
First Lectures of

Automata Theory and Formal Languages

1. Preliminaries

Unbounded counting:

x = x+ 1

x = (((((((((x+ 1)))))))))

Compiler for recursion:

f(x) = if x = 0 then 1 else x× f(x− 1)
f(5) = 120

Compiler for recursion again (types are important):

f(x, g) = if x = 0 then 1 else x× g(x− 1)
f(5, f) = 120

Call-by-name and call-by-value:

f(x) = 1 g(x) = g(x) + 3
f(g(2)) = . . . call -by-name: 1 call -by-value: nontermination
Java, Python, C++ are call-by-value languages.
Haskell is call-by-name.

2. Three stars: S∗, →∗, b∗

symbols, characters: Σ = {a, b}

words, strings, sequences: ab, abba, ε, bba, . . .

concatenation of words: ab · abba = ababba

set S of words

concatenation of sets of words: S1 · S2 = {w1 · w2 |w1 ∈ S1 and w2 ∈ S2}

S0 = {ǫ}

S1 = S

Si+1 = Si · S = S · Si

S∗ = {ε} ∪ S ∪ S · S ∪ . . . =
⋃

i≥0 S
i (first star: S∗)

S+ = S ∪ S · S ∪ . . . =
⋃

i≥1 S
i

Theorem 1. For any set S of words, if ε ∈ S then S∗ = S · S∗ = S+.

Grammar: G = 〈VT , VN , P, S〉
terminal alphabet: VT
nonterminal alphabet: VN
alphabet: V = VT ∪ VN
set P of productions: set of pairs α → β, where α ∈ V + and β ∈ V ∗

axiom: S ∈ VN

Type 2 grammars: α ∈ VN
Example: S → SA | a A→ aAa | bA | ε

1

2

Language of a grammar: L(G) = L(S) = {w |S →∗ w and w ∈ V ∗
T }

w1 → w2 iff ∃u, v, α, β such that w1 = uα v and w2 = u β v and α→ β ∈ P .

→∗ is the reflexive, transitive closure of →. (second star: →∗)

Language of a nonterminal A: L(A) = {w |A→∗ w and w ∈ V ∗
T }

s ∈ V ∗ is a sentential form derived from A if A→∗ s.

Take any b ∈ VT . b∗ = {ε, b, bb, . . .} = {b0, b1, b2, . . .} =
⋃

i≥0{b
i}. (third star: b∗)

Notation. {a, b}∗ = (a+ b)∗: all words of any length with characters a or b only.

Arithmetic Expressions with precedence of × over +.

E → E + T | E − T | T (expressions)
T → T × F | T/F | F (terms)
F → a | b | c | (E) (factors)

terminal alphabet: VT = {a, b, c,+,−,×, /, (,)}

non terminal alphabet: VN = {E, T, F}

axiom: E.

The expression a+c×b has the parse tree (which shows the precedence of the operators
+ and ×) (downlines denote the relation →) depicted in Figure 1.

E

E + T

T T × F

F F b

a c

Figure 1. Parse tree of the arithmetic expression a+ c× b. Precedence
of × over + is realized by the bottom-up evaluation of the tree: before
computing E as E + T , we have to compute T as T × F .

Arithmetic Expressions without precedence of × over +.

E → E + E | E −E | E × E | E/E | a | b | c | (E)

The expression a+ c× b has the two parse trees (and thus this grammar is ambiguous)
depicted in Figure 2.

3. GRAMMARS FOR PROGRAMMING LANGUAGES 3

E

E + E

a E × E

c b

E

E × E

E + E b

a c

Figure 2. The two parse trees of the arithmetic expression a + c × b,
which correspond to a+(c× b) and (a+ c)× b, respectively. Precedence
of × over + should be enforced by using parentheses.

3. Grammars for Programming Languages

Identifiers.

Id → LA (identifier)
A → LA | DA | ε
L → a |A | b |B | . . . (letter)
D → 0 | 1 | 2 | 3 | . . . | 9 (digit)

identifier: letter

letter

digit

Figure 3. Productions represented by diagrams. Identifiers (Id), let-
ter (L), and digit (D).

HTML.

Appearance of the text:

The things I hate:
1. Moldy bread.
2. People who drive too slow in the fast lane.

HTML source:
(P = Paragraph, EM = Emphasize, OL = Ordered List, LI = List Item)

<P> The things I hate :

 Moldy bread.
 People who drive too slow in the fast lane.

Grammar:

VT = {a, A, b, B, . . . , , , , , <P>, }

VN = {Char ,Text,Doc,Elem,List , Item}

The axiom of the grammar is Doc.

4

The productions are:

Doc → ε | Elem Doc

Elem → Text | Doc | <P> Doc | List

List → ε | Item List

Item → Doc

Char → a | A | B | b | . . .

Text → ε | Char Text

4. Mathematical Induction

Natural Numbers.

N = {0, s(0), s(s(0)), . . .}.
Consider a predicate P (n) over the set N , that is, a subset of N .

(Mathematical Induction) (†)

P (0) ∀n∈N. (P (n) ⇒ P (s(n)))

∀k∈N.P (k)

In order to avoid regressio ad infinitum, the premise ∀n∈N. (P (n) ⇒ P (s(n))), which
stands for ∀n.

(

n∈N ⇒ (P (n) ⇒ P (s(n)))
)

, can be proved by using the Generalization
Rule of First Order Predicate Calculus:

(Generalization Rule) A(x)

∀x.A(x)

Indeed, by the Generalization Rule from n∈N ⇒ (P (n) ⇒ P (s(n))) we get:
∀n.

(

n∈N ⇒ (P (n) ⇒ P (s(n)))
)

.
For a predicate P (m,n) with two arguments over the setN×N we have the following

rule:

(Mathematical Induction with two arguments) (††)

P (0, 0) ∀n∈N. (P (0, n) ⇒ P (0, s(n))) ∀m,n∈N. (P (m,n) ⇒ P (s(m), n))

∀h, k∈N.P (h, k)

We can derive this rule from the mathematical induction rule for predicates with one
argument (see rule (†) above) as follows.

Consider the predicateQ(m) =def ∀n∈N.P (m,n). In order to show that ∀m∈N.Q(m)
by mathematical induction we need to show:

(i) Q(0) and (ii) ∀m∈N.Q(m) ⇒ Q(s(m)).

(i) In order to show Q(0), that is, ∀n ∈ N.P (0, n), by mathematical induction for
predicates with one argument only, we need to show:

(α) P (0, 0) and

(β) ∀n∈N. (P (0, n) ⇒ P (0, s(n))).

