
Exam of Theoretical Computer Science. Year 2010–2011. A. Pettorossi.

1. Decidability and Partial Recursive Functions: • r.e. sets and recursive sets. • Semidecidability
of the Halting Problem of the Turing Machine. • Partial Recursive Functions. (AP: all proofs are
optional.)

2. Predicate Calculus and Logic Programming: • Syntax and semantics: Classical Presentation.
• Operational and Denotational Semantics of Definite Logic Programs. (PC&LP: Sections: 1, 2.1, 3,
4, 8, 9.3, 9.4. All proofs are optional.)

3. Well-founded Recursion Theorem (SPL: Section 3.1.6. No proof)

4. Language IMP: • Operational Semantics. • Denotational Semantics. • Axiomatic Semantics.
• Rule induction. • Soundness of Axiomatic Semantics. • Weakest Preconditions, Expressiveness
Theorem, and Relative Completeness Theorem. (SPL: No proofs)

5. Language REC: • Operational Semantics and Denotational Semantics in call-by-value and in
call-by-name. • Equivalence of semantics. • The Factorial example in the two languages. (SPL: No
proofs)

6. Complete partial orders. • Products, function space, curry, apply, lifting, sum, and Cond.
• Metalanguage for denotational semantics. • Fixpoint of continuous functions and Kleene Theorem.
• Scott fixpoint induction, Park induction, and Bekić Theorem. (SPL: Basic definitions and properties.
Proof of Kleene’s Theorem. No proofs of the other theorems.)

7. Higher order languages: • The Eager language, the Lazy1 language, and Lazy2 language:
Operational Semantics and Denotational Semantics. • The Factorial Example in the three languages.
• The β rule and the η rule in Eager, Lazy1, and Lazy2. (SPL: Basic concepts only. No proofs)
Optional : Fixpoint operators in Eager, Lazy1, and Lazy2. Optional : Adequacy and full-abstraction.

8. Non-determinism and Concurrency. • Owicki-Gries rules. • Milner’s CCS. • Axiomatization
of finite state processes. • Hennessy-Milner logic. • Modal µ-calculus. • Local model checking.
• Correctness proof of the Alternating Bit Protocol. (SPL: No proofs).
Optional : Dijkstra’s guarded commands. Optional : Bisimulation equivalence and Bisimulation con-
gruence for CCS.

9. Projects: (A1) Define a higher order lazy language, call it EL, which is an extension of the Lazy
language and write a Prolog program for the operational semantics of EL.
(A2) Write a simple local model checker in Prolog and use it for proving the correctness of a mutual
exclusion protocol or a cache coherence protocol.

References.
- AP: Pettorossi, A.: Elements of Computability, Decidability, and Complexity. Third Edition. Aracne
(2009).
- PC&LP: A. Pettorossi and M. Proietti: Predicate Calculus and Logic Programming. Second Edition.
Aracne 2005.
- SPL: Pettorossi, A.: Semantics of Programming Languages. Aracne (2010).

1


