
Distributed Termination Detection.

We address here the problem of detecting the termination of distributed computa-
tions [1]. We are given N processes P0, . . . , PN−1 which are placed at the nodes
of a given undirected, connected graph G. We identify each process with the node
where it is located. The N processes perform a main computation and they exchange
messages to neighbouring processes in the graph. The arcs of the graph represent
communication channels. Each process (and the corresponding node) may be either
- active, that is, it still performs a part of the main computation (and in this case
the process and the node are labelled by A), or
- idle, that is, it has completed the part of the main computation which has been
assigned to it by the last message it has received (and in this case the process and
the node are labelled by I).
We have that:
(1) Only active processes may send messages.
(2) A process may change from idle to active only on receipt of a message.
(3) A process may change from active to idle at any time (thus, we not assume any
knowledge on the duration of the parts of the computations assigned to the processes).

At Point (2) we may replace ‘may’ by ‘must’ because of Point (3).
We say that the main computation has terminated iff all processes are idle.
We say that termination has been detected by a termination detection algorithm

if it is the case that a process, say P0, enters a fixed state iff the main computation
has terminated. To know whether or not the remaining processes have terminated,
process P0 has the ability of sending and receiving messages to all processes in the
graph, but this should be done by sending and receiving messages only to and from
neighbouring processes. The ability of sending and receiving messages is given to
every process in the graph G.

The messages devoted to termination detection are collectively called signals.
Signals are: (i) either tokens or (ii) repeats . We will see below how tokens and
repeats are used by the termination detection algorithm.

The termination detection algorithm we look for, is an algorithm which: (i) at
each node sends or receives tokens or repeats, and (ii) at each node modifies the state
of the process at that node.

Moreover, the termination detection algorithm should satisfy the following con-
ditions:
(1) The modification of each process to incorporate termination detection should be
independent of the definition of the process.
(2) The termination detection algorithm should not indefinitely delay the main com-
putation.
(3) No new communication channels should be added among the processes.
(4) The termination detection algorithm should operate at each node on the basis of
the information, tokens, and repeats available at that node only.

We assume that we have computed a spanning tree T of the given undirected graph
G with process P0 at its root. This can be done by the distributed algorithm we have
indicated in Section 4.12 of [?].

The proposed termination detection algorithm works by making use of waves of
tokens and repeats moving along frontiers of the spanning tree T . A frontier of a tree

1

2

is a set F of nodes such that every root-to-leaf path has exactly one node in common
with F .

Initially, a contracting token wave goes inwards from the leaves to the root, and
if it reaches the root without detecting termination, then a new wave, called repeat

wave, is generated. This new wave moves outwards from the root to the leaves. As
soon as this repeat wave reaches the leaves, a new wave of tokens starts moving
inwards again. Notice that in some branches of the spanning tree the token wave
may be moving inwards while the repeat wave is still moving outwards along other
branches.

The algorithm works by applying in a distributed way, as long as possible, the
rules that we will indicate in the Figures 1 and 2 below. If the left-hand-side of a rule
depicted in these figures holds at a node and the corresponding condition, if any, is
true, then the rule fires and the right-hand-side of that rule is realized at that node,
regardless of the rules which are applied in other nodes at a previous or a later time.

In the spanning tree T of G every node has exactly one parent node, except the
root which has no parent. Every node has a (possibly empty) list of children. The
list of children is empty iff the node is a leaf.

In Figure 1 and Figure 2 below we have adopted the following conventions. The
status s of a node may be either active (A) or idle (I). The color of a node may be
either white (�) or black (�). A token t may be either white (△) or black (N). A
repeat is denoted by •.
Here are the two rules M1 and M2 for the main computation (see also Figure 1).

Rule M1 is for sending a message along an arc. An active process sends a message
m to one of its neighbours, and assigns to it a part of the main computation which
is encoded by that message. The process which sends the message m becomes black,
and this color encodes the fact that the process which receives the message m, has
begun and not yet completed the part of the main computation encoded by m.

Rule M2. At any time an active process may become idle regardless of its color. It
becomes idle when it has completed the part of the main computation encoded by
the last message it has received.

A -

A -

6

A

�A

mM1 :

M2 : I

Figure 1. Rules of the main computation of the termination detection
algorithm. The status s of a node may be either active (A) or idle (I).
� denotes that the color of the node is black. m is a message of the
main computation.

3

We do not assume that nodes remain active for a finite time only. Thus, if a node
remains active for an infinite time, then rule R2 never fires at that node and the
termination detection algorithm should never detect termination.
Here are the five rules for the termination detection algorithm (see also Figure 2).

-

-

-

-

-

t

tt

t

t t

6

S
S

�
�

�
�/

S
Sw�

�
S

S

?

6

�
�7

S
So

S
Sw

�
�/�

�7
S

So

?

I △

△

I

...

I

...

c
then N else △

......

�

�

t = if c=� ∨ ∃i. ti =N

P0

...

cs

...