4. MATHEMATICAL INDUCTION 5

(ii) In order to show ∀m∈N.Q(m) ⇒ Q(s(m)), that is,

(γ′) ∀m∈N.
(

∀n∈N.P (m,n)
)

⇒
(

∀n∈N.P (s(m), n)
)

,

it is enough to show:

(γ) ∀m,n∈N. (P (m,n) ⇒ P (s(m), n)),

because for all binary predicates A and B, we have that ∀m,n. (A(m,n) ⇒ B(m,n))
implies ∀m. (∀n.A(m,n)) ⇒ (∀n.B(m,n)).

Remark 2. Note that “something funny happens to the left of the arrow” (as
Prof. John Reynolds says), that is, if A ⇒ B, then (B ⇒ C) ⇒ (A ⇒ C). Since
∀m,n. (A(m,n) ⇒ B(m,n)) implies ∀m. (∀n.A(m,n)) ⇒ (∀n.B(m,n)), we have that
the Mathematical Induction rule (†) implies the Mathematical Induction rule with two
arguments (††). ✷

Exercise 3. Prove by mathematical induction that, for all n≥0,

(i)
∑n

i=0 i =
n (n+1)

2
.

Theorem 4. [Commutativity of Plus] For all natural numbers m and n, we
have that m+n = n+m, where the + operation is defined by primitive recursion as
follows:

(P0) ∀n. 0+n = n

(Ps) ∀m,n. s(m)+n = s(m+n)

Proof. By mathematical induction for a predicate with two arguments. We have to
prove the following three facts:

(F1) 0+0 = 0+0

(F2) ∀n. 0+n = n+0 ⇒ 0+s(n) = s(n)+0

(F3) ∀m,n. m+n = n+m ⇒ s(m)+n = n+s(m)

Fact (F1) follows from (P0) because both sides are equal to 0. For Fact (F2) let us
consider a generic value n and the two sides 0+s(n) and s(n)+0 of the conclusion.

Now, 0+s(n) = {by (P0)} = s(n), and

s(n)+0 = {by (Ps)} =

= s(n+0)= {by inductive hypothesis (see premise 0+n=n+0 in Fact (F2))}=

= s(0+n)= {by (P0)} = s(n).

Since n is a generic value, by generalization we get Fact (F2).

For Fact (F3) let us consider the two generic values m and n. We have that:

s(m)+n = {by (Ps)} =

= s(m+n)= {by inductive hypothesis (see premisem+n=n+m in Fact (F3))}=

= s(n+m)= {by Lemma 5 below} = n+s(m).

Since m and n are generic values, by generalization we get Fact (F3).

Lemma 5. For all natural numbers m and n, we have that s(m+n) = m+s(n).

Proof. We proceed by mathematical induction on m.

(Basis) m=0. We have to show that ∀n∈N. s(0+n) = 0+s(n). Indeed, by (P0) the
left hand side (l.h.s.) s(0+n) and the right hand side (r.h.s.) 0+s(n) are both equal
to s(n).

6

(Step) We have to show that
∀m∈N. (∀n∈N. s(m+n)=m+s(n)) ⇒ (∀n ∈ N, s(s(m)+n)=s(m)+s(n)).

Let us consider a generic value m. We assume that ∀n∈N. s(m+n) = m+s(n) and
we have to show that ∀n∈N. s(s(m)+n) = s(m)+s(n).

Let us consider a generic value n. For l.h.s.: s(s(m)+n) = {by (Ps)} = s(s(m+n)).

For r.h.s.: s(m)+s(n) = {by (Ps)} = s(m+s(n)) = {by inductive hypothesis} =
s(s(m+n)). �

Complete Induction for natural numbers.

(Complete Induction)

∀n∈N. ((∀h∈N. h<n ⇒P (h)) ⇒ P (n))

∀k∈N.P (k)

Theorem 6. Every non-prime number is a product of prime numbers.

Proof. By complete induction. Consider a non-prime number m. It has at least
a factor f different from 1 and m. The two factors f and m

f
, being both less than m,

by complete induction, are products of prime numbers.

Assume that f=pi11 p
i2
2 . . . p

ik
k and m

f
=qj11 q

j2
2 . . . qjhh , where the pi’s and the qj ’s are

all prime numbers. Thus, m= pi11 p
i2
2 . . . p

ik
k q

j1
1 q

j2
2 . . . qjhh . (Note that in this product,

if we replace every subproduct of the form pirr q
js
s , with pr = qs, by pir+js

r , we get a

factorization of m such that m=pu1

1 pu2

2 . . . put

t , where the prime numbers p1, p2, . . . , pt

are all distinct).

�

5. Equivalence of Complete Induction and the Least Number Principle

In this section we will prove that from Complete Induction one can derive the Least
Number Principle. The Least Number Principle states that:

“if a property holds for one or more natural numbers,
then there exists a minimum natural number for which it holds”,

that is, using a formula of the first order predicate calculus,

∃y. ψ(y) ⇒
(

∃z.((∀x<z.¬ψ(x)) ∧ ψ(z))
)

.

In this formula and in all formulas of our proof, we assume that the quantified variables
all range over the natural numbers. Thus, for instance,

∀x.ϕ(x) stands for ∀x.x∈N ⇒ ϕ(x).
In our proof we have indicated between curly brackets the reason which justifies the
step of the proof. The Complete Induction Principle can be stated as follows:

(

∀z.((∀x. (x<z) ⇒ ϕ(x)) ⇒ ϕ(z))
)

⇒ ∀y. ϕ(y)

which can be abbreviated as
(

∀z.((∀x<z. ϕ(x)) ⇒ ϕ(z))
)

⇒ ∀y. ϕ(y)

{by (a⇒ b) ⇔ (¬a ∨ b)}

6. FIVE PROOFS 7

(

∀z.(¬(∀x<z. ϕ(x)) ∨ ϕ(z))
)

⇒ ∀y. ϕ(y)

{by ϕ(x) ⇔ ¬ψ(x)}
(

∀z.(¬(∀x<z.¬ψ(x)) ∨ ¬ψ(z))
)

⇒ ∀y.¬ψ(y)

{by (a⇒ b) ⇔ (¬b ⇒ ¬a)}

¬∀y.¬ψ(y) ⇒ ¬
(

∀z.(¬(∀x<z.¬ψ(x)) ∨ ¬ψ(z))
)

{by ¬∀x.ψ(x) ⇔ ∃x.¬ψ(x)}

∃y.¬¬ψ(y) ⇒
(

∃z.¬(¬(∀x<z.¬ψ(x)) ∨ ¬ψ(z))
)

{by ¬(a∨b) ⇔ (¬a ∧¬b), that is, by the De Morgan law)

∃y.¬¬ψ(y) ⇒
(

∃z.(¬¬(∀x<z.¬ψ(x)) ∧ ¬¬ψ(z))
)

{by ¬¬a ⇔ a, that is, by the ‘tertium non datur’ law)

∃y. ψ(y) ⇒
(

∃z.((∀x<z.¬ψ(x)) ∧ ψ(z))
)

which states the Least Number Principle.

