NATURAL DEDUCTION

$\overline{\Gamma, A \vdash A}$	(Assumption Axiom)
$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$	(Introduction of Assumption)
$\frac{\Gamma, A \vdash B \Gamma, \neg A \vdash B}{\Gamma \vdash B}$	(Elimination of Assumption)
$\overline{\Gamma \vdash true}$	(true Axiom)
$\Gamma \vdash \neg false$	(false Axiom)
$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$	$(\lor Introduction)$
$\frac{\Gamma \vdash A \lor B \Gamma, A \vdash C \Gamma, B \vdash C}{\Gamma \vdash C}$	$(\lor$ Elimination)
$\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B}$	$(\land$ Introduction)
$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$	$(\land \text{Elimination})$
$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$	$(\rightarrow$ Introduction) (also called Discharge Rule)
$\frac{\Gamma \vdash A \Gamma \vdash A \longrightarrow B}{\Gamma \vdash B}$	$(\rightarrow \text{Elimination})$ (this rule corresponds to Modus Ponens)
$\frac{\Gamma \vdash A \longrightarrow B \Gamma \vdash B \longrightarrow A}{\Gamma \vdash A \longleftrightarrow B}$	$(\leftrightarrow \text{Introduction})$
$\frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash A \rightarrow B} \qquad \frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash B \rightarrow A}$	$(\leftrightarrow \text{Elimination})$

$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$	$(\neg \neg$ Introduction)
$\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$	$(\neg \neg$ Elimination)
$\frac{\Gamma, A \vdash B \Gamma, A \vdash \neg B}{\Gamma \vdash \neg A}$	$(\neg$ Introduction)
$\frac{\Gamma \vdash A \Gamma \vdash \neg A}{\Gamma \vdash B}$	$(\neg$ Elimination)

A term t is free (or can be substituted) for the variable x in a formula A(x) iff no free occurrence of x in A(x) is in the scope of a quantifier which binds a variable of t.

We have that: (i) both r(x) and r(y) are free for x in $\exists x q(x)$, and

(ii) r(y) is not free for x in $\exists y \ leq(x, y)$.

Recall that A(t) denotes the term obtained by replacing all free occurrences of x in A(x) by the term t.

$\frac{\Gamma \vdash A(x)}{\Gamma \vdash \forall x \ A(x)}$	if x is not free in Γ	$(\forall$ Introduction)
$\frac{\Gamma \vdash \forall x A(x)}{\Gamma \vdash A(t)}$	if t is free for x in $A(x)$	$(\forall$ Elimination)
$\frac{\Gamma \vdash A(t)}{\Gamma \vdash \exists x \ A(x)}$	if t is free for x in $A(x)$	$(\exists Introduction)$
$\frac{\Gamma \vdash \exists x \ A(x) \Gamma, A(b) \vdash C}{\Gamma \vdash C}$	if b is a constant occurring neither in Γ nor in $\exists x A(x)$ nor in C	$(\exists$ Elimination)

THEOREM. **[Deduction Theorem]** Given a set Γ of formulas and two formulas φ and ψ , we have that $\Gamma \vdash \varphi \rightarrow \psi$ iff $\Gamma, \varphi \vdash \psi$.

PROOF. The *if* direction is shown by the \rightarrow Introduction rule. The *only-if* direction is shown as follows. By the Introduction of Assumption rule, from $\Gamma \vdash \varphi \rightarrow \psi$ we get: (1) $\Gamma, \varphi \vdash \varphi \rightarrow \psi$

By the Assumption axiom from (1) we get: (2) $\Gamma, \varphi \vdash \varphi$ From (2) and (1) by the \rightarrow Elimination rule we get $\Gamma, \varphi \vdash \psi$.

THEOREM. For every set Γ of *closed* formulas (and, in particular, for the empty set of formulas) and for any (closed or open) formula φ , there exists a derivation of φ from Γ in the Classical presentation, that is, $\Gamma \vdash \varphi$ holds iff $\Gamma \vdash \varphi$ is as sequent which holds in the Natural Deduction presentation.

Rules for equality

 $\frac{\Gamma \vdash t = t}{\Gamma \vdash t_1 = t_2} \quad (= \text{Axiom})$ $\frac{\Gamma \vdash t_1 = t_2}{\Gamma \vdash A(t_1) \leftrightarrow A(t_2)} \quad \text{if } t_1 \text{ and } t_2 \text{ are free for } x \text{ in } A(x) \quad (= \text{Rule})$ An equivalence for existential variables in Horn clauses $\forall x \left(A(x) \to B\right) \quad \leftrightarrow \quad \forall x \left(\neg A(x) \lor B\right) \quad \leftrightarrow \quad (\forall x \neg A(x)) \lor B \quad \leftrightarrow \\ \quad \leftrightarrow \quad (\neg \exists x A(x)) \lor B \quad \leftrightarrow \quad (\exists x A(x) \to B).$ Two interesting equivalences involving equality

Two interesting equivalences involving equality

Equivalence (A): $\forall x (x = t \rightarrow A(x)) \leftrightarrow A(t)$

where t is free for x in A(x) and x does not occur in t.