P0

△

repeats to all children

tokens received from all children

t1 tn

I

tokens received from all children repeats to all children

t1 tn

if s=A ∨ c=�

∨ ∃i. ti =N

rule for the root with process P0:

T1.down

rules for the internal nodes:

T2.up

T2.down

rules for the leaves:

T3.up

(initially)

T3.down

Figure 2. Rules of the termination detection algorithm. The status
s of a node may be either active (A) or idle (I). The color c of a node
may be either white (�) or black (�). A token may be either white (△)
or black (N). • is a repeat.

Rule T1.down is for the root of the spanning tree. When the root P0 has received a
token from each of its children, then P0 destroys those tokens, becomes white, and
sends a repeat to each of its children iff either (i) P0 is active, or (ii) P0 is black, or
(iii) P0 has received a black token.

Rule T2.up is for any internal node of the spanning tree (neither the root nor the
leaves). When an internal node Pi has received a token from each of its children and
Pi is idle, then Pi destroys those tokens and sends a new token t to its parent. The

4

token t is black iff either Pi is black or any of the tokens received from the children
is black, otherwise the token is white.

Rule T2.down is for any internal node of the spanning tree (neither the root nor the
leaves). When the internal node has received a repeat, it destroys that repeat and
sends a repeat to each of its children.

Rule T3.up is for any leaf. A leaf sends its white token to its parent iff the leaf is
idle.

Rule T3.down is for any leaf. A leaf which receives a repeat, destroys it, and acquires
a white token.
Initially:
- all nodes are white;
- at least one node is active (and thus, it may become black);
- each leaf has a white token and every other node has neither tokens nor repeats.

These are invariants of the algorithm:
- an active node does not send any token (see Figure 2) and thus, it is impossible for
the termination detection algorithm to indefinitely delay the main computation;
- when a node sends a token it is left without tokens, and analogously, when it sends
a repeat it is left without repeats;
- tokens at the leaves are always white.

We will show below that termination is detected by the process P0 at the root when
at a given time t̄:
(i) the process P0 at the root is idle, and
(ii) the color of the root is white, and
(iii) there is a time t before t̄ such that in the interval [t, t̄] every child of the root has
sent to the root one token only and that token is white (it is △).

If Conditions (i), (ii), and (iii) above hold, then the rule T1.down does not fire and no
new repeat wave is generated. At this point P0 has detected termination and it may
tell all other processes to halt. We do not describe here how this last communication
may be realized by suitable messages sent along the arcs of the spanning tree.

The choice between the firing of the rules of the main computation and those of
the termination detection algorithm is nondeterministic. Thus, the main computation
need not be delayed by the termination detection algorithm.

The algorithm is correct independently of the fact that processes have buffers to
store the incoming messages and signals, provided the delay between sending and
receiving a message or a signal is sufficiently small, that is, the propagation along the
arcs of the spanning tree is sufficiently fast.

The proof of correctness of the termination detection algorithm is as follows [1].
We first show partial correctness. We need the following definition.

Definition 0.1. Given an undirected, connected graph G and a spanning tree T

of G, a node n of G is said to be outside a set A of nodes of G iff n 6∈ A and the path
from the root of T to n (including the root) contains an element of A.

In this definition it is irrelevant whether or not the node n is included in the path
from the root of T to n.

5

Let S be the set of nodes of the spanning tree T with one or more tokens, regardless
of the colors of the tokens. Let us consider the invariant Inv defined as follows:

Inv ≡ (all nodes outside S are idle ∨ some nodes not outside S is black
∨ some node in S has a black token)

If we take S to be the set of all leaves, we have that the invariant Inv is initially true
because no node is outside S. The invariant Inv is maintained true for each firing
of the rules of Figures 1 and 2 by assuming that the set S is modified by the rules
T2.up and T3.up only, and it is modified as follows:

the node n which sends the token is removed from S, and the parent p of that node
is added to S if it is not already an element of S, that is, S := (S ∪ {p}) − {n}.

Now, since S = {root} implies that all nodes but the root, are outside S, we have
that:

(Inv ∧ S ={root} ∧ the root is white and idle ∧ all tokens at the root are white)
⇒ all nodes are idle (that is, the main computation has terminated)

Moreover, since Inv is preserved during the firing of the rules of Figures 1 and 2, the
main computation has terminated if S = {root} ∧ the root is white and idle ∧ all
tokens at the root are white.
The termination detection algorithm terminates because:
(i) to test the firing conditions of each rule of Figures 1 and 2 takes a finite amount
of time, and
(ii) if all processes are idle then a finite number of firings of the rules of Figure 2 is
sufficient to allow process P0 to detect termination.

As indicated in [1], we have that the complexity of the termination detection
algorithm is O(N × m), where N is the number of nodes in the graph G (that is,
the number of processes) and m is the number of messages generated by the main
computation according to rule M1.

Bibliography

[1] R. W. Topor. Termination detection for distributed computations. Information Processing Let-

ters, 18(1):33–36, 1984.

7