6. Five Proofs

Consider the grammar with axiom S and productions:

S → SA | a A → aAa | bA | ε

Lemma 7. b∗ ⊆ L(A).

Proof. We show that for all n≥0, bn ∈ L(A) by induction on n.

(Basis) n = 0. To show: ε ∈ L(A). Indeed: A→ ε.

(Step) Assume bn ∈ L(A). To show: bn+1 ∈ L(A).

Indeed: bn+1 = b bn and b bn ∈ b L(A) because, by inductive hypothesis, bn∈L(A).
Then, by the production A→ bA, we get: b L(A)⊆L(A), and thus b bn ∈ L(A). �

Lemma 8. a b∗ a ⊆ L(A).

Proof. We show that for all n≥0, a bn a ∈ L(A) by induction on n.

(Basis) n = 0. To show: a a ∈ L(A).

Indeed: a a ∈ aL(A) a {because A→ ε} ⊆ L(A) {because A→ aAa}.

(Step) Assume a bn a ∈ L(A). To show: a bn+1 a ∈ L(A).

Indeed: a bn+1 a = a b bn a and, by Lemma 7, a b bn a ∈ aL(A) a. Then, by the
production A→ aAa, we get: aL(A) a ⊆ L(A), and thus a b bn a ∈ L(A). �

Lemma 9. For any sentential form s such that A →∗ s, s has an even number
of a’s.

Proof. By induction on the number n of applications of →.

(Basis) n = 0. To show: A has an even number of a’s. Obvious, because A has 0 a’s.

(Step) Assume s such that: (i) A→n s, and (ii) s has an even number of a’s. To show:
for any s such that A→n+1 s, s has an even number of a’s.
Take any s such that A→n+1 s and s has an even number of a’s. We have that there
exists a sentential form s1 such that A →n s1 → s. By induction hypothesis s1 has
an even number of a’s. The rightmost rewriting → can be either: (i) A → aAa, or
(ii) A → bA, or (iii) A → ε. In Case (i) the number of a’s in s is even because if k is

8

even, then k + 2 is even. In Cases (ii) and (iii) the number of a’s is not changed and,
thus, it is even by inductive hypothesis. �

Let (a+ b)∗ea denotes the set of words in (a+ b)∗ that have an even number of a’s.

Theorem 10. (L(A))∗ = (a+ b)∗ea.

Proof. We have to show: Point (1): (L(A))∗ ⊆ (a+ b)∗ea , and
Point (2): (a + b)∗ea ⊆ (L(A))∗.

Point (1) is a consequence of the following points: (i) every w ∈ L(A) is a particular
sentential form derived from A, (ii) Lemma 9, (iii) for every n ≥ 0, every word in
(L(A))n is either ε or the concatenation of words in L(A), and (iv) for all n ≥ 0, the
sum of n even numbers is an even number.

Point (2) is proved by induction on k, defined as the half of the number of a’s in a
word of (a+ b)∗ea.

(Basis) k = 0. To show: b∗ ⊆ (L(A))∗.
Indeed, by Lemma 7, b∗ ⊆ L(A) ⊆ (L(A))∗.

(Step) Assume ∀w. (w ∈ (a+ b)∗ and w has 2k a’s) ⇒ w ∈ (L(A))∗ (inductive hypoth-
esis).

To show ∀w. (w ∈ (a+ b)∗ and w has 2(k+1) a’s) ⇒ w ∈ (L(A))∗.
Indeed, take any word w ∈ (a+ b)∗ such that w has 2(k+1) a’s. w is of the form:

v bka bma bn, for some k,m, n ≥ 0 and some v ∈ (a+ b)∗ such that v has 2k a’s.
By inductive hypothesis v ∈ (L(A))∗. By Lemma 7, bk ∈ L(A). By Lemma 8,

a bma ∈ L(A). By Lemma 7, bn ∈ L(A). Thus, v bka bma bn ∈ (L(A))∗L(A)L(A)L(A)
⊆ {by definition of (L(A))∗} ⊆ (L(A))∗. �

Theorem 11. (a b∗ a+ b)∗ = (a+ b)∗ea.

Proof. To show: Point (1): (a b∗ a + b)∗ ⊆ (a + b)∗ea, and
Point (2): (a + b)∗ea ⊆ (a b∗ a + b)∗.

Point (1) follows from the fact that for all n ≥ 0, (a b∗ a + b)n ⊆ (a + b)∗ea. This can
be shown by induction on n.

(Basis) n = 0. Obvious, because ε is in (a+ b)∗ and ε has an even number of a’s.

(Step) Assume for n and show for n + 1.

Consider a word w ∈ (a b∗ a + b)n+1. w belongs either to (a b∗ a + b)na b∗ a or to
(a b∗ a + b)nb. By induction hypothesis we know that every word in (a b∗ a + b)n has
an even number of a’s. Since a b∗ a and b both have an even number of a’s we get the
thesis.

Point (2) is proved by induction on k, defined as the half of the number of a’s in a
word of (a+ b)∗ea.

(Basis) k = 0. Obvious, because b∗ ⊆ (a b∗ a+ b)∗.

(Step) Assume for k and show for k + 1.

Consider a word w ∈ (a+ b)∗ea such that w has 2(k+1) a’s. w is of the form: v a bn a bm

for some n,m ≥ 0 and some v ∈ (a+ b)∗ea with 2k a’s.

By inductive hypothesis v ∈ (a b∗ a + b)∗. We also have that: a bn a ∈ a b∗ a and
bm ∈ b∗.

7. MATHEMATICAL INDUCTION (AGAIN) AND RULE INDUCTION 9

Thus, we also have that: v a bn a bm ∈ (a b∗ a+ b)∗ (a b∗ a) b∗ ⊆

⊆ (a b∗ a+ b)∗ (a b∗ a+ b) (a b∗ a+ b)∗ ⊆

⊆ (a b∗ a+ b)∗. �

1 2

a

a

b b

Figure 4. The finite automaton corresponding to the regular expres-
sion (ab∗a+ b)∗. State 1 is the initial state and also a final state.

Exercise 12. Show that for any set S of words, we have that: S∗ · S∗ = S∗.

Solution. (⊆). Take a word wi ∈ Si and a word wj ∈ Sj for some i, j ≥ 0. We have
that wi · wj ∈ Si+j ⊆ S∗.
(⊇). We have that {ε} · S∗ = S∗. ✷

7. Mathematical Induction (again) and Rule Induction

1. Natural numbers.

N → 0 | sN

L(N) denotes the set of words generated by the nonterminal N . Thus, L(N) can be
viewed as the set of the natural numbers written in unary notation (the number of s’s
tells us the natural number). Since we often denote the set of the natural numbers
by the symbol N , the reader should not confuse between the nonterminal N and the
set N of the natural numbers. Below the term n+1 stands for s n.

Rules for constructing L(N):
{}

0
∀n∈L(N).

