathcal{F}(G_{Sat}^{eq})$ coincides with G_{Sat}^{eq}.

References

[7] F. Bry, R. Manthey; *Checking Consistency of Database Constraints: a Logical Basis*; Proc. of the 12th Int. Conf. on Very Large Data Bases '86 (VLDB'86); Kyoto, Japan, August 1986.

[23] H.Gallaire, J.M.Nicholas; *Logic and Databases: An assessment;* Proc. of Third Int. Conf. on Database Theory’90 (ICDT’90), S.Abitboul, P.Kanellakis (Eds.), Lecture Notes in Computer Science (LNCS) 470, Springer-Verlag, 1990.

