
3.3. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN A LOGIC LANGUAGE 37

3.3. Chop-and-Expand Context-Free Parser in a logic language

Recall that in logic programming [A|X] represents the list whose head is the element
A and whose tail is the list X.

Here is a logic program which realizes a Chop-and-Expand parser:

1. parse(G, [], []) ←
2. parse(G, [A|X], [A|Y]) ← terminal(A), parse(G, X, Y) // CHOP

3. parse(G, [A|X], Y) ← nonterminal(A), member(A→B, G), // EXPAND

append(B, X, Z), parse(G, Z, Y)
4. member(A, [A|X]) ←
5. member(A, [B|X]) ← member(A, X)
6. append([], L, L) ←
7. append([A|X], Y, [A|Z]) ← append(X, Y, Z)

together with the clauses which define which are the terminal symbols and the non-
terminal symbols.

The first argument of parse is a context-free grammar, the second argument is
a list of terminal symbols and nonterminal symbols (that is, a sentential form), and
the third argument is a word represented as a list of terminal symbols. We assume
that context-free grammars are represented as lists of productions of the form x→y,
where x is a nonterminal symbol and y is a list of terminal and nonterminal symbols.

We have that parse(G, [s], W) holds iff from the symbol s we can derive the word
W using the grammar G.

Example 3.3.1. The grammar G = 〈{a, b}, {S}, {S → aSb, S → ab}, S〉 is rep-
resented by the clauses:

terminal(a) ←

terminal(b) ←

nonterminal(s) ←

together with the list [s→ [a, s, b], s→ [a, b]] which represents its productions. The
left hand side of the first production is assumed to be the start symbol. For this
grammar G the goal ← parse([s→ [a, s, b], s→ [a, b]], [s], [a, a, b, b]) is true.

Note that in the clause member(A, [B|X]) ← member(A, X), we do not re-
quire that A is different from B. Indeed with this clause, the query of the form
member(A, l), where A is a variable and l is a ground list, generates by backtracking
all members of the list l with all their multiplicity. !