{n}

s n

Rule Induction for L(N) is given by the following two rules:

true

P (0)
∀n∈L(N).

P (n)

P (n+1)

Also called Mathematical Induction or Peano Induction and represented as follows:

P (0) ∀n∈L(N). (P (n) ⇒ P (s n)

∀n∈L(N). P (n)

2. Analogously, for any set of words (that is, a language) generated by a context-free
grammar. For instance, given the grammar:

A→ ε | AA | 0A 1

10

we have the following rules.

Rules for constructing L(A):

{}

ε
∀a1, a2∈L(A).

{a1, a2}

a1 a2
∀a∈L(A).

{a}

0 a 1

Rule Induction for L(A) is given by the following three rules:

true

P (ε)
∀a1, a2∈L(A).

P (a1) P (a2)

P (a1 a2)
∀a∈L(A).

P (a)

P (0 a 1)

8. Equivalence of Context Free Grammars

Let us consider the context-free grammar with axiom A and the following productions:

A → ε | AA | 0A 1

Let us also consider the context-free grammar with axiom B′ and the following pro-
ductions:

B′ → 0B (†1)
B → 1 | 0BB (†2)

Every word w generated by B′ denotes a mountain tour of 0’s and 1’s. Every 0 denotes
an uphill stretch and every 1 denotes an downhill stretch (see Figure 5). For every
word w we have that: (i) every non-empty prefix of w has more 0’s than 1’s (that is,
during the tour we never go below the altitude we started from), and
(ii) the number of 0’s in w is equal to the number of 1’s in w (that is, at the end of
the tour, we return to the altitude we started from).

0

0 1 0

0 1

1

1

Figure 5. A word of B′ is a mountain tour: 0 denotes an uphill stretch
and 1 denotes downhill stretch.

For the productions (†1) and (†2) above, we have that following informal meaning:
(†1) : «B′ is a 0 followed by B», that is,

«B′ is a 0 followed by a promise of an extra 1».
(†2) : either B fulfils the promise of an 1 now or B generates one more 0 and makes

two promises of an extra 1.

Here is the derivation of the word 001011 starting from B′:

B′ → 0B → 0 0BB → 0 0 1B → 0 0 1 0BB → 0 0 1 0 1B → 0 0 1 0 1 1

Let L(A), L(B), and L(B′) denote the languages generated by the nonterminals A, B,
and B′, respectively.

8. EQUIVALENCE OF CONTEXT FREE GRAMMARS 11

Now we show by using Rule Induction that the languages generated by the ax-
ioms A and B′ satisfy the following equality:

L(A) = (L(B′))∗

In order to do so, since L(B′) = 0L(B), it is enough to show that:

• Point (i): L(A) ⊆ (0L(B))∗ and

• Point (ii): (0L(B))∗ ⊆ L(A).

The rules for the language L(A) are as follows:

(A1)
{}

ε
(A2) for any a1, a2∈L(A),

{a1, a2}

a1 a2
(A3) for any a∈L(A),

{a}

0 a 1

The rules for the language L(B) are as follows:

(B1)
{}

1
(B2) for any b1, b2∈L(B),

{b1, b2}

0 b1 b2

Remark 13. We can use Rule Induction for proving the properties we will consider
below because, as it is well known from the theory of formal languages, the inductive
set of the rules (A1), (A2), and (A3) is L(A) and, analogously, the inductive set of the
rules (B1) and (B2) is L(B). �

For reasons of simplicity a singleton {x} will be denoted also by x.

• Proof of Point (i).
It is enough to prove by Rule Induction that the property

P (a) =def a ∈ (0L(B))∗

holds for any word a∈L(A). This property is a consequence of the following Points (i.1),
(i.2), and (i.3).

Point (i.1) By rule (A1) we have to show that: ε ∈ (0L(B))∗. This is obvious.

Point (i.2) By rule (A2) we have to show that: a1a2 ∈ (0L(B))∗. Indeed, a1 a2 ∈ {by
hypothesis} ∈ (0L(B))∗(0L(B))∗ = {by Exercise on page 9} = (0L(B))∗.

Point (i.3) By rule (A3) we have to show that: 0 a 1 ∈ (0L(B))∗. Indeed, 0 a 1 ∈
{by hypothesis} ∈ 0L(A) 1 ⊆ {by B → 1} ⊆ 0L(A)L(B) ⊆ {by Lemma 14 below}
⊆ 0L(B) ⊆ (0L(B))∗. �

• Proof of Point (ii).
It is enough to prove by Rule Induction that the property

P (b) =def (0 b)∗ ⊆ L(A)

holds for any word b ∈ L(B). This property is a consequence of the following
Points (ii.1) and (ii.2).

Point (ii.1) By rule (B1) we have to show that: (0 1)∗ ⊆ L(A). This follows from
∀n ≥ 0, (01)n ∈ L(A), which can be proved by induction on n.
(Basis) Since (01)0 = ε we have to show that ε ∈ L(A). This holds because A→ ε.
(Step) Take any k ≥ 0. We assume (0 1)k ∈ L(A) and we show (0 1)k+1 ∈ L(A) as
follows. We have that (0 1)k+1 = (0 1)k (0 1) ∈ {by induction hypothesis} ∈ L(A) 0 1 ⊆
{by A→ 0A 1 → 0 1} ⊆ L(A)L(A) ⊆ {by A→ AA} ⊆ L(A).

12

Point (ii.2) By rule (B2) we have to show that: (0 0 b1 b2)
∗ ⊆ L(A). Indeed, (0 0 b1 b2)

∗

⊆ {by hypothesis} ⊆ (0 0L(B)L(B))∗ ⊆ {by Lemma 15 below} ⊆ (0L(A)L(B))∗ ⊆
{by Lemma 14} ⊆ (0L(B))∗ ⊆ {by Lemma 15} ⊆ (L(A))∗ ⊆ L(A). This last inclusion
holds because ∀n. (L(A))n ⊆ L(A), as it can be proved by induction on n as follows.

(Basis) The only word in (L(A))0 is ε. Thus, we have to show that {ε} ⊆ L(A). This
holds because A→ ε.
(Step) Assume (L(A))n ⊆ L(A) and show (L(A))n+1 ⊆ L(A). Now, (L(A))n+1 =
(L(A))n L(A) ⊆ {by inductive hypothesis} ⊆ L(A)L(A) ⊆ {by A→ AA} ⊆ L(A).

This completes the proof of Point (ii.2) and the proof of the whole Point (ii). Thus,
we have proved that L(A) = (0L(B))∗ (quomodo erat demonstrandum). �

Lemma 14. L(A)L(B) ⊆ L(B).

Proof. We consider the property:

Q(a)=def aL(B)⊆L(B) and we show by Rule Induction that it holds for all a∈L(A).