Proof. At line 10: $t = t \rightarrow A(t)$ should be the result of substituting all free occurrences of x in $x = t \rightarrow A(x)$ by t.

1. $A(t), x=t \vdash x=t$	Assumption Axiom
2. $A(t), x = t \vdash A(x) \leftrightarrow A(t)$	= Rule (t is free for x in $A(x)$ and x is free for x in $A(x)$)
3. $A(t), x = t \vdash A(t) \rightarrow A(x)$	\leftrightarrow Elimination
4. $A(t), x = t \vdash A(t)$	Assumption Axiom
5. $A(t), x = t \vdash A(x)$	\rightarrow Elimination (3, 4)
6. $A(t) \vdash x = t \rightarrow A(x)$	\rightarrow Introduction
7. $A(t) \vdash \forall x (x = t \rightarrow A(x))$	\forall Introduction (x is not free in $A(t)$)
8. $\vdash A(t) \rightarrow \forall x (x = t \rightarrow A(x))$	\rightarrow Introduction
9. $\forall x(x=t \to A(x)) \vdash \forall x(x=t \to A(x))$	Assumption Axiom
10. $\forall x (x = t \rightarrow A(x)) \vdash t = t \rightarrow A(t)$	\forall Elimination (t is free for x in
	$(x = t \rightarrow A(x))$ and x does not occur in t)
11. $\forall x (x = t \rightarrow A(x)) \vdash t = t$	= Axiom
12. $\forall x (x = t \rightarrow A(x)) \vdash A(t)$	\rightarrow Elimination (10, 11)
13. $\vdash (\forall x (x = t \rightarrow A(x))) \rightarrow A(t)$	\rightarrow Introduction
$14. \vdash (\forall x (x = t \to A(x))) \leftrightarrow A(t)$	$\leftrightarrow \text{Introduction } (8, 13)$

Equivalence (B): $\exists x (x = t \land A(x)) \leftrightarrow A(t)$

where t is free for x in A(x) and x does not occur in t.

Proof. The symbol b stands for a constant, not occurring elsewhere. Note that at line 12, since x does not occur in t, the formula $b = t \wedge A(b)$ is the result of substituting b for x in $x = t \wedge A(x)$. At line 3: $t = t \rightarrow A(t)$ should be the result of substituting all free occurrences of x in $x = t \rightarrow A(x)$ by t.

1. $A(t) \vdash A(t)$	Assumption Axiom
2. $A(t) \vdash t = t$	= Axiom
3. $A(t) \vdash t = t \land A(t)$	\wedge Introduction (2, 1)
4. $A(t) \vdash \exists x (x = t \land A(x))$	\exists Introduction (x does not occur in t
	and t is free for x in $(x = t \to A(x)))$
5. $\vdash A(t) \rightarrow \exists x (x = t \land A(x))$	\rightarrow Introduction
$6. \exists x (x = t \land A(x)) \vdash \exists x (x = t \land A(x))$	Assumption Axiom
7. $\exists x (x = t \land A(x)), b = t \land A(b)$	Assumption Axiom
$\vdash b = t \land A(b)$	
8. $\exists x (x = t \land A(x)), b = t \land A(b) \vdash b = t$	\wedge Elimination (7)
9. $\exists x (x = t \land A(x)), b = t \land A(b) \vdash A(b)$	\wedge Elimination (7)
10. $\exists x (x = t \land A(x)), b = t \land A(b) \vdash A(b) \leftrightarrow A(t)$	= Rule (8)
	(b and t are free for x in A(x))
11. $\exists x (x = t \land A(x)), b = t \land A(b) \vdash A(b) \rightarrow A(t)$	\leftrightarrow Elimination
12. $\exists x (x = t \land A(x)), b = t \land A(b) \vdash A(t)$	\rightarrow Elimination (9, 11)
13. $\exists x (x = t \land A(x)) \vdash A(t)$	\exists Elimination (6, 12)
	(x does not occur in t)
$14. \vdash \exists x (x = t \land A(x)) \to A(t)$	\rightarrow Introduction
$\overline{15.} \vdash \exists x (x = t \land A(x)) \leftrightarrow A(t)$	$\leftrightarrow \text{Introduction} (5, 14)$