By rule (A1) we have to show that: ε L(B) ⊆ L(B). This is obvious.
By rule (A2) we have to show that: a1 a2 L(B) ⊆ L(B). Indeed, a1 a2 L(B) ⊆ {by hy-
pothesis} ⊆ a1 L(B) ⊆ {by hypothesis} ⊆ L(B).
By rule (A3) we have to show that: 0 a 1L(B) ⊆ L(B). Indeed, 0 a 1L(B) ⊆
{by B → 1} ⊆ 0 aL(B)L(B) ⊆ {by hypothesis} ⊆ 0L(B)L(B) ⊆ {by B → 0BB}
⊆ L(B). �

Lemma 15. 0L(B) ⊆ L(A).

Proof. We consider the property:

R(b) =def 0 b∈L(A) and we show by Rule Induction that it holds for all b∈L(B).

By rule (B1) we have to show that: 0 1 ∈ L(A). This is obvious because: A →
{by A→ 0A1} → 0A1 → {by A→ ε} → 01.
By rule (B2) we have to show that: 0 0 b1 b2 ∈ L(A). Indeed, 0 0 b1 b2 ∈ {by hy-
pothesis} ∈ 0L(A) b2 ⊆ {by hypothesis} ⊆ 0L(A)L(B) ⊆ {by Lemma 16 below}
⊆ 0L(A)L(A) 1 ⊆ {by A→ 0A1 → 0AA1} ⊆ L(A). �

Lemma 16. L(B) ⊆ L(A) 1.

Proof. We consider the property:

S(b) =def b ∈ L(A) 1 and we show by Rule Induction that it holds for all b ∈ L(B).

By rule (B1) we have to show that: 1 ∈ L(A) 1. This is obvious because A→ ε.
By rule (B2) we have to show that: 0 b1 b2 ∈ L(A) 1. Indeed, 0 b1 b2 ∈ {by hypothesis}
∈ 0L(A) 1 b2 ⊆ {by A → 0A1} ⊆ L(A) b2 ⊆ {by hypothesis} ⊆ L(A)L(A) 1 ⊆
{by A→ AA} ⊆ L(A) 1. �

9. Regular Language Generated by a Context Free Grammar

We know that the problem Reg(G) of deciding whether or not a context-free grammar
generates a regular language is undecidable. An instance of this problem is given by
a context-free grammar G and the answer of an algorithm which would decide this
problem should be “yes” if there exists a regular grammar equivalent to G and “no” if
it does not exist a regular grammar equivalent to G. By the undecidability of Reg(G)
we know that such an algorithm does not exist.

9. REGULAR LANGUAGE GENERATED BY A CONTEXT FREE GRAMMAR 13

Since the problem ¬Reg(G) of deciding whether or not a context-free grammar
does not generate a regular language is semidecidable, we have, by Post Theorem,
that the problem Reg(G) is not even semidecidable.

In some cases, however, the problem Reg(G) is semidecidable, and now we provide
an algorithm for solving these semidecidable cases.

Let us consider a context-free grammar G = 〈Σ, VN , P, S〉, where Σ is the set of the
terminal symbols, VN is the set of the nonterminal symbols, P is the set of productions,
and S is the axiom. Let L(G) denote the language generated the grammar G.

Let us consider the class of context-free grammars such that, for each B∈VN , there
exists a regular expression RB which defines the language generated by B, denoted
L(B), as a function of the languages generated by the nonterminal symbols in VN .
Thus, the function RB is an operator from (Powerset of Σ∗)|VN | to Powerset of Σ∗. That
operator is monotonic with respect to set inclusion, and since (Powerset of Σ∗)|VN | is
a lattice, by the Knaster-Tarski theorem, the function RB has a minimal fixpoint and
that minimal fixpoint is the language L(B).

Then, we can construct a sequence 〈L0(S), L1(S), . . .〉 of regular languages, such
for all i≥0, Li(S) ⊆ L(G), and if L(G) is a regular language, then there exists k≥0
such that Lk(S) = L(G). The sequence 〈L0(S), L1(S), . . .〉 can be constructed as we
now indicate through an example.

Let us consider the grammar G with axiom S and the following productions:

S → AS | a
A → S A | b

We have that: L(S) = L(A)∗a and L(A) = L(S)∗b (these regular expressions for L(S)
and L(A) can be derived by the Arden rule).

Then, we consider the following (possibly infinite) sequence of pairs of regular
languages:

0 1 . . . i . . .

for S : L0(S) L1(S) . . . Li(S) . . .

for A : L0(A) L1(A) . . . Li(A) . . .

where: 〈L0(S), L0(A)〉 = 〈∅, ∅〉 and

for all i≥0, 〈Li+1(S), Li+1(A)〉 = 〈Li(A)
∗a, Li(S)

∗b〉

If for some k ≥ 0, we have that Lk+1(S) = Lk(S), then we stop the construction
of the sequence of pairs of languages for the nonterminals 〈S,A〉 and we get that
L(G) = Lk(S). (Recall that by Kleene’s Theorem, the equivalence between two regular
expressions can be tested by constructing the minimal finite automaton corresponding
to each regular expression and then testing the isomorphism between these two minimal
finite automata.) This result is a consequence of the fact that, for all nonterminal
symbols B∈VN , the language generated by B is the minimal fixpoint of the monotonic
operator RB.

In the case of the grammar G at hand we have:

14

0 1 2 3 4

for S : ∅ a b∗a (a∗b)∗ a ((b∗a)∗ b)∗ a

for A : ∅ b a∗b (b∗a)∗ b ((a∗b)∗ a)∗ b

We need not proceed further in the construction of the sequence of languages for 〈S,A〉,
because (a∗b)∗ a = ((b∗a)∗ b)∗ a and we have reached the minimal fixpoint.

Here is the proof of this fact. We make the proof by mathematical induction with-
out referring to the minimal finite automata associated with the regular expression.
In this proof, by abuse of language, we assume that a regular expression denotes both
itself and the language it generates. We will also identify a singleton {a} with the
element a.

We have to show:
Point (i): (a∗b)∗ a ⊆ ((b∗a)∗ b)∗ a, and
Point (ii): (a∗b)∗ a ⊇ ((b∗a)∗ b)∗ a.

Point (i) is obvious, because a∗ ⊆ (b∗a)∗ and inclusion of languages is preserved by the
context ([_] b)∗ a.

Point (ii) is a consequence of the fact that (a∗b)∗ ⊇ ((b∗a)∗ b)∗. This fact can be shown
as follows.

(a∗b)∗ = {by e∗=(e∗)∗, for any regular expression e} =

= ((a∗b)∗)∗ = {by the following Lemma 17} =

= ((a + b)∗b+ ε)∗ = {by definition of ∗} =

= ((a + b)∗b)∗ = {(a + b)∗ is the set of all words over the alphabet {a, b}} =

⊇ ((b∗a)∗ b)∗

Lemma 17. (a∗b)∗ = (a+ b)∗b+ ε.

Proof. We have to show:
Point (i): (a∗b)∗ ⊆ (a + b)∗b+ ε, and
Point (ii) (a+ b)∗b+ ε ⊆ (a∗b)∗.
Point (i) follows from the facts that: (i.1) (a + b)∗ is the set of all words over the
alphabet {a, b}, and (i.2) for all word w ∈ (a∗b)∗, either w = ε or w ends with b.

Point (ii) follows from the facts that:

(ii.1) ε ∈ (a∗b)∗, and

(ii.2) for all n≥0, (a+ b)nb ⊆ (a∗b)+ (and (a∗b)+ ⊆ (a∗b)∗). Indeed,

(Basis) n = 0. Obvious, because b ∈ (a∗b)+.

(Step) Assume (a + b)nb ⊆ (a∗b)+. To show: (a+ b)n+1b ⊆ (a∗b)+. Now,

(a + b)n+1b = (a+ b) (a + b)nb =

= a (a+ b)nb+ b (a + b)nb = {by induction hypothesis} =

⊆ a (a∗b)+ + b (a∗b)+.

We have that: (i) a (a∗b)+ ⊆ (a∗b)+, because any word in a (a∗b) can be produced
by (a∗b), and (ii) b (a∗b)+ ⊆ (a∗b)+, because b ∈ (a∗b). �

10. LANGUAGES ARE REAL NUMBERS AND REAL NUMBERS ARE LANGUAGES 15

10. Languages are Real Numbers and Real Numbers are Languages

Let us consider a non-empty finite set Σ of the terminal symbols.
We show that there is a bijection between the set of the subsets of Σ∗, denoted

Powerset(Σ∗), and the set R(0,1) of the real numbers in the open interval (0, 1). This
fact can be expressed as follows:

|Powerset(Σ∗) | = |R(0,1) |. (‡)

Recall that: (i) Powerset(Σ∗) is the set of languages over Σ, and (ii) there is a bi-
jection between the set R(0,1) and the set R(−∞,+∞) of the real numbers in the inter-
val (−∞,+∞) (for this Point (ii) see also Point (i) at the beginning of Section 12 on
page 19).

Notation. Let 0ω and 1ω denote the infinite string of 0’s and 1’s, respectively.
Analogously, for any digit d, let dω denote the infinite string of d’s. ✷

By definition of a real number, we assume that any real number x∈R(0,1) whose
infinite binary expansion is 0.v 1 0ω, for some v ∈ {0, 1}∗, is identified with the real
number whose infinite binary expansion is 0.v 0 1ω.

For instance, the real number with binary expansion 0.10110ω is the same real
number with binary expansion 0.10101ω (obtained from 0.10110ω by replacing the
rightmost substring 10ω by 01ω). That real number is 0.6875 (in decimal notation)
because 0.6875 = 0.5+0.125+0.0625 = 2−1+2−3+2−4 = 0.10110ω.

Unless otherwise stated, we assume that the infinite binary expansion of any real
number is the one that does not end with 0ω to its right.

Note that also in the decimal notation we have a similar identification. For instance,
the infinite sequences 6.0ω and 5.9ω both denote the same real number 6.

Let us introduce the following definitions.

Definition 18. [Fractional Binary Expansion b(x) of a Real Number x
in R(0,1)] Given any real number x∈R(0,1), by b(x) we denote the infinite sequence w
such that 0.w is the unique infinite binary expansion of x which does not end with 0ω

to its right (thus, b(x) has an infinite number of 1’s).

For instance, we have that b(0.6875) = 10101ω.

Definition 19. [Position in a Sequence] Given a sequence of 0’s and 1’s, we
say that its leftmost bit is in position 0 and we say that the bit immediately to the
right of the bit in position p is in position p+1.

Given a sequence σ in {0, 1}ω, for all i≥0, by σ[i] we denote the bit in position i.

• Proof of the existence of the bijection stated by (‡) above.

Let N denote the set of the natural numbers. The proof of the bijection stated
by (‡) above follows from the existence of:
(i) a bijection α between the Powerset(N) and the set R(0,1), and
(ii) a bijection β between N and Σ∗, because (as the reader may easily verify):
(i) for any two sets A and B, if there is a bijection between A and B, then there is a

bijection between Powerset(A) and Powerset(B), and
(ii) the composition of two bijections is a bijection.

Definition of the bijection α from Powerset(N) to R(0,1).
The existence of the bijection α is a consequence of the Bernstein Theorem and the

following two injections r from Powerset(N) to R(0,1) and s from R(0,1) to Powerset(N).

16

Here is the definition of the injection r: for all A⊆N ,

if A is infinite, then r(A) = x such that:

(i) b(x)[0] = 1,

(ii) b(x)[1] = 0, and

(iii) for all i≥0, b(x)[i+2] = 1 iff i∈A

if A is finite with maximal element max , then r(A) = x such that:

(i) b(x)[0] = 0,

(ii) b(x)[1] = 1,

(iii) for all i, with 0≤ i<max , b(x)[i+2] = 1 iff i∈A,

(iv) b(x)[max+2] = 0, and

(v) for all i, with i>max , b(x)[i+2] = 1

if A=∅, then r(A) = x such that:

(i) b(x)[0] = b(x)[1] = 0, and
(ii) for all i≥0, with b(x)[i+2] = 1

Thus, any infinite subset ofN is mapped to a real in the semi-open interval (0.500, 0.750]
and the set N is mapped to 0.750. Every finite subset of N is mapped to a real in the
semi-open interval [0.250, 0.500) and the empty set ∅ is mapped to 0.250.

Remark 20. The definition of the injection r cannot be as follows:

for all A⊆ N , r(A) = x such that for all i≥0, b(x)[i]=1 iff i∈A

because we identify the real number denoted by 0.v 1 0ω with the real number denoted
by 0.v 0 1ω, for any v∈{0, 1}∗. Thus, by this definition of r, we would have that two
distinct subsets of N are mapped to the same real number.

Obviously, one could define an injection from Powerset(N) to R(0,1) which is dif-
ferent from r. We leave it as an exercise to the reader to give the definition of such an
injection different from r.

The injection s is defined as follows: for all x∈R(0,1),

s(x) =def {i | b(x)[i]=1}.

For all x ∈ R(0,1), since b(x) has an infinite number of 1’s, s(x) is an infinite subset
of N .

Definition of the bijection β from N to Σ∗.
The existence of the bijection β is a consequence of the Bernstein Theorem and

the following two injections f from N to Σ∗ and g from Σ∗ to N .
First, we define the injection f . Let a be an element of Σ. Then, f is defined as

follows: for every n∈N , f(n)=an. In particular, f(0)=ε.
Then, we define the injection g from Σ∗ to N . Let us assume, without loss of

generality, that Σ={a, b}. Let us consider the elements of Σ∗ in their canonical order.
According to this order: (i) shorter words are listed before longer words, and (ii) words
of equal length are listed in the lexicographic order, whereby, for instance, a<b, a<aa,
and aa<ab. Thus, we have that all the words of Σ∗ are listed as follows:

〈ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .〉

We define the injection g as the following table shows:

11. COUNTING FORMULAS AND N-ARY TREES 17

w : ε a b aa ab ba bb aaa aab aba abb baa bab . . .

g(w): 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Remark 21. It is easy to see that, for all w∈{a, b}∗,

g(w)=(1w[a/0, b/1])2−1 ∈ N

where: (i) w[a/0, b/1] denotes the string w with 0 and 1, instead of a and b, respec-
tively, (ii) for all v∈{0, 1}∗, (v)2 denotes the natural number whose binary expansion
is v.

We have that g is actually a bijection between Σ∗ and N , and thus we can take β
to be g. The easy proof of this fact is left to the reader.

• Alternative proof of the existence of the bijection between Powerset(Σ∗) and R(0,1)

stated by (‡) above.

This proof is based on the Bernstein Theorem and the following two injections:
(i) the injection h from Powerset(Σ∗) to R(0,1), and (ii) the injection k from R(0,1) to
Powerset(Σ∗), that we now define.

Definition of the injection h from Powerset(Σ∗) to R(0,1).

Without loss of generality, let us consider the alphabet Σ = {a, b}. Let us also
define an encoding σ of the symbols in Σ as follows: σ(a)=00 and σ(b)=01.

Let us also consider a language L ⊆ Σ∗ presented as a sequence Λ of words in
the canonical order. Thus, every non-empty word w in L is encoded by sequence
σ(w)∈ {00, 01}+. We assume that the encoding of the symbol comma ‘,’ separating
any two words in the presentation Λ of L is 11, and the encoding of the empty sequence
ε∈Σ∗ is the sequence 10.

Now we define the injection h mapping Λ= 〈w0, w1, . . .〉 to a sequence of 0’s and
1’s which should be interpreted as fractional binary expansion b(x) of a real number
x in R(0,1). The injection h is defined as follows:

if Λ is infinite, then h(Λ) = σ(w0) γ σ(w1) γ . . .,

if Λ is finite, say Λ = 〈w0, w1, . . . , wn〉, then h(Λ) = σ(w0) γ σ(w1) γ . . . γ σ(wn) 1
ω.

Note that: (i) h(〈〉) = 1ω, (ii) h(〈ε〉) = 101ω, and (iii) if L is infinite, then h(Λ) does
not end with all 0’s to the right (recall that comma is encoded by 11).

The reader may easily show that, since every language in Σ∗ is presented in the
canonical order, h is an injection from Powerset(Σ∗) to R(0,1).

Definition of the injection k from R(0,1) to Powerset(Σ∗).
Given any real number x in R(0,1), we stipulate that:

k(x)={ai | i≥0 and b(x)[i]=1}.

It is easy to see that k is indeed an injection from R(0,1) to Powerset(Σ∗). �

11. Counting Formulas and n-ary Trees

• Counting Formulas. The set F of formulas of the Propositional Calculus is defined
as follows, starting from the infinite set P = {Pi | i∈N} of elementary propositions.

F ∋ ϕ ϕ ::= P0 |P1 | . . . | ¬ϕ | (ϕ→ ϕ)

18

Obviously, |P| = |N |.
Now we show that |F| = |N |. This equality is a consequence of the Bernstein

Theorem and the existence of the following two injections: (i) f from F to N , and
(ii) g from N to F .

The injection f is defined as follows. First, we encode any formula ϕ by a sequence
σ(ϕ) of digits in base 6 obtained by replacing:

(i) for all i∈N , the proposition Pi by the binary expansion of i in {0, 1}+,
(ii) ‘¬’ by 2,
(iii) ‘→’ by 3,
(iv) ‘(’ by 4, and
(v) ‘)’ by 5.

Thus, P0, P1, P2, P3, . . . are encoded by 0, 1, 10, 11, . . ., respectively. For instance,
P3 → (¬P2 → P3) is encoded by the sequence 11342103115.

For all ϕ∈F , we define f(ϕ) to be the natural number whose expansion in base 6
is σ(ϕ).

The injection g is defined as follows: for all i∈N , g(i) = Pi.

• Counting n-ary Trees. The set T of n-ary trees whose leaves and internal nodes have
values taken from a non-empty set A such that |A|= |N |, is defined by the following
domain equations:

T = {•}+ A+ A× List(T) (1)

List(T) = {[]}+ T × List(T) (2)

where ‘•’ denotes the empty tree and ‘[]’ denotes the empty list of n-ary trees in T .
Note that the empty tree • is different from the empty list [] of n-ary trees. As usual,
we denote a list using the square brackets notation. For instance, [b, a, b, c] denotes
the list whose elements are: b, a, b, and c, in this order.

In Equation (1) the summand A denotes the set of n-ary trees which are leaves
with values in A. The summand A×List(T) denotes the set of internal nodes whose
values are in A and whose child nodes are represented ‘from left to right’ as a list of
n-ary trees in T . Thus, for instance, the list [a, [t1, . . . , tn]] denotes an internal node
with value a∈A and whose child nodes are the n trees t1, . . . , tn, from left to right, in
this order. (Note that here and in what follows we equivalently use the word ‘node’
and the word ‘tree’.)

Equation (2) denotes, as usual, the set of lists whose elements are n-ary trees.
Figure 6 depicts the n-ary tree [b, [•, [b, [c, a]], a]].

b

b a

c a

•

Figure 6. The n-ary tree [b, [•, [b, [c, a]], a]].

12. SOME PROPERTIES OF REAL NUMBERS AND LANGUAGES 19

Note that in the domain of n-ary trees we distinguish between: (i) a leaf node with
value a, and (ii) a node with value a having an empty list of child nodes (even if we
may decide not to distinguish between them in their pictorial representations).

Remark 22. The n-ary trees we consider here are: (i) oriented, in the sense
that every node has an directed arc from the node itself to any of its child nodes, and
(ii) ordered, in the sense that the child nodes are ordered in a list ‘from left to right’. �

Now we show that |T | = |N |. This equality is a consequence of the Bernstein
Theorem and the existence of the following two injections: (i) f from T to N , and
(ii) g from N to T .

The injection f is defined as follows. First, we encode any n-ary tree t by a sequence
σ(t) of digits in base 6 obtained by replacing:

(i) every element of A by a suitable binary encoding in {0, 1}+,
(ii) ‘•’ by 2,
(iii) ‘,’ by 3,
(iv) ‘[’ by 4, and
(v) ‘]’ by 5.

For instance, if we assume that the elements a, b, and c are encoded by the binary
strings 00, 01, and 10, respectively, then the n-ary tree [b, [•, [b, [c, a]], a]] is encoded
by the sequence 401342340134103005530055.

For all n-ary trees t∈T , we define f(t) to be the natural number whose expansion
in base 6 is σ(t).

The injection g is defined as follows. Let a be an element of A. For all n ∈ N ,
g(n) = [a, [a, a, . . . , a]], that is, a n-ary tree whose root has the value a and whose n
child nodes are leaves with the same value a (see Figure 7). For n=0, we have that
g(0)=[a, []].

a a a

a

. . .

Figure 7. A n-ary tree whose root has value a and whose n (≥ 0) child
nodes are all leaves with value a.

12. Some Properties of Real Numbers and Languages

Let us consider a finite alphabet Σ = {0, 1}. Let Σ∗ be the set of all finite sequences
of 0’s and 1’s. Let Σω be the set of all infinite sequences of 0’s and 1’s. We have that:

(i) there exists a bijection between the set R(−∞,+∞) of the real numbers in the inter-
val (−∞,+∞) and the set R(0,1) of the real numbers in the open interval (0, 1),

(ii) there exists a bijection between R(0,1) of the real numbers in (0, 1) and the set Σω

of the infinite strings of 0’s and 1’s, and

(iii) there exists a bijection between Powerset(Σ∗), that is, the set of the (finite or
infinite) subsets of Σ∗ (in other words, the set of languages over Σ), and the set Σω.

20

• For Point (i) we have that λx.2 arctg(e
x)

π
is a bijection from R(−∞,+∞) to R(0,1).

• For Point (ii) one can use the Bernstein Theorem and the two injections f from R(0,1)

to Σω and g from Σω to R(0,1) we now define.
First, recall that, by definition, the set R(0,1) can be viewed as the set {0, 1}ω −

({0ω, 1ω} ∪ {0, 1}∗10ω) of the fractional binary expansions (indeed, 0 and 1 are not in
R(0,1) and, for any v ∈ {0, 1}∗, we write v01ω instead of v10ω).

The definition of the injection f is based on the fact that every real number in R(0,1)

has a unique infinite binary expansion in Σω not ending with all 0’s (see Definition 18
on page 15).

The definition of the injection g is as follows. For any given infinite sequence w
in Σω, we first construct the list P of its non-empty prefixes in lexicographic order.
If P = 〈p0, p1, p2, p3, . . .〉, then g(w) is the real number x∈R(0,1) such that b(x) (see
again Definition 18 on page 15) is given by the concatenation p00p11p20p31 . . . (since
the separating bits are 0 and 1, this concatenation cannot end with 0ω.) For instance,
for the sequence 1ω, we have that P is 〈1, 11, 111, 1111, . . .〉, and thus the real number
x = g(1ω) is (in binary) 0.1 0 11 1 111 0 1111 1

Remark 23. A different definition of an injection g from Σω to R(0,1) is as follows.
For any given infinite sequence w in Σω, we stipulate that:

g(0w) = 001 g(w)

g(1w) = 101 g(w)

Note that for any w in Σω, we have that g(w) does not end with 0ω.

• For Point (iii) one can use the Bernstein Theorem and the two injections from
Powerset(Σ∗) to Σω and from Σω to Powerset(Σ∗) we now define.

An injection from Powerset(Σ∗) to Σω can be constructed as we now illustrate
through an example.

Consider the language A = {01, 0101, 010101, . . .}, that is, {(01)n |n ≥ 1} pre-
sented as the list Λ(A) = 〈01, 0101, 010101, . . .〉 of words in the canonical order. The
language A is mapped to the infinite sequence σ(A) constructed by encoding every
word and comma in Λ(A) as indicated by the following table:

A = { 01 , 0101 , 010101 , . . . }

Λ(A) = {01 , 0101 , 010101 , . . . 〉

σ(A) = 0001 11 00010001 11 000100010001 11 . . .

where: (i) σ(0)=00, (ii) σ(1)=01, and (iii) σ(,)=11. (For readability reasons we have
inserted in the sequence σ(A) blank characters to the left and to the right of the 11’s
which encode commas.)

We assume that σ maps the empty word ε to 10. If the language is a finite subset
of Σ∗, then σ(A) is obtained by first encoding every word and comma in Λ(A) as
indicated in the table above, and then concatenating the sequence 1ω to the right. For
instance, the empty language is mapped to 1ω, and the language {ε, 0} is mapped to
1011001ω.

It is not difficult to show that the function σ is an injection from Powerset(Σ∗)
to Σω.

13. SOME PROPERTIES OF TURING MACHINES 21

An injection from Σω to Powerset(Σ∗) can be constructed by considering, for any
given infinite sequence in Σω, the infinite set of its prefixes. This set is a language
subset of Σ∗.

13. Some Properties of Turing Machines

For each recursive enumerable language A ⊆ Σ∗, there exists a Turing Machine M
such that A is recognized by M , that is, w∈A iff M stops and accepts w. In this case
we write: L(M)=A. Actually, if there exists a Turing Machine M which recognizes A,
then there exist ℵ0 Turing Machines, each of which recognizes A.

Recall that every Turing Machine M has an associated binary code m which is a
word in Σ∗.
• Given a recursive enumerable language A ⊆ Σ∗, we may define the following infinite
language MA ⊆ Σ∗ of Turing Machine codes:

MA = {m | m is the code of a Turing Machine M such that L(M)=A}.

The cardinality of MA is ℵ0.

• Given a set S of recursively enumerable languages, we may define the following
infinite language MS ⊆ Σ∗ of Turing Machine codes:

MS = {m | m is the code of a Turing Machine M such that L(M)=A and A∈S}.

The cardinality of MS is ℵ0.

• We have that MS is recursively enumerable for the following sets S of languages, for
any k≥0, for any w∈Σ∗:

S = {A |A is not empty}

(that is, there is a Turing Machine which enumerates the codes of all the
Turing Machines each of which recognizes a non-empty language),

S = {A |A has at least k words}, and

S = {A |w ∈ A}.

• We have that MS is not recursively enumerable for the following sets S of languages:

S = {∅} (that is, there is no Turing Machine which recognizes the code of all the
Turing Machines each of which recognizes the empty language, that is,
each of which accepts no word),

S = {Σ∗},

S = {A |A is recursive}

(that is, there is no Turing Machine which recognizes the code of all the
Turing Machines which always terminate),

S = {A |A is context-sensitive},

S = {A |A is context-free}, and

S = {A |A is regular}

(that is, there is no Turing Machine which recognizes the code of all the
Turing Machines which recognize a regular language).

Thus, for instance, it is semidecidable whether or not a given Turing Machine accepts
a non-empty language, while it is not semidecidable whether or not a given Turing
Machine accepts no words at all, that is, it accepts the empty language.

22

Note that whatever we said in this section is parameterized by the choice of the
alphabet Σ. For instance, we could have taken Σ to be the set {a, b} or the set {a, b, c},
instead of the set {0, 1}.